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We solve the Landau problem for charged particles on odd dimensional spheres S2k−1 in the
background of constant SOð2k − 1Þ gauge fields carrying the irreducible representation (I

2
; I
2
;…; I

2
).

We determine the spectrum of the Hamiltonian, the degeneracy of the Landau levels and give the
eigenstates in terms of the Wigner D-functions, and for odd values of I, the explicit local form of the
wave functions in the lowest Landau level (LLL). The spectrum of the Dirac operator on S2k−1 in
the same gauge field background together with its degeneracies is also determined, and in
particular, its number of zero modes is found. We show how the essential differential geometric
structure of the Landau problem on the equatorial S2k−2 is captured by constructing the relevant
projective modules. For the Landau problem on S5, we demonstrate an exact correspondence between
the union of Hilbert spaces of LLLs, with I ranging from 0 to Imax ¼ 2K or Imax ¼ 2K þ 1 to the
Hilbert spaces of the fuzzy CP3 or that of winding number �1 line bundles over CP3 at level K,
respectively.
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I. INTRODUCTION

In a recent article [1], the relationship between the
A-class topological insulators (TIs) and the quantum Hall
effect (QHE) on even dimensional spheres has been
explored, and it has been recognized that A-class TIs
can be realized as QHE on even dimensional spheres [1,2].
A-class TIs are not time-reversal invariant, appear in even
dimensions, and can be characterized via an integer
topological invariant; while AIII class are also not time
reversal invariant, carry an integer topological invariant,
but appear in odd dimensions. In addition, AIII-class TIs
have chiral symmetry, whereas the A-class TIs do not [3].
Focusing on these connections between the A-class TIs
and AIII-class TIs, in a subsequent article, Hasebe [4]
considered the possibility of realizing the latter type in
terms of a quantum Hall system in odd dimensions.
Elaborating on the formulation of the QHE on the three
sphere S3, given by Nair & Daemi [5], Hasebe found that
Nambu 3-algebraic geometry can be employed to realize
the chiral symmetry of the TI in this setting and modeled
the chiral TI as a superposition of two three spheres
embedded in S4 with the SU(2) background monopole
fluxes, i.e., in the four-dimensional QHE of Hu and
Zhang [6].
In the past decade or so, formulation of the QHE on

higher-dimensional manifolds, and investigations on its
several aspects, have been a continually appearing theme in
contemporary theoretical physics. After the pioneering
work of Hu & Zhang [6] in formulating the QHE problem

on S4, a multitude of articles have explored the formulation
of the QHE on various higher-dimensional manifolds,
such as CPN , the even-dimensional spheres S2k, complex
Grassmann manifolds Gr2ðCNÞ, as well as on a particular
flag manifold [2,7–11]. One motivation for their study is to
understand the generalization of the massless excitations
(chiral bosons), which are known to be present at the edge
of the two-dimensional quantum Hall samples (see, for
instance, [12]). However, it turns out that not only photons
and gravitons, but somewhat undesirably even higher
massless spin states occur at the edges, which are effec-
tively described by chiral gauged Wess-Zumino-Witten
(WZW) theories, and therefore have interesting physical
content in their own right [13,14]. There are also strong
motivations emerging from the physics of D-branes and
strings, as certain configurations with open strings ending
on D-branes have low energy limits, which are effectively
described by the QHE on spheres [15,16]. The relationship
between the matrix algebras describing fuzzy spaces, such
as the fuzzy sphere S2F, higher-dimensional fuzzy spheres
S2kF , fuzzy complex projective spaces CPN

F , and the Hilbert
spaces of the lowest Landau level (LLL) of the QHE on
aforementioned manifolds, have also been explored in the
literature to shed further light into the geometrical structure
of the LLL [17], while in the present work we will have the
opportunity to present yet another facet of this relationship
in a particular example. Thus, expanding upon these
concrete developments, and along with the novel motiva-
tions emerging from the physics of TIs, in this paper, our
aim is to investigate the formulation of the QHE on all odd-
dimensional spheres S2k−1.
As we have already noted, the QHE problem on S3

is solved by Nair & Daemi [5], and a complementary
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treatment is recently given in Hasebe’s work [4].1 The clear
path for the construction of the QHE over compact higher-
dimensional manifolds appears to be closely linked to
the coset space realization of such spaces. Indeed, odd
spheres can also be realized as coset manifolds as

S2k−1 ≡ SOð2kÞ
SOð2k−1Þ ≡ Spinð2kÞ

Spinð2k−1Þ. In their approach, Nair &

Daemi took advantage of the fact that S3 can also be

realized as S3 ≡ SUð2Þ×SUð2Þ
SUð2ÞD owing to the isomorphisms

SUð2Þ×SUð2Þ
Z2

¼ SOð4Þ and SUð2Þ
Z2

¼ SOð3Þ, and they sub-
sequently constructed the Landau problem for a charged
particle on S3 under the influence of a constant SUð2ÞD
gauge field background carrying an irreducible represen-
tation (IRR) of the latter. This quick approach is not
immediately applicable to higher-dimensional odd spheres.
Nevertheless, coset space realization of S2k−1, in terms of
the SOð2kÞ=SOð2k − 1Þ, can be used to handle this
problem.
A brief summary of our results and their organization in

the present article is in order. In section II, we set up and
solve the Landau problem for charged particles on odd-
dimensional spheres S2k−1 in the background of constant
SOð2k − 1Þ gauge fields carrying the irreducible represen-
tation (I

2
; I
2
;…; I

2
). In particular, we determine the spectrum

of the Hamiltonian, the degeneracy of the Landau levels,
give the eigenstates in terms of the Wigner D-functions,
and for odd values of I, the explicit local form of the wave
functions in the lowest Landau level. In this section, we
also demonstrate in detail how the essential differential
geometric structure of the Landau problem on the equa-
torial S2k−2 is captured by constructing the relevant
projective modules and the related SOð2k − 2Þ valued
curvature two forms. We illustrate our general results on
the examples of S3 and S5 for concreteness, and in the latter
case, we identify an exact correspondence between the
union of Hilbert spaces of LLL’s with I ranging from 0 to
Imax ¼ 2K or Imax ¼ 2K þ 1 to the Hilbert spaces of the
fuzzy CP3 at level K or that of winding number �1 line
bundles over CP3 at level K, respectively. In section III we
determine the spectrum of the Dirac operator on S2k−1 in the
same gauge field background together with its degeneracies
and also compute the number of its zero modes. Some
relevant formulas from the representation theory of groups
is given in a short appendix for completeness.

II. LANDAU PROBLEM ON ODD SPHERES S2k−1

A. Basic setup and the solution

In this section we aim to set up and solve the Schrödinger
equation for charged particles on odd spheres, S2k−1, under

the influence of a constant background gauge field. We will
give the spectrum of the appropriate Hamiltonian for the
problem and determine the associated wave functions. In
order to pose the problem in sufficient detail, we start with
laying out some definitions and conventions that are going
to be used throughout the paper.
A convenient way of specifying the coordinates on S2k−1

is to embed it in R2k. Then, Xa ∈ R2n, a ¼ ð1; 2;…; 2kÞ,
satisfying the condition XaXa ¼ R2, gives the coordinates
of S2k−1 with radius R. The splitting of Xa into certain
spinorial coordinates is going to be of essential interest in
what follows. To see how this comes about, let us first note
the well-known fact that the odd-dimensional spheres can
be represented as the coset spaces

S2k−1 ¼ SOð2kÞ=SOð2k − 1Þ; ð2:1Þ

and the generators of SOð2kÞ ≈ Spinð2kÞ may be given by

Ξab ¼ −
i
4
½Γa;Γb�; a; b ¼ 1; 2;…; 2k; ð2:2Þ

where Γa are the generators of the Clifford algebra in 2k
dimensions. These are 2k × 2k matrices satisfying the
anticommutation relations fΓa;Γbg ¼ 2δab. We will use
the following representation of Γas in the present article:

Γμ ¼
�

0 −iγμ
iγμ 0

�
; μ ¼ 1;…; 2k − 1;

Γ2k ¼
�

0 I2k−1×2k−1

I2k−1×2k−1 0

�
;

Γ2kþ1 ¼
�−I2k−1×2k−1 0

0 I2k−1×2k−1

�
; ð2:3Þ

where γμ’s are the generators of the Clifford algebra in
(2k − 1) dimensions.
SOð2k − 1Þ is irreducibly generated by

Σμν ¼ −
i
4
½γμ; γν�: ð2:4Þ

In fact, Σμν specifies the irreducible fundamental spinor
representation of SOð2k − 1Þ, which is 2k−1 dimensional.
For completeness, let us also indicate that Ξab in (2.2)
generates SOð2kÞ reducibly; Ξab has the block diagonal
form

Ξab ¼
�
Ξþ
ab 0

0 Ξ−
ab

�
; ð2:5Þ

indicating that there are two irreducible fundamental
representations, Ξ�

ab ¼ ðΞ�
μν;Ξ�

2kμÞ ¼ ðΣμν;∓ 1
2
γμÞ, each

of dimension 2k−1, generating SOð2kÞ.

1Other recent developments in solving the Landau problem
and the Dirac-Landau problem in flat higher-dimensional spaces
are reported in [18–20].
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Let us introduce the 2k-component spinor

Ψ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RðRþ X2kÞ

p ððRþ X2kÞI2k þ XμΓμÞϕ; Ψ†Ψ ¼ 1;

ð2:6Þ

where I2k stands for a 2k × 2k unit matrix and ϕ ¼ 1ffiffi
2

p ð ~ϕ~ϕÞ,
with ~ϕ being a normalized 2k−1-component spinor. It is
straightforward to check that Ψ gives us the desired
fractionalization, or the “square root” of Xa, via the
Hopf-like projection map

Xa

R
¼ Ψ†ΓaΨ: ð2:7Þ

Using the spinor introduced in (2.6), we can construct
the spin connection over S2k−1, i.e., the SOð2k − 1Þ gauge
field as

A ¼ Ψ†dΨ; ð2:8Þ
whose components are determined to be

Aμ ¼ −
1

RðRþ X2kÞ
ΣμνXν; A2k ¼ 0: ð2:9Þ

Using the covariant derivatives Da ¼ ∂a þ iAa and (2.9),
components of the field strength

Fab ¼ −i½Da;Db� ¼ ∂aAb − ∂bAa þ i½Aa; Ab�; ð2:10Þ
are given as

Fμν ¼
1

R2
ðXνAμ−XμAνþΣμνÞ; F2kμ ¼−

RþX2k

R2
Aμ:

ð2:11Þ
We find that

R4
X
a<b

F2
ab ¼

X
μ<ν

Σ2
μν: ð2:12Þ

The rhs of (2.12) is the Casimir of SOð2k − 1Þ, and thus
proportional to the identity in an irreducible representation.
Thus, a natural choice for a constant gauge field back-
ground is the spinor representation given by the highest
weight labels [21]�

I
2

�
≡

�
I
2
;…;

I
2

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðk−1Þterms

; I ∈ Z; ð2:13Þ

since SOð2k − 1Þ is of rank k − 1. We observe that (I
2
;…; I

2
)

can be obtained from the I-fold symmetric tensor product
of the fundamental spinor representation (1

2
;…; 1

2
). It should

readily be understood from the context, which IRR of

SOð2k − 1Þ that Σμν carries; thus in (2.4), this is the 2k−1-
dimensional fundamental spinor representation (1

2
;…; 1

2
),

while in what follows we are going to take it to be in the
IRR (I

2
;…; I

2
) due to the reasons just argued.

We can write down the Hamiltonian for a charged
particle on S2k−1 under the influence of the constant
SOð2k − 1Þ gauge field background introduced in the
preceding paragraph as

H ¼ ℏ
2MR2

X
a<b

Λ2
ab; ð2:14Þ

where Λab are the operators given as

Λab ¼ −iðXaDb − XbDaÞ; ð2:15Þ

which are parallel to the tangent bundle over S2k−1.
Commutators of Λab give

½Λab;Λcd� ¼ iðδacΛbd þ δbdΛac − δbcΛad − δadΛbcÞ
− iðXaXcFbd þ XbXdFac − XbXcFad

− XaXdFbcÞ; ð2:16Þ

which are not the SOð2kÞ commutation relations. The
reason for Λab failing to satisfy the SOð2kÞ commutation
relations is that they just account for the angular momen-
tum of a charged particle on S2k−1, which is not the total
angular momentum in the present problem, since the
background gauge field also carries angular momentum.
Thus, the total angular momentum operators, generating
the SOð2kÞ rotations can be constructed by supplementing
Λab with the spin angular momentum of the background
gauge field by writing

Lab ¼ Λab þ R2Fab: ð2:17Þ

In component form we find

Lμν ¼ Lð0Þ
μν þ Σμν; L2kμ ¼ Lð0Þ

2kμ − RAμ; ð2:18Þ

where Lð0Þ
ab ¼ −iðXa∂b − Xb∂aÞ are the generators of

SOð2kÞ over S2k−1. In the absence of a magnetic back-

ground, Lð0Þ
ab would be the generators of angular momentum

for a particle on S2k−1 and it would be the total angular
momentum in that case. In the present case, a straightfor-
ward calculation yields

½Lab; Lcd� ¼ iðδacLbd þ δbdLac − δbcLad − δadLbcÞ;
ð2:19Þ

as expected.
Using (2.17), and the fact thatΛab andFab are orthogonal,

i.e., ΛabFab ¼ FabΛab ¼ 0, we can write (2.14) as
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H ¼ ℏ
2MR2

�X
a<b

L2
ab −

X
μ<ν

Σ2
μν

�
: ð2:20Þ

In order to obtain the spectrum of this Hamiltonian, we
have to determine the general formof the IRRof SOð2kÞ that
Lab could carry, given that Σμν carries the (I2) of SOð2k − 1Þ.
This problem can be addressed by looking at the branching
of SOð2kÞ IRRs in terms of those of SOð2k − 1Þ [21].
Consider Table I, where the first row indicates a generic
IRR of SOð2kÞ labeled by integers or half odd integers
(λ1; λ2;…; λk) corresponding respectively to tensor and
spinor representations with λ1 ≥ λ2 � � � ≥ jλkj, where the
last entry λk could be positive, negative, or zero and satisfies
jλkj ≥ 0 for the former and jλkj ≥ 1

2
for the latter case. IRRs of

SOð2kÞ with opposite sign of λk are conjugate representa-
tions. The second row stands for the (μ1; μ2;…; μk−1) IRR of
SOð2k − 1Þ, where μi are integers or half odd integers
satisfying μ1 ≥ μ2 � � � ≥ μk−1 and μk−1 ≥ 0 or μk−1 ≥ 1

2
,

respectively. The third line gives the branching rule [21].
Accordingly, for ðI

2
Þ of SOð2k − 1Þ to appear in this

branching, we must have λ1 ≥ I
2
, λ2 ¼ λ3 ¼ � � � ¼ λk−1 ¼

I
2
and jλkj ≤ I

2
. Thus, we may write λ1 ¼ nþ I

2
for some

integer n, and using the notation λk ¼ s (jsj ≤ I
2
), we see that

(nþ I
2
; I
2
;…; I

2
; s) is the general form of the SOð2kÞ IRR,

whose branching under SOð2k − 1Þ includes the (I
2
) IRR of

the latter. In fact the complete branching of the former can be
written out as the direct sum of SOð2k − 1Þ IRRs as
�
nþ I

2
;
I
2
;…;

I
2
; s

�
¼ ⨁

nþI
2

μ1¼I
2

⨁
I
2

μ2¼s

�
μ1;

I
2
;…;

I
2
; μ2

�
:

ð2:21Þ
The spectrum of the Hamiltonian can be written out using
the eigenvalues of the quadratic Casimir operators C2

SOð2kÞ
and C2

SOð2k−1Þ of SOð2kÞ and SOð2k − 1Þ in the IRRs

(nþ I
2
; I
2
;…; I

2
; s), (I

2
; I
2
;…; I

2
), respectively. Eigenvalues

for these Casimir operators in generic IRRs are given in
the appendix. Explicitly, we have

E ¼ ℏ
2MR2

�
C2
SOð2kÞ

�
nþ I

2
;
I
2
;…;

I
2
; s

�

− C2
SOð2k−1Þ

�
I
2
;
I
2
;…;

I
2

��

¼ ℏ
2MR2

�
n2 þ s2 þ nðI þ 2k − 2Þ þ I

2
ðk − 1Þ

�
:

ð2:22Þ

Thus, given a fixed background charge I, the lowest Landau
level (LLL) is characterized by settingn ¼ 0 and s ¼ 0 if I is
an even integer and setting n ¼ 0 and s ¼ � 1

2
if I is an odd

integer. In these cases we get

ELLL ¼
8<
:

ℏ
2MR2

I
2
ðk − 1Þ for even I;

ℏ
2MR2

�
I
2
ðk − 1Þ þ 1

4

�
for odd I

: ð2:23Þ

It is possible to interpret n and s as the quantum numbers
labeling the Landau levels. We further see that the degen-
eracy in each Landau level is given by the dimension of the
IRR (nþ I

2
; I
2
;…; I

2
; s) of SOð2kÞ, which can be written

compactly as

dðn; sÞ ¼
Yk
i<j

�
mi −mj

gi − gj

�Yk
i<j

�
mi þmj

gi þ gj

�
; ð2:24Þ

where gi ¼ k − i and m1 ¼ nþ I
2
þ g1, mi ¼ I

2
þ gi

(i ¼ 2;…; k − 1), and mk ¼ sþ gk. It is easy to estimate
from (2.24) that for a large I, dð0; 0Þ ≈ I

1
2
ðk−1Þðkþ2Þ ≈

dð0;� 1
2
Þ, and shows us how fast the LLL degeneracy grows

for a given magnetic background on S2k−1. We note also that
for the LLLwith an odd I, the degeneracy is doubled since s
takes on the values � 1

2
.

In the thermodynamic limit I, R → ∞ with a finite
“magnetic length” scale lM ¼ Rffiffi

I
p , we immediately find

Eðn; sÞ→ ℏ
2Ml2

M

�
nþ 1

2
ðk − 1Þ

�
; ELLL ¼ ℏ

2Ml2
M

k − 1

2
;

ð2:25Þ

and see that the spacing between LL levels remains finite;
the LLL energy has the same form as in the standard integer
QHE in two dimensions up to an overall constant.
What about the wave functions corresponding to these

Landau levels? Compactly, they can be given in terms of
the Wigner D-functions DðnþI

2
;I
2
;…;I

2
;sÞðgÞ½L�½R� of SOð2kÞ,

carrying the (nþ I
2
; I
2
;…; I

2
;s) IRR of the latter. Here ½L�½R�

are two sets of collective labels that give the states in this
IRR of SOð2kÞ with respect to the IRRs of SOð2k − 1Þ that
appear in the branching (2.21). Since [R] labels all the
states in the IRR (I

2
;…; I

2
), [L] is further subject to certain

selection rules that restrict both the IRRs in (2.21) and the
states in each of the latter, which we do not attempt to
determine here. Nevertheless, the 2k−1-component spinors

Ψ� ¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðRþ X2kÞ

p ððRþ X2kÞI2k−1 ∓ iXμγ
μÞ ~ϕ;

Ψ ¼
�
Ψþ

Ψ−

�
; ð2:26Þ

TABLE I. Branching of SOð2kÞ under SOð2k − 1Þ.
SOð2kÞ λ1; λ2;…; λk−1; λk
SOð2k − 1Þ μ1; μ2;…; μk−1

λ1 ≥ μ1 ≥ λ2 � � � ≥ μk−1 ≥ jλkj
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obtained from (2.6) are indeed the LLL wave functions for
I ¼ 1, with � signs corresponding to s ¼ 1

2
and s ¼ − 1

2
,

respectively and 2k−1-fold degeneracy in each sector. Using
the compact notation, Ψ�

α ≔ K�
αβ
~ϕβ, we see that

LμνΨ�
α ¼ K�

αβðΣμνÞβγ ~ϕγ; L2kμΨ�
α ¼ K�

αβð∓ 1

2
γμÞβγ ~ϕγ;

ð2:27Þ

from which, after several steps of calculation, we find

X
a<b

L2
abΨ� ¼

X
μ<ν

�
Σ2
μν þ

1

4
γ2μ

�
Ψ�;

¼
X
μ<ν

�
Σ2
μν þ

1

2

�
k −

1

2

��
Ψ�; ð2:28Þ

indicating the claimed result upon using (2.20) and (2.22).
Thus the LLL wave functions for the case of the odd I are
obtained as the I-fold symmetric product of Ψ�

α

ΨI ¼
X
α1;���αI

fα1���αIΨα1 � � �ΨαI ; ð2:29Þ

where each α takes on values from 1 to 2k−1, and
the coefficients fα1���;αI are totally symmetric in its
indices. These coefficients also satisfy Γa

α1α2fα1α2���αI ¼ 0,
fααα3���αI ¼ 0 to exclude the nonsymmetric representa-
tions that appear in the I-fold tensor product of (1

2
) IRR

of SOð2k − 1Þ in the same manner as encountered in [9].
For N particles, the LLL wave function can be obtained

via the Slater determinant of ΨI and reads

ΨI
N ¼

X
α1;���αI

εα1���αIΨ
I
α1ðx1Þ � � �ΨI

αIðxNÞ; ð2:30Þ

where εα1���αI is the usual permutation symbol, which is
totally antisymmetric in its indices.

B. The Equatorial S2k−2

It appears possible to probe further the physics at the
equatorial spheres S2k−2. To see how the physics match
with the known results of the Landau problem on even
spheres S2k−2, we proceed as follows. We first note that

ðK�Þ2 ¼ 1

R
ðX2kI2k−1 ∓ iXμγ

μÞ: ð2:31Þ

On the equatorial S2k−2 we have

ðK�
0 Þ2 ≔ ðK�Þ2jx2k¼0 ¼∓ i

1

R
Xμγ

μ; ð2:32Þ

where now R stands for the radius of S2k−2. We may now
define an idempotent on S2k−2 as

Q ¼ iðK�
0 Þ2; Q† ¼ Q; Q2 ¼ I2k−1 ; ð2:33Þ

which allows us to write down the rank-1 projection
operators

P� ¼ I2k−1 �Q
2

: ð2:34Þ

Denoting the algebra of functions on S2k−2 as A, we may
write the free A-module as A2k−1 ¼ A ⊗ C2k−1 and form
the projective modules P�A2k−1 . In other words, we may
decompose the free A2k−1-module as

A2k−1 ¼ PþA2k−1 ⊕ P−A2k−1 ; ð2:35Þ
where each summand is of dimension 2k−2.
Projections of rank I are obtained by writing

PI
� ¼

YI
i¼1

I�Qi

2
;

Qi ¼ I2k−1 ⊗ I2k−1 ⊗ � � � ⊗ Q ⊗ � � � ⊗ I2k−1 ; ð2:36Þ
where Qi is an I-fold tensor product whose ith entry is Q.
PI

� and Qi act on the free module A2k−1

I ¼ A ⊗ C2k−1

I ,
where C2k−1

I is the I-fold symmetric tensor product of
C2k−1 , whose dimension is that of the (I

2
; I
2
;…; I

2
) IRR

of SOð2k − 1Þ.
SOð2k − 1Þ and SOð2k − 2Þ are groups of rank k − 1,

and the branching of the (I
2
; I
2
;…; I

2
) IRR of the former

under the IRRs of the latter reads

�
I
2
;
I
2
;…;

I
2

�
¼ ⨁

I
2

μ¼−I
2

�
I
2
;
I
2
;…;

I
2
; μ
�
: ð2:37Þ

PI
� are indeed the projections to the (I

2
; I
2
;…;�j I

2
j) IRRs

of SOð2k − 2Þ appearing in the rhs of the decomposition
given in (2.37). These are the projective modules PI

�A
2k−1

I ,
whose dimensions are equal and given by the dimension
of (I

2
; I
2
;…;�j I

2
j).

We are now in a position to observe that the connection
two forms associated with PI

� are [22]

F� ¼ PI
�dðPI

�ÞdðPI
�Þ: ð2:38Þ

Thus, it follows from the remark ensuing (2.37) that, F�
are nothing but the SOð2k − 2Þ constant background gauge
fields on S2k−2, which are characterized by the IRRs
(I
2
; I
2
;…;�j I

2
j) of SOð2k − 2Þ. Finally, we note that the

ðk − 1Þth Chern number is given by

c�k−1 ¼
1

k!ð2πÞk
Z
S2k−2

PI
�ðdðPI

�ÞÞ2k−2; ð2:39Þ

where ck−1 ≡ cþk−1 > 0 and c−k−1 ¼ −ck−1. ck−1ðIÞ relates
with the degeneracy of the LLL on S2k−2 via the relation
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ck−1ðIÞ ¼ dS
2k−2

LLL ðk − 1; I − 1Þ and it matches exactly with
the number of zero modes, i.e., the index of the gauged
Dirac operator on S2k−2, as an independent solution of the
Landau problem and Dirac-Landau problem on S2k−2 given
in [4] confirms. Our brief analysis in this subsection
clarifies the relationship between the QHE problem over
even and odd dimensional spheres.

C. QHE on S3

This is the case considered first by Nair and Daemi [5]
and recently by Hasebe [4]. S3 ≡ SOð4Þ=SOð3Þ, which
follows by setting k ¼ 2 in (2.1). The energy spectrum
takes the form

E ¼ ℏ
2MR2

�
n2 þ 2nþ Inþ I

2
þ s2

�
; ð2:40Þ

and the degeneracy of (2.40) is given by the dimension of
the (nþ I

2
, s) IRR of SO(4)

dðn; sÞ ¼
�
nþ I

2
þ sþ 1

��
nþ I

2
− sþ 1

�

¼
�
nþ I

2
þ 1

�
2

− s2: ð2:41Þ

For the LLL we have

ELLL ¼ ℏ
2MR2

I
2
; I even;

ELLL ¼ ℏ
2MR2

�
I
2
þ 1

4

�
; I odd; ð2:42Þ

with the degeneracies

dðn ¼ 0; s ¼ 0Þ ¼
�
I
2
þ 1

�
2

;

d

�
n ¼ 0; s ¼ � 1

2

�
¼ dð0;þ1=2Þ þ dð0;−1=2Þ

¼ 1

2
ðI þ 1ÞðI þ 3Þ; ð2:43Þ

which are all in agreement with the results of [5] and [4].
On the equatorial sphere S2, we have Q ¼ σ · X̂ and

P� ¼ I2�σ·X̂
2

, with X̂ ¼ X
R, yielding the usual Abelian Dirac

monopole connection Bμ ¼ 1
2
εμνρFνρ ¼ I

2
Xi
R3 via (2.38)

[1,8,23]. c1ðIÞ ¼ I yields the zero modes of the Dirac
operator on S2 in the monopole background [24].

D. QHE on S5

Our next example is S5 ≡ SOð6Þ=SOð5Þ, which follows
from setting k ¼ 3 in (2.1). In this case, the energy
spectrum takes the form

E ¼ ℏ
2MR2

ðn2 þ 4nþ Inþ I þ s2Þ; ð2:44Þ

with the degeneracy of (2.44) given by the dimension of the
(nþ I

2
, I
2
, s) IRR of SO(6) as

dðn; sÞ ¼ 1

12
ðnþ 1Þ2ðnþ I þ 3Þ

��
nþ I

2
þ 2

�
2

− s2
�

×

��
I
2
þ 1

�
2

− s2
�
: ð2:45Þ

Inspecting the LLL, we can write down the energy
spectrum and degeneracies as

ELLL ¼ ℏ
2MR2

I; I even;

ELLL ¼ ℏ
2MR2

�
I þ 1

4

�
; I odd ð2:46Þ

dðn¼ 0;s¼ 0Þ¼ 1

3 ·26
ðIþ2Þ2ðIþ3ÞðIþ4Þ2; I even;

ð2:47Þ
and

d

�
n¼ 0;s¼�1

2

�
¼ dð0;þ1=2Þþdð0;−1=2Þ

¼ 1

3 ·25
ðIþ1ÞðIþ3Þ3ðIþ5Þ; I odd:

ð2:48Þ
In this case, we have Q ¼ γμXμ

R and P� ¼ I4�Q
2

on the
equatorial S4. It can be shown after some algebra that
Fij¼ 1

R2ðXjAi−XiAjþΣþ
ijÞ, F5i ¼ − RþX5

R2 Ai, i ¼ ð1;…; 4Þ,
where Ai ¼ − 1

RðRþX5ÞΣ
þ
ijXj, A5 ¼ 0, and Σþ

ij ¼ −i 1
4
½σi; σj�

[2,6]. The number of zero modes of the Dirac operator on
S4 with this SU(2) background is given by the second
Chern number c2ðIÞ ¼ 1

6
IðI þ 1ÞðI þ 2Þ [24].

There is an exact correspondence between the union of
Hilbert spaces of LLLs with I ranging from 0 to Imax ¼ 2K
or Imax ¼ 2K þ 1, corresponding respectively to the
Hilbert spaces of the fuzzy CP3, or that of the winding
number �1 line bundle over CP3 at level K [22,24]. This
interesting relationship essentially follows due to the fact
that the isometry group SU(4) for CP3 is isomorphic to that
of S5, which is Spinð6Þ ≈ SOð6Þ. We can demonstrate this
relationship very easily.
Let us recall that the fuzzy CP3 at level K is given

in term of the matrix algebra MatðdKÞ, where
dK ¼ 1

6
ðK þ 3ÞðK þ 2ÞðK þ 1Þ. It covers all the IRRs of

SU(4), which emerge from the tensor product [24]

�
K
2
;
K
2
;
K
2

�
⊗

�
K
2
;
K
2
;−

K
2

�
¼ ⨁

K

k¼0

ðk; k; 0Þ: ð2:49Þ
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Expansion of an element of MatðdKÞ in terms of the SU(4)
harmonics carries the IRRs of SU(4) appearing in the direct
sum decomposition given in the rhs of (2.49). We observe,
that each summand in the latter is equal to the SUð4Þ ≈
SOð6Þ IRR carried by the LLL for I ¼ 2k. This readily
implies that, for the even I, (I ¼ 2k), the union of all of the
LLL Hilbert spaces with 0 ≤ I ≤ 2K has the same dimen-
sions as the matrix algebra MatðdKÞ of CP3

F.
Sections of complex line bundles with a winding

number 1 over CP3
F are described via the tensor product

decomposition�
K þ 1

2
;
K þ 1

2
;
K þ 1

2

�
⊗

�
K
2
;
K
2
;−

K
2

�

¼ ⨁
K

k¼0

�
kþ 1

2
; kþ 1

2
;
1

2

�
: ð2:50Þ

Elements in this nontrivial line bundle are dKþ1 × dK
rectangular matrices forming a right module Að1ÞðCP3

FÞ
under the action of MatðdKÞ. We observe that each
summand in the rhs of (2.50) corresponds to an SO(6)
IRR carried by the LLL for I ¼ 2kþ 1 and s ¼ 1

2
. Thus, the

union of all the LLL Hilbert spaces with 0 ≤ I ≤ 2K þ 1

has the same dimension as Að1ÞðCP3
FÞ over CP3

F. In
particular, it is straightforward to check that the total
number of states in this union of LLL is precisely dKþ1dK:

XK
k¼0

1

12
ðkþ 4Þðkþ 3Þðkþ 2Þ2ðkþ 1Þ ¼ dKþ1dK: ð2:51Þ

A similar correspondence for the unions of LLLs with s ¼
− 1

2
and A−1ðCP3

FÞ corresponding to the winding number
−1 sector is established starting with the tensor product
ðK
2
; K
2
; K
2
Þ ⊗ ðKþ1

2
; Kþ1

2
;− Kþ1

2
Þ. Thus, we observe a novel

interpretation of the quantum number s ¼ � 1
2
for the LLL

over S5 as being related essentially to the winding number
�1 of the monopole bundles over CP3

F.

III. DIRAC-LANDAU PROBLEM ON S2k−1

In this section, our aim is to determine the spectrum of the
Dirac operator for charged particles on S2k−1 under the
influence of a constant SOð2k − 1Þ gauge field background.
Let us briefly recall the situation in the absence of a

background gauge field. In this case, Dirac operator for
odd-dimensional spheres S2k−1 is well-known. It can be
expressed in the form [25]

D� ¼ 1

2
ðI ∓ Γ2kþ1Þ

X
a<b

�
−ΞabL

ð0Þ
ab þ k −

1

2

�
; ð3:1Þ

where Lð0Þ
ab is given after (2.18) and carriers the (n; 0;…; 0)

IRR of SOð2kÞ, and Ξab given in (2.2) carries the reducible
representation ð1

2
; 1
2
;…; 1

2
Þ ⊕ ð1

2
; 1
2
;…;− 1

2
Þ of SOð2kÞ. The

projectors P∓ ¼ 1
2
ðI ∓ Γ2kþ1Þ allows us to pick either of

the two inequivalent representations. To obtain the spec-
trum of D�, we simply need to observe that

ðn; 0;…; 0Þ ⊗
�
1

2
;
1

2
;…;� 1

2

�

¼
�
nþ 1

2
;
1

2
;…;� 1

2

�
⊕

�
n −

1

2
;
1

2
;…;∓ 1

2

�
;

ð3:2Þ

Since the (1
2
; 1
2
;…;� 1

2
) IRRs of SOð2kÞ are conjugates,

both representations yield the same spectrum for the Dirac
operator D� as expected, which is found to be [25]

E↑ ¼ nþ k −
1

2
; E↓ ¼ −

�
nþ k −

3

2

�
; ð3:3Þ

for the spin up and spin down states, respectively. Using the
notation j↑↓ ¼ n� 1

2
, we can express the spectrum of D�

more compactly as E↑↓ ¼ �ðj↑↓ þ k − 1Þ.
Let us now consider the gauged Dirac operator,

which can be written by replacing Lð0Þ
ab with Λab ¼ Lab −

R2Fab as

D�
G ¼ 1

2
ðI ∓ Γ2kþ1Þ

X
a<b

�
−ΞabðLab − R2FabÞ þ k −

1

2

�
:

ð3:4Þ

It is not possible to obtain the spectrum DG in the same
manner as that of the zero gauge field background case.
There is, however, a well-known formula on symmetric
spaces that relates the square of the gauged Dirac operator
to the gauged Laplacian, the Ricci scalar of the manifold
under consideration, and a Zeeman energy term related to
the curvature of the background gauge field [26].
Furthermore, on a symmetric coset space, say K ≡G=H,
a particular gauge field background which is compatible
with the isometries of K generated by G (in the sense that
the Lie derivative of the gauge field strength along a Killing
vector of K is a gauge transformation of the field strength)
is given by taking the gauge group as the holonomy group
H and identifying the gauge connection with the spin
connection. Then the square of the Dirac operator can be
expressed as [26]

ðiD�
GÞ2 ¼ C2ðGÞ − C2ðHÞ þR

8
; ð3:5Þ

where R is the Ricci scalar of the manifold K and C2ðGÞ
and C2ðHÞ are quadratic Casimirs of G, H, respectively.
C2ðHÞ is evaluated in the IRR of H characterizing the
background gauge field, whileC2ðGÞ is evaluated in certain
IRRs of G containing the fixed combinations of the
background isospin of the gauge field and the intrinsic
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spin of the fermion. These considerations fit perfectly
with our problem for odd spheres S2k−1 under the fixed
SOð2k − 1Þ gauge field backgrounds, since in the present
problem we have taken the gauge group as the holonomy
group SOð2k − 1Þ of the odd spheres and the gauge
connection has already been identified with the spin
connection and taken explicitly in the IRR of
SOð2k − 1Þ, which is the I-fold symmetric tensor product
of the fundamental spinor representation (1

2
; � � � 1

2
).

Therefore, we can write

ðiD�
GÞ2 ¼ C2

SOð2kÞðnþ J; J;…; J;�j~sjÞ

− C2
SOð2k−1Þ

�
I
2
;
I
2
;…;

I
2

�
þ 1

4
ð2k2 − 3kþ 1Þ;

ð3:6Þ

where 2ð2k2 − 3kþ 1Þ is nothing but the Ricci scalar of
the sphere S2k−1, and J takes on the values J ¼ I

2
þ 1

2

(I ≥ 0) and J ¼ I
2
− 1

2
(I ≥ 1), corresponding to the spin up

and spin down states, respectively, and j~sj ≤ J. We find

E↑ ¼ nðnþ 2k − 1Þ þ Iðnþ k − 1Þ
þ kðk − 1Þ þ ~s2; I ≥ 0; ð3:7Þ

E↓ ¼ nðnþ I þ 2k − 3Þ þ ~s2; I ≥ 1: ð3:8Þ

It is readily seen that the spectrum for the conjugate SOð2kÞ
IRRs coincide with ~s ↔ −~s.
Degeneracy of E↑ and E↓ are given by the dimensions

of the IRRs (nþ J; J;…; J;�j~sj), with J ¼ I
2
þ 1

2

and J ¼ I
2
− 1

2
, respectively. They can be computed from

(2.24) with gi ¼ k − i and m1 ¼ nþ J þ g1, mi ¼ J þ gi
(i ¼ 2;…; k − 1), and mk ¼ ~sþ gk.
The Hamiltonian for the Dirac-Landau problem may be

taken as H ¼ 1
2MR2 ðiD�

GÞ2. For the even I, we see that
the LLL is given by taking n ¼ 0 and ~s ¼ � 1

2
in (3.8),

yielding ELLL
↓ ¼ 1

4
with the same degeneracy for both

of the operators ðiD�
GÞ2 and given as dðn ¼ 0; ~s ¼ 1

2
Þ ¼

dðn ¼ 0; ~s ¼ − 1
2
Þ, which can be computed from (2.24)

using the facts given in the previous paragraph. For the odd
I, we see that the LLL is given by taking n ¼ 0 and ~s ¼ 0 in
(3.8), yielding ELLL

↓ ¼ 0. These are the zero modes of the

Dirac operators D�
G with the degeneracy dðn ¼ 0; ~s ¼ 0Þ.

For S3, we find that the LLL degeneracy for the even I is

given as IðIþ2Þ
4

and for the odd I it is ðIþ1Þ2
4

, which is the
number of zero modes of Dirac operators D�

G. These match
with the results of [5]. Another example is S5, with the LLL
degeneracy for the even I given as 1

3·26
IðI þ 2Þ3ðI þ 4Þ, and

for the odd I it is 1
3·26 ðI þ 1Þ2ðI þ 2ÞðI þ 3Þ2.

We may recall that on even dimensional manifolds, the
Atiyah-Singer index theorem relates the number of zero

modes, i.e., the index of the Dirac operator to Chern
classes, which are integers of topological significance
[27]. On odd dimensional manifolds, however, no such
general index theorem is known. One possible candidate
for a topological number on these manifolds could be
conceived as the Chern-Simons forms. Nevertheless, for
odd spheres it is not too hard to see that these vanish
identically when evaluated for the SOð2k − 1Þ connection
given in (2.11). Thus, it remains an open question to find
out if and how the zero modes of D�

G are related to a
number of topological origin.
Finally, let us also note that setting I ¼ 0 in (3.7), we have

~s ¼ � 1
2
and we find E↑ ¼ ðnþ k − 1

2
Þ2, which matches with

the known result for D� given in (3.3). Explicitly, we have
E↑ ¼ ffiffiffiffiffiffi

E↑
p

, while E↓ ¼ −
ffiffiffiffiffiffi
E↑

p
with n → n − 1 and

~s → −~s. The latter are necessary to match the IRR
(nþ 1

2
; 1
2
;…; 1

2
;� 1

2
) with the second summand in (3.2).

IV. CONCLUSIONS

In this paper, we have solved the Landau problem and
the Dirac-Landau problem for charged particles on odd-
dimensional spheres S2k−1 in the background of constant
SOð2k − 1Þ gauge fields. First, using group theoretical
arguments, we have determined the spectrum of the
Schrödinger Hamiltonian together with its degeneracies at
each Landau level. We gave the corresponding eigenstates in
terms of the Wigner D-functions in general, while for the
odd values of I, an explicit local form of the LLL eigenstates
is also obtained. We have noticed a peculiar relation between
the Landau problem on S2k−1 and that on the equatorial
S2k−2, which allowed us to give the background SOð2k − 2Þ
gauge fields over S2k−2 by constructing the relevant projec-
tive modules. Additionally, for the Landau problem on S5,
we were able to demonstrate an exact correspondence
between the union of Hilbert spaces of the LLL’s with I
ranging from 0 to Imax ¼ 2K or Imax ¼ 2K þ 1 to the
Hilbert spaces of the fuzzy CP3 or that of winding number
�1 line bundles over CP3 at level K, respectively. This
correspondence also means that the quantum number s ¼
� 1

2
for the LLL over S5 is actually related to the winding

number κ ¼ �1 of the monopole bundles over CP3
F via

s ¼ κ
2
, which permits us to give, in a sense, a topological

meaning to the �1 values of 2s. In the last section, we have
determined the spectrum of the Dirac operators on S2k−1 in
the same gauge field background together with their degen-
eracies and found the number of their zero modes as well.
Our results are in agreement with the spectra of the ungauged
Dirac operators on S2k−1 for I ¼ 0 and generalizes it to all
constant SOð2k − 1Þ spin connection backgrounds.
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APPENDIX: SOME REPRESENTATION THEORY

1. Branching Rules

Irreducible representations of SOðN Þ and SOðN − 1Þ
can be given in terms of the highest weight labels
½λ�≡ ðλ1; λ2;…; λN−1; λN Þ and ½μ�≡ ðμ1; μ2;…; μN−1Þ,
respectively. Branching of the IRR [λ] of SOðN Þ under
SOðN − 1Þ IRRs follows from the rule [21,28]

½λ� ¼ ⨁
λ1≥μ1≥λ2≥μ2≥���≥λk−1≥μk−1≥jλkj

½μ�; for N ¼ 2k; ðA1Þ

½λ� ¼ ⨁
λ1≥μ1≥λ2≥μ2≥���≥λk−1≥μk−1≥λk≥jμkj

½μ�; for N ¼ 2kþ 1:

ðA2Þ

2. Quadratic Casimir operators of SOð2kÞ and
SOð2k − 1Þ Lie algebras

Eigenvalues for the quadratic Casimir operators of
SOð2kÞ and SOð2k − 1Þ in the IRRs ½λ�≡ ðλ1; λ2 � � � λkÞ,
½μ�≡ ðμ1; μ2 � � � μk−1Þ, respectively are given as [21]:

CSOð2kÞ
2 ½λ� ¼

Xk
i¼1

λiðλi þ 2k − 2iÞ; ðA3Þ

CSOð2k−1Þ
2 ½μ� ¼

Xk−1
i¼1

μiðμi þ 2k − 1 − 2iÞ: ðA4Þ

We list a few particular cases for quick reference,

CSOð2k−1Þ
2

�
I
2
;…;

I
2

�
¼ I2

4
ðk − 1Þ þ I

2
ðk − 1Þ2; ðA5Þ

CSOð4Þ
2

�
nþ I

2
; s

�
¼ I2

4
þ Inþ I þ n2 þ 2nþ s2; ðA6Þ

CSOð3Þ
2

�
I
2

�
¼ I2

4
þ I
2

ðA7Þ

CSOð6Þ
2

�
nþ I

2
;
I
2
; s

�
¼ I2

2
þ Inþ 3I þ n2 þ 4nþ s2;

ðA8Þ

CSOð5Þ
2

�
I
2
;
I
2

�
¼ I2

2
þ 2I; ðA9Þ

3. Relationship between Dynkin and
Highest weight labels

Throughout this paper highest weight labels (HW) have
been used to label the irreducible representations of Lie
algebras. Another common way to label the IRRs is given
by the Dykin indices. The relationship between Dykin
indices and highest weight labels for the groups SO(4),
SO(5) and SO(6) are as follows [21,28]:
For a SO(4) IRR the labels are

ðp; qÞDynkin ≡ ðλ1; λ2ÞHW; ðA10Þ

where the relation between these labels are given by

p ¼ ðλ1 þ λ2Þ; q ¼ ðλ1 − λ2Þ: ðA11Þ
For instance, ðnþ I

2
; sÞHW which is the IRR used in

section II C to label the LL on S3 corresponds to
ðnþ I

2
þ s; nþ I

2
− sÞDynkin, while the LLL are given by

either ðI
2
; I
2
ÞDynkin or ðI2 � 1

2
; I
2
∓ 1

2
ÞDynkin.

For SO(5) IRRs, the labels are

ðp; qÞDynkin ≡ ðλ1; λ2ÞHW; ðA12Þ

and the relation between these labels are given by

p ¼ λ1 − λ2; q ¼ 2λ2; ðA13Þ
For instance, I-fold symmetric tensor product of ð1

2
; 1
2
ÞHW is

ðI
2
; I
2
ÞHW and in terms of Dynkin index labels this corre-

sponds to ð0; IÞDynkin.
Finally, for SOð6Þ IRRs labels are given as

ðp; q; rÞDynkin ≡ ðλ1; λ2; λ3ÞHW; ðA14Þ

and the relationship between these labels is given by

p ¼ λ2 þ λ3; q ¼ λ1 − λ2; r ¼ λ2 − λ3: ðA15Þ
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