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We study the behavior of entanglement between different degrees of freedom of scattering fermions,
based on an exemplary QED scattering process eþe− → μþμ−. The variation of entanglement entropy
between two fermions from an initial state to the final state was computed, with respect to different
entanglement between the ingoing particles. This variation of entanglement entropy is found to be
proportional to an area quantity, the total cross section. We also study the spin-momentum and helicity-
momentum entanglements within one particle in the aforementioned scattering process. The calculations of
the relevant variations of mutual information in the same inertial frame reveals that, for a maximally
entangled initial state, the scattering between the particles does not affect the degree of both of these
entanglements of one particle in the final state. It is also found that the increasing degree of entanglement
between two ingoing particles would restrict the generation of entanglement between spin (helicity) and
momentum of one outgoing particle. And the entanglement between spin and momentum within one
particle in the final state is shown to always be stronger than that for helicity-momentum for a general initial
entanglement state, implying significantly distinct properties of entanglement for the helicity and spin
perceived by an inertial observer.
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I. INTRODUCTION

The physics of fermion-fermion scattering plays a crucial
role in a wide variety of scattering experiments, which
probe the behavior of elementary particles. Nevertheless,
these theoretical investigations often focus on classical
observables such as cross section and decay rate, since
these quantities are simpler to access via experiment. An
essential property that distinguishes quantum mechanics
from classical mechanics is the possibility of entanglement
between different degrees of freedom. It is a characteristic
feature of some states of a composite system that cannot be
decomposed into a direct product form of subsystems.
These states also called entanglement states. Entanglement
entropy is a measure of how much a given quantum state is
quantum mechanically entangled. In the paper, we inves-
tigate issues of entanglement entropy in a simple example
of fermion-fermion scattering.
Even though quantum information was originally for-

mulated in terms of nonrelativistic quantum mechanics,
recent years have seen increasing research interest in
studying it within the more fundamental framework of
quantum field theory. Calabrese and Cardy have system-
atically studied issues of entanglement entropy in the
quantum field with the use of a replica trick [1,2]. The
theoretical framework to study entanglement entropy in
cosmology is the quantum field theory in curved

background [3–5]. An expanding spacetime generates
entanglement between certain modes of an exclusively
gravitationally interacting scalar field, whose entanglement
entropy contains information about the parameters of the
cosmic history [6,7]. When one considers a composite
system with subsystem A and its complement Ā separated
by a surface, the entanglement entropy is proportional to
the area of the surface, and depends on the UV cutoff,
which regulates the short-distance correlations. Applied to
the black hole, Solodukhin [8] calculates the entanglement
entropy when the entangling surface is the black-hole
horizon. In Refs. [8,9], the entanglement entropy can be
interpreted not as the total but as a partial (quantum
corrections) contribution to the black hole entropy. A more
complete understanding may arise from the AdS=CFT.
Ryu and Takayanagi [10,11] achieved the holographic

derivation of entanglement entropy in quantum (conformal)
field theories from the perspective of AdS=CFT. In these
articles, the entanglement entropy between A and Ā was
obtained by evaluating SE ¼ A=ð4GNÞ, whereA is the area
of a minimal surface whose boundary is the boundary of the
subsystem A. These provide a geometric understanding of
entanglement. Furthermore, the ER ¼ EPR conjecture by
Maldacena and Susskind [12] provides us with another
geometric interpretation for entanglement entropy. The two
distant black holes connected through a Einstein-Rosen
bridge (or a wormhole) in the interior can be interpreted as
corresponding to a maximally entangled state of two black
holes that form a complex Einstein-Rosen-Podolski pair.
They suggest that entangled states contain similar bridges
in general. The entanglement between two particles, which
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are, for example, a pair of accelerating quark and antiquark,
the EPR pair created via the Schwinger effect and a pair of
scattering gluons in strongly coupled super Yang-Mills
theory (SYM), had been studied [13–16]. These research
attempts gave some supportive examples for the ER ¼ EPR
conjecture.
In the AdS=CFT correspondence, the scattering ampli-

tude in a strongly coupled field theory can be related to the
area of the minimal surface of the Wilson loop of
trajectories of scattering particles [17,18]. On the other
hand, the holographic entanglement entropy is proportional
to the area of a minimal surface in AdS spacetimes. In a
word, both the scattering amplitude and entanglement
entropy in a strongly coupled field theory are associated
with minimal surfaces from the point of view of the
AdS=CFT correspondence. References [19,20] studied
the entanglement entropy of two divided momentum spaces
with the perturbative calculations method, and this method
was then followed by Refs. [21,22] for the study of the
entanglement between two scalar particles in the scattering
process in a weakly coupled field theory. They found that
the entanglement entropy changes during the scattering
process, and this variation of entanglement entropy from
initial state to final state is proportional to the cross section.
Being attracted by the interestingness of the previous

research, several authors invested multiple attempts to
study the behavior of the entanglement between particles
in the scattering process from different perspectives
[23–25]. But all these efforts, focusing on elastic scattering
of scalar particles and only considering the entanglement
of momentum degrees of freedom, worked in toy models.
All matter particles and antimatter particles in nature are
the fundamental fermions (quarks, leptons, antiquarks, and
antileptons). In addition to the momentum degree of
freedom, fermions carry half-integer spin and helicity
degrees of freedom not possessed by scalar particles. It
is worthwhile to mention that in quantum information
processing, the spin of a particle is often used as a qubit
regardless of the momentum state of the particle. However,
spin and momenta are not separable in general in the
relativistic motion. To better generalize the entanglement
behaviors of scattering scalar particles to the general fields,
we need to study it in a fundamental model. The goal of this
paper is to carry out the perturbative calculations method in
[21,22] for fermion-fermion scattering, i.e., the simplest
QED process eþe− → μþμ−.
In Sec. II, we give the variation of entanglement entropy

of the two scattering fermions with respect to a different
entanglement of the initial state, and we consider the QED
scattering process eþe− → μþμ− as an example of a case
study. The spin state and the helicity state are the basis of
Hilbert space for the Dirac field; however, spin entangle-
ment and helicity entanglement are hinted of different
properties by Refs. [26,27]. In Sec. III, we numerically
analyze the mutual information between spin (helicity) and

momentum degrees of freedom with one fermion in
scattering process. Section IV is devoted to the conclusion
and discussion.

II. ENTANGLEMENT ENTROPY IN
FERMION-FERMION SCATTERING

A. Entanglement entropy

We consider the scattering process of two fermionic
fields, ψA, ψB, with the Hamiltonian H ¼ Hfree þHint. For
an elastic scattering process of two fermions, the Hilbert
space for both the initial state and the final state would be
(1þ 1)-particle Fock space. At weak coupling, we can
assume the unitarity of local interaction terms to be
guaranteed at lower orders of perturbation [21]. The initial
and final states can be viewed as a superposition of the basis
of free Hamiltonian Hfree so that we can divide the total
Hilbert space as Htot ¼ HA ⊗ HB.
Since incoming and outgoing particles are free on-shell

particles, we can describe the (1þ 1)-particle states as

jp; s; q; ri ¼ ffiffiffiffiffiffiffiffi
2Ep

p
asp†j0iA ⊗

ffiffiffiffiffiffiffiffi
2Eq

p
brq†j0iB; ð1Þ

where p and q are the 3-momenta of particles, and s, r
denote the spin or helicity of the particle. The fermionic
creation/annihilation operators obey the commutation
relations,

fasp; ark†g ¼ ð2πÞ3δð3Þðp − kÞδsr;
fbnq; bml †g ¼ ð2πÞ3δð3Þðq − lÞδnm; ð2Þ

and the inner product between 2-particle states is defined as

hk; s0; l; r0jp; s;q; ri
¼ 2Ek2Elð2πÞ3δð3Þðk − pÞð2πÞ3δð3Þðl − qÞδss0δrr0 : ð3Þ

These creation/annihilation operators are the mode coef-
ficient of Fourier expansion of free fermion fields

ψ̄ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p X
r¼1;2

ðbrpν̄rðpÞe−ip·x þ arp†μ̄rðpÞeip·xÞ;

ψ ¼
Z

d3q
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Eq

p X
s¼1;2

ðasqμsðqÞe−iq·x þ bsq†νsðqÞeiq·xÞ:

ð4Þ

For a scattering process, the final state is determined by the
initial state and the S matrix [21],

jfini ¼
Z

d3k
ð2πÞ3

1

2Ek

d3l
ð2πÞ3

1

2El

×
X
s0;r0

jk; s0; l; r0ihk; s0; l; r0jSjp; s; q; ri: ð5Þ
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The T matrix be defined as

S ¼ 1þ iT ð6Þ

and the invariant matrix element M,

hk; s0; l; r0jiTjp; s; q; ri
¼ ð2πÞ4δð4Þðpþ q − k − lÞ × iM: ð7Þ

The authors of Refs. [21,23] analyzed the entanglement
between scalar particles, where the entanglement occurs
among momentum degrees of freedom. What is more
interesting is the entanglement between the spin degrees
of freedom for fermionic particles. In the following, we will
give the entanglement entropy between fermionic degrees
of freedom. The process of evaluation will be the follow-
ing: jΨi → ρAB → ρA → SE.
We choose spin states as the basis of Hilbert space, and

we consider the following initial state with parametrization
of the entanglement between the spins:

jinii ¼ cos ηjp;↑; q;↑i þ sin ηeiβjp;↓; q;↓i; ð8Þ

with ð↑;↓Þ≡ σ representing the spin along the z axis, η ∈
½0; π=2� parametrizing the spin entanglement of the state,
and β ∈ ½−π=2; 3π=2� labeling the relative phase of the
superposed states jp;↑; q;↑i and jp;↓; q;↓i. For η ¼ 0, or
η ¼ π=2, the initial state is not an entangled state. For
η ¼ π=4, it is maximally entangled.
The final state is determined by the initial state and the S

matrix,

jfini ¼ cos ηjp;↑;q;↑i þ sin ηeiβjp;↓; q;↓i

þ i
X
σ3;σ4

Z
k≠p

2πδðEifÞ
2Ek2Epþq−k

× ½cos ηMðk;↑↑; σ3σ4Þ
þ sin ηeiβMðk;↓↓; σ3σ4Þ�jk; σ3;pþ q − k; σ4i;

ð9Þ

where δðEifÞ¼δðEfin−EfinÞ and
R
k≠p¼

R
d3k=ð2πÞ3.

According to Ref. [24], delta functions are then regulated as

δ3Vðp − p0Þ ¼ V
ð2πÞ3 δp;p0 ;

δTðE − E0Þ ¼ 1

2π

Z
T=2

−T=2
dteiðE−E0Þt; ð10Þ

where the setting of the entire scattering process is des-
ignated to occur in a large spacetime volume of duration T

and spatial volume V. Note that Eqs. (10) imply V ¼
ð2πÞ3δð3ÞV ð0Þ and ð2πÞδTð0Þ ¼ T. The factors T and V will
be eliminated with a proper normalization.

From Eq. (9) we can evaluate the total density matrix of
the final state by ρAB ≔ jfinihfinj. The reduced density

matrix ρðfinÞA is obtained by tracing out the degrees of

freedom for particle B, ρðfinÞA ≔ N −1trBρAB, producing the
following result:

ρðfinÞA ¼ 1

N

�
cos2η2EqVjp;↑ihp;↑jþsin2η2EqVjp;↓ihp;↓j

þλ2
X
σ3;σ03

Z
k≠p

f2πδðEifÞg2
2Ek2Epþq−k2Ek

×Aσ3;σ03
ðη;βÞjk;σ3ihk;σ03j

�
; ð11Þ

where N is the normalization factor fixed by trAρ
ðfinÞ
A ¼ 1,

N ¼ 2Eq2EpV2 þ λ2
Z
k≠p

f2πδðEifÞg2V
2Ek2Epþq−k

Aσ3σ3ðη; βÞ;

ð12Þ

and introducing a shorthand notation for the long
expression

Aσ3σ
0
3
ðη; βÞ ¼ 1

λ2
X
σ4

ðcos ηMðk;↑↑; σ3σ4Þ

þ sin ηeiβMðk;↓↓; σ3σ4ÞÞ
× ðcos ηM†ðk;↑↑; σ03σ4Þ
þ sin ηe−iβM†ðk;↓↓; σ03σ4ÞÞ: ð13Þ

In the weak coupling, the reduced density matrix at order λ2

can be written as

ρðfinÞA ¼ diagðð1 − λ2AÞI0;…; λ2Ak;…Þ; ð14Þ

where

I0 ¼
�
cos2η 0

0 sin2η

�
;

A ¼
Z
k≠p

f2πδðEifÞg2
2Ek2Eq2Ep2Epþq−kV

Aσ3σ3ðη; βÞ;

Ak ¼
f2πδðEifÞg2

2Ek2Eq2Ep2Epþq−kV2

�
A11ðη; βÞ A12ðη; βÞ
A21ðη; βÞ A22ðη; βÞ

�
:

ð15Þ

Then the entanglement entropy between A and B in the

final is SðfinÞE ¼ −trρðfinÞA log ρðfinÞA , and this is what we are
going to study in the context of fermion-fermion scattering
process.
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B. Example: eþe− → μþμ−

In the following, we will consider a simple reaction
eþe− → μþμ− in quantum electrodynamics (QED). The
particle interaction during the scattering process induces
change in the degree of entanglement between the particles
from the incoming state to the outgoing state. We are
interested in studying this variation of entanglement and
shall proceed as follows.
The mass of particles is ignorable at high energy.

Working in the center of mass frame, as Fig. 1, the initial
and final 4-momenta for eþe− → μþμ− are

p ¼ ðE; 0; 0; EÞ; q ¼ ðE; 0; 0;−EÞ;
k ¼ ðE;E sin θ; 0; E cos θÞ;
l ¼ ðE;−E sin θ; 0;−E cos θÞ: ð16Þ

The eigenvalues of matrix Ak in Eq. (15) can readily be
obtained,

ak1 ¼
1

2
ð3 − 2 cos β sin 2ηsin2θ þ cos 2θ − 4 cos 2η cos θÞ;

ak2 ¼
1

2
ð3 − 2 cos β sin 2ηsin2θ þ cos 2θ þ 4 cos 2η cos θÞ:

ð17Þ

We then derive the entanglement entropy of the final state,

SðfinÞE ¼ −ð1 − λ2AÞðcos2η log cos2ηþ sin2η log sin2ηÞ

þ λ2Aþ λ2A log

�
V2

T2

16E4

λ2

�

−
T
V

λ2

128π2E2

Z
dΩðak1 logðak1Þ þ ak2 logðak2ÞÞ;

ð18Þ

where

A ¼ T
V
ð1 − cos β cos η sin ηÞ

12πE2
: ð19Þ

For a given initial state, the change of entanglement entropy
from initial to final state

▵SE ¼ λ2Aðcos2η log cos2ηþ sin2η log sin2ηÞ

þ λ2Aþ λ2A log

�
V2

T2

16E4

λ2

�

−
T
V

λ2

128π2E2

Z
dΩðak1 logðak1Þ þ ak2 logðak2ÞÞ:

ð20Þ

In terms of the unpolarized total cross section for the
scattering eþe− → μþμ−, σtotal ¼ λ2

48πE2 (Ref. [28]), the term
λ2A in Eq. (20) becomes

λ2A ¼ σtT
V

f1; f1 ¼ 4ð1 − cos β cos η sin ηÞ: ð21Þ

Thus, the variation of entanglement entropy would be

▵SE ¼ σtT
V

f1 log

�
V2

T2

16E4

λ2

�
þ σtT

V
g1; ð22Þ

where

g1¼f1þf2þf3;

f1¼4ð1−cosβcosηsinηÞ;
f2¼4ð1−cosβcosηsinηÞðcos2ηlogcos2ηþsin2ηlogsin2ηÞ;

f3¼−
3

4

Z
π

0

sin½θ�ðak1 logak1þak2 logak2Þ: ð23Þ

Note that the variation of entanglement entropy for the
scattering process of two scalar particles in Refs. [21,22]
correspond to the first term in our result Eq. (22). The extra
term, the second term, comes from the entanglement of
spin-spin and spin-momentum, which reflects the unique
effect in the fermionic system.

FIG. 1. The QED annihilation process eþe− → μþμ− viewed in the center of mass frame and the corresponding lowest order Feynman
diagram.
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The variation of entanglement entropy between particles
A and B in the scattering process eþe− → μþμ− is plotted
in Fig. 2.
From Eq. (22) we find that the variation of entanglement

entropy is proportional to the quantity, σtT=V, where σt is
the unpolarized total cross section for the above scattering
process at the first order of perturbation theory. Spatial
volume V and duration T denote the spacetime volume
encompassing the entire scattering process; they originate
from the inner product of the single-mode state whose norm
possesses a delta-functional divergence. In other words,
ignoring the unphysical infinite factors V and T, the
variation of entanglement entropy in a scattering process
is proportional to σt, the cross section. In fact, the cross
section is the effective area of a chunk taken out of one
beam, by each particle in the other beam [28]. So, the
variation of entanglement entropy in a scattering process is
shown to be proportional to the area quantity. We know
that, for a ground state of a quantum many-body system,
the entropy of the reduced state of a subregion often merely
grows with the boundary area of the subregion, and not
with its volume [29–31]. Such “area laws” for the entan-
glement entropy emerge in several seemingly unrelated
fields, in the context of black hole physics, quantum
information science, and quantum many-body physics.
Our results also seem to reflect the basic characteristics
of entanglement entropy, area laws.

III. MUTUAL INFORMATION BETWEEN
DIFFERENT DEGREES OF FREEDOM

A. Mutual information between spin and momentum

In the above calculation, the initial state and final state
can be regarded as generated by the basis of an asymp-
totically free Hamiltonian, and then their total Hilbert space
can be divided intoHtot ¼ HA ⊗ HB. For a subsystem, say
A, choosing spin state as the complete basis, its Hilbert
space HA can be further divided into HpA

⊗ HsA , the spin
and momentum degrees of freedom of subsystem A. Then
the total Hilbert space for the initial state and final state can

be decomposed into HpA
⊗ HsA ⊗ HB. The mutual infor-

mation between spin and momentum degrees of freedom
for subsystem A,

IðpA; sAÞ ¼ SðpAÞ þ SðsAÞ − SðpA ∪ sAÞ; ð24Þ

where SðXÞ is the von Neumann entropy of the reduced
density matrix of subsystem X. Mutual information is
always greater than or equal to zero, with equality if and
only if the density matrix for the subsystem A is the tensor
product of the reduced density matrices for subsystems pA
and sA for the initial state.
In the following, we calculate the mutual information

between the spin and momentum for particle A in the
scattering process eþe− → μþμ−. We use the same initial
spin state parametrization as (8)

jinii ¼ cos ηjp;↑; q;↑i þ sin ηeiβjp;↓; q;↓i: ð25Þ

This gives zero value initial mutual information between
spin and momentum degrees of freedom for particle A,
IðiniÞ ¼ 0. As was explained in the previous section, the
final state and reduced density matrix are determined by
the initial state and S matrix. In the analogous calculation,
the mutual information between the spin and momentum of
particle A can be obtained.
The momentum reduced density matrix for particle

A reads

ρðfinÞAp ¼ diagðð1 − λ2AÞ;…; λ2Bk;…Þ; ð26Þ

where

A ¼
Z
k≠p

f2πδðEifÞg2
2Ek2Ep2Eq2Epþq−kV

Aσ3σ3ðη; βÞ;

Bk ¼
f2πδðEifÞg2

2Ek2Ep2Eq2Epþq−kV2
bk;

bk ¼ Aσ3σ3ðη; βÞ: ð27Þ

FIG. 2. The variation of entanglement entropy ▵SE as a function of the entanglement parameter η of the initial state. ▵SE is
proportional to the bottom curve g1 plus the top curve f1 multiplied by log½V2

T2
16E4

λ2
�. The left figure is for β ¼ 0. The right figure

is for β ¼ π.
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The corresponding von Neumann entropy is

SðfinÞpA ¼ λ2Aþ λ2A log

�
16E4V2

λ2T2

�

− λ2
T

64πE2V

Z
π

0

dθ sin θbk log bk

¼ σtT
V

f1

�
1þ log

V2

T2

16E4

λ2

�
þ σtT

V
f4 þOðλ4Þ

ð28Þ

with f4 ¼ − 3
4

R
π
0 dθ sin θbk log bk.

Similarly, we have the spin reduced density matrix for
particle A,

ρðfinÞsA ¼
�
S11 S12
S21 S22

�

with

S11 ¼ ð1 − λ2AÞcos2ηþ λ2C11;

S12 ¼ λ2C12;

S21 ¼ λ2C21;

S22 ¼ ð1 − λ2AÞsin2ηþ λ2C22;

Cσ3σ
0
3
¼

Z
k≠p

f2πδðEifÞg2
2Ek2Ep2Eq2Epþq−kV

Aσ3σ
0
3
ða; bÞ: ð29Þ

And the eigenvalues of the density matrix ρðfinÞsA are found,

c1¼1

2
ð1−cos2ηÞþλ2

T
V

1

48πE2
ðcos2η−cosβcos2ηsin2ηÞÞ

þOðλ4Þ;

c2¼1

2
ð1þcos2ηÞ−λ2

T
V

1

48πE2
ðcos2η−cosβcos2ηsin2ηÞÞ

þOðλ4Þ: ð30Þ

The corresponding von Neumann entropy

SðfinÞsA ¼ −c1 log c1 − c2 log c2

¼ σtT
V

f5 þ cos2η log cos3η

þ sin2η log sin2ηþOðλ4Þ; ð31Þ

where f5¼ðlogcos2η−logsin2ηÞðcos2η−cosβcos2ηsin2ηÞ.
For the given initial state, we thus obtain the variation of

mutual information between spin and momentum degrees
of freedom for particle A

▵IðpA; sAÞ ¼ ▵SðpAÞ þ ▵SðsAÞ − ▵SðAÞ ¼ σtT
V

g2; ð32Þ

where g2 ¼ f4 þ f5 − f2 − f3, with functions fi given in
previous sections. The variation of mutual information
between spin and momentum for particle A in the scattering
process eþe− → μþμ− is plotted in Fig. 3.
As explained above, the mutual information vanishes for

the initial state with arbitrarily valued entanglement param-
eters η (0 ≤ η ≤ π=2) and β (−π=2 ≤ β ≤ 3=2π), that is,
IðiniÞ ¼ 0. From Eq. (32) and Fig. 3, for and exclusively for
a maximally entangled initial state between particles A and
B (η ¼ π=4), the mutual information for the final state is
nearly zero. The zero value of mutual information means
there is no entanglement between the spin and momentum
degrees of freedom within particle A. Generally, inter-
actions cause change in the degree of entanglement
between subsystems, but it is interesting to see that the
degree of entanglement between the spin and momentum
within particle A in the scattering process does not change
when the initial state is maximally entangled. Then we
conclude that the increasing degree of entanglement
between two particles in the initial state restricts the
generation of entanglement between the spin and momen-
tum degrees of freedom within one particle in the final
state.

FIG. 3. The variation of mutual information ▵IðpA; sAÞ as a function of entanglement parameter η:▵IðpA; sAÞ is proportional to
function g2ðηÞ. The left figure is for the initial state with parameter β ¼ 0. The right figure is for the initial state with parameter β ¼ π.
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B. Mutual information between helicity and momentum

For one fermion, both helicity states and spin states can
be employed as the complete basis of Hilbert space. Now
we choose the helicity states as the basis of two-particle
Fock space for the initial state and final state. Then the total
Hilbert space can be written as H ¼ HpA

⊗ HhA ⊗ HB.
Furthermore, helicity states jp; λi and spin states jp; σi are
related by the unitary transformation, Ref. [29],

jp; λi ¼ Dσλ½RðpÞ�jp; σi; ð33Þ

where RðpÞ is the rotation that carries the z axis into the
direction p, and D is the spin 1=2 irreducible unitary
representation of the Lorentz group,

D½RðpÞ� ¼
�
e−i

ϕ
2 0

0 ei
ϕ
2

��
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

�

with p̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, and labeling hel-
icity λ ¼ 1=2;−1=2 as 1,2, respectively.
From the description of the initial entangled state in the

spin-based Hilbert space, passing to its description in the
helicity-based Hilbert space, we have

jinii ¼ cos ηjp;↑; q;↑i þ sin ηeiβjp;↓; q;↓i
¼

X
λ1;λ2

ðcos ηD−1
λ11

½p�D−1
λ21

½q�

þ sin ηeiβD−1
λ12

½p�D−1
λ22

½q�Þjp; λ1;q; λ2i: ð34Þ

We can readily obtain the final state,

jfini ¼
X
λ1;λ2

ðcos ηD−1
λ11

½p�D−1
λ21

½q�

þ sin ηeiβD−1
λ12

½p�D−1
λ22

½q�Þjp; λ1; q; λ2i

þ i
X
λ3;λ4

Z
k≠p

2πδðEÞ
2Ek2Epþq−k

jk; λ3;pþ q − k; λ4i

×D−1
λ3σ3

½k�D−1
λ4σ4

½l�ðcos ηMðk;↑↑; σ3σ4Þ
þ sin ηeiβMðk;↓↓; σ3σ4ÞÞ: ð35Þ

The reduced density matrix ρðh;finÞA can be written as

ρðh;finÞA ¼ 1

N 0

�X
λ1;λ01

Dλ1λ
0
1
ðη; βÞ2EqVjp; λ1ihp; λ01j

þ λ2
X
λ3;λ03

Z
k≠p

f2πδðEÞg2
2Ek2Epþq−k2Ek

×A0
λ3;λ03

ðη; βÞjk; λ3ihk; λ03j
�
; ð36Þ

where

Dλ1λ
0
1
ðη; βÞ ¼

X
λ2

ðcos ηD−1
λ11

½p�D−1
λ21

½q� þ sin ηeiβD−1
λ12

½p�D−1
λ22

½q�Þ

× ðcos ηD1λ0
1
½p�D1λ2 ½q� þ sin ηe−iβD2λ0

1
½p�D2λ2 ½q�Þ;

A0
λ3λ

0
3
ðη; βÞ ¼ 1

λ2
D−1

λ3σ3
½k�D−1

λ4σ4
½l�ðcos ηMðk;↑↑; σ3σ4 þ sin ηeiβMðk;↓↓; σ3σ4Þ

× ðcos ηM†ðk;↑↑; σ03σ04Þ þ sin ηe−iβM†ðk;↓↓; σ03σ04ÞÞDσ0
3
λ0
3
½k�Dσ0

4
λ4 ½l�; ð37Þ

and normalization factor N ðhÞ is fixed by trAρ
ðh;finÞ
A ¼ 1,

N ðhÞ ¼ Dλ1λ1ðη; βÞ2Ep2EqV2

þ λ2
Z
k≠p

f2πδðEÞg2V
2Ek2Epþq−k

A0
λ3λ3

ðη; βÞ: ð38Þ

For the scattering process eþe− → μþμ−, we consider
that the helicity states and spin states are observed within
the same inertial reference frame. Straightforward calcu-

lations show that the reduced density matrix ρðh;finÞA in

helicity representation and ρðfinÞA in spin representation have
the same eigenvalues. This is a natural conclusion, since the

entanglement entropy between subsystems A and B is

irrelevant of the basis of Hilbert space, SðfinÞA ¼ Sðh;finÞA .

Similarly, we find that the von Neumann entropy Sðh;finÞpA of
the momentum reduced density matrix in helicity repre-

sentation is equal to the von Neumann entropy SðfinÞpA in spin

representation, Sðh;finÞpA ¼ SðfinÞpA .
To proceed with the analysis, noting that the helicity

reduced density matrix of particle A,

ρðfinÞhA
¼

�
h11 h12
h21 h22

�
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with

h11 ¼ ð1 − λ2A0ÞD11ðη; βÞ

þ λ2
Z
k≠p

f2πδðEÞg2
2Ek2Ep2Eq2Epþq−kV

A0
11ðη; βÞ;

h12 ¼ ð1 − λ2A0ÞD12ðη; βÞ

þ λ2
Z
k≠p

f2πδðEÞg2
2Ek2Ep2Eq2Epþq−kV

A0
12ðη; βÞ;

h21 ¼ ð1 − λ2A0ÞD21ðη; βÞ

þ λ2
Z
k≠p

f2πδðEÞg2
2Ek2Ep2Eq2Epþq−kV

A0
21ðη; βÞ;

h22 ¼ ð1 − λ2A0ÞD22ðη; βÞ

þ λ2
Z
k≠p

f2πδðEÞg2
2Ek2Ep2Eq2Epþq−kV

A0
22ðη; βÞ; ð39Þ

has the following roots:

h1 ¼
1

2
ð1 − cos 2ηÞ

þ λ2
T

48πE2V
ð2 cos 2η − cos β sin 2η cos 2ηÞ;

h2 ¼
1

2
ð1þ cos 2ηÞ

− λ2
T

48πE2V
ð2 cos 2η − cos β sin 2η cos 2ηÞ: ð40Þ

Hence, the variation of helicity entanglement entropy
follows:

▵SðhAÞ ¼
λ2T

48πE2V
ðlogcos2η− logsin2ηÞ

× ð2cos2η− cosβ sin2ηcos2ηÞ ¼ σtT
V

f6 ð41Þ

with f6¼ðlogcos2η−logsin2ηÞð2cos2η−cosβsin2ηcos2ηÞ.

At last, we obtain the variation of mutual information
between helicity and momentum degrees of freedom of
particle A,

▵IðpA;hAÞ ¼ ▵SðpAÞ þ▵SðhAÞ−▵SðAÞ ¼ σtT
V

g3; ð42Þ

where g3 ¼ f4þf6 −f2−f3. We compare the correspond-
ing variations of mutual information of the helicity-
momentum and spin-momentum entanglements in Fig. 4.
As mentioned above, our starting setting is IðiniÞ ¼ 0.

From Fig. 4, the final state mutual information IðfinÞðpA; sAÞ
between spin and momentum is different from that between
helicity and momentum. Both of them approach zero, if the
initial state is a maximally entangled state (η ¼ π=4). We
conclude that the generation of the final state entanglement
of both spin-momentum and helicity-momentum correla-
tions within one particle are restricted by the increasing
degree of the initial state entanglement between two par-
ticles. And for a general initial entanglement state of two
particles, the degree of the final state entanglement between
spin and momentum within one particle is always stronger
than that for the helicity-momentum. It indicates that the
helicity and spin should have significantly distinct proper-
ties of entanglement perceived by an inertial observer,
confirming a similar observation in literature, Refs. [26,27].

IV. CONCLUSION

For an elastic scattering process of two fermionic
particles, we performed a detailed study of the variation
of entanglement entropy from an initial state to the final
state. With the QED scattering process eþe− → μþμ− being
employed as an example of the case study, the variation of
entanglement entropy was computed with respect to a
different entanglement of the initial state. The mathematical
expression of our result contains two terms of contribution.
The first term corresponds to the variation of entanglement
for the scalar scattering particles, and the extra term reflects
the unique effect in the fermionic system. This variation is
found to be proportional to σtT=V, with σt being the cross

8

8

FIG. 4. For the scattering process eþe− → μþμ−, the variation of mutual information ▵I in helicity representation (red curve) vs spin
representation (blue curve) with the same inertial reference frame as a function of entanglement parameter η form 0 to π=2. The left
figure is for the initial state with parameter β ¼ 0. The right figure is for the initial state with parameter β ¼ π.
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section, and T, V ignorable unphysical infinity artifacts
coming from the delta function regularization. Therefore,
coincident with the basic characteristic of entanglement
entropy—the area laws, as being expected, this result was
obtained in the context of the fermionic system and allows
for an extension to general field systems.
What might be more interesting is the behavior of the

entanglement between spin (or helicity) and momentum
degrees of freedom within one particle for a two-particle
composite system in a scattering process. For the afore-
mentioned QED scattering process, the relevant variations
of mutual information for both these cases were calculated
in the same inertial reference frame. For a maximally
entangled initial state, it was found that the scattering
between the particles does not affect the degree of either the
spin-momentum or the helicity-momentum entanglement
of one particle in the final state. Furthermore, we found that
the higher degree of entanglement between two ingoing
particles would restrict the generation of entanglement
between the spin/helicity and momentum of one of the
outgoing particles. The entanglement between spin and
momentum within one outgoing particle is shown always
stronger than that for the helicity-momentum for a general
initial entanglement state, implying significantly distinct

properties of entanglement for the helicity and spin
perceived by an inertial observer.
It might be interesting to study the entanglement

between the spin degrees of freedom for two particles with
IðsA; sBÞ ¼ SðsAÞ þ SðsBÞ − SðsA∪BÞ, for which the total
Hilbert space can be divided into HpA

⊗HsA ⊗HpB
⊗HsB .

It can be found that the roots of the reduced density
matrix of spin-subsystem sA∪B are complex values. Or to
consider a different scattering process, such as eþe− →
eþe−, the amplitude would contain a sum of s-channel and
t-channel Feynman diagrams, for which the initial state
needs be chosen as jinii¼ajp;↑;q;↑iþbjp;↓;q;↓i þ
cjp;↑;q;↓iþdjp;↓;q;↑i, with jaj2þjbj2þjcj2þjdj2¼1.
Then the variation of entanglement entropy would
become a function of multiple parameters, which is
tricky to analyze at present but worthy of further
study.
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