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We study novel contributions to the partition function of the Maxwell system defined on a small compact
manifold M with nontrivial mappings π1½Uð1Þ� ≅ Z. These contributions cannot be described in terms of
conventional physical propagating photonswith two transverse polarizations and instead emerge as a result of
tunneling transitions between topologically different but physically identical vacuum winding states. We
argue that if the same system is considered in the background of a small external time-dependent
electromagnetic field, then real physical photons will be emitted from the vacuum, similar to the dynamical
Casimir effect where photons are radiated from the vacuum due to time-dependent boundary conditions. The
fundamental technical difficulty for such an analysis is that the radiation of physical photons onmass shell is
inherently a real-time Minkowskian phenomenon while the vacuum fluctuations interpolating between
topological jki sectors rest uponaEuclidean instanton formulation.Weovercome this obstacle by introducing
auxiliary topological fields, which allows for a simple analytical continuation between Minkowski and
Euclidean descriptions, and develop a quantum mechanical technique to compute these effects. We also
propose an experimental realization of such small effects using amicrowave cavitywith appropriate boundary
conditions. Finally, we comment on the possible cosmological implications of this effect.
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I. INTRODUCTION AND MOTIVATION

It has been recently argued [1–5] that some novel terms
in the partition function emerge when pure Maxwell theory
is defined on a small compact manifold. These terms are
not related to the propagating photons with two transverse
physical polarizations, which are responsible for the con-
ventional Casimir effect (CE) [6]. Rather, they occur as a
result of tunneling events between topologically different
but physically identical jki topological sectors. While such
contributions are irrelevant in Minkowski space-time R1;3,
they become important when the system is defined on
certain small compact manifolds. Without loss of general-
ity, consider a manifoldM which has at least one nontrivial
direct factor of the fundamental group, e.g., π1½Uð1Þ� ≅ Z.
The topological sectors jki, which play a key role in our
discussions, arise precisely from the presence of such
nontrivial mappings for the Uð1Þ Maxwell gauge theory.
The corresponding physically observable phenomenon has
been termed the topological Casimir effect (TCE).
In particular, it has been explicitly shown in Ref. [1]

that these novel terms in the topological portion of the
partition function Ztop lead to a fundamentally new con-
tribution to the Casimir vacuum pressure that appears as a
result of tunneling events between topological sectors jki.
Furthermore, Ztop displays many features of topologically
ordered systems, which were initially introduced in the
context of condensed matter (CM) systems (see recent
reviews [7–11]): Ztop demonstrates the degeneracy of the
system, which can only be described in terms of nonlocal
operators [2]; the infrared physics of the system can be

studied in terms of nonpropagating auxiliary topological
fields [3], analogous to how a topologically ordered system
can be analyzed in terms of the Berry connection (also an
emergent rather than fundamental field), and the corre-
sponding expectation value of the auxiliary topological
field determines the phase of the system. In fact, this
technical trick of describing the system in terms of auxiliary
fields will play a key role in our present discussions.
As we review in Sec. II A, the relevant vacuum fluctua-

tions which saturate the topological portion of the partition
function Ztop are formulated in terms of topologically
nontrivial boundary conditions. Classical instantons for-
mulated in Euclidean space-time satisfy the periodic
boundary conditions up to a large gauge transformation
and provide topological magnetic instanton fluxes in the z-
direction. These integer magnetic fluxes describe the
tunneling transitions between physically identical but
topologically distinct jki sectors. Precisely, these field
configurations generate an extra Casimir vacuum pressure
in the system.
What happens to this complicated vacuum structure

when the system is placed in the background of a constant
external magnetic field Bz

ext? The answer is known [1]: the
corresponding partition function Ztop as well as all observ-
ables, including the topological contribution to the Casimir
pressure, are highly sensitive to small magnetic fields and
demonstrate 2π periodicity with respect to the external
magnetic flux represented by the parameter θeff ≡ eSBz

ext
where S is the xy area of the system M. This sensitivity to
the external magnetic field is a result of the quantum
interference of the external field with the topological

PHYSICAL REVIEW D 95, 065018 (2017)

2470-0010=2017=95(6)=065018(18) 065018-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.95.065018
https://doi.org/10.1103/PhysRevD.95.065018
https://doi.org/10.1103/PhysRevD.95.065018
https://doi.org/10.1103/PhysRevD.95.065018


quantum fluctuations. Alternatively, one can see this as
resulting from a small but nontrivial overlap between the
conventional Fock states, constructed by perturbative
expansions around each jki sector, and the true energy
eigenstates of the theory, which are only attainable in a
nonperturbative computation that takes the tunneling into
account. This strong “quantum” sensitivity of the TCE
should be contrasted with conventional Casimir forces
which are practically unaltered by any external field due
to the strong suppression ∼B2

ext=m4
e (see Ref. [1] for the

details).
What happens when the external E&M field depends on

time? It has been argued in Refs. [4,5] that the correspond-
ing systems will radiate real physical photons with trans-
verse polarizations. However, the arguments of Refs. [4,5]
were based on purely classical considerations at small
frequencies ω → 0 of the external fields. The main goal of
the present work is to the study the quantum dynamics of
the topological vacuum transitions between jki states in the
presence of a rapidly time-varying external E&M field.
The fundamental technical difficulty for such an analysis

is that the radiation of real physical particles on mass shell
is inherently formulated in Minkowski space-time with a
well-defined Hilbert space of asymptotic states. At the
same time, the vacuum fluctuations (“instanton fluxes”)
interpolating between the topological jki sectors and
saturating the path integral are fundamentally formulated
in Euclidean space-time.1

We overcome this obstacle by introducing auxiliary
topological fields to effectively describe the tunneling
transitions computed in Euclidean space-time. These aux-
iliary fields can be analytically continued to Minkowski
space-time. After making the connection between the
auxiliary topological fields and the Minkowski observ-
ables, we proceed using conventional Minkowski-based
techniques, including the construction of the creation and
annihilation operators, coherent states, the appropriate
Hamiltonian describing the coupling of the microwave
cavity to the system, etc.
Our presentation is organized as follows. In Sec. II, we

review the relevant elements of the system including the
formulation of the magnetic (II A) and electric (II B)
instanton fluxes. In Sec. III, we construct the dipole
moment operators (electric and magnetic types) using
our auxiliary fields continued to Minkowski space-time.
In Sec. IV, we formulate the problem of radiation in proper
quantum mechanical terms by identifying the quantum

“states” of the system and studying the quantum matrix
elements between them. In Sec. V, we discuss quantum
transitions in the system in a cavity in the presence of a
time-dependent external E&M field. In the concluding
section, Sec. VI, we speculate that the same “nondisper-
sive” type of vacuum energy (which cannot be expressed in
terms of any propagating degrees of freedom and is the
subject of the present work) might be responsible for the de
Sitter phase of our Universe, where the vacuum energy
plays a crucial role in its evolution.

II. TOPOLOGICAL PARTITION FUNCTION.
EUCLIDEAN PATH INTEGRAL FORMULATION

Our goal here is to review the Maxwell system defined
on a Euclidean 4-manifold I1 × I1 × S1 × S1 with sizes
L1 × L2 × L3 × β in the respective directions. This con-
struction provides the infrared regularization of the system,
which plays a key role in the proper treatment of the
topological terms related to tunneling events between
topologically distinct but physically identical jki sectors.
We start in Sec. II A with the construction of the magnetic
instanton fluxes considered in Ref. [1] and continue in
Sec. II B with the electric instanton fluxes considered in
Ref. [5]. The construction of the respective instantons (1)
and (9) has been discussed in the earlier works [1,5] and
even earlier in the original studies of the Schwinger model
in two dimensions [12,13], so we leave a review of the
relevant details to Appendix A. Discussions on how these
instanton fluxes can be generated in experiment with
suitable boundary conditions can be found in Appendix B.

A. Magnetic-type instantons

In what follows, we simplify our analysis by considering
a clear case with topological winding sectors jki in the z-
direction only. This simplification can be justified with the
geometry L1, L2 ≫ L3, β, similar to the construction of the
conventional CE. In this case, our system resembles the 2D
Maxwell theory in Ref. [1] by dimensional reduction:
taking a slice of the four-dimensional (4D) system in the
xy-plane will yield precisely the topological features of the
2D torus. With this geometry, the dominant classical
instanton configurations that describe tunneling transitions
can be written as

Aμ
top ¼

�
0;−

πk
eL1L2

x2;
πk

eL1L2

x1; 0

�
; ð1Þ

where k is the winding number that labels the topological
sector.
This classical instanton configuration satisfies the peri-

odic boundary conditions up to a large gauge transforma-
tion and provides a topological magnetic instanton flux in
the z-direction:

1This problem is not specific to our system. Rather, it is a quite
common problem when the path integrals are performed in
Euclidean space-time, but the relevant physical questions are
formulated in Minkowski terms. In particular, the problem is well
known in QCD lattice simulations with conventional Euclidean
formulations. All questions on nonequilibrium dynamics and
particle production represent challenges for the QCD lattice
community.
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~Btop ¼ ~∇ × ~Atop ¼
�
0; 0;

2πk
eL1L2

�
;

Φ ¼ e
Z

dx1dx2B
z
top ¼ 2πk: ð2Þ

The Euclidean action of the system is quadratic and has the
form

1

2

Z
d4xf~E2 þ ð~Bþ ~Btop þ ~BextÞ2g; ð3Þ

where ~E and ~B are the dynamical quantum fluctuations of

the gauge field and ~Bext is classical external magnetic field.
As discussed in detail in Ref. [1], the quantum fluctua-

tions of the gauge field decouple from the topological and
external fields, allowing us to arrive at a simple expression
for the topological partition function,

Ztopðτ; θeffÞ ¼
ffiffiffiffiffi
πτ

p X
k∈Z

exp

�
−π2τ

�
kþ θeff

2π

�
2
�
; ð4Þ

where

τ≡ 2βL3=e2L1L2 ð5Þ
is a dimensionless system size parameter and the effective
theta parameter θeff ≡ eL1L2B

z
ext is defined in terms of the

external magnetic field Bz
ext. Applying the Poisson sum-

mation formula leads to the dual expression

Ztopðτ; θeffÞ ¼
X
n∈Z

exp

�
−
n2

τ
þ in · θeff

�
: ð6Þ

Equation (6) justifies our notation for the effective theta
parameter θeff as it enters the partition function in combi-
nation with integer n. One should emphasize that the n in
the dual representation (6) is not the integer magnetic flux k
defined in Eq. (2). Furthermore, the θeff parameter which
enters (4), (6) is not the fundamental θ parameter normally

introduced into the Lagrangian in front of the ~E · ~B operator.
Rather, θeff should be understood as an effective parameter
representing the construction of the jθeffi state for each slice
with nontrivial π1½Uð1Þ� in the 4D system. In fact, there are
three such θMi

eff parameters representing different slices of
the 4-torus and their corresponding external magnetic
fluxes. There are similarly three θEi

eff parameters represent-
ing the external electric fluxes (in Euclidean space-time) as
discussed in Ref. [2], such that the total number of θ
parameters classifying the system is six, in agreement with
the total number of hyperplanes in four dimensions.2

To study the magnetic response of the system under the
influence of an external magnetic field, we differentiate
with respect to the external magnetic field to obtain the
induced magnetic field

hBindi ¼ −
1

βV

∂ lnZtop

∂Bext
¼ −

e
βL3

∂ lnZtop

∂θeff
¼

ffiffiffiffiffi
τπ

p
Ztop

X
k∈Z

�
Bext þ

2πk
eL1L2

�
exp

�
−τπ2

�
kþ θeff

2π

�
2
�
:

ð7Þ

This induced magnetic field can also be interpreted as a
magnetic dipole moment,

hmindi ¼ −hBindiL1L2L3

¼ −
ffiffiffiffiffi
τπ

p
Ztop

L3

X
k∈Z

θeff þ 2πk
e

exp

�
−τπ2

�
kþ θeff

2π

�
2
�
:

ð8Þ

B. Electric-type instantons

To study the electric instanton fluxes, we consider two
parallel conducting plates which form the boundary in the
z-direction, endowing the system with the geometry of a
small quantum capacitor that has plate area L1 × L2 and
separation L3 at an ambient temperature of T ¼ 1=β. These
two plates are connected by an external wire to enforce the
periodic boundary conditions (up to large gauge trans-
formations) in the z-direction, and so the system can be
viewed as a quantum LC circuit where the external wire
forms an inductor L. The quantum vacuum between the
plates (where the tunneling transitions occur) represents the
object of our studies.
The classical instanton configuration in Euclidean space-

time which describes tunneling transitions between the
topological sectors jki can be represented as follows,

Aμ
topðtÞ ¼

�
0; 0; 0;

2πk
eL3β

t

�

A3
topðβÞ ¼ A3

topð0Þ þ
2πk
eL3

; ð9Þ

where k is the winding number that labels the topological
sector and t is the Euclidean time. This classical instanton
configuration satisfies the periodic boundary conditions up
to a large gauge transformation and produces a topological
electric instanton flux in the z-direction:

~Etop ¼ _~Atop ¼
�
0; 0;

2πk
eL3β

�
: ð10Þ

This construction of these electric-type instantons is in fact
much closer (in comparison with the magnetic instantons

2Since it is not possible to have a 3D spatial torus without
embedding it in 4D spatial space, the corresponding construction
where all six possible types of fluxes are generated represents a
purely academic interest.
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reviewed in the previous section, Sec. II A) to the
Schwinger model on a circle where the relevant instanton
configurations were originally constructed [12,13]. The
Euclidean action of the system takes the form

1

2

Z
d4xfð~Eþ ~Etop þ ~EextÞ2 þ ~B2g; ð11Þ

where, as in the magnetic case, ~E and ~B are the dynamical
quantum fluctuations of the gauge field, ~Etop is the topo-

logical instanton field, and ~Eext is a classical external field.
Unlike magnetic fields, which remain the same under

analytic continuation between Euclidean and Minkowski
space-times, an electric field acquires an additional factor
of i as it involves the zeroth component of 4-vectors,
i.e., Ez ¼ ∂0Az − ∂zA0. A detailed treatment is given in
Ref. [5], and here we only state the final expressions for the
partition function,

Ztopðη; θEeffÞ ¼
X
k∈Z

exp

�
−π2η

�
kþ θEeff

2π

�
2
�
; ð12Þ

for a Euclidean source θEeff and

Z̄topðη; θMeffÞ ¼
X
k∈Z

exp ½−ηðπ2k2 þ iπkθMeffÞ� ð13Þ

for a Minkowski source,

θMeff ¼ eL3βEMink
ext ¼ −iθEeff : ð14Þ

We have used the dimensionless system size parameter

η≡ 2L1L2

e2βL3

: ð15Þ

Our interpretation in this case remains the same: in the
presence of a physical external electric field EMink

ext repre-
sented by the complex source θEeff , the path integral (12) is
saturated by the Euclidean configurations (10) describing
physical tunneling events between the topological sectors jki.
Now, one can compute the induced Minkowski-space

electric field and dipole moment in response to the external
source θMeff by differentiating the partition function (13)
with respect to EMink

ext :

hEMink
ind i ¼ −

1

βV

∂ ln Z̄top

∂EMink
ext

¼ −
e

L1L2

∂ ln Z̄top

∂θMeff
¼ 1

Z̄top

X
k∈Z

2πk
eL3β

e−ηπ
2k2 sin ½πkηθMeff �: ð16Þ

The expectation value for the electric dipole moment can be
competed in complete analogy with magnetic case (8), and
it is given by

hpMink
ind i ¼ −hEMink

ind iL1L2L3

¼ −
1

Z̄top

X
k∈Z

2πkL1L2

eβ
e−ηπ

2k2 sinðπkηθMeffÞ: ð17Þ

C. Classical dipole radiation

Although (8) and (17) have been derived assuming static
external magnetic and electric fields, these expressions still
hold when the external fields vary slowly compared to all
relevant time scales of the system. In this case, the
corresponding dipole moments hmindðtÞi and hpMink

ind ðtÞi
also take on time dependence in response to semiclassical
time-dependent external sources as (8) and (17) suggest.
Hence, one can invoke the laws of classical electrodynam-
ics to study the magnetic and electric dipole radiation as a
result of this time dependence. The radiation intensity is
given by the classical expressions

dIMðtÞ ¼ hm̈indðtÞi2
sin2θ
16π2c3

dΩ;

dIEðtÞ ¼ hp̈Mink
ind ðtÞi2 sin2θ

16π2c3
dΩ; ð18Þ

while the total radiated power assumes the classical form

IMðtÞ ¼ 1

6πc3
hm̈indðtÞi2;

IEðtÞ ¼ 1

6πc3
hp̈Mink

ind ðtÞi2 ð19Þ

for the magnetic and electric systems respectively. If one is
to compute the average intensity hIðtÞi over a cycle
assuming conventional periodic oscillation ∼ cosðωtÞ for
the field, one gets

hIMi ¼ ω4

12πc3
hmindi2; hIEi ¼ ω4

12πc3
hpMink

ind i2: ð20Þ

A few comments are in order. First, Eqs. (18) and (19)
make the important statement that the system emits
physical photons from the vacuum in the presence of
time-dependent external fields, in close analogy with the
dynamical Casimir effect (DCE). Its difference from
the conventional DCE [14–16] is that the radiation from
the vacuum in our system is not due to the conversion of
virtual to real photons, as illustrated in the top panel of
Fig. 1. Rather, it occurs as a result of tunneling events
between topologically different but physically identical
vacuum winding states in a time-dependent background,
and the physical photons here are emitted from these
instantonlike configurations describing the tunneling tran-
sitions as illustrated in the bottom panel of Fig. 1.
Second, the magnetic dipole radiation∼hm̈indðtÞi2 can be

easily understood in terms of topological nondissipating
currents flowing along the ring [4], while the electric dipole
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radiation hp̈Mink
ind ðtÞi2 can be understood in terms of fluc-

tuating surface charges on the capacitor plates [5]. When
the external field fluctuates, the induced nondissipating
currents and surface charges follow suit. This obviously
leads to the radiation of real photons as formulas (18) and
(19) imply, which we call the nonstationary TCE. One
should emphasize that the interpretation of the TCE (as
well as nonstationary TCE, which is the subject of the
present work) in terms of topological nondissipating
currents and topological surface charges is the consequen-
tial, rather than fundamental, explanation. The fundamental
explanation is still the instantons tunneling between the
topological sectors, which occur in the system even when
topological boundary currents and charges are not gener-
ated (for example, in the absence of external fields).
Finally, one should note that the above analysis of dipole

radiation is purely classical; the induced dipole moments
(8) and (17) are treated as classical dipoles and then varied
in the semiclassical limit [such that the expressions (8) and
(17) remain valid] to yield electromagnetic radiation.
The new contribution of this paper will be presented in

the following sections, where we develop quantum
mechanical machinery with which to study the emission
of photons from the topological vacuum (TV). This goal
calls for a transition from the classical description (18), (19)

of emission in terms of dipole expectation values hmindðtÞi
and hpMink

ind ðtÞi to a Minkowski description based on
quantum mechanical operators, quantum states, and tran-
sition matrix elements. We already mentioned the funda-
mental obstacle in developing such a technique; see
footnote 1 and the corresponding paragraph. Formulas (18)
and (19) will serve as the consistency check between the
classical and quantum descriptions; it will provide some
confidence that the quantum mechanical description (based
on auxiliary topological fields developed in the next
sections) reproduces the classical formulas (18) and (19)
in the low frequency limit, as it should according to the
correspondence principle.

III. DIPOLE MOMENT OPERATORS

In this section, we use auxiliary fields to construct dipole
moment operators in terms of quantum mechanical oper-
ators. These operators can be analytically continued to
Minkowski space-time. They will play a crucial role in
Sec. V where we study the quantum transitions in the
system using quantum mechanical Hilbert states formu-
lated in Minkowski space-time.
The expectation values for the induced electric field and

dipole moment in Eqs. (16) and (17) were calculated in the
Euclidean path integral approach at nonzero temperature
β−1. In what follows, we wish to formulate the topological
features of our system using topological auxiliary fields and
topological action. This technique is well known to the
particle physics and CM communities. In particular, it was
exploited in Ref. [17] for the Higgs model in the CM
context and in Ref. [18] for the so-called weakly coupled
deformed QCD. In the present context of the Maxwell
system, this technique was developed in Ref. [3], and we
follow the notations from that paper.
We first illustrate how to obtain the dipole moment

operator for the magnetic system reviewed in Sec. II A, as it
avoids the potentially confusing analytic continuation
between Minkowski and Euclidean space-times. The same
procedure can then be easily applied to the electric case
reviewed in Sec. II B.

A. Magnetic dipole moment

We follow Ref. [3] and insert in the original path integral
(4) the following delta functional,

δ½Bz − ϵzjk∂jakðxÞ�

∼
Z

Dbz exp

�
i
Z

d4xbzðxÞðBz − ϵzjk∂jakðxÞÞ
�
; ð21Þ

where j, k ¼ 1, 2. Here, Bz is treated as the original
magnetic field operator entering the action (3), including
both the classical k-instantons and the quantum fluctuations
around them. Therefore, we treat Bz as fast degrees of
freedom. In comparison, the auxiliary fields akðxÞ and

FIG. 1. An illustration of the mechanism of photon emission in
the conventional DCE (top) and in the TCE or Maxwell system
on a compact manifold (bottom). In the conventional DCE, the
accelerating Casimir plates turn some of the virtual photons into
real on-shell propagating photons which leave the system. In the
case of the TCE, the tunneling transitions between infinitely
degenerate vacuum winding states jmi are represented by
instanton solutions Aμ

top. These instanton configurations cannot
be expressed in terms of physical transverse propagating E&M
fields. Precisely, these topological configurations are eventually
responsible for the emission of real photons in a time-dependent
background; see Secs. IV and V for details.
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bzðxÞ should be considered slow-varying external sources
that effectively describe the large distance physics which
results from tunneling transitions. We proceed by summing
over all instanton configurations as before and integrating
out the original fast degrees of freedom in the presence
of the slow fields akðxÞ and bzðxÞ. The effective Lagrangian
can then be expressed in terms of these auxiliary
fields.
Fortunately, the derivations can be performed as

before since the Lagrange multiplier field bzðxÞ enters
(21) in exactly the same manner in which the external
magnetic field Bext ∼ θeff enters the action (3). Therefore,
we arrive at

Ztop ¼
X
k∈Z

ffiffiffiffiffi
πτ

p Z
DaDbz exp

�
−
Z

d4xL
�

L ¼ 2π2

e2L2
1L

2
2

�
kþ θeff − iϕðxÞ

2π

�
2

þ Ltop

Ltop ¼ ibzðxÞϵzjk∂jakðxÞ; ð22Þ

where ϕðxÞ≡ eL1L2bzðxÞ. One can see from (22) that the
topological term Ltop is explicitly generated in this effective
description. This term has Chern-Simons structure, which
normally appears in many similar CM commutations
(see, e.g., Refs. [17,19]), and one should therefore antici-
pate a number of topological phenomena as a result of this
Chern-Simons structure. Furthermore, one can show [3]
that the auxiliary field aiðxÞ written in momentum space
aiðkÞ strongly resembles Berry’s connection AiðkÞ in CM
physics.3

The integration over bz is Gaussian and can be explicitly
executed with the result

Ztop¼
X
k∈Z

ffiffiffiffiffi
πτ

p Z
Daexp

�
−
Z

d4xL
�

L¼−
1

2
ðϵzjk∂jakðxÞÞ2þ

2πkþθeff
eL1L2

ðϵzjk∂jakðxÞÞ: ð23Þ

A few comments are in order. First, the negative sign in
Eq. (23) should not be considered as any inconsistency or
violation of unitarity. Indeed, the field akðxÞ is an auxiliary
nonpropagating field introduced into the system to simplify
the analysis, and any observable could be computed

without it. Instead, this field should be considered as a
saddle point saturating the Euclidean partition function
Ztop in the path integral approach.4

Second, the ½−ϵzjk∂jakðxÞ� term in the above Lagrangian
couples to both the instanton field expressed in terms of k
fluxes and the external field formulated in terms of θeff . The
physical meaning of this operator can be easily understood
by noticing that it enters the Lagrangian precisely like a
magnetic dipole moment density couples to the external
magnetic field. Therefore, we identify ½−ϵzjk∂jakðxÞ� with
the magnetization of the system.
To confirm this conjecture, we should compute the

expectation value of ½−ϵzjk∂jakðxÞ� to reproduce the
magnetic dipole moment derived in the Euclidean path
integral approach (8). This task can be easily performed
because the integration over ∂jakðxÞ is Gaussian and can be
carried out by a conventional change of variables,

ϵzjk∂ja0kðxÞ ¼ ϵzjk∂jakðxÞ −
2πkþ θeff
eL1L2

; ð24Þ

after which the Lagrangian becomes

L ¼ −
1

2
ðϵzjk∂ja0kðxÞÞ2 þ

1

2

�
2πkþ θeff
eL1L2

�
2

: ð25Þ

The expectation value of ½−ϵzjk∂jakðxÞ� is then given by

hmindi ¼ h½−ϵzjk∂jakðxÞ�iV

¼
P

k∈Z
R
Dae−

R
d4xL

�
−ϵzjk∂ja0kðxÞ − 2πkþθeff

eL1L2

�
V

P
k∈Z

R
Dae−

R
d4xL

¼ −L3

P
k∈Zðθeffþ2πk

e Þ exp½−τπ2ðkþ θeff
2π Þ2�P

k∈Z exp½−τπ2ðkþ θeff
2π Þ2�

: ð26Þ

Equation (26) exactly reproduces our previous expectation
value of the magnetic dipole moment (8), thereby con-
firming the identification of the operator ½−ϵzjk∂jakðxÞ�
with the magnetization of the system.
We would like to mention here that this identification

should not surprise the reader. Indeed, it has been pre-
viously argued [3] that the auxiliary field can be thought of

3In fact, one can argue that the auxiliary fields in our framework
play the same role as Berry’s connection in CM physics. In
particular, as it is known, Berry’s phase in CM systems effectively
describes the variation of the θ parameter θ → θ − 2πP as a result
of the coherent influence of strongly interacting fermions that
polarize the system, i.e., P ¼ �1=2; see, e.g., Ref. [19]. Our
auxiliary fields essentially describe the same physics. Therefore, it
is not a surprise that the induced dipole moment mind, to be
discussed below, can be explicitly expressed in terms of these
auxiliary fields.

4In many respects, this negative sign in Eq. (23) resembles the
negative sign for the so-called Veneziano ghost in the course of
the resolution of the Uð1ÞA problem in QCD; see Ref. [18] for
references and details in the given context. One can explicitly see
from the computations in Ref. [18] how the negative kinetic term
for the Veneziano ghost is generated due to tunneling transitions
between different topological sectors in very much the same way
as it occurs in our system represented by the effective Lagrangian
(23). Precisely this “wrong sign” in the effective Lagrangian
might be a key element in understanding the new type of
cosmological vacuum energy known as the dark energy; see
comments in the concluding section, Sec. VI.
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as Berry’s connection.5 The polarization properties of a CM
system can be computed in terms of Berry’s connection
AiðkÞ and Berry’s curvature; see footnote 3 with relevant
references. In our case, the magnetization of the system is
also expressed in terms of auxiliary fields. Therefore,
Eq. (26) is in fact fully anticipated.

B. Electric dipole moment

The similar procedure can be applied to the electric
system to obtain an electric dipole moment operator. The
delta functional we insert into (12) is

δ½Ez− ϵ12jk∂jakðxÞ�

∼
Z

Dbz exp

�
i
Z

d4xbzðxÞðEz− ϵ12jk∂jakðxÞÞ
�
; ð27Þ

where j, k ¼ 0, 3, and Ez is taken to be the Euclidean
quantum field including the instanton configurations (10)
and quantum fluctuations around them.
We follow the same procedure as before by integrating

out the auxiliary field bzðxÞ. It leads to the following
Euclidean Lagrangian density analogous to Eq. (23)
describing the magnetic case:

L¼−
1

2
ðϵ12jk∂jakðxÞÞ2þ

2πkþθEeff
eβL3

ðϵ12jk∂jakðxÞÞ: ð28Þ

All the comments after Eq. (23) also apply here for the
electric case (28). Furthermore, there is an additional
complication for the electric case due to the necessity
for a transition to physical Minskowski space-time; i.e., we
have to replace the Euclidean θEeff in (28) by the Minkowski
expression θEeff according to relation (14),

L¼−
1

2
ðϵ12jk∂jakðxÞÞ2þ

2πkþ iθMeff
eβL3

ðϵ12jk∂jakðxÞÞ; ð29Þ

where θMeff ¼ eβL3EMink
ext represents the physical electric

field. The only difference from the magnetic case is the
emergence of the factor i in front of the effective theta
parameter. Thus, we identify the electric dipole moment
operator in Minkowski space-time with ½−iϵ12jk∂jakðxÞ�V.
In what follows, we confirm this conjecture by explicit
computation of the corresponding expectation value.
To proceed with this task, we make a shift,

ϵ12jk∂ja0kðxÞ ¼ ϵ12jk∂jakðxÞ −
2πkþ iθMeff

eL3β
; ð30Þ

such that the Lagrangian (29) in terms of the new variable
a0kðxÞ becomes

L ¼ −
1

2
ðϵ12jk∂ja0kðxÞÞ2 þ

1

2

�
2πkþ iθMeff

eL3β

�
2

: ð31Þ

We can now calculate the expectation value of the electric
dipole moment,

hpMink
ind i ¼ h½−iϵ12jk∂jakðxÞ�iV

¼
P

k∈Z
R
Dae−

R
d4xLð−iϵ12jk∂ja0kðxÞ − i 2πk

eL3β
ÞV

P
k∈Z

R
Dae−

R
d4xL

¼
P

k∈Zð−i 2πL1L2k
eβ Þ exp ½−ηðπ2k2 þ iπkθMeffÞ�P

k∈Z exp ½−ηðπ2k2 þ iπkθMeffÞ�
¼ −

1

Z̄top

X
k∈Z

2πkL1L2

eβ
e−ηπ

2k2 sinðπkηθMeffÞ; ð32Þ

where Z̄top is defined in (13). Here, we have removed the
constant external term to keep only the truly induced
contribution to the dipole moment, consistent with our
previous definition in Sec. II B. Equation (32) exactly
reproduces our previous expression (17) which was origi-
nally derived without even mentioning any auxiliary fields.
This supports once again our formal manipulations with the
auxiliary fields, and it also confirms our interpretation of
the operator ½−iϵ12jk∂jakðxÞ� as the quantum polarization
operator of the system. All the comments we have made in
Sec. III A regarding the physical meaning of this operator
also apply here to the electric case, including the con-
nection with Berry’s phase, which we will not repeat here.
To study the quantum mechanical dipole transitions, we

must work in Minkowski space-time where the metric
signature allows for propagating on-shell photons.
Although the original derivation in this section is per-
formed in Euclidean space-time, we claim that the dipole
moment operator Pz ≡ ½−iϵ12jk∂jakðxÞ�V represents an
operator in Minkowski space-time, as confirmed by the
explicit expectation value calculation (32).
Our next task is to infer from our previous Euclidean

path integral computations the structure of the quantum
states, which can then be employed for conventional
quantum dipole transitions in Minkowski terms; see foot-
note 1 and the related paragraph for an explanation of the
source of this technical subtlety.

IV. METASTABLE QUANTUM STATES
IN THE MAXWELL SYSTEM

The main goal of this section is to identify quantum
mechanical states in Hilbert space in Minkowski space
using the operators constructed in the previous section,
Sec. III. These quantum states have never been explicitly

5These similarities, in particular, include the following fea-
tures: while aiðkÞ and AiðkÞ are gauge-dependent objects, the
observables, such as polarization or magnetization (26), are
gauge invariant (modulo 2π) characteristics. Furthermore, the
main features of the systems in both cases are formulated in terms
of global rather than local characteristics.
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constructed in the previous path integral treatment of this
model [1–5]. We substantiate our identification by repro-
ducing the computed transition matrix elements with
corresponding path integral computations in Euclidean
space.
Before we proceed, we would like to give an overview of

a well-known formal mathematical analogy between the
construction of the jθi-vacuum states in gauge theories and
Bloch’s construction of the allowed/forbidden bands in CM
physics (see, e.g., Ref. [20]). The large gauge transforma-
tion operator T plays the role of the crystal translation
operator in CM physics. T commutes with the Hamiltonian
H and changes the topological sector of the system

T jmi ¼ jmþ 1i; ½H; T � ¼ 0; ð33Þ

such that the jθi-vacuum state is an eigenstate of the large
gauge transformation operator T :

jθi ¼
X
m∈Z

eimθjmi; T jθi ¼ e−iθjθi:

The θ parameter in this construction plays the role of the
“quasimomentum” θ → qa of a quasiparticle propagating
in the allowed energy band in a crystal lattice with unit cell
length a.
An important element, which is typically skipped in

presenting this analogy but plays a key role in our studies,
is the presence of the Brillouin zones classified by integers
k. Complete classification can be either presented in the so-
called extended zone scheme where −∞ < qa < þ∞ or
the reduced zone scheme where each state is classified by
two numbers, the quasimomentum −π ≤ qa ≤ þπ and the
Brillouin zone number k.
In the classification of the vacuum states, this corre-

sponds to describing the system by two numbers jθ; ki,
where θ is assumed to be varied in the conventional range
θ ∈ ½0; 2πÞ, while the integer k describes the ground state
(for k ¼ 0) or the excited metastable vacuum states
(k ≠ 0). In most studies devoted to the analysis of the θ
vacua, the questions related to the metastable vacuum states
have not been addressed. Nevertheless, it has been known
for some time that the metastable vacuum states must be
present in non-Abelian gauge systems in the large N limit
[21]. A similar conclusion also follows from the holo-
graphic description of QCD as originally discussed in
Ref. [22]. Furthermore, the metastable vacuum states can
be explicitly constructed in a weakly coupled “deformed
QCD” model [23].
Such metastable states will also emerge in our Maxwell

systems defined on a compact manifold. Thus, the com-
plete classification of the states in our system is jθeff ; ki,
where the integer k plays a role similar to the kth Brillouin
zone in the reduced zone classification as we discussed
above.

A. Identification of quantum states: Magnetic system

Through the formal manipulation in Sec. III A, we
have identified the magnetic dipole moment operator
Mz ¼ −ϵzjk∂jakðxÞ · V. We have also seen that the quan-
tum mechanical expectation value of hMzi reproduces the
expectation value hmMink

ind i computed using Euclidean path
integrals (8), i.e.,

hMzi ¼ −
�
2πL3

e

�P
k∈Zk exp½−τπ2ðkþ θeff

2π Þ2�P
k∈Z exp½−τπ2ðkþ θeff

2π Þ2�
: ð34Þ

Formula (34) determines a truly induced magnetic moment
when the trivial constant contribution (related to the
external magnetic field) is removed from the corresponding
expression (8). Formula (34) was derived using conven-
tional path integrals in Euclidean space-time without
interpreting it in terms of any physical states.
Now, we interpret the result (34) in terms of quantum

mechanical states in Hilbert space. First, the factor
exp½−τπ2k2� originates from the partition function
Ztopðτ; θeffÞ (4). This exponential form in Euclidean space
suggests that the combination

ϵðkÞ ¼ τπ2k2

β
¼ 2L3π

2k2

e2L1L2

ð35Þ

can be interpreted as the energy of state jki for θeff ¼ 0 in
Minkowski space. In the case of a nonzero external field
θeff ≠ 0, the corresponding energy levels get shifted
accordingly as in the well-known problem for a particle
on a circle,

ϵðk; θeffÞ ¼
τπ2ðkþ θeff

2π Þ2
β

: ð36Þ

We identify the parameter k with the label of the metastable
vacuum state jki, similar to the classification of the kth
Brillouin zone in CM systems mentioned above. This
interpretation is supported by the observation that for
k ¼ 0 the energy ϵðk ¼ 0; θeffÞ ¼ 1

2
ðVB2

extÞ is precisely
the magnetic energy of the external field, while quantum
tunneling generates the excited jθeff ; ki states with energies
(36). In contrast to conventional quantum states in the
context of dipole transitions, the “states” in our system are
the k-instantons that describe tunneling transitions between
the infinitely many degenerate vacuum winding states.
Once we accept this interpretation along with the

identification of the magnetic dipole moment operator
Mz ¼ −ϵzjk∂jakðxÞ · V, we then proceed to interpret the
corresponding factor in (34) as the nonvanishing transition
matrix element hkjMzj0i rather than a diagonal expectation
value hkjMzjki.
To simplify notations in what follows, we consider

vanishing external field θeff ¼ 0 and the lowest excited
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metastable state k ¼ 1, which can be formally achieved by
considering the limit τ ≫ 1. In this case, we can interpret
(34) as the transition matrix element between the first
excited state and the ground state,

hk ¼ 0jMzjk ¼ 1i≃ −
2πL3

e
· e−τπ

2

: ð37Þ

The main argument behind this interpretation is the
observation that the integer parameter k which enters
(34) originally appeared in the Euclidean path integrals
as the instanton action describing the interpolation between
two topologically distinct states according to Eq. (4). The
same interpretation also follows from the boundary con-
ditions (1) such that (37) can be thought of (in Minkowski
terminology) as the configuration describing the transition
matrix element between the states which satisfy the non-
trivial boundary conditions (1) with k ¼ 1 and states which
satisfy the trivial boundary conditions with k ¼ 0.
Yet another argument supporting the Hamiltonian inter-

pretation in terms of the transition matrix elements (37) is
the successful matching of our final formula for the
intensity of radiation with the classical expression for
emission (20) discussed in Sec. II C. Indeed, the conven-
tional quantum mechanical formula for the probability for
the quantum transition per unit time is known to match well
with the classical formula (20) for the intensity of radiation.
This spectacular example of classical correspondence
implies that the probability for the quantum emission
R1→0 is expressed in terms of the transition matrix element
(37) to match the classical formula (20),

R1→0 ¼
ω3μ0
3πℏc3

jhk ¼ 0jMzjk ¼ 1ij2; ℏωR1→0 → hIMi:
ð38Þ

In this well-known correspondence, the magnetic moment
mind as usual is identified with the time-dependent tran-
sition matrix element mindðtÞ ¼ ½hk ¼ 0jMzjk ¼ 1ie−iωt�.
In this case, the magnetic moment entering formula (20)
for the classical emission should be identified with
½mindðtÞþm�

indðtÞ�∼2cosðωtÞ, while the magnetic moment
entering the quantum mechanical expression (38) should be
identified with the transition matrix element (37). This
well-known correspondence between classical and quan-
tum descriptions once again supports our interpretation of
(37) as the transition matrix element between the excited
and ground states, though the original computations (34)
from which formula (37) was inferred were performed in
the Euclidean path integral approach without any notions of
the Hamiltonian formulation.
We conclude with the following remarks. As we men-

tioned previously, the expectation value (34) vanishes when
the external field is zero, though we claim that the transition
matrix element (which eventually leads to the emission of

real photons) does not vanish according to (37). There is no
contradiction here as the expectation value (34) vanishes at
θeff ¼ 0 as a result of cancellation between k ¼ �1 states,
while in our discussions above, we selected a single
state jk ¼ 1i which obviously must be somehow produced
by nonequilibrium dynamics and separated from the
jk ¼ −1i state.
Finally, the transitions between the quantum states

jk ¼ 1i → jk ¼ 0i described here should not be confused
with multiple tunneling transitions between the infinitely
degenerate jni vacuum winding states that make up the
θ-vacuum, classified by two parameters jθeff ; ki as dis-
cussed at the very beginning of this section. Unlike the
vacuum winding states, these quantum states are separated
in energy (35), and the transitions between them form the
central subject of this section.

B. Identification of quantum states: Electric system

Through the formal manipulation in Sec. III B, we
have identified the dipole moment operator Pz ¼
−iϵ12jk∂jakðxÞ · V, the quantum mechanical expectation
value of which reproduces the expectation value hpMink

ind i
computed in the Euclidean path integral approach, i.e.,

hPzi ¼ −
1

Z̄top

X
k∈Z

2πkL1L2

eβ
e−ηπ

2k2 sinðπkηθMeffÞ: ð39Þ

Following the magnetic system in the previous section, we
wish to interpret this expression in terms of quantum states
in Hilbert space. In the θMeff ¼ 0 limit, the energy of each
state can be read off the Boltzmann factors,

ϵðkÞ ¼ ηπ2k2

β
¼ 2π2k2L1L2

e2β2L3

; ð40Þ

analogous to (35). As in Sec. IVA, we work in the reduced
zone scheme with θMeff ∈ ½−π; π� and identify the configu-
rations labeled by integers k as the quantum states jki. In
particular, k ¼ 0 is the ground state, and k ≠ 0 represents
the excited metastable states. The supporting arguments
made in Sec. IVA apply to the electric system as well.
This connection allows us to further identify the tran-

sition elements of the Pz matrix from (39) where we keep
only the k ¼ 1 state to simplify the notations,

hk ¼ 0jPzjk ¼ 1i ¼ −i
2πL1L2

eβ
e−ηðπ2þiπθMeffÞ; ð41Þ

which is analogous to formula (37) for the magnetic
system.
One can repeat the arguments presented in the previous

subsection, Sec. IVA, to infer that the correspondence
formula for the electric dipole transition assumes the form
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R1→0 ¼
ω3

3πℏc3ϵ0
jhk ¼ 0jPzjk ¼ 1ij2; ℏωR1→0 → hIEi:

ð42Þ

This example of classical correspondence implies that
the probability for the electric dipole transition R1→0 is
expressed in terms of the transition matrix element (41) to
match the classical formula (20).
Our comments after Eq. (38) for the magnetic case still

hold for the electric case, and we shall not repeat them here.
The only additional remark we would like to make to
conclude this section is as follows. All our results on the
identification of the dipole moment operators and their
expectation values (34) and (39) are based on the Euclidean
path integral approach. We did not and could not construct
the corresponding Hilbert space and the corresponding
wave functionals Ψk½Ai� in Minkowski space-time, which
would depend on the E&M field configurations. However,
using the correspondence principle (and some other hints
and indications), we were able to reconstruct the relevant
matrix elements (37) and (41) without complete knowledge
of the wave functionals Ψk½Ai�. Fortunately, this is the only
information we need in our following studies of quantum
dipole transitions in a cavity.

V. QUANTUM DIPOLE TRANSITIONS
IN A CAVITY

The goal of this section is to construct the effective
Lagrangian describing the interaction between the physical
E&M fields and the auxiliary fields introduced in Secs. III
and IV. This coupling will allow us to carry out proper
quantum computations for the rate of emission of real
physical photons, because the relevant transition matrix
elements (37) and (41) have been computed in Minkowski
space-time. This puts us in a position to use the well-
developed procedure to study quantum dipole transitions,
such as in the phenomenon of stimulated emission.
Numerically, the decay rate (42) is extremely low (see

Sec. V C for numerical estimates). It has been known for
quite some time that different types of microwave (optical)
cavities can drastically increase the sensitivity for photon
detection. Due to the smallness of the magnitude of all the
topological effects of our Maxwell system, including
the intensity of photon radiation, there might be hope that
the stimulated emission of photons from the capacitor
configuration can be detected using microwave (optical)
resonators.
Essentially, we adopt the conventional technique nor-

mally used to study a system consisting of an atom in an
optical cavity. The role of the atom in our case is played by
the topological Maxwell system as described in the
previous sections, while the optical cavity is replaced by
a microwave cavity as the typical frequencies for our
system are much smaller than atomic frequencies.

However, it should be noted that a specific design for
microwave cavities in a possible experiment is certainly
beyond the scope of this paper, and we shall proceed with
only a general sketch of the possible experimental setup for
illustrative purposes exclusively. Our numerical estimates
given in Sec. V C suggest that the typical sizes where
persistent currents have been observed and where coherent
Aharonov-Bohm phases can be maintained could be a good
starting point for a possible design. However, we are
reluctant to put forward a specific experimental setup since
our main goal is to describe a new phenomenon, rather than
to design a device for its observation or measurement. We
leave the questions on possible design for others in the
community who can then use their own expertise to devise
suitable experimental apparatuses.

A. Coupling with quantum E&M field

First, we want to demonstrate that the quantum propa-
gating E&M field couples to the magnetic and electric
dipole moment operators Mz and Pz in exactly the same
way as it does to the dipole moment operators in conven-
tional quantum mechanics. Indeed, from (23), one can
deduce that the interaction of the quantum field Bquant with
the auxiliary fields akðxÞ is given by the following extra
term ΔLM

int in the Lagrangian,

ΔLM
int ¼ Bquant

z · ½ϵzjk∂jakðxÞ�; ð43Þ

where ~Bquant ¼ ~∇ × ~Aquant is expressed in terms of the

conventional quantum propagating field ~Aquant. The relation
(43) follows from the fact that the θeff parameter entering
(23) represents the total E&M field, including the classical
and the quantum parts, i.e., θeff ¼ eL1L2ðBclass

z þ Bquant
z Þ.

In our previous discussions, we kept only the classical,
constant, portion of the field. In our present discussions in
this section, we obviously need the quantum, fluctuating,
portion of the field as well.
The expression (43) obviously has the structure of a

quantum field Bquant interacting with the magnetic moment
operator expressed in terms of the auxiliary fields and
derived in (26) using the Euclidean path integral approach.
Precisely, the matrix element of this operator has been
computed in (37). The operatorMz and its transition matrix
element play the same role in our computations as the

electron magnetic moment operator ~μ ¼ eℏ
2mc ð~lþ 2~sÞ and

the corresponding matrix elements do in atomic physics

with the conventional coupling −~μ · ~B.
The same arguments also apply to the quantum coupling

of the E&M quantum field with the electric dipole moment
operator Pz. Indeed, from (29), one can deduce that the
interaction of the quantum field Equant with the auxiliary
field akðxÞ is given by the following extra term ΔLE

int in the
Lagrangian:
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ΔLE
int ¼ Equant

z · ½iϵ12jk∂jakðxÞ�: ð44Þ

This is because θMeff which enters (29) represents the
physical electric field, including the constant external part
and the fluctuating quantum part. The expression (44)
obviously has the structure of the interaction between the
quantum field Equant and an electric dipole operator
expressed in terms of the auxiliary fields and derived in
(32) using the Euclidean path integral approach. Precisely,
the matrix element of this operator has been computed in
the previous section (41). The operator Pz and its transition
matrix element play the same role as the electron dipole

moment operator ~d ¼ e~r and the corresponding matrix
elements do in atomic physics with conventional coupling

−~d · ~E.
The essence of the auxiliary fields akðxÞ employed above

is that they effectively account for the interaction between
nontrivial topological configurations (which themselves
describe the tunneling events) and the propagating physical
photons. All the relevant information about these auxiliary
fields, originally introduced in the Euclidean path integral
approach, is encoded now in terms of the matrix elements
(37) and (41) in Minkowski space-time such that one can
proceed with the computations of the quantum transitions
using conventional Hamiltonian techniques, which we shall
do in the next section.

B. Jaynes-Cummings Hamiltonian
for the topological Maxwell system

We consider the electric system and limit ourselves to
two states: an excited state jk ¼ 1i and the ground state
jk ¼ 0i. The two levels are separated by an energy differ-
ence ℏω0 ¼ ϵð1Þ − ϵð0Þ ¼ ηπ2=β according to (40). Here,
we use the notation jn; ki≡ jni ⊗ jki, where n is the
number of photons (not to be confused with jmi being the
winding states) and k ∈ Z indicates the state of the TV.
Suppose we prepare the system in the jk ¼ 1i state and tune
the oscillating external field to the resonance frequency ω0.
The transition rate from the jk ¼ 1i to the jk ¼ 0i state is
determined by the corresponding transition matrix element
(41) inferred previously from the Euclidean path integral
computations (39).
First, as the energy of the k-states grow quadratically

with k, ϵðkÞ ∼ k2, we can neglect highly excited metastable
states by considering only the leading contributions to the
dipole moment (41) due to the transition from jk ¼ 1i to
jk ¼ 0i. To simplify the analysis and to emphasize the basic
features of the system, we also neglect the jk ¼ −1i state
which is degenerate to the jk ¼ 1i state for vanishing
external fields. In principle, it can be easily accounted for.
However, we want to make our formulas as simple as
possible, and we ignore this extra state for now.
If we assume that only a single cavity mode ω0 exists,

which is a good approximation in the case of a high Q

resonator, the system can be described by the Jaynes-
Cummings Hamiltonian,

H ¼ H0 þHI

H0 ¼ ℏω0a†aþ ℏωa

2
σz;

HI ¼ ℏðgaσþ þ g�a†σ−Þ; ð45Þ

coupling a single harmonic oscillator degree of freedom to
our two-level system jk ¼ 0i and jk ¼ 1i. Here, σ� ≡
1
2
ðσx � iσyÞ, and g describes the coupling of our two-level

system with the quantized E&M field with two transverse
polarizations. Assuming the E&M field is polarized in the
z-direction, g reads

g ¼ −i
ffiffiffiffiffiffiffiffiffi
ω

2ℏV

r
hk ¼ 0jPzjk ¼ 1i: ð46Þ

One can easily check that on resonance, ω0 ¼ ωa, the
interaction Hamiltonian HI commutes with the free
HamiltonianH0, i.e., ½H0; HI� ¼ 0. Therefore, the eigenstates
of the full Hamiltonian H can be written as a linear
combination of the degenerate eigenstates ofH0. The degen-
erate eigenstates of H0 are jn; 1i and jnþ 1; 0i. Within
this degenerate subspace, the state of the system at time t can
be written jΨðtÞi¼cn;1ðtÞjn;1iþcnþ1;0ðtÞjnþ1;0i, and
the dressed eigenstates of the full Hamiltonian are
1ffiffi
2

p ðjn; 1i � jnþ 1; 0iÞ. Solving the Schrödinger equation

yields the time evolution

cn;1ðtÞ ¼ cn;1ð0Þ cosðΩntÞ − icnþ1;0ð0Þ sinðΩntÞ
cnþ1;0ðtÞ ¼ cnþ1;0ð0Þ cosðΩntÞ − icn;1ð0Þ sinðΩntÞ; ð47Þ

where Ωn ¼ jgj ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
.

In particular, if we prepare the TV in its excited state
jk ¼ 1i and the initial cavity field with n photons, i.e.,
cn;1ð0Þ ¼ 1 and cnþ1;0ð0Þ ¼ 0, then at a later time t, the
probability for finding the vacuum in the jk ¼ 1i state is

Pk¼1 ¼ jhn; 1jΨðtÞij2 ¼ 1

2
ð1þ cos 2ΩntÞ: ð48Þ

The sinusoidal oscillation indicates that energy is con-
stantly exchanged between the T V and the cavity field.
This is, of course, the conventional Rabi oscillations with
the only difference being that, instead of a two-level atomic
system, the transitions in our case occur between the
metastable and ground states in the TV, similar to the
Brillouin zone classification as discussed at the very
beginning of Sec. IV.
It is particularly interesting to investigate the dynamics

of our system (TV plus the quantum E&M field) when we
start with an initial cavity field that is a coherent state of
photons:
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jαi ¼ e−jαj2=2
X
n

αnffiffiffiffiffi
n!

p jni: ð49Þ

The time evolution of the jk ¼ 1i state probability is

Pk¼1 ≈
1

2

�
1þ

X∞
n¼0

e−jαj2 jαj2n
n!

cosð2ΩntÞ
�
: ð50Þ

We conclude this subsection with the following remark.
The rate of emission from TV due to the nonstationary
TCE is very low. Nevertheless, it is not hopeless to
eventually measure this fundamentally new type of energy.
The proposal presented in this section is to use resonant
cavities for such measurements. A number of historical
examples show that such a goal can in principle be
achieved.6

C. Numerical estimates

Here, we take the realistic experimental parameters used
in Refs. [4,5] to estimate the dipole transition rates for the
magnetic (38) and electric (42) systems as well as the
lifetime of the excited states.
For the magnetic system, we use the sample parameters

from the experiment on persistent currents [25]. The sample
in this case was a metallic ring with area L1 × L2 ¼
πð1.2 μmÞ2 and thickness L3 ¼ 0.1 μm at a temperature
of β ¼ 0.6 cm. The observation of persistent currents
implies that coherent Aharonov-Bohm (AB) phases, which
are also crucial for the experimental realization of the TCE,
can be maintained (see more elaboration on this point in
Sec. VI A in Ref. [5]). Although it was demonstrated in
Ref. [4] that for this particular setup τ ≫ 1 such that all
topological effects are vanishingly small, we assume here
that τ ∼ 1 can somehow be achieved. In this case, the
energy separation between the ground (k ¼ 0) and excited
(k ¼ 1) states is

ℏωa ≈ 3.2 × 10−4 eV: ð51Þ

The resonant wavelength corresponding to this energy is
3.8 mm, much larger than the dimensions of the system,
thereby justifying the dipole approximation in (38). The
transition rate from the excited to the ground state is
then

R1→0 ≈ 1.6 × 10−3 s−1; ð52Þ

which corresponds to an excited state lifetime of 6 × 102 s.

For the electric system, we use the two sets of parameters
in Ref. [5]. The first set of parameters is motivated by the
accurate measurement of the CE using parallel plates [26]
(see also Ref. [27] where historically the first accurate
measurement was performed, but for a different geometry).
The second set of parameters is motivated by the experi-
ments on persistent currents [25] where the correlation of
the AB phases is known to be maintained. While the
persistent current is a magnetic phenomenon, electromag-
netic duality strongly suggests that a similar electric effect
should also occur when coherent AB phases are correlated
over macroscopically large distances.7 Therefore, for the
second set of parameters, we adopt the typical sizes of the
magnetic system used above (where persistent currents
have been observed) to estimate the topological effects in
the electric capacitor configuration. Both sets of parameters
can optimize the TCE:

ηðIÞ ¼ 2L1L2

e2βL3

¼ 1.2 × 1.2 mm2

2παð180 mmÞð0.4 mmÞ ≈ 0.4; ð53Þ

ηðIIÞ ¼ 2L1L2

e2βL3

¼ 2πð1.2 μmÞ2
4παð0.6 cmÞð0.1 μmÞ ≈ 0.16: ð54Þ

The energy separations between the ground (k ¼ 0) and
excited (k ¼ 1) states are

ℏωðIÞ
a ¼ 4.8× 10−6 eV; ℏωðIIÞ

a ¼ 5.2×10−5 eV: ð55Þ

For both sets of parameters, the electric dipole approxi-
mation in (42) can be justified by observing that the
resonance external electric fields correspond to wave-
lengths that are much larger than the sizes of the respective
systems:

λðIÞ ≈ 0.3 m λðIIÞ ≈ 0.02 m: ð56Þ

The induced dipole moments for our two sets of parameters
can be estimated as [5]

hpMink
ind iðIÞ ≈ eL3

2
ηðIÞ ∼ 0.1 ðe · mmÞ

hpMink
ind iðIIÞ ≈ eL3

2
ηðIIÞ ∼ 0.01 ðe · μmÞ: ð57Þ

These estimates suggest that the effective number of
degrees of freedom neff which coherently generate the

6One can mention a recent example of the measurement of
spontaneous emission in silicon coupled to a superconducting
microwave cavity. The relaxation rate is increased by 3 orders of
magnitude as the spins are tuned to cavity resonance [24].

7An interesting impact of AB phases on tunneling rates has
been recently demonstrated in Ref. [28], where photon emission
occurs exactly during the tunneling events. The difference from
our case is that the tunneling in our system occurs between
distinct topological vacuum sectors jmi, while in Ref. [28] the
charged particle tunnels in the conventional quantum mechanical
sense.
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dipole moments (57) and the corresponding transitions (58)
can be estimated as hpMink

ind i=ðe × 10−8 cmÞ, which numeri-

cally correspond to nðIÞeff ∼ 106 and nðIIÞeff ∼ 102.
The transition rates (42) for the two sets of parameters

are

RðIÞ
1→0 ≈ 0.21 s−1; RðIIÞ

1→0 ≈ 5.7 × 10−4 s−1; ð58Þ

so the lifetimes of the excited states are 4.7 and 1.7 × 103 s
respectively.
One should emphasize that, in contrast to conventional

systems where a large number of spins are present in a
sample, our sets of parameters (53) and (54) describe a
small but single macroscopic quantum coherent system.
Therefore, a potential detector must be sensitive to a
single photon to observe this new effect of emission from
the TV.
The rates (58), of course, are highly sensitive to all

dimensional parameters of the system and the temperature
and show drastic changes when one puts a system into
the background of an external field. In fact, this high
sensitivity to the external field can be used to detect the
topological vacuum effects as a conventional vacuum is
largely unaffected by any external sources, as argued in
Refs. [1,5]. Essentially, it means that one can scan the
system by changing the external field to search for a
resonance response. It also implies that one can, in
principle, manipulate a system in very much the same
way as one normally manipulates cold atom systems by
tuning the external field.

VI. CONCLUSION

Our conclusion can be separated into three related, but
still distinct pieces:

(i) Section VI A: solid theoretical results based on
the Euclidean path integral computations in the
Maxwell system defined on a compact manifold,

(ii) Sec. VI B: relation to other approaches where real-
time dynamics plays a key role

(iii) Sec. VI C: some speculations related to strongly
coupled QCD realized in nature where fundamen-
tally the same vacuum effects do occur and might be
the crucial ingredients in understanding the observed
cosmological vacuum energy. In fact, the Maxwell
system which is the subject of the present work was
originally invented as a theoretical toy model where
some deep theoretical questions can be addressed
(and answered) in a simplified setting.

A. Basic results

In this work, we discussed a number of very unusual
features exhibited by the Maxwell theory formulated on a
compact manifoldMwith nontrivial topological mappings

π1½Uð1Þ�, termed the topological vacuum (TV). One of the
properties which plays an important role in the present
studies is the generation of metastable vacuum states,
similar to the classification of Brillouin zones as discussed
in Sec. IV. All these features originate from the topologi-
cal portion of the partition function Ztop which is a result
of the tunneling events between physically identical but
topologically distinct winding states jni. The relevant
physics cannot be ascribed to physical propagating pho-
tons with two transverse polarizations. In other words, all
effects discussed in this paper have a nondispersive
nature.
The computations of the present work along with

previous calculations of Refs. [1–5] imply that the extra
energy (and entropy), not associated with any physical
propagating degrees of freedom, may emerge in gauge
systems if some conditions are met. This fundamentally
new type of energy emerges as a result of the dynamics of
pure gauge configurations and tunneling transitions
between physically identical but topologically distinct
winding states. The new idea advocated in this work is
that this new type of energy can, in principle, be studied if
one places the system in a time-dependent background, in
which case we expect the topological vacuum configu-
rations to radiate conventional propagating photons
which can be detected and analyzed according to (38)
and (42).
As we discussed in detail in the text, the fundamental

technical obstacle for such an analysis is that the radiation
of real physical particles on the mass shell is inherently
formulated in Minkowski space-time with a well-defined
Hilbert space of the asymptotic states. At the same time, the
tunneling is described in terms of vacuum fluctuations
(instanton fluxes) interpolating between the topological jni
winding sectors and is fundamentally formulated in
Euclidian space-time; see footnote 1 for some comments
on this problem. We overcame this technical obstacle by
introducing auxiliary topological fields which, on the one
hand, encode the entire information about the tunneling
transitions and, on the other hand, can be analytically
continued to Minkowski space-time. Eventually, this ap-
proach allowed us to turn the problem into conventional
Hamiltonian dynamics formulated in Minkowski terms, as
described in Secs. IV and V.
The corresponding rate of emission is very low for our

system as estimated in Sec. V C. The hope is that micro-
wave cavities may drastically enhance the emission rate
such that radiated photons can be observed. Furthermore,
putting the system in a background of external electric or
magnetic fields, represented by θeff in the paper, one can
manipulate the system in pretty much the same way as one
normally does with cold atom systems by tuning the
external field. In practice, it means that one can scan the
system by changing the external fields to search for a
resonance response.
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B. Relation to other approaches

As emphasized above, we overcame the main technical
obstacle in calculating the production of real particles (a
real-time process in Minkowski space-time), while deal-
ing with tunneling processes (formulated in Euclidean
space-time) by introducing the auxiliary fields which can
be easily continued to Minkowski space-time. This
problem is obviously not unique to our work, but is, in
fact, a common problem when path integrals are per-
formed in Euclidean space-time while the relevant physi-
cal questions are formulated in Minkowski terms; see
footnote 1.
There have been a number of different attempts to attack

this problem. The most promising, in our view, is the
approach based on formulating path integrals in Picard-
Lefschetz theory. See recent reviews [29,30] and references
to the original papers therein. The basic idea there is to
formulate real-time path integrals. The field configurations
which describe the tunneling processes live in a complexi-
fied field space. It turns out that the corresponding
configurations, being singular, nevertheless produce a finite
action for the path integral. In a few simple cases, the
computations can be explicitly carried out to reproduce the
known results in quantum mechanics (QM) systems (see
original computations [31–33] and reviews [29,30]).
It is natural to expect that this approach, in principle, can

be generalized to include a time-dependent background
field, in which case the complex saddles should be able to
describe tunneling transitions as well as particle produc-
tion, precisely the topic of the present work. In other words,
we strongly suspect that complex saddles which describe
tunneling events in real-time path integrals may also
contain information about the production of real particles
in a time-dependent background. It remains to be seen how
this information can be recovered from complex saddles.
The answer to this question is not yet known, as recent
studies [29,30] are mostly focused on analyzing the
properties of the vacuum itself, rather than generalizing
this approach to include a time-dependent background to
study particle production rates.

C. Speculations

The unique feature of the system where an extra
energy is not related to any physical propagating degrees
of freedom was the main motivation for the proposal
[34–36] that the vacuum energy of the Universe may have,
in fact, precisely such a nondispersive nature.8 This
proposal where an extra energy cannot be associated with
any propagating particles should be contrasted with the
conventional description where an extra vacuum energy in

the Universe is always associated with some ad hoc
propagating degree of freedom.9

Essentially, the proposal [34–36] identifies the observed
vacuum energy with the topological Casimir-type energy,
which, however, does not originate from the dynamics of
the physical propagating degrees of freedom but rather
from the dynamics of the topological sectors that are
always present in gauge systems and which are highly
sensitive to arbitrary large distances. An explicit manifes-
tation of this nondispersive nature of the vacuum energy in
the model considered in the present work is the wrong sign
of the kinetic term in the effective Lagrangians describing
the dynamics of the auxiliary nonpropagating fields (23),
(31). This wrong sign has exactly the same nature as the
conjectured Veneziano ghost introduced in QCD to resolve
the so-called Uð1Þ problem; see footnote 4 for a few
comments on this matter. Furthermore, the radiation from
the vacuum in a time-dependent background (which is the
main subject of this work) is very similar in all respects to
the radiation which might be responsible for the end of
inflation in that proposal. The cosmological ideas of the
proposal [34–36] can hopefully be tested in a tabletop
experiment (which is the subject of the present paper)
where the vacuum energy in a time-dependent background
can be transferred to real propagating degrees of freedom as
described in Sec. V. In cosmology, the corresponding
period plays a crucial role and calls the reheating epoch
which follows inflation with the vacuum energy being the
dominant component of the Universe.
To conclude, the main point of the present studies is the

claim that the emission of real photons may occur as a
result of tunneling transitions between topologically dis-
tinct but physically identical winding jni sectors, rather
than from conventional physical propagating degrees of
freedom.
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9There are two instances in the evolution of the Universe when
the vacuum energy plays a crucial role. The first instance is
identified with the inflationary epoch when the Hubble constant
H was almost constant, which corresponds to the de Sitter-type
behavior aðtÞ ∼ expðHtÞ with exponential growth of the size aðtÞ
of the Universe. The second instance where the vacuum energy
plays a dominant role corresponds to the present epoch when the
vacuum energy is identified with the so-called dark energy ρDE
which constitutes almost 70% of the critical density. In the
proposal [34–36], the vacuum energy density can be estimated as
ρDE ∼HΛ3

QCD ∼ ð10−4 eVÞ4, which is amazingly close to the
observed value.
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APPENDIX A: REVIEW OF THE
INSTANTON SOLUTIONS

In this Appendix, we show how the instanton solutions
(1) and (9) are derived. To do so, we first show how they are
obtained in the original 2DMaxwell theory (i.e., Schwinger
model without fermions) on a toroidal manifold and then
extend the results to 4D.

1. 2D Maxwell theory

We follow Ref. [1] and references therein and solve the
2D Maxwell theory using both the physically transparent
Hamiltonian approach and the Euclidean-space path inte-
grals with instantons. Their exact agreement validates the
use of instantons in this theory.
In the Hamiltonian approach, we define the system on a

spatial circle of circumference L at inverse temperature β.
We follow the procedure outlined in Refs. [1,37] to

canonically quantize the 2D Maxwell system. First, we fix
the gauge:

A0 ¼ 0 ∂1A1 ¼ 0: ðA1Þ

Hence, A0 is not a dynamical variable. On the other hand,
E ¼ _A1ðtÞ. We impose conventional periodic boundary
conditions:

A1

�
t; x ¼ −

L
2

�
¼ A1

�
t; x ¼ L

2

�
: ðA2Þ

The theory is defined by the following Hamiltonian
density and commutation relations:

H ¼ 1

2
E2 ðA3Þ

½A1ðxÞ; EðyÞ� ¼ iδðx − yÞ: ðA4Þ

We also need to impose Gauss’s law on the set of physical
states jphysi,

∂1Ejphysi ¼ 0; ðA5Þ

which is only satisfied by the x-independent zero mode. As
it is known, there is a class of admissible gauge trans-
formations, the so-called large gauge transformations

A1 →A1þ
dαðxÞ
dx

; α¼ 2πnx
eL

; n¼�1;�2…: ðA6Þ

This gauge function is compatible with periodic boundary
conditions (A2) because dαðxÞ=dx ¼ const, and the perio-
dicity (A2) is not violated. This implies the following gauge
equivalence relation:

A1 ∼ A1 þ
2π

eL
n: ðA7Þ

Hence, we conclude that A1 is not independent on the entire
interval ð−∞;∞Þ and instead lives on a circle of circum-
ference 2π=eL.
By expanding A1 and E in their Fourier modes, we can

map the current problem onto the particle on a ring problem
in quantum mechanics. The conjugate momentum operator
and the Hamiltonian read

E ¼ −
i
L

d
dA

; ðA8Þ

H ¼ L
2

�
−

i
L

d
dA

�
2

: ðA9Þ

H acting on the energy eigenstates exp ðienLAÞ yields
the eigenvalues ϵn ¼ 1

2
n2e2L. The partition function at

inverse temperature β is therefore given by the canonical
ensemble

Z ¼ tre−βH ¼
X
n

e−βϵn ¼
X
n

exp

�
−
βe2L
2

n2
�
; ðA10Þ

where we have taken the fundamental theta term, θ ¼ 0, to
simply formulas and notations.
In the path integral approach (Refs. [1,12,13]), we solve

the same problem in Euclidean space-time with metric
(1,1). Time and space form a 2-torus with size β × L. In the
context of this problem, the topology of the system is
equivalently taken into account by imposing periodic
boundary conditions up to a large gauge transformation
and using the so-called instanton solutions.
The Maxwell equations with the appropriate boundary

conditions, for instance,

Aμðx0; x1 þ LÞ ¼ Aμðx0; x1Þ þ ∂μ
2πk
β

x0; ðA11Þ

yield solutions of the form

AðkÞ
μ ¼ Að0Þ

μ þ CðkÞ
μ ; ðA12Þ

where Að0Þ
μ is the exactly periodic quantum field and CðkÞ

μ is
the classical instanton solution.
In Lorenz gauge, the instanton solution can be written

Atop
μ ¼ CðkÞ

μ ¼
�
−
πk
eV

x1;
πk
eV

x0

�
; ðA13Þ

where V ¼ βL is the volume of the Euclidean space-time.
These instanton configurations classified by integers k
describe tunneling between different vacuum winding
states, say jmi and jm0i with k ¼ m0 −m [cf. Eq. (33)].
They also give rise to a topological electric field,
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Etop ¼ ∂0A
top
1 − ∂1A

top
0 ¼ 2πk

eV
: ðA14Þ

It is worth mentioning that the topological electric field
(A14) should not be confused with the familiar physical
electric field in Minkowski space-time, which is the
eigenvalue of the E operator (A8). Rather, it is an effective
electric field in the unphysical Euclidean space-time and is
better thought of as some complex configuration that
saturates the Euclidean path integral and that describes
tunneling transitions between distinct topological sectors.
In particular, the dependence of these fields on the coupling
constant e is drastically different: the topological Etop

configuration describing the tunneling amplitude is propor-
tional to e−1, while the physical electric field being the
eigenvalue of (A8) is proportional to e.
The partition function can be obtained by doing the

following path integral and explicitly summing over
topologies:

Z ¼
X
k∈Z

Z
DAðkÞ

μ e
R

d2xð−1
2
E2Þ: ðA15Þ

Here, E includes both the quantum fluctuations and the
topological field (A14).
Omitting the computational details, the partition

function is

Z ¼ Zquant × Ztop ¼
ffiffiffiffiffiffiffiffi
2π

e2V

r X
k∈Z

e−
2π2k2

e2V : ðA16Þ

Although this partition function (A16) looks different
from the one obtained earlier in the Hamiltonian approach
(A10), they are in fact dual expressions of each other related
by the Poisson summation formula. Thus, although it is not
straightforward how one can directly relate the boundary
conditions in the Hamiltonian approach (A2) (i.e., strictly
periodic) to those in the path integral approach (A11) (i.e.,
periodic up to a large gauge transformation, giving rise to
the instantons), their agreement in the end validates the use
of instantons. In fact, the relation between these two
approaches is quite complicated; see detailed analysis in
Ref. [13] and also related discussions in Ref. [19].
Our computational framework in the main body of this

paper is entirely based on Euclidean path integrals.
Therefore, in this framework, we impose the boundary
conditions up to large gauge transformations, similar to the
above discussions. The corresponding fields, such as
(A14), should be interpreted as the field configurations
(describing the tunneling processes between the topological
sectors) saturating the path integral, not to be confused with
real fields representing the eigenvalues of the system, as we
already mentioned after Eq. (A14).

a. 4D Maxwell theory

If we consider the Maxwell theory in 4D space-time, the
topologies of the space-time become substantially more
complicated. The same periodic boundary conditions up to
a gauge potentially yields six different instanton solutions,
corresponding to the six hypersurfaces in 4D. However,
if require two of the dimensions of space-time to be
much greater than the other two, we essentially dimen-
sionally reduce the problem to the previous 2D problem.
Again, there are six ways this can be done, and the electric
and magnetic cases discussed in Secs. II A and II B are
precisely two of them:
Case 1: β, L3 ≪ L1, L2.—The dominant instanton and the

corresponding boundary conditions are a straight-
forward generalization of (A11), (A13):

Aμ
top ¼

�
0;−

πk
eL1L2

x2;
πk

eL1L2

x1; 0

�
: ðA17Þ

This instanton configuration gives rise to a
uniform “topological magnetic field” in the z-
direction:

~Btop ¼ ~∇ × ~Atop ¼
�
0; 0;

2πk
eL1L2

�
;

Φ ¼ e
Z

dx1dx2B
z
top ¼ 2πk: ðA18Þ

Case 2: β, L3 ≫ L1, L2.—The instanton that contributes
the most will be

A3
topðβÞ ¼ A3

topð0Þ þ
2πk
eL3

;

Aμ
topðtÞ ¼

�
0; 0; 0;

2πk
eL3β

t

�
; ðA19Þ

which produces a uniform “topological electric
field” in the z-direction:

~Etop ¼ _~Atop ¼
�
0; 0;

2πk
eL3β

�
;

Φ ¼ e
Z

dtdx3E
z
top ¼ 2πk: ðA20Þ

Certainly, the instanton solution given in (A19) still
exists in a system with the first set of dimensional reduction
conditions β, L3 ≪ L1, L2, but the resulting action S2 ∼R
d4xð1=βL3Þ2 will be much larger than that of the first type

of instanton, S1 ∼
R
d4xð1=L1L2Þ2.

As in the 2D case, it is far from obvious how one can
formulate the boundary conditions in real 4D Minkowski
space-time as in the Hamiltonian approach and then
explicitly derive the above boundary conditions for the
Euclidean instantons. These instantons should be treated as
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auxiliary field configurations saturating the path integral,
and such an interpretation is further supported by our
studies in the present work where the configurations
saturating the path integral are in fact complex-valued
fields, which obviously cannot be confused with real
physical configurations. However, the exact analogy
between the 2D and 4D cases achieved via dimensional
reduction10 strongly suggests that, similarly to the simple
boundary conditions in the 2D Hamiltonian method (A2),
all we need for real experiments in 4D Minkowski space-
time is periodic boundary conditions in the relevant
directions (without large gauge transformations).
In short, we require periodicity up to large gauge

transformations to perform mathematical derivations in
Euclidean space-time, whereas simple periodic boundary
conditions are needed in Minkowksi space-time, both for
Hamiltonian solutions and for experiments.
It is quite possible that formulating the path integral in

Picard-Lefschetz theory using Minkowski space-time from
the start, as mentioned in Sec. VI B, may give a precise
answer to the relation between these two descriptions.
However, the corresponding computational framework is
not presently known and is yet to be developed.

APPENDIX B: ON POSSIBLE DESIGN OF THE
QUANTUM LC CIRCUITS IN REAL

MINKOWSKI SPACE-TIME

We make a few comments here on the possible design of
a system satisfying the periodic boundary conditions that
represent the key element for generating Ztop from non-
trivial π1½Uð1Þ�. As we emphasized in Appendix A, the
construction in Minkowski space-time requires simple
periodic boundary conditions. It is only our mathematical
construction of the Euclidean path integral that requires
more complicated boundary conditions (periodic up to large
gauge transformations), which produce gauge images of the
original interval where the gauge field is defined. In the path
integral approach, the summation of an infinite number of
gauge images is harmless as any expectation value is always
computed by normalizing to the same partition function
which also includes the same infinite sum.
The subject of the present Appendix is a possible design

in Minkowski space-time. Therefore, we do not discuss
Euclidean instantons nor configurations that saturate the
Euclidean path integral. Instead, we focus on the physics in
Minkowski space with exactly periodic boundary condi-
tions (A2) and without summation over the gauge images.
Experience with the 2D model reviewed in Appendix A
shows that in Minkowski space-time such boundary

conditions do generate the topological physics studied in
the present work.
Case 1: The simplest way to realize the periodic boundary

conditions in magnetic systems is to make a
cylinder as discussed in great detail in Ref. [4].
One can explicitly see that the fluctuating magnetic
fluxes can be formulated in terms of boundary
currents flowing along the cylinder. In many
respects, the physics is very similar to (but still
distinct from—see Ref. [4] for details) the persis-
tent currents observed in a number of materials
including metals, insulators, and semiconductors.
In particular, the corresponding instanton fluxes
would fluctuate even without an external magnetic
field, in contrast to conventional persistent currents
which occur exclusively due to the external mag-
netic field. The key requirement is, of course, that
Aharonov-Bohm coherence be maintained in the
entire system.

Case 2: The electric systems can be realized with a small
capacitor consisting of two parallel plates with
plate area L1 × L2 and separation L3, such as the
mentioned in Secs. II B and V C. We connect
the two plates with a superconducting wire. In the
wire, the electromagnetic fields vanish, and the
gauge fields Aμ must be a constant or its gauge
transform. Therefore, the wire essentially identi-
fies the two plates and enforces Aμ to be the same
on the plates, giving conventional boundary con-
ditions similar to (A2):

Aμðt; z ¼ 0Þ ¼ Aμðt; z ¼ L3Þ: ðB1Þ

The large gauge transformations along z,

A3 → A3 þ
dαðzÞ
dz

; ψ → eiαðzÞψ

α ¼ 2πnz
eL3

; n ¼ �1;�2…;

obviously respect the boundary conditions (B1)
because dαðzÞ=dz ¼ const. Similarly to the 2D
analysis, we conclude that the A3 field lives on a
circle of circumference 2π=eL3. Thus, the 2D
system represents a dimensionally reduced version
of the current 4D electric system, as the topologi-
cal portion of the partition function for the 4D
electric case (13) reduces exactly to the 2D
partition function (A16) in the limit L1, L2 → 0
accompanied by a proper rescaling of the coupling
constant e. Hence, the similar S1 topological
physics will be generated in the 4D system, which
gives rise to the physically observable phenomena
discussed in this paper.

10For example, we explicitly see that the topological portion of
the partition function for the 4D electric case (13) reduces to the
2D partition function (A16) in the limit L1, L2 → 0 accompanied
by a proper rescaling of the coupling constant e.
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