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We study the spectrum and entanglement of phonons produced by temporal changes in homogeneous
one-dimensional atomic condensates. To characterize the experimentally accessible changes, we first
consider the dynamics of the condensate when varying the radial trapping frequency, separately studying
two regimes: an adiabatic one and an oscillatory one. Working in momentum space, we then show that
in situmeasurements of the density-density correlation function can be used to assess the nonseparability of
the phonon state after such changes. We also study time-of-flight (TOF) measurements, paying particular
attention to the role played by the adiabaticity of opening the trap on the nonseparability of the final state of
atoms. In both cases, we emphasize that commuting measurements can suffice to assess nonseparability.
Some recent observations are analyzed, and we make proposals for future experiments.
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I. INTRODUCTION

One of the main predictions of quantum field theory
concerns the possibility of producing pairs of particles by
exciting vacuum fluctuations. This requires coupling the
quantum field to a strong external classical field. The
simplest example consists in working with a homogeneous
but time-dependent background. In this case, by solving the
linear equation of motion of the quantum field, one easily
verifies that the temporal variations of the background
induce a parametric amplification of vacuum fluctuations
which results in the production of pairs of particles with
opposite momenta, such as occurs in an expanding universe
[1–3]. A similar phenomenon takes place in static external
fields which have sufficiently strong spatial gradients, such
as the production of pairs of charged particles in a constant
electric field [4,5] or the Hawking effect in the vicinity of a
black hole horizon [6]. (See [7] for the relationship of these
latter phenomena to each other, as well as to pair production
by an accelerating mirror.)
It turns out, however, that the experimental validation of

these predictions is very difficult, and so far we are not
aware of any direct detection using elementary particles. To
circumvent the difficulties related to the high energies at
play in particle physics, it has been proposed to use
quasiparticles describing collective excitations of some
medium [8,9]. In fact, recently there have been several
experiments aimed at observing the pair creation of
quasiparticles propagating in a background with either
temporal [10–12] or strong spatial gradients [13–15].

Two aspects of such experiments deserve close attention.
The first concerns the dynamical response of the medium.
Indeed, when dealing with quasiparticles, one controls only
indirectly the temporal (or spatial) dependence of the
macroscopic system which acts as a background field.
For instance, when considering the dynamical Casimir
effect (DCE) in an atomic Bose gas [16,17] (the main focus
of the present work), the condensed portion of the gas acts
as the background, whereas one has direct control only over
the external potential. Modifying this potential induces a
response in the condensate, the dynamics of which are
governed by the Gross-Pitaevskii equation and may lead to
nontrivial evolutions.
The second issue concerns the origin of the detected

particles. For, if the scattering of vacuum fluctuations gives
rise to pairs of correlated outgoing quanta, so does the
scattering of a nonzero incident distribution (such as a
thermal bath). Hence, in practice, both processes produce
correlated pairs. But we wish to be able to show that a part
of the signal must have originated in vacuum fluctuations,
as this is the component with no classical counterpart. This
requires measurements able to distinguish between the
spontaneous and stimulated channels (sourced respectively
by vacuum and by an incident incoherent distribution)
[18–20].1 In this paper, two observables shall be used:
when working in situ, we shall use the two-point function
of density fluctuations in the atomic gas, whereas the
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1In this work, we shall neglect all possible couplings between
the 2-mode systems under study, namely phonon pairs with
opposite momenta, and other degrees of freedom. These would
induce decoherence effects which can destroy the entanglement
that would otherwise be present; see Refs. [21–25] for appli-
cations in condensed matter systems, and Refs. [26–29] for
applications in early cosmology.
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two-body distribution of the atoms’ momenta will be used
when considering time-of-flight (TOF) experiments after
having opened the trap [30]. We shall determine under
which conditions precise measurements of each of these
observables is sufficient to assess the nonseparability of the
phonon state after DCE. Surprisingly, we shall show that
instantaneous measurements involving only commuting
variables can be sufficient.
In this work, we consider density perturbations in a

cigar-shaped ultracold atomic Bose gas. That is, we focus
on elongated clouds with transverse dimensions much
smaller than their longitudinal extensions. More precisely,
we work in the one-dimensional mean-field regime [31–33]
where the transverse excitations can be neglected. In Sec. II
we study the dynamical response of such an elongated
cloud when modifying the harmonic trap frequency ω⊥,
which fixes its transverse extension [34]. In Sec. III, we
study the longitudinal excitations (phonons) excited by the
resulting time dependence of the atomic cloud, including
what it means for pairs of phonon modes to be in a
nonseparable state. Section IV deals with the determination
of the phonon state via in situ measurements, whereas in
Sec. V we examine the measurements of atoms after TOF
and how these can be used to infer the phonon state before
the expansion of the cloud. Our main results are summa-
rized in Sec. VI, along with their implications for future
experiments. In Appendix A we compare our analytical
approximations with the results of numerical resolutions of
the Gross-Pitaevskii equation, while in Appendix B we
present some results when the initial phonon state is a
thermal bath.

II. DYNAMICAL RESPONSE OF
ELONGATED CONDENSATES

In this section, we examine the properties of a cylindrical
condensate and its response to a varying harmonic potential
[34]. Since the condensate plays the role of the background
field in the pair production of phonons, this is a necessary
first step to know what variations of the background are
experimentally accessible.

A. Gaussian approximation and stationary
configuration

To characterize the background solutions we use the
Bogoliubov approximation and write the field operator for
a Bose condensed atomic gas in the form

Φ̂ ¼ Φ0ð1þ ϕ̂Þ; ð1Þ

where Φ0 is a c-number and ϕ̂ describes relative linear
perturbations. The mean field Φ0 obeys (in units where
ℏ ¼ 1):

i∂tΦ0 ¼ −
1

2m
∇2Φ0 þ VΦ0 þ gjΦ0j2Φ0; ð2Þ

where m is the atomic mass, V is an external potential, and
g is the two-atom coupling constant, related to the s-wave
scattering length as via g ¼ 4πas=m (see, e.g., [30,35]).
Throughout this work, we assume g > 0. The external
potential is taken to be harmonic, and assuming rotational
symmetry it can be decomposed into a radial and a
longitudinal part:

Vð~xÞ ¼ 1

2
mω2⊥r2 þ

1

2
mω2

∥z
2: ð3Þ

The ratio ω∥=ω⊥ determines the shape of the condensate:
when ω∥=ω⊥ ≪ 1, the condensate is very elongated in the
longitudinal direction z, becoming cigar-shaped. For sim-
plicity, we shall assume ω∥ ¼ 0, so that the ground state of
the condensate is homogeneous in z. If we further assume
that the condensate is stationary and cylindrically sym-
metric, then Φ0 becomes a function of only the radial
coordinate r. Even in this case, the exact solutions of
Eq. (2) are complicated by the nonlinear term; see
Appendix A for details.
Here we adopt the procedure of [33]: we approximate the

atomic number density by a Gaussian:

ρ0ðrÞ ¼ jΦ0j2 ≈
n1
πσ2

e−r
2=σ2 ; ð4Þ

where n1 is the linear atom density and σ the width of the
condensate. This ansatz becomes exact when g ¼ 0. We
thus expect it to be a good approximation when n1as is
small enough. In a stationary configuration, the left-hand
side of Eq. (2) is simply μΦ0, where μ is the energy per
atom (equal to the chemical potential at zero temperature).
Multiplying Eq. (2) by Φ⋆

0 and integrating over r, we find
that μ is equal to the effective potential

VeffðσÞ ¼
1

2
mω2⊥σ2 þ

1þ 4n1as
2mσ2

: ð5Þ

An approximation of the ground state of the condensate for
a given linear density n1 is obtained by minimizing Veff
with respect to σ, yielding the optimal width σ0 and
corresponding value of μ [33]:

σ0 ¼ a⊥ð1þ 4n1asÞ1=4; ð6aÞ

μ ¼ ω⊥ð1þ 4n1asÞ1=2; ð6bÞ

where a⊥ ≡ ðmω⊥Þ−1=2 is the harmonic oscillator length.
Although these expressions have been derived in the
Gaussian approximation of Eq. (4), the comparison with
numerical results of the full Gross-Pitaevskii equation (2) in
Appendix A indicates that they are quite robust (in agree-
ment with [33]).
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In the Gaussian approximation, μ=ω⊥ is a function of
only n1as. By contrast, the relationship between the density
n1 and the (effective one-dimensional) healing length ξ also
depends on the ratio as=a⊥:

n1as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n1as

p
¼ 2ðas=a⊥Þ2ðn1ξÞ2: ð7Þ

This extra dependence stems from the fact that ξ refers to the
dynamics of phonons, which shall be studied in the next
section. In Fig. 1 we represent the chemical potential μ as a
function of n1as, as given by the second of Eqs. (6). On the
upper horizontal axis is shown n1ξ of Eq. (7), with
ðas=a⊥Þ2 ¼ 3 × 10−5 as is approximately the case in the
experiment of [15] and is of the right order of magnitude for
the experiments of [11]. The validity of the one-dimensional
mean-field regime requires n1as ≲ 1 and n1ξ ≫ 1. In Fig. 1
these limits are indicated by the dotted vertical lines. We
also indicate the values of n1as for Refs. [11,15].

B. Time-dependent response

Let us now suppose that the trapping frequencyω⊥ varies
in time. Using again the Gaussian approximation of Eq. (4)
with σ time dependent, one obtains the equation of motion

mσ̈ ¼ −∂σVeffðσÞ; ð8Þ
(seeAppendixA for the derivation). The condensatewidth σ
thus behaves like the position of a classical point particle of

mass m in the potential Veff . Remarkably, although this
equation has been derived in the context of the Gaussian
approximation, it is an exact consequence of equation (2) in
a harmonic radial potential, as found in [34]. This is due to
the existence of an exact scale invariance parametrized
by σðtÞ, the time-dependent radial density profile being
given by

ρðt; rÞ ¼ σ2ðt ¼ 0Þ
σ2ðtÞ ρ0

�
r
σðt ¼ 0Þ
σðtÞ

�
; ð9Þ

where ρ0 is a solution of the time-independent Gross-
Pitaevskii equation and σðtÞ satisfies Eq. (8).
To study the evolution of σðtÞ, it is convenient to express

ω2⊥ðtÞ ¼ ω2⊥;0λðtÞ, where ω⊥;0 is some reference value
(commonly its initial value). Equation (8) then gives

1

ω2⊥;0

σ̈

σ0
¼ −λðtÞ σ

σ0
þ σ30
σ3

; ð10Þ

where σ0 is the equilibrium value corresponding to ω⊥;0;
see Eq. (6). This suggests that we use the adimensionalized
time variable ω⊥;0t and width σðtÞ=σ0. When λ is constant,
Eq. (10) can be further simplified by noting that σ2 exactly
obeys a harmonic equation: noting that Eq. (8) implies
conservation of E≡m _σ2=2þ VeffðσÞ, it can be rewritten in
the form

∂2
t

�
σ2 −

E
mω2⊥

�
¼ −ð2ω⊥Þ2

�
σ2 −

E
mω2⊥

�
; ð11Þ

so that σ2 oscillates with frequency 2ω⊥ ¼ 2
ffiffiffi
λ

p
ω⊥;0. This

implies that, while the oscillations of σ are not exactly
sinusoidal, its oscillation frequency is always 2ω⊥. (The
latter result is intuitive: a single particle in the same
potential would oscillate around r ¼ 0 at frequency ω⊥,
while the condensate wave function recovers its initial form
when all atoms are in the radially opposite position, and
thus oscillates at twice this frequency.)
Let us use Eq. (10) to determine (numerically) how the

condensate responds to a temporal change in ω⊥. For
concreteness, we assume that ω2⊥ varies according to a
hyperbolic tangent2 in time,

ω2⊥ðtÞ
ω2⊥i

¼ 1

2

�
ω2⊥f

ω2⊥i
þ 1

�
þ 1

2

�
ω2⊥f

ω2⊥i
− 1

�
tanh ðatÞ; ð12Þ

where ω⊥i and ω⊥f are the initial and final values of ω⊥ðtÞ,
respectively. Here we work with ω⊥;0¼ω⊥i so that λðtÞ→1

for t → −∞. In the left panel of Fig. 2 are shown examples
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FIG. 1. The chemical potential as a function of the adimen-
sionalized linear densities, n1as and n1ξ, in the Gaussian
approximation; see Eq. (4). For clarity we have plotted
μ2=ω2⊥ − 1, which in this approximation is linear in n1as. We
have marked the region n1as ≳ 1 (where the gas exhibits three-
dimensional behavior) and the region n1ξ≲ 1 (where the gas
exhibits Tonks-Girardeau behavior [36]). To relate n1ξ to n1as,
see Eq. (7), we have used the value of ðas=a⊥Þ2 ¼ 3 × 10−5

corresponding to the experiment of [15]. The two black dots
(roughly) correspond to the subsonic (n1as ≈ 0.4) and supersonic
(n1as ≈ 0.05) sides of the analogue black hole realised in [15],
while the circle gives a rough indication of the position of the
modulated DCE experiment of [11] (n1as ≈ 0.2).

2The hyperbolic tangent has the advantage that ω⊥ is asymp-
totically constant, and the solutions are thus fairly straightforward
to analyze. One could also consider the case where ω⊥ is
modulated in time, as in the second experiment of [11]. We
have looked briefly at this case, and our numerical simulations
indicate that σðtÞ behaves in a complicated way. This case
requires further study.
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in which ω2⊥f=ω
2⊥i is fixed at 2, as in the first experiment of

[11]. The three variations of ω⊥ differ only in the rate a,
which describes the rapidity of the change. The plot itself
shows the corresponding time dependence of the central
density ρðt; r ¼ 0Þ. As can be seen, the rate a is crucial in
determining the final state of the condensate. For, when
a=ω⊥i is small enough (i.e., a=ω⊥i ≪ 1), the change is
adiabatic: the condensate remains in its ground state
throughout the change, with its final width and chemical
potential simply corresponding to Eqs. (II A) with the new
values of ω⊥ and a⊥. However, as a=ω⊥i is increased, the
condensate cannot keep up with the change in ω⊥ and ends
up with an energy which is larger than the final ground state
energy. Its central density thus oscillates around the value
of the final ground state. As could have been expected, the
amplitude of these oscillations increases with a=ω⊥i,
saturating at a value corresponding to a sudden change,
where one extreme of the oscillations in σ is equal to its
initial value.
In the right panel of Fig. 2, we plot the relative ampli-

tude in the final oscillations of σ2 as a function of the
inverse rate ω⊥i=a for various overall changes ω2⊥f=ω

2⊥i. σ
2

is used because, as implied by Eq. (11), when ω⊥ is
constant σ2 undergoes oscillations that are exactly sinus-
oidal. This illustrates the validity domains of two regimes
discussed in [34]: the sudden limit where the relative
amplitude δσ2=hσ2fi becomes independent of a for
a=ω⊥i → ∞; and the adiabatic regime where this relative
amplitude is proportional to exp ð−πω⊥i=aÞ in the
limit a=ω⊥i → 0.

C. Opening the trap adiabatically

Let us end this section by considering the case where the
final value of ω⊥ is zero. This corresponds to the opening of
the trap, as performed in TOF measurements. We can
immediately appreciate the qualitative difference of this
case by considering the effective potential (5), which for
t → ∞ ends up with only the 1=σ2 repulsive term. The
condensate thus no longer oscillates, but expands indefi-
nitely, and at large enough σ when the repulsive interaction
between the atoms becomes negligible, they will simply
expand freely and σ will increase linearly in time as if it
were the position of a free particle.
To make contact with the former analysis, we continue to

assume a hyperbolic tangent profile of the form (12),
though the vanishing of ω⊥f means that a=ω⊥i is now
the only independent parameter. From Fig. 3 it is clear that
a=ω⊥i significantly affects the rate of expansion of the
condensate. In particular, a sudden opening of the trap
(which is the standard case; see e.g. [32]) results in the most
rapid expansion. Importantly, it is possible to make the
expansion arbitrarily slow by lowering a. As we shall see in
Sec. V, in certain cases controlling the adiabaticity of the
expansion is a necessity if one wishes to be able to assess
the nonseparability of the phonon state that existed before
opening the trap. Let us briefly explain why.
Although the condensate response shown in Fig. 3 is

independent of the value of n1as when using the adimen-
sional units ρðtÞ=ρi and ω⊥it, the phonon response depends
strongly on n1as in the same units. This is because, while
ω⊥ is the natural frequency describing the response of the
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FIG. 2. The response of the condensate to a temporal change in the radial trap frequency ω⊥ðtÞ. On the left are plotted the resulting
variations in the central density ρðt; r ¼ 0Þ when ω2⊥ is varied according to Eq. (12) with ω2⊥f=ω

2⊥i ¼ 2. The three curves correspond to
a=ω⊥i ¼ 0.3 (blue curve), 0.6 (purple curve) and 1.0 (yellow curve). We note that, while for the slowest variation ρðt; r ¼ 0Þ varies
adiabatically, oscillations appear for larger a, and are more pronounced the more rapid is the change in ω⊥. In the limit of a sudden
change, i.e. a=ω⊥i → ∞, their amplitude reaches a maximum, so that after the change ρðt; 0Þ=ρðti; 0Þ oscillates between 1 and another
(computable) value. On the right is shown, on a logarithmic scale, the relative amplitude of oscillations in σ2 after the change, as a
function of the inverse rate ω⊥i=a. There, the three curves correspond toω2⊥f=ω

2⊥i ¼ 10 (blue), 2 (purple) and 1.1 (yellow). We note that,
for ω⊥i=a≳ 2, these curves become proportional to exp ð−πω⊥i=aÞ, whereas for ω⊥i=a → 0 they approach values that can be calculated
assuming a sudden change in ω2⊥.
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condensate to a sudden change, the natural frequency for
describing the phonon response is mc2, where c is the low-
frequency speed of longitudinal phonons (as we shall see in
Sec. III). Since the one-dimensional healing length
ξ≡ 1=mc, Eq. (7) implies that the two time scales are
related by

ω⊥
mc2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n1as

p
2n1as

: ð13Þ

The larger is this factor, the faster the condensate expansion
will appear from the phonon point of view, and (as we shall
see in Sec. V) this rapid expansion can have a significant
effect on the phonon state, including its degree of non-
separability. Importantly, in the one-dimensional regime
n1as ≲ 1 in which we work, this factor can be large. As a
result, when considering phonon excitations for a given
value of kξ, a sudden opening of effectively one-
dimensional condensates leads to larger nonadiabatic
effects than for thick ones in the three-dimensional regime
with n1as > 1. It is thus imperative to reduce the expansion
rate through a controlled slow opening of the trap, so that
the expansion is adiabatic from the phonon point of view
and the phonon state can be preserved. (Again, we shall
study these issues more fully in Sec. V.) We finally notice
that the ratio as=a⊥ plays here no role (at least within the
Gaussian approximation).

III. PAIR CREATION OF PHONONS
AND THEIR NONSEPARABILITY

In this section, we recall two fundamental aspects
of linear perturbations (phonons) propagating on top

of the condensate: the response of phonons to a time-
varying background (as provided by the condensate), and
what it means for phonon pairs to be in a nonseparable
state. Although it contains no original results, this section
provides key notions and equations needed in the sequel.

A. Equations of motion

Let us return to the Bogoliubov approximation of
Eq. (1), for z-independent but time-dependent mean
fields Φ0. To simplify the analysis, we assume that the
relative perturbation ϕ̂ is uniform in the transverse
directions, i.e. that the absolute perturbation δΦ̂ðt; r; zÞ ¼
Φ0ðt; rÞϕ̂ðt; zÞ has the same transverse profile as Φ0.
The validity of this ansatz is discussed in Appendix A.
Using this factorization, ϕ̂ obeys the one-dimensional
Bogoliubov–de Gennes equation:

i∂tϕ̂ ¼ −
1

2m
∂2
zϕ̂þ g1n1ðϕ̂þ ϕ̂†Þ; ð14Þ

where n1 is the linear atom density in the longitudinal
direction, and g1 ≡ g=2πσ2 is the effective one-
dimensional two-atom coupling constant [σ being the
cylindrical width of the condensate in the Gaussian
approximation; see Eq. (4)]. Note that, while the linear
density n1 is a constant, g1 varies as the inverse square of
the condensate width, and is thus time-dependent.
The homogeneity of the background entails the decom-

position of the system into two-mode sectors ðk;−kÞ of
opposite wave vectors. It is thus useful to perform the
spatial Fourier transform: for a gas of extension L in the z
direction, we define ϕ̂k such that

ϕ̂ðzÞ ¼
X

k∈2πZ=L
ϕ̂keikz=

ffiffiffiffi
N

p
; ð15Þ

where N is the total number of atoms in the gas and serves
here to normalize the plane wave eigenfunctions in such a
way that the equal time commutator is

½ϕ̂kðtÞ; ϕ̂†
k0 ðtÞ� ¼ δk;k0 : ð16Þ

Then the operator ϕ̂k (ϕ̂†
k) destroys (creates) an atom

carrying momentum k.
To get the time dependence of these operators, we plug

Eq. (15) in Eq. (14) and obtain

i∂t

�
ϕ̂k

ϕ̂†
−k

�
¼
�

Ωk mc2

−mc2 −Ωk

��
ϕ̂k

ϕ̂†
−k

�
; ð17Þ

where mc2 ≡ g1n1 and Ωk ≡ k2=2mþ g1n1. To identify
the consequences of the time dependence of g1ðtÞ, it is
appropriate to perform the Bogoliubov transformation:

10 10 20 i t

0.5

1

0

0 i

FIG. 3. The response of the condensate to a temporal change in
ω⊥ in which the trap is switched off, i.e. the final value of ω⊥ is
zero. As in Fig. 2, the variation in ω2⊥ follows (12). Plotted are the
resulting variations in the central density ρ0. The black dashed
curve corresponds to the limiting case of a sudden switch-off, i.e.,
a=ω⊥i → ∞. The three solid curves correspond to three different
values of the rate a: a=ω⊥i ¼ 0.3 (blue), 0.6 (purple) and 1.2
(yellow).
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�
ϕ̂k

ϕ̂†
−k

�
≡
�
uk vk
vk uk

��
φ̂k

φ̂†
−k

�
; ð18Þ

where

uk
vk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωk −mc2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωk þmc2

p
2
ffiffiffiffiffiffi
ωk

p ; ð19Þ

and

ω2
k ¼ c2k2 þ

�
k2

2m

�
2

: ð20Þ

Irrespective of the time dependence of c2ðtÞ ¼ g1ðtÞn1=m,
one verifies that at all times u2kðtÞ − v2kðtÞ ¼ 1 as required
by the Bose commutation relations. Then Eq. (17) gives

i∂t

�
φ̂k

φ̂†
−k

�
¼
� ωk −i ∂tωk

2ωk

−i ∂tωk
2ωk

−ωk

��
φ̂k

φ̂†
−k

�
: ð21Þ

Whenever the system is stationary, the operators φ̂k and φ̂
†
−k

decouple, and oscillate at constant frequencies �ωk:

φ̂kðtÞ ¼ b̂ke−iωkt; φ̂†
−kðtÞ ¼ b̂†−ke

iωkt: ð22Þ

The operators b̂k and b̂†k are, respectively, annihilation and
creation operators for collective excitations (phonons) of
momentum k relative to the condensate. Note that, in
the limit of small k, ωk ≈ ck; i.e., c is just the speed of low-
momentum phonons. Moreover, recalling that the (one-
dimensional) healing length is ξ≡ 1=mc, Eq. (20) can be
written in dimensionless form:�

ωk

mc2

�
2

¼ ðkξÞ2 þ 1

4
ðkξÞ4: ð23Þ

Here we see the origin of our claim at the end of Sec. II that,
from the phonon point of view, the natural frequency
is mc2.
When c2 varies, the system (21) becomes nontrivial and

encodes a mode mixing between the phonon modes of
momenta k and −k, which entails amplification. To
characterize this mode mixing, it is convenient to introduce
the coefficients αkðtÞ and βkðtÞ [22]:

φ̂kðtÞ ¼ ðαkðtÞb̂ink þ β⋆kðtÞb̂in†−k Þ exp
�
−i
Z

t
ωkðt0Þdt0

�
;

φ̂†
−kðtÞ ¼ ðα⋆kðtÞb̂in†−k þ βkðtÞb̂ink Þ exp

�
i
Z

t
ωkðt0Þdt0

�
;

ð24Þ

where b̂ink and b̂in†−k are defined such that, as t → −∞,

φ̂kðtÞ ∼ b̂ink e−iωkt; φ̂†
−kðtÞ ∼ b̂in†−ke

iωkt; ð25Þ

or equivalently, αk → 1 and βk → 0 as t → −∞. Then the
evolution of the operators φ̂k, φ̂

†
−k is completely determined

by the equations of motion for αk and βk, which are

∂tαk ¼ −
∂tωk

2ωk
exp

�
2i
Z

t
ωkðt0Þdt0

�
βk;

∂tβk ¼ −
∂tωk

2ωk
exp

�
−2i

Z
t
ωkðt0Þdt0

�
αk: ð26Þ

Oncewe know how c varies with time, we can use Eqs. (20)
and (26) to get the resulting evolution of αk and βk, and
hence of φ̂k and φ̂†

−k.
If we assume that c2 reaches another constant at late

time, the initial and final mode operators are related by the
Uð1; 1Þ linear transformation�

b̂outk

b̂out†−k

�
¼
�
αk β⋆k
βk α⋆k

��
b̂ink

b̂in†−k

�
: ð27Þ

When the state is vacuum at early time, at late time the
mean number of phonons with wave number k is given by
nk ¼ n−k ¼ jβkj2. In Sec. IV B we shall present how this
expression is modified when some phonons are present in
the initial state, see Eq. (47a). Because phonons are
produced in pairs, the transformation of Eq. (27) introduces
correlations between the (1-mode) phonon states with wave
number k and those with wave number −k. In fact, given
the right conditions, it is possible that the 2-mode state
ðk;−kÞ becomes nonseparable. Here, it is appropriate to
recall this notion, for we shall find in later sections that it
can be inferred from suitable measurements.

B. Nonseparability of bipartite systems

Roughly speaking, a multipartite quantum state is said to
be nonseparable whenever the correlations between its
constituent parts are too strong to be described by classical
statistics (for more details, see [18,19]). Restricting our
attention to a two-mode state (e.g., particles of opposite
momentum produced by DCE), each single-mode subsys-
tem has its corresponding quantum amplitude operators b̂j
and b̂†j (j ¼ k, −k), satisfying the standard bosonic com-

mutation relations ½b̂j; b̂†j0 � ¼ δj;j0 . The density matrix ρ̂k;−k
of a two-mode system is said to be separable when it can be
written as [19]

ρ̂k;−k ¼
X
a

Paρ̂
a
k ⊗ ρ̂a−k; ð28Þ

where ρ̂aj are the density matrices of the single-mode
subsystems, and where the Pa are real numbers such that
0 ≤ Pa ≤ 1. Then

P
aPa ¼ 1, and the two-mode state has

the properties of a probability distribution. Such states can
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be considered as classically correlated in that they can be
obtained by putting separately the subsystems k and −k in
the (quantum) states described by ρ̂ak and ρ̂a−k, where the
state a is determined using a random number generator
distributed according to the probability distribution Pa.
Conversely, nonseparable states possess correlations which
cannot be accounted for by classical means. In fact, the
nonseparability of the state is a necessary condition for
obtaining a violation of Bell inequalities [18,37] based on
operators acting separately on the subsystems k and −k.
Assuming homogeneity of the system, the only non-

vanishing expectation values at quadratic order in the
operators b̂�k are

nj ¼ hb̂†j b̂ji; ck ¼ hb̂kb̂−ki: ð29Þ
The first gives the mean occupation number of quanta in a
single mode, which in our case means the number of
quasiparticles of type j. The second determines the corre-
lations between the two modes, and is generally a complex
number. Importantly, these c-numbers contain enough
information for assessing the nonseparability of ρ̂k;−k.
Indeed, the condition

jckj2 − nkn−k > 0 ð30Þ
is sufficient for the state ρ̂k;−k to be nonseparable
[26,29,38]. In addition, when the state ρ̂k;−k is Gaussian,
condition (30) is also necessary for nonseparability. To
appreciate the fact that nonseparable states are very
peculiar, and therefore difficult to realize and to identify,
one should also recall that jcj2 is bounded from above. As a
result, nonseparable states live in a relatively small domain
where one has

min

�
1

nk
;
1

n−k

�
≥

jckj2
nkn−k

− 1 > 0: ð31Þ

In the limit of large occupation numbers, n ≫ 1, one sees
that jckj2=nkn−k can be larger than 1 only by a term in 1=n.
Furthermore, if it is known due to reasons of symmetry that
nk ¼ n−k, then it is convenient to introduce the parameter
Δk ≡ nk − jckj, for which the two conditions of (31) are
equivalent to

−
1

2
< nk −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkðnk þ 1Þ

p
≤ Δk < 0: ð32Þ

The knowledge of Δk seems to involve the measurement
of noncommuting operators, for neither of the number
operators n�k ¼ b̂†�kb̂�k commutes with the correlation
operator ĉk ¼ b̂kb̂−k, nor even the Hermitian part of ĉk with
its anti-Hermitian part. However, while measuring the c-
numbers nk ¼ n−k and ck, see Eqs. (29), requires the
performance of noncommuting measurements, we shall
see that the nonseparability condition (32) can be tested via
measurements in which noncommutativity plays no role.

IV. IN SITU MEASUREMENTS
OF THE PHONON STATE

In this section we consider measurements made directly
on the Bose gas while it is still in the trap. The key
observable is the instantaneous atom density, particularly
fluctuations about its mean. We shall see how density
correlations are related to the phonon state and how they are
affected by phonon pair creation due to temporal variations
of the condensate.

A. Analyzing the density-density correlation function

1. Generalities

As an operator, the total (one-dimensional) number
density of atoms in the gas is given by

n̂1ðt; zÞ ¼
Z

2πr dr Φ̂†ðt; z; rÞΦ̂ðt; z; rÞ

≈ n1ð1þ ϕ̂†ðt; zÞ þ ϕ̂ðt; zÞÞ: ð33Þ
To obtain the second line we have used the decomposition
(1) and the r-independence of ϕ̂, and neglected the non-
linear contribution from the fluctuations. Using the con-
stancy of the background density n1 in homogeneous
systems,3 the relative density fluctuation is

δn̂1ðt; zÞ
n1

≡ n̂1ðt; zÞ − n1
n1

¼ ϕ̂ðt; zÞ þ ϕ̂†ðt; zÞ: ð34Þ
Since n̂1ðt; zÞ commutes with n̂1ðt; z0Þ for all z, z0, within
the framework of quantum mechanics it is possible to
precisely measure n̂1ðt; zÞ for all z at any given time. This
can be done by taking an in situ image of the Bose gas (as in
[43]). For each image, this serves as a single measurement
of n̂1ðt; zÞ. Such a measurement is destructive, but on
performing the experiment many times and collecting an
ensemble of measurements of n̂1ðt; zÞ, one has access to
both the expectation value n1 ≡ hn̂1i and the variance
of δn̂1ðt; zÞ.
We define the Fourier transform of ϕ̂ by inverting

Eq. (15), so that

ϕ̂kðtÞ ¼
ffiffiffiffi
N

p

L

Z
L

0

e−ikzϕ̂ðt; zÞdz; ð35Þ

for k ∈ 2πZ=L. The quantities δn̂1;k and φ̂k are defined
similarly, with ϕ̂ replaced by δn̂1 and φ̂. From Eqs. (34) and
(18), we obtain

3The reader is directed to [15,21,38–42] for related consid-
erations when working with stationary inhomogeneous systems,
in particular with a black hole configuration. We hope to return to
this case in a future work.

CONTROLLING AND OBSERVING NONSEPARABILITY OF … PHYSICAL REVIEW D 95, 065020 (2017)

065020-7



δn̂1;kðtÞ
n1

¼ ϕ̂kðtÞ þ ϕ̂†
−kðtÞ ¼ ðuk þ vkÞðφ̂kðtÞ þ φ̂†

−kðtÞÞ:

ð36Þ

Note that taking the Hermitian conjugate of this operator is
equivalent to changing the sign of k, a result of the fact that
the relative density fluctuation of Eq. (34) is itself a
Hermitian operator and measurements of it are thus real
quantities. It is straightforward to show that this operator
commutes with its Hermitian conjugate, and the following
correlation function is thus well defined:

G2;kðtÞ≡ hjδn̂1;kðtÞj2i
n21

¼ ðuk þ vkÞ2ð2nk þ 1þ 2Re½cke−2iωkt�Þ; ð37Þ

where in the last line we have substituted the expressions in
Eqs. (22), along with the definitions of nk and ck in
Eqs. (29) and the fact that isotropy4 implies nk ¼ n−k. The
last expression, stricto sensu, applies only when the
background has reached a stationary state, so that phonon
excitations can be analyzed in terms of stationary modes
e�iωkt. (A generalized version of this equation shall be
studied in the next subsection). The mean occupation
number nk determines the time-averaged mean of
G2;kðtÞ, while the magnitude and phase of the correlation
ck respectively determine the amplitude and phase of the
oscillations of G2;kðtÞ around its mean value. Note also the
additional constant term ‘þ1’. We shall see below that this
term is a measurable quantity which encodes the vacuum
fluctuations of the phonon field.
For homogeneous systems with a stationary background,

one is thus able, irrespective of the complexity of the actual
state ρ̂k;−k, to extract both nk and ck fromG2;kðtÞ of Eq. (37)
through repeated measurements at a series of different
times. Since G2;kðtÞ encodes three real numbers, at least
three such times are necessary to be able to extract nk and
ck. Three times may be sufficient if the measurements are
accurate and the times well chosen (e.g. they are not
separated by an integral number of oscillation periods). It
should also be pointed out that measurements ofG2;k which
allow the extraction of nk and ck do not commute with each
other, in conformity with the above mentioned fact that

b̂kb̂−k does not commute with b̂†kb̂k. Indeed, such

measurements must be performed at different times, and
for a stationary background it is straightforward to show
that

�
δn̂1;kðtÞ

n1
;
δn̂1;−kðt0Þ

n1

�
¼ −2iðuk þ vkÞ2 sin ðωkðt − t0ÞÞ:

ð38Þ

2. Measuring thermal and vacuum fluctuations

To illustrate these concepts, let us consider the simplest
example: a stationary system in a thermal state, with
temperature T. This is characterized by no correlations
(ck ¼ 0) and by the expectation number

2nk þ 1 ¼ coth

�
ωk

2T

�
: ð39Þ

Then we have simply

G2;k ¼ ðuk þ vkÞ2 coth
�
ωk

2T

�
: ð40Þ

Substituting the expressions (19) and (20) and rearranging
slightly, this is

G2;k ¼
kξ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðkξ=2Þ2
p coth

 
kξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkξ=2Þ2

p
2T=mc2

!
: ð41Þ

This is a one-parameter family of functions of the adi-
mensionalized momentum kξ ¼ k=mc, where the param-
eter is the adimensionalized temperature T=mc2. Note that
n1as is included in the definitions of ξ and c2, so that, to the
extent that the Gaussian approximation is valid, G2;k is
independent of the thickness of the condensate when
expressed in terms of kξ and T=mc2. Examples of this
function for various temperatures are shown in Fig. 4.
It is of interest to take the low- and high-momentum

limits of Eq. (41). For ωk=T ≪ 1, we have coth ðωk=2TÞ≈
2T=ωk þ ωk=6T, so that Eq. (41) becomes

G2;k →
T

mc2
þmc2

4T

�
1

3
−
�

T
mc2

�
2
�
ðkξÞ2: ð42Þ

In particular, in the limit k → 0,G2;k simply approaches the
adimensionalized temperature T=mc2. We can thus deter-
mine the temperature of the gas by examining the low-
momentum density fluctuations. k ¼ 0 is a local extremum
whose nature is determined by the sign of the coefficient
of the k2 term.
On the other hand, for ωk=T ≫ 1, we have

coth ðωk=2TÞ ≈ 1, so that Eq. (41) becomes

4Homogeneity in the mean also implies hb̂�ki ¼ 0. If this were
not true, the expectation value of hb̂�ki would break homo-
geneity. This more general case can, however, be treated similarly
by considering only the connected part of the correlation
function, i.e. by separating the coherent part from the fluctua-
tions; see Appendix C of [44]. When dealing with the connected
part of the correlation function, the criterion based on the sign of
Δk is equivalent to the generalized criterion used in [39]; see also
Table I of [38].
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G2;k ≈ ðuk þ vkÞ2 ¼
kξ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðkξ=2Þ2
p : ð43Þ

In this zero temperature limit, G2;k characterizes the mean
amplitude of vacuum fluctuations. Note that this measur-
able quantity originates in the constant term in the last
line of Eq. (37), and thus owes its existence to the
noncommutativity of the quantum amplitudes b̂k and b̂†k.
Note also that taking the limits T → 0 then k → 0, G2;k

goes to T=mc2 ¼ 0 at k ¼ 0 while the derivative ∂kG2;k

remains finite.

3. Assessing nonseparability

Using measurements of G2;kðtÞ, we are also able to
assess whether or not the state ðk;−kÞ is nonseparable
using condition (32). Moreover, it is not necessary to
extract both nk and ck in order to assess nonseparability;
from Eq. (37), it is clear that it is sufficient to find that, for
some value of t, G2;kðtÞ satisfies the inequality

G2;kðtÞ < ðuk þ vkÞ2: ð44Þ

This is one of our key observations: whatever the state
ρ̂k;−k, nonseparability can be ascertained by examining the
behavior of a well-defined observable quantity, without any
need to perform measurements of noncommuting variables.
(Preliminary versions of this assertion were used in [21–23]

but without emphasis on the absence of measurements of
noncommuting variables.)5

To conclude this discussion, it is perhaps interesting to
consider the inequality (44) from a slightly different point
of view. One might ask in abstract terms why repeated
measurements of δn̂1;kðtÞ of Eq. (36) are sufficient to assess
nonseparability. The reason is that measuring the density
fluctuation δn̂1;kðtÞ ∝ b̂ke−iωkt þ b̂†−ke

iωkt amounts in effect
to using an interferometer, in that what is recorded in these
measurements is a superposition of two channels (here the
destruction of a phonon of momentum k, and the creation
of a phonon of momentum −k). When changing t it
amounts to varying the relative phase between them.
Then, if t is such that (44) is satisfied, the interferences
are so destructive that they reveal the existence of the
nonseparability of the state. The analogy with the mea-
surements of Ref. [46] is striking.

B. DCE due to a one-time change in c2

Now suppose, having started in the incoherent thermal
state just described, that there is a change in the system such
that c2 varies from one constant value to another, and that
this final value of c2 is constant for t → ∞. According to
Fig. 2, such a variation of c2 will occur iff the rate of change
is small compared with ω⊥ throughout the evolution. This
is quite feasible in the one-dimensional regime, where
ω⊥=mc2 is typically large; there thus exist variations which
are slow from the point of view of the condensate, but fast
from the point of view of the phonons.
The phonon state is probed by the operators φ̂�kðtÞ,

whose equation of motion is Eq. (21). This leads to
nontrivial values of the Bogoliubov coefficients αkðtÞ
and βkðtÞ, and the correlation function of the first line of
Eq. (37) becomes

G2;kðtÞ ¼ ðukðtÞ þ vkðtÞÞ2ðjαkðtÞj2 þ jβkðtÞj2

þ 2RefαkðtÞβ⋆kðtÞe−2i
R

t
ωkðt0Þdt0gÞð2nink þ 1Þ:

ð45Þ

To parameterize the adiabatic evolution of the background,
we consider a hyperbolic tangent dependence of c2:

0 1 2 3 4 5
k

0.5

1
G2,k

FIG. 4. The density-density correlation function G2;k in a
thermal BEC, before any stimulation of phonons. This function
is time-independent and, when considered as a function of kξ,
depends only on T=mc2. As explained in the text, it does not
depend on the thickness of the condensate. Here, the various
curves correspond to four different values of the temperature:
T=mc2 ¼ 0 (thick black), 0.25 (blue), 1=

ffiffiffi
3

p
(purple) and 1

(yellow). The purple curve marks the transition between having a
minimum at k ¼ 0 for T=mc2 < 1=

ffiffiffi
3

p
and a local maximum for

T=mc2 > 1=
ffiffiffi
3

p
. We note that all curves approach T=mc2 in the

limit kξ → 0, and they approach ðuk þ vkÞ2 when ωk=T ≫ 1.

5It has been noticed in [45] that the measurements proposed in
[21,22,42] are commuting. The authors then raise the question of
whether these measurements could be accounted for by an
alternative model based on commuting dynamical variables. In
answer to this question, it should be noticed that the contribution
of vacuum fluctuations G2;k ¼ ðuk þ vkÞ2 cannot be accounted
for by their model. In fact, precise measurements of G2;k (for
sufficiently high k so that nk ≪ 1) in a homogeneous incoherent
(ck ¼ 0) state prior to DCE should be able to rule it out. As a
result, we conclude that this model cannot be used to address
the question of the nonseparability of the state, and therefore
does not invalidate our claim that commuting measurements
can be sufficient to assess nonseparability.
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c2ðtÞ
c2f

¼ 1

2

�
1þ c2i

c2f

�
þ 1

2

�
1 −

c2i
c2f

�
tanh ðatÞ: ð46Þ

Note that we normalize c2 with respect to its final value.
Extending this to all quantities has the advantage that the
final profile ðuk þ vkÞ2 becomes a universal function of kξf
(where ξf is the final value of the healing length), allowing
a straightforward assessment of the nonseparability of
the final state. In Fig. 5 are shown some examples of
the variation of G2;kðtÞ in time at fixed k, and with k at
fixed time. When considering the variation in time, we note
the similarity with the response of the condensate density
in Fig. 2:

(i) when a=ωk ≪ 1, the phonons of wave vector k are
not excited above their initial occupation number;

(ii) when a=ωk ≳ 1, correlated excitations are produced
in this 2-mode sector.

Indeed, comparing Eq. (45) to Eq. (37), we can write the
final values of nk and ck in terms of αk and βk (see
also [22]):

2nk þ 1 ¼ ðjαkj2 þ jβkj2Þð2nink þ 1Þ; ð47aÞ

ck ¼ αkβ
⋆
k ð2nink þ 1Þ: ð47bÞ

The adiabatic variation (from the point of view of the
phonons) corresponds to the case where αk and βk remain 1
and 0, respectively, throughout the evolution; thus, the
phonon content remains as it was before the change, and

G2;k varies in time only because ðuk þ vkÞ2 does so. A
nonzero βk encodes the level of nonadiabaticity, inducing
correlated phonons in the condensate; furthermore, this
phonon production is enhanced by the presence of phonons
to start with, since both quantities in Eqs. (47) are propor-
tional to 2nink þ 1. As these correlated phonons pass
through each other and go in and out of phase, their
contribution to the density profile varies, producing the
oscillations seen in both panels of Fig. 5.6

In the right panel of Fig. 5, one clearly sees that the lower
envelopes of G2;k are below ðuk þ vkÞ2 for a certain range
of k which depends on the initial temperature. When this is
the case, condition (44) implies that the phonon bipartite
states are nonseparable. In Fig. 6, we look more directly at
this nonseparability. To this end, in the left panel we show
again the minimum value reached by G2;k. It is clear from
this plot that a higher rate of change of c2 tends to increase
the degree of nonseparability, while a higher initial temper-
ature tends to reduce it. On the right panel is shown the
corresponding behavior of Δk ≡ nk − jckj.

C. DCE due to a modulation of c2

Having considered a transient evolution where the final
value of c2 is steady for t → ∞, as in the adiabatic variation

10 10 20
m cf

2 t

0.45

0.5

0.55

G2 k f 1, t

1 2 3 4 5
k f

0.2

0.4

0.6

0.8

1.
G2 k f , mc f

2 t 5

FIG. 5. The response of the in situ correlation function of Eq. (45) to a smooth variation in c2 described by (46). On the left are shown
three curves showing the evolution of G2 with time, for a fixed wave vector kξf ¼ 1, for a relative change c2i =c

2
f ¼ 1=2, and at zero

temperature. The three curves differ only in the rate of change, namely a=ωki ¼ 0.3 (blue), 0.6 (purple) and 1.0 (yellow). We see that,
just as with the response of the condensate width in Fig. 2, the final G2 can either settle down on a single value or oscillate around that
value, depending here on the ratio a=ωki. On the right, we have fixed mc2ft ¼ 5 and allowed the wave vector k to vary. The thick black
curve gives the zero-temperature adiabatic solution, which is equal to the nonseparability threshold; see condition (44). The solid blue
and purple curves correspond to the rate a ¼ ωkðkξf ¼ 3Þ, with Ti=mc2i ¼ 0 (blue) and Ti=mc2i ¼ 1 (purple). The dotted curve is the
adiabatic solution at Ti=mc2i ¼ 1. To facilitate the reading, we have used dashed curves to show the maximum and minimum values
reached as G2 oscillates in time. For the purple curve, the high initial temperature has destroyed the nonseparability for long
wavelengths, but it is preserved for kξf ≳ 1.5. In both cases, the nonseparability is much less visible for kξf > 3 as the evolution there
becomes adiabatic, so the number of excited phonon pairs drops rapidly to zero.

6The oscillations on the right panel, evaluated at fixed time as a
function of k, are analogous to the Sakharov oscillations [47–49]
seen in the anisotropies of the cosmic microwave background.
The latter are observed at a given time (i.e., on the last scattering
surface) and also appear as a function of the wave number.
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of the condensate, let us now turn our attention to the
outcome of a nonadiabatic variation of the condensate—in
particular, a situation in which c2 oscillates in time, like the
final state of the purple and yellow curves in Fig. 2. This
case is very similar to the one studied in [22]; here, we
simply review the main results and apply them to the first
experiment described in [11].
An oscillation of c2 leads to an oscillation of ωk for

any given k. The frequency of that oscillation is the
same for all k, and sets up a resonance in that mode
whose time-averaged frequency ω̄k is equal to half the
oscillation frequency.7 The particle content of the resonant
mode grows exponentially in time. Furthermore, the
resonance has a finite width in k-space that depends
on the relative amplitude, δωk=ω̄k, of the frequency
oscillations (which, for dispersive systems as here, will
depend both on the relative amplitude of the oscillations
in c2 and on the wave vector k). More precisely, we
have

δk
k

				
res

¼
				 vpvg
				δωk

ωk

				
res

¼ 1

2

				 vpvg
				δωk

ωk

				
time

; ð48Þ

where vp=vg gives the ratio of the phase and group
velocities. The subscript ‘res’ indicates the width of the
resonance in Fourier space, and the subscript ‘time’

indicates the width of the variation of ωk in time.
Frequencies lying outside this narrow range are also
excited, but their particle content oscillates in time, with
those further from the resonance oscillating faster. An
important point to note is that, since the modulation of c2 is
caused by the natural oscillation of the condensate, the
oscillation frequency is simply twice the final value of ω⊥,
as explained in Sec. II B. As a result, the resonant phonon
mode is that for which ω̄k ¼ ω⊥f. The amplitude of the
oscillation will depend on how quickly ω⊥ is varied, as we
have already seen in Fig. 2.
As an example, in Fig. 7 are shown the evolutions of

various in situ observables for the resonant mode, for a
sudden change in which ω⊥f=ω⊥i ¼

ffiffiffi
2

p
(corresponding to

the first experiment of [11]). On the left is shown G2;kðtÞ,
along with its upper and lower envelopes and the non-
separability threshold ðuk þ vkÞ2. Note that the latter
quantity is smeared because of the fact that ðuk þ vkÞ2
oscillates in time in response to the oscillations in c2. On
the right are shown jβkðtÞj2 and, for zero temperature,ΔkðtÞ
of Eq. (32). It is quite clear that the amplitude of the
oscillations in G2;kðtÞ increase exponentially in time, as
expected for a resonant mode, while the minimum of
G2;kðtÞ saturates at zero (since G2;kðtÞ ≥ 0). These two
observations lead to a third: while the degree of non-
separability increases in time in the sense that Δk becomes
more negative, the visibility of the nonseparability in
G2;kðtÞ actually decreases as nk becomes large, for the
fraction of an oscillation for which G2;kðtÞ < ðuk þ vkÞ2
becomes smaller and smaller. For the sake of obtaining a
visibly nonseparable state, then, it is best to stop the growth
when jβkj2 ≲ 1. Using the values of the experiment of [11],

FIG. 6. Nonseparability of phonon pairs due to a smooth change in c2. In the left panel, we plot the minimum value of G2 after
the change, i.e. the lower envelope plotted on the right of Fig. 5. The thick black curve shows again the final profile of ðuk þ vkÞ2. The
change in c2 is of the same sort considered in Fig. 5, except that here we use three different values of the rate a, which is set equal to the
initial phonon frequency of three different wave vectors: kξf ¼ 0.3 (blue), 1 (purple) and 3 (yellow). The solid and dashed curves
correspond to initial temperatures of Ti=mc2i ¼ 0 and 1, respectively. On the right panel are shown the corresponding plots of
Δk ≡ nk − jckj, which (the state being Gaussian) is less than zero iff the two-mode phonon state ðk;−kÞ is nonseparable; see condition
(32). From both plots, we see that a higher rate of change tends to increase the degree of nonseparability, while a higher initial
temperature decreases and, as for the blue and purple curves, can even destroy it.

7This can be viewed as a consequence of energy and
momentum conservation: conserving momentum requires pho-
nons to be produced in pairs ðk;−kÞ, while energy conservation
leads to a preference for the sum of the phonon frequencies, 2ω̄k,
to be equal to the oscillation frequency.
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this means that the optimal number of oscillations should
satisfy N ≲ 5.
In the actual experiment of [11], however, the trapping

frequency is held at its final value for an equivalent of
around 60 oscillations of the condensate, after which the
trap is opened and the condensate is allowed to expand
freely. The measured distribution of atom velocities is very
broad (see Fig. 1(c) of [11]), in contrast with the expected
peak at ω̄k ¼ ω⊥f and, even more strikingly, failing to
show signs of the condensate itself at k ¼ 0. To investigate
this, we have performed numerical simulations using
roughly the same parameters. The results for jβkj2 are
shown in Fig. 8, as well as the corresponding value of nk for
the initial temperature T=ω⊥ ¼ 2.8. The blue curve is that

expected for the experiment of [11]. Note that jβkj2 reaches
109 at the maximum of the resonance. Also plotted, in red
and yellow, are the expected values of jβkj2 after 30 and 15
oscillations (i.e. for 1=2 and 1=4 of the time after the
sudden change in ω⊥). The black horizontal segment gives
an estimate for the maximum allowed value of jβkj2 before
nonlinear effects come into play, and above which the
phonons in the resonant mode can no longer be treated as a
perturbation on top of the condensate. This is derived from
the condition that the integral over the peak in k-space,
which gives the total number of produced phonons per unit
length, should be significantly smaller than n1, the number
of atoms per unit length; in particular, the black line occurs
where jβkj2δkjres ≈ n1=10, or
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FIG. 7. In situ observables for the resonant mode in an oscillating condensate as function of the number N of oscillations. Here, we
take experimental parameters similar to those used in [11]: ω⊥f=ω⊥i ¼

ffiffiffi
2

p
, ω⊥i=mc2 ¼ 1.5, δðc2Þ=c2 ¼ 0.5, but we work with a

vanishing initial temperature. On the left, in blue, is shown G2;kðtÞ, while its upper and lower envelopes are shown in dashed red. The
thick gray line shows ðuk þ vkÞ2, which is smeared due to the fact that it oscillates in response to the oscillations in c2. On the right are
shown jβkðtÞj2 (in blue) and, for T ¼ 0, ΔkðtÞ (in red). Note, in the left plot, that the fraction of an oscillation for which G2;kðtÞ <
ðuk þ vkÞ2 gets smaller with increasing nk, since this causes the amplitude to increase but does not affect the minimum, which saturates
at zero. When measuring G2;kðtÞ, then, the nonseparability of the state becomes less visible with time.

1. 1.2 1.4 1.6 1.8 2.
k

1

103

106

109
k

2

1. 1.2 1.4 1.6 1.8 2.
k

1

103

106

109

nk

FIG. 8. Mean occupation number near the resonant mode due to natural oscillations of the condensate, as a function of kξ where ξ is
here the upper limit of the healing length during the modulation. We use the same parameters as in Fig. 7. The left plot shows jβkj2, or
equivalently, nk at zero temperature; the right plot shows the corresponding nk at temperature T=ω⊥ ¼ 2.8, as in [11]. The blue curves
correspond to the number of oscillations N ¼ 60, in accordance with [11], while the red and yellow curves correspond to N ¼ 30 and
N ¼ 15, respectively. The horizontal black line corresponds to a theoretical estimate for the maximum possible jβkj2 before the resonant
mode begins to interact nonlinearly with other modes.
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jβj2 ≈ 1

δωk=ωkjtime
·

1

as=a⊥
·

n1as
2ð1þ 4n1asÞ1=4

: ð49Þ

We conjecture that, in the experiment of [11], there was an
initial build-up of phonons in the resonant mode, but that
the occupation number grew so large that the resonant
mode began to interact nonlinearly with the condensate.8

It would thus be very interesting to observe the broadening
of the distribution of the atom velocities when increasing
the number of oscillations N. We conclude that, in
order to observe the effects of modulated DCE and to
hope to see nonseparability, one should either consider
the behavior at early time or opt for a smaller change
in ω⊥.

V. MEASURING THE STATE
OF ATOMS AFTER TOF

In this section, we consider the switching off of the
trap, the subsequent expansion of the cloud, and the atom
counting measurements able to infer the initial velocities
of the atoms from their time of flight. We begin by noting
that the expansion itself, as a temporal variation of the
condensate, will tend to produce correlated pairs. We then
examine to what extent this secondary effect can pollute
the results of any prior pair production process.

A. DCE due solely to the cloud expansion

After having opened the trap and let the cloud expand,
the observable quantities that could be measured are given
by the distribution of the number of atoms carrying a
momentum k. As in the experiments of [11], we integrate
over the perpendicular directions so as to count only atoms
with longitudinal momentum k. The two observables we
shall use are

nak ¼ hn̂aki; Ca
k ¼ hn̂akn̂a−ki; ð50Þ

where n̂ak ¼ â†kâk is the atom number operator and
âk (â†k) destroys (creates) an atom carrying momentum
k. The relationship with the c-number quantities of Eq. (50)
and those entering Eqs. (29) and (30) is easily made by
considering Gaussian isotropic (nak ¼ na−k) states. For these,

one finds that jcak j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca
k − ðnakÞ2

q
, so that

Δa
k ¼ nak −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca
k − ðnakÞ2

q
¼ 2ðnakÞ2 − Ca

k

nak þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca
k − ðnakÞ2

q : ð51Þ

We see that once more it is the relative strength of the
correlation term (here Ca

k) with respect to a function of
the occupation number (here 2ðnakÞ2) which fixes the sign
of Δa

k . Being positive definite, the denominator plays no
role in determining this sign. We also notice that the
operators Ĉa

k ¼ n̂akn̂
a
−k and n̂a�k commute, and yet, just as

for the density perturbations measured in situ (see
Sec. IV), their precise measurement allows us to assess
the nonseparability of Gaussian two-mode atomic
states ðk;−kÞ.
To illustrate this, we begin our analysis by considering

the case where both the condensate and the phonons within
it are initially in their ground state. (In Appendix B we
extend this analysis to a thermal bath of phonons.) From the
point of view of the phonons, as explained in Sec. II C, the
expansion will be seen as adiabatic for frequencies much
higher than the expansion rate, and sudden by phonons
with frequencies much lower than the expansion rate. We
thus expect the latter to be excited by the expansion itself,
resulting in a nontrivial state of atoms at the corresponding
momenta.
In Fig. 9 are shown examples of the final state of atoms

after an expansion of the condensate in response to an
opening of the trap. We consider two cases:

(i) a sudden opening of the trap, so that the condensate
expands freely with a rate proportional to the initial
value of ω⊥; we consider several such values,
finding that the final occupation number of atoms
grows with ω⊥=mc2;

(ii) a gradual opening of the trap, with the initial value of
ω⊥ fixed; as already seen in Fig. 3, this slows the rate
of expansion, and we find that the resulting spectrum
is qualitatively similar to the case of a sudden
opening with a lower initial value of ω⊥.

Interestingly, we find that no matter how the trap is opened,
the final occupation number is always less than jvkj2, the
mean number of atoms initially present in the depletion at
zero temperature [30] (which was observed in [51]). More
precisely, it approaches jvkj2 in the limit of a sudden
expansion, where the initial phonon frequency ωki is much
smaller than the expansion rate.
The main lesson one draws from Fig. 9 is the following.

If one wants to have an adiabatic opening for a certain
range of phonon excitations (those with kξ < 1), one
could in principle work with fat cigar-shaped condensates
with n1as ≫ 1 and allow ω⊥ to drop suddenly to zero.
However, for such condensates, one cannot neglect the
transverse excitations. Hence the only way to have
negligible transverse excitations and an adiabatic opening
is by controlling the time dependence of ω⊥, for instance
as described in Eq. (12) when putting ω⊥f ¼ 0. Then, if
a ≪ ω⊥i, the rate of expansion will be controlled by a
while ω⊥i drops out; see Fig. 3. The relevant parameter for
phonon excitation will then be a=mc2i , which can be as
small as experiment will allow.

8This can be considered as an analogue of preheating in the
early universe [50], where the energy content of a single mode
grows so large that nonlinear effects cause it to leak into many
other modes, see Refs. [22,24,25] for studies of these dissipative
effects in condensed matter systems.
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B. Combined effects of DCE and expansion

Since the expansion of the condensate itself induces
phonon pair production, we must take its contribution to
the final atomic state into account when using TOF
measurements to investigate a previous DCE. For exam-
ple, let us consider the results presented in Fig. 5, in which
a slow variation of the condensate is used to excite
phonons. We now allow the cloud to expand so that
individual atoms can be measured, and so we need to
subject the condensate to another change corresponding to
this expansion.
In Fig. 10 are shown examples of the atom state after the

expansion of the cloud. In the upper row, ω⊥ is switched off
suddenly from an initial value of ω⊥=mc2 ¼ 1, n1as ¼ 1.2.
Because the spectrum of the original DCE and the spectrum
due to the expansion alone overlap significantly, the final
atom state is generally different from the phonon state that
existed before the expansion. They are closer at high k,
where the spectrum due to the expansion becomes negli-
gible, but for low k the expansion is dominant. In particular,
at low k, the final value of the nonseparability parameterΔa

k
is essentially determined by the expansion, and hence no
conclusion can be drawn concerning the nonseparability of
the phonon state prior to opening the trap. These findings
are reinforced when working with a temperature such that
the phonon state after DCE turns out to be separable, while
the final state of atoms of momentum �k is nonseparable;
see Appendix B.

We note from the upper row of Fig. 10 that the
interference between the two processes produces oscilla-
tions in the final results which are not present in the results
of either process taken on its own. These vary periodically
as a function of the time difference between the original
variation of the condensate and its final expansion, but the
upper and lower envelopes of the results are independent of
this time delay. Effectively, then, the results become
“smeared”, and it is convenient to plot the envelopes rather
than the oscillations themselves. Further examples of
this are shown in the lower row of the same figure.
There, we plot the envelopes instead of the oscillations
within them, and we also show the state that would
result due to the expansion alone, in the absence of the
original DCE. It is clear that the larger of the two spectra
dominates.
In the lower row of Fig. 10, we also include results

corresponding to a gradual opening of the trap, where ω⊥
has the same initial value but varies in the manner of a
hyperbolic tangent, as also used in Figs. 3 and 9. The key
lesson is that, if the expansion alone does not excite
phonons at a particular wave vector k, then the state of
the atoms of momentum k after the expansion will be
exactly the same as the state of the phonons of momentum k
before the expansion. As a result, by controlling the
opening rate, one can squeeze the effects of the expansion
into a narrow window at low k, thus getting closer agree-
ment between the final atomic and initial phononic states at
higher k.
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FIG. 9. Opening the trap, at zero temperature. The condensate and phonons are initially in their ground state, and the condensate
expands in response to a reduction in ω⊥, which vanishes asymptotically. The final atomic state is shown as a function of kξ, where ξ is
the healing length in the condensate before the opening of the trap. On the left is plotted the final occupation number of atoms, while on
the right is plotted the final nonseparability parameter Δa

k of Eq. (51). The black dashed curve on the left plot shows jvkj2, the initial
number of atoms with wavenumber k, while on the right it corresponds to jvkj2 − jukvkj which is the value of Δa

k characterizing the
atoms in the depletion. The solid curves correspond to a sudden change in ω⊥, so that the cloud expands completely freely. The various
colors correspond to different values of n1as: 10 (blue), 3 (purple), and 0.7 (yellow). (These are equivalent to initial values of
ω⊥=mc2 ¼ 0.3, 0.6 and 1.4, respectively.) The large dots on these curves show where the initial phonon frequency ωki is equal to ω⊥,
and mark the boundary between phonons which see the expansion as sudden and are highly excited (ωki ≪ ω⊥) and phonons which see
the expansion as adiabatic and are hardly excited at all (ωki ≫ ω⊥). The dotted curves, by contrast, correspond to a gradual opening of
the trap, with the condensate having initially the same thickness as the solid yellow curve. For these, ω⊥ varies like a hyperbolic tangent
(as was also used in Fig. 3), with the rate a=ω⊥i taking the values 0.85 (right curve) and 0.3 (left curve).
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C. Combined effects of modulated DCE
and opening the trap

We might also consider the effects of the cloud expan-
sion on the results obtained from the modulated condensate
in Sec. IV C. In this case, however, the results are very
similar whether the cloud expansion is taken into account
or not, and we are now in a position to understand why.
Since the natural oscillation frequency of the condensate is
2ω⊥, the resonant phonon mode occurs at ωk ∼ ω⊥, or
kξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkξÞ2=4

p
∼ ω⊥=mc2. But this is a function of n1as,

and in the one-dimensional regime, we have [see Eq. (13)]
ω⊥=mc2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4n1as
p

=2n1as ≳ 1. This means that the
resonance occurs at kξ≳ 1, and the maximum pair pro-
duction due to the expansion in this regime is
jvðkξ ¼ 1Þj2 ¼ 0.17. Typically, it will be much less than
this, and will thus have very little effect on the resonance,
where jβkj2 ≳ 1 when the number of oscillations N (in the
example of Fig. 7) is larger than ∼5. We recover here a
situation closer to that of Ref. [38], where the authors

consider the nonseparability after a sudden opening of the
trap in a transonically flowing condensate which engenders
a resonant analogue Hawking effect.

VI. CONCLUSION

In this paper, we have studied the production of phonon
pairs in effectively one-dimensional homogeneous Bose-
Einstein condensates. We paid particular attention to
realistic scenarios and have identified experimentally
accessible observations that can be used to determine the
nonseparability of the final state.
We first considered the dynamics of the condensate

itself, in order to determine what time-varying backgrounds
are available in experiments where one typically has control
over the harmonic trapping frequency ω⊥. We restricted our
attention to the one-dimensional regime n1as ≲ 1, where a
Gaussian approximation of the transverse profile of the
condensate gives accurate results. There are two possibil-
ities of interest: a smooth variation of the condensate from

nk
a

k
a

nk
a

k
a

FIG. 10. Opening the trap after a smooth change in c2, at zero temperature. We begin with the situation shown in Fig. 5, followed by a
variation of ω⊥ that goes to zero asymptotically. The final atomic state is shown as a function of kξ, where ξ is the healing length in the
condensate after the initial DCE process but before the opening of the trap. In the upper row, ω⊥ is switched off suddenly from an initial
value of ω⊥=mc2 ¼ 1, after a time delay of mc2Δt ¼ 5 (the same moment at which the in situ state in Fig. 5 is drawn). The thick black
curves plot the phonon state after the initial DCE, while the solid blue curves show the state of the atoms after the expansion and the
dotted curves plot the upper and lower envelopes of the oscillations. In the lower row, only the envelopes are shown, and we now include
thick dashed curves to show the state that would result from the cloud expansion alone. The blue curves correspond to the same sudden
switch-off of ω⊥ as used in the upper row, while the green and red curves correspond instead to a gradual decrease of ω⊥ of the kind used
in Figs. 3 and 9. The rates used for the switch-off are a=ω⊥ ¼ 0.6 (green) and 0.2 (red). It is clear that slowing the rate of expansion
greatly reduces its effect, and in this way we can bring the final state of the atoms closer to the state of the phonons that existed before the
expansion.
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one equilibrium state to another, which occurs when the
trap frequency is varied adiabatically; and a steady oscil-
latory regime of the condensate around its equilibrium
state, which occurs in response to a fast variation of the trap
frequency.
We then considered the dynamics of the phonon field in

response to these time-varying backgrounds, first consid-
ering density measurements made in situ and the two-point
density correlation function. After noting the behavior of
this function in the absence of correlated phonon pairs, and
that it can be used to characterize both the temperature and
the vacuum fluctuations, we examined its response to the
two variations of the condensate mentioned above. In the
first case, for a given wave vector, this response is very
similar to the response of the condensate to a variation of
ω⊥: if the variation in ωk is slow, it varies smoothly and
always remains in the ground state; but if the variation in ωk
is fast, it is excited and oscillates around the ground state. In
particular, when the change is sufficiently abrupt or the
temperature sufficiently low, the two-point density corre-
lation function oscillates such that it periodically dips
below its vacuum value, a behavior that indicates a
subfluctuant mode and implies that the 2-mode phonon
state ðk;−kÞ is nonseparable.
We also examined the response of the phonons to a

sinusoidal modulation of ωk, which is itself caused by the
oscillation of the condensate. We focused on the resonance
domain where the occupation of the modes grows expo-
nentially with the duration of the modulation. We were thus
able to conclude that the very broad spectrum observed in
[11] was likely due to a very large occupation of the
resonant mode, which had the time to decay into a broad
spectrum in a process akin to the preheating phase in the
inflationary scenario. We also indicated that a much smaller
duration of the oscillatory phase (10 times smaller) should
have resulted in a much clearer signal displaying non-
separability in a small range of frequencies centered around
the resonant one. It would be particularly interesting to
perform observations of the broadening of the spectrum
associated with increasing the duration of the modulation
so as to probe the first effects of nonlinearities.
Finally, we considered the opening of the harmonic trap

and the complete expansion of the cloud into individual
atoms, which are examined using TOF measurements. We
first noted that this expansion itself generates a time-
varying background, and began by looking at the pair
production associated with the expansion on its own. As a
result, depending on the thickness of the cloud, and its
temperature, the final state of atoms carrying momentum
�k can end up entangled even without any DCE prior to the
opening of the trap. We then combined this with a DCE
performed previously, to see its effect on the final atomic
state. We found that, when the two are comparable, they
interfere quite strongly, and the results are “smeared” by
oscillations that depend on the lapse of time between the

original DCE and the expansion. The effects of the final
expansion can, however, be tamed by controlling the rate of
opening the trap. Then, whenever the pair production due to
this slower expansion is much smaller than the pair
production due to the original DCE, the final state of the
atoms is the same as the initial state of the phonons. In
particular, one can then assess nonseparability by consid-
ering the relative importance of the strength of the atomic
correlations between k and −k with respect to a certain
function of the mean occupation number of atoms with
these momenta.
We are currently studying the more elaborate case of

opening a trap in a condensate with a transonic flow, which
corresponds to an analogue black hole.
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APPENDIX A: VALIDITY OF THE
GAUSSIAN APPROXIMATION

This appendix is devoted to the comparison between
results drawn from the Gaussian approximation of Eq. (4)
and by solving numerically the three-dimensional Gross-
Pitaevskii equation (GPE) with cylindrical symmetry. We
first focus on the stationary background solution, briefly
recalling the results of [33] relevant for our purpose and
showing how they compare to numerical solutions. We then
turn to the dispersion relation. Besides variations of its
shape due to three-dimensional effects, it shows additional
branches which become relevant for high linear densities
n1, while their energies, expressed in units of the healing
length and sound velocity, become very large for thin
condensates. Finally, we briefly comment on the dynamics
when the strength of the trapping potential is varied in time,
recalling the findings of [34] which justify the use of Eq. (8)
in the main text.

1. Stationary background solution

In [33] is presented a generic procedure to estimate the
relationship between the chemical potential μ and linear
density n1 of a cylindrically symmetric solution of the GPE,
based on minimization of the value of μ on a set of trial
Gaussian condensate wave functions. The stationary GPE
reads

μΦ0 ¼ −
1

2mr
∂rðr∂rΦ0Þ þ VðrÞΦ0 þ gjΦ0j2Φ0: ðA1Þ
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Multiplying it by rΦ⋆
0 and integrating over r with the

boundary conditions rΦ⋆
0ðrÞ∂rΦ0ðrÞ→r→0;∞ 0 gives

μ ¼
R∞
0 ð 1

2m j∂rΦ0j2 þ VðrÞjΦ0j2 þ gjΦ0j4ÞrdrR∞
0 jΦ0j2rdr

: ðA2Þ

Using the ansatz of Eq. (4) and assuming V is harmonic
with frequency ω⊥, the integrals can be performed explic-
itly; one obtains

μ ¼ 1

2
mω2⊥σ2 þ

1þ 4n1as
2mσ2

: ðA3Þ

One recovers the effective potential of Eq. (8). When
looking for the ground-state solution, μ should be mini-
mized with respect to σ at fixed n1.

9 This gives

σ4G ¼ 1þ 4n1as
m2ω2⊥

; ðA4Þ

and

μG ¼ mω2⊥σ2G; ðA5Þ

where the index G indicates that these quantities are
evaluated using Gaussian trial wave functions.
To verify the validity of this approximation, we solved

numerically the stationary GPE with cylindrical symmetry.
We used a relaxation method [52] based on the Gross-
Pitaevskii action. Starting from an initial Gaussian wave
function, a better approximation of a configuration extrem-
izing the discretized action SðdÞ is obtained by solving the

linear equation SðdÞ2 δΦ0 ¼ −αSðdÞ1 , where SðdÞ2 denotes the
matrix of second derivatives of SðdÞ with respect to Φ0 and

SðdÞ1 its first derivative. In this expression, δΦ0 is the
difference between the approximate and trial solutions,
and α is a coefficient which can be tuned to improve the
convergence speed or stability. In practice, setting α to 1
offers a good trade-off in most relevant cases. The process
is then repeated N times, with N chosen large enough for
the results to show no visible deviation when doubling
its value.
Results for the density profile in the radial direction are

shown in Fig. 11. We show the relative difference between
the local density ρ computed numerically and its value ρG
found using the Gaussian approximation of [33], for several
values of the quantity n1as which controls the transition
between the one-dimensional and three-dimensional
regimes. For thin condensates, i.e., n1as < 0.05, relative
deviations become important only for large values of r=σG
where the density is small. For instance, they become larger

(in absolute value) than 0.1 only for r > 1.52σG, where
ρG=ρGð0Þ < 0.1. More important deviations occur for
thicker condensates, the solution for a given value of n1
becoming more extended than its Gaussian approximation
because of stronger repulsive interactions between atoms,
but falling off more rapidly for r=σG → ∞.
In Fig. 12 we compare the values of μ obtained with the

two approaches. To make the comparison clearer, we show
the quantity

δ≡ 1

4n1as

�
μ2

ω2⊥
− 1

�
; ðA6Þ

which is identically equal to 1 when using Eqs. (A3)
and (A4). One can a priori expect the Gaussian approxi-
mation to become accurate for n1as → 0, where the
solution of the GPE is actually a Gaussian, and
n1as → ∞, where a Gaussian ansatz with a large extension

FIG. 11. Relative difference between the numerical density
profile and the Gaussian approximation. The chemical potential μ
takes the values 1.01ω⊥, 1.1ω⊥, 1.42ω⊥, and 2.475ω⊥ from blue
to green, corresponding to n1as ≈ 0.01, 0.05, 0.25, and 1.25,
respectively.

FIG. 12. Plot of the quantity ðμ2=ω2⊥ − 1Þ=ð4n1asÞ, which is
identically equal to 1 in the Gaussian approximation. The
distance from unity is linear in n1as when the latter becomes
much smaller than 1.

9This may also be justified using Hamilton’s equations on the
integrated action when seeing μ as a Lagrange multiplier.
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gives the Thomas-Fermi result. This is confirmed by
Fig. 12, which indicates that δ goes to 1 in these two
limits. Moreover, the maximum deviations seem smaller
than 0.025, indicating that the Gaussian approximation is
quite accurate, as far as the chemical potential is concerned,
for all values of n1as.

2. Dispersion relation

In this subsection, we compare the dispersion relations
obtained using Eq. (14) and the three-dimensional
Bogoliubov–de Gennes equation in a time-independent
background. The first one can be obtained by looking for
solutions of Eq. (17) proportional to e−iωt. This gives an
algebraic equation which possesses nontrivial solutions if
and only if

ω2 ¼ c2k2 þ k4

4m2
; ðA7Þ

where c is the velocity of long-wavelength waves. The
latter is given (independently of the Gaussian approxima-
tion) by [31]

c2 ¼ n1
dμ
dn1

: ðA8Þ

Since the Gaussian approximation gives a very good
estimate of the chemical potential, see Fig. 12, one can
expect that it also describes well the small-k phonons.
Moreover, for large values of k the dispersion relation must
become equivalent to the atomic one ω ∼ k2=ð2mÞ, which
coincides with the large-k limit of Eq. (A7). This equation
should thus be accurate in the two limits kξ → 0 and
jkξj → ∞.
To verify its validity, we solved numerically the three-

dimensional Bogoliubov–de Gennes equation for modes
with no angular momentum. Because of the exponential
falloff in r2 of the background solution as r → ∞, it is more
practical to work with absolute perturbations rather than the
relative perturbations used in the main text [see Eq. (1)].
Writing Φ ¼ Φ0 þ δΦ and looking for solutions with fixed
frequency and angular momentum, of the form

δΦ∶ ðt; r; zÞ ↦ e−iμtðUðrÞeiðkz−ωtÞ

þWðrÞ�e−iðkz−ωtÞÞ þOðδΦ2Þ; ðA9Þ

one obtains the following system of equations on U andW:

1

2m
∂r

�
r∂r

�
U

W

��

¼
� k2

2m−ωþV −μþ 2gjΦ0j2 gΦ2
0

gΦ�2
0

k2
2mþωþV −μþ 2gjΦ0j2

�

×

�
U

W

�
: ðA10Þ

In general, there are two linearly independent solutions
regular at r ¼ 0, but no nontrivial linear combination of
them has asymptotically bounded functions U and W.
Such a solution exists if and only if ω is a solution of the
dispersion relation. Equation (A10) was integrated
numerically at fixed k for different value of ω, using
an algorithm akin to a shooting method to find these
solutions. To make comparison with results from the
Gaussian ansatz, we first looked for values of ω close to
those given by Eq. (A7). The relative differences are
shown in Fig. 13. As expected, they are always relatively
small, with a maximum only slightly above 0.01 for the
parameters we considered.
When looking for solutions further away from those of

Eq. (A7), we found additional branches with larger
frequencies for the same wave vector; see the left panel
of Fig. 14. In the thin condensate limit n1as → 0, the full
dispersion relation can be computed analytically, giving

ω ¼ 2nω⊥ þ k2

2m
; n ∈ N: ðA11Þ

Interestingly, we found that the difference in ω between
two consecutive branches remains nearly constant when
increasing n1as in the range 0 ≤ n1as ≤ 10. However, it
varies significantly when expressed in units of the
healing frequency; see the right panel of Fig. 14. In
particular, for n1as < 0.1 this difference is of the order
of or larger than 10, meaning that these additional
branches will be more difficult to excite and can thus be
safely neglected.

3. Dynamics in a time-dependent harmonic potential

In this subsection, we recall a result of [34] that justifies
the description in Sec. II B of the time-evolution of the
condensate when varying the strength of the harmonic trap.
Let us consider a BEC in 2 dimensions, with a potential of
the form

FIG. 13. Plots of the ratio of the frequency ω numerically
computed over the value ωG obtained using the approach of
Sec. III A. The background solutions are the same as in Fig 11.

ROBERTSON, MICHEL, and PARENTANI PHYSICAL REVIEW D 95, 065020 (2017)

065020-18



V∶ ðt; rÞ ↦ 1

2
ω⊥ðtÞ2r2: ðA12Þ

Let us assume we know a stationary, real-valued solution

Φð0Þ
0 in the case where ω⊥ takes the constant value ωð0Þ

⊥ .
One can than look for a solution in the potential of
Eq. (A12) with a density ρ0 ≡ jΦ0j2 of the form

ρ0∶ ðt; rÞ ↦ σðt ¼ 0Þ2
σðtÞ2 ρð0Þ0

�
r
σðt ¼ 0Þ
σðtÞ

�
; ðA13Þ

where ρð0Þ0 ≡ jΦ0j2. A straightforward calculation using the
continuity equation gives the velocity u0 ≡ ∂r argΦ0 as

u0∶ ðt; rÞ ↦ σ0ðtÞ
σðtÞ r:

Plugging Φ0 ¼ ffiffiffiffiffi
ρ0

p
ei
R

r u0dr−iμt in the GPE (2), one finds a
solution exists if and only if σ obeys Eq. (8). The latter is
thus an exact equation (as far as the GPE correctly
describes the physics at play), independent of the
Gaussian approximation.

APPENDIX B: THERMAL EFFECTS IN TOF
EXPERIMENTS

1. DCE due to a one-time change in c2

In Fig. 15, we show nonzero temperature versions of the
plots after a slow opening of the trap shown in Fig. 10, but
with an initial temperature (i.e. before the initial DCE) of
T=mc2 ¼ 1=2. Since an initial temperature boosts the final
occupation number in exactly the same way for any DCE
process, its effect can be viewed as rather trivial since it
cannot change the outputs of the initial DCE and of the
cloud expansion with respect to each other. Whichever of

FIG. 14. Left: Plot of ω versus k for the first four branches of the dispersion relation on the cylindrically-symmetric, node-less
stationary solution with μ ¼ 1.42ω⊥, corresponding to n1as ≈ 0.25. The wave vector k and angular frequency Ω are adimensionalized
using the healing length ξG and effective one-dimensional sound speed cG derived using the Gaussian approximation. Right: Angular
frequency at k ¼ 0 for the second to fourth branches as a function of n1as, in logarithmic scale.

FIG. 15. The final state of the atoms after TOF when the initial state is a thermal bath of phonons. As in the lower row of Fig. 10, the
solid black curves show the state before the expansion (but after the initial DCE), ξ is the healing length before the expansion, the
colored dashed curves show the state that would result from the expansion alone, and the colored regions show the envelopes within
which nak and Δa

k will oscillate. The initial temperature is taken to be Ti=mc2i ¼ 0.5, while the rates of opening the trap are the same as in
Fig. 10: a=ω⊥ ¼ ∞ (i.e. sudden switch-off, blue), 0.6 (green) and 0.2 (red). Interestingly, for k → 0, the distribution becomes
nonseparable with a value of Δa

k that is independent of a=ω⊥.
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these is dominant at zero temperature will therefore be
dominant at any temperature, and where they strongly
interfere at zero temperature, they will also strongly
interfere at non-zero temperatures. The overall effect is
simply to boost nak , and thus also to increase the non-
separability parameter Δa

k. Notice in particular the behavior
in the low-k domain, where the atomic state after TOF can
be unambiguously nonseparable even though the phononic
state before TOF is separable. Thus we see even more
clearly than in Fig. 10 how the opening of the trap can
pollute the final state, and that control over the rate of
expansion is vital if we are to be able to reconstruct the
phononic state from TOF measurements.

2. DCE due to a modulation of c2

When c2 is modulated sinusoidally and jβkj2 grows
exponentially at resonance, an initial temperature can have

a very significant impact on the final state. We have already
seen, in Fig. 8, that introducing a temperature can increase
the final occupationnumber somuch that it is pushed into the
nonlinear regime much earlier than it would have been if the
initial temperature were zero. Of course, temperature also
affects the final degree of nonseparability. In Fig. 16 are
shown the final values of nak andΔa

k for an initial temperature
T=ω⊥ ¼ 2.8 (corresponding to that in [11]). The various
curves are for different total numbers of oscillations of the
condensate, and in order to have reasonable values, these are
much less than the actual value of around 60: we haveN ¼ 4

(blue), 6 (red) and 10 (yellow). Note that, at resonance, the
state goes from separable to nonseparable after between 4
and 6 oscillations, whereas it would always be nonseparable
if the initial temperature were zero. (These values of N are
still small, mainly because the amplitude of the oscillations
is large: δðc2Þ=c2 ¼ 0.5).

1. 1.2 1.4 1.6 1.8 2.
k

2

5

10

20

50
nk

a

1.2 1.4 1.6 1.8 2.
k

0.5

0.5

1

1.5

2.

2.5

k
a

FIG. 16. Final state of atoms after a modulation of c2, at non-zero temperature. We consider the situation described in Ref. [11]. The
parameters used are ω⊥f=ω⊥i ¼

ffiffiffi
2

p
, ω⊥i=mc2 ¼ 1.5, δðc2Þ=c2 ¼ 0.5 and T=ω⊥ ¼ 2.8. ω⊥ is immediately switched off after an integer

number of oscillations, after which the condensate expands freely. On the left is shown the final occupation number of atoms, while on
the right is shown the nonseparability parameter Δa

k. The various curves correspond to a different number of oscillations of the
condensate before the trap is opened: N ¼ 4 (blue curves), 6 (red curves) and 10 (yellow curves). Higher values ofN (namely 60, 30 and
15) were considered in Fig. 8.

1.2 1.4 1.6 1.8 2.
k

1.5

2.

g2 k, k
Lower temperature

1.2 1.4 1.6 1.8 2.
k

1.5

2.

g2 k, k

FIG. 17. Final two-atom correlation function, g2ðk;−kÞ. On the left, the situation is exactly the same as in Fig. 16, whereas on the right
the temperature has been divided by 2, i.e. it has T=ω⊥ ¼ 1.4. As in Fig. 16, the different curves correspond to different total numbers of
oscillations of the condensate: 4 (blue), 6 (red) and 10 (yellow). Note that g2ðk;−kÞ varies nonmonotonically with N, particularly at
resonance. Thus, just as with the in situ density-density correlation function (see Fig. 7 and its caption), nonseparability becomes less
visible with larger nak.
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To make a more explicit connection with experiment, in
Fig. 17 is plotted the two-atom correlation function:

g2ðk;−kÞ ¼
hâ†kâ†−kâ−kâki
hâ†kâkihâ†−kâ−ki

¼ Ca
k

nakn
a
−k

: ðB1Þ

Using Eq. (51), it is clear that g2ðk;−kÞ becomes larger
than 2 when Δa

k < 0. There are two points to notice. Firstly,
the value of g2ðk;−kÞ, even at resonance, does not increase
monotonically with increasing N and, hence, with increas-
ing nak . Indeed, as nak increases indefinitely, g2ðk;−kÞ
approaches 2 from above. Therefore, as was noted in

Sec. IV C, large nak is not necessarily helpful if we want
to observe nonseparability, for the nonseparability becomes
less visible when the occupation number is large. Secondly,
the temperature can also have a large impact on the
visibility of nonseparability. (This is related to the first
point, since a higher initial temperature requires a larger
occupation number before the state actually becomes
nonseparable, as was noted in [22].) On the right of
Fig. 17 is plotted g2ðk;−kÞ with all parameters the same
except for the temperature, which has been reduced by a
half. It is clear that g2ðk;−kÞ reaches much further above 2
than it does in the left plot.
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