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We study the Casimir friction phenomenon in a system consisting of two flat, infinite, and parallel
graphene sheets, which are coupled to the vacuum electromagnetic (EM) field. Those couplings are
implemented, in the description we use, by means of specific terms in the effective action for the EM field.
They incorporate the distinctive properties of graphene, as well as the relative sliding motion of the sheets.
Based on this description, we evaluate two observables due to the same physical effect: the probability of
vacuum decay and the frictional force. The system exhibits a threshold for frictional effects; namely, they
only exist if the speed of the sliding motion is larger than the Fermi velocity of the charge carriers in
graphene.
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I. INTRODUCTION

Under propitious circumstances, quantum vacuum fluc-
tuations produce macroscopically observable consequences.
Such is the case when a quantum field, and hence its
fluctuations, satisfy nontrivial boundary conditions. One
of the most celebrated physical realizations of this is the
Casimir force between two neutral bodies having nontrivial
EM response functions (which, in some cases, behave as
approximate realizations of idealized boundary conditions).
This effect has been predicted and experimentally measured
for several different geometries [1–6].
Qualitatively different effects, also due to the vacuum

fluctuations, may arise when the bodies are set into motion
or, more generally, when some external agent renders the
boundary condition(s) time dependent. The resulting effect
may involve dissipation and, when the boundary conditions
experiment nonvanishing accelerations, real photons can
be excited out of the quantum vacuum. This embodies the
most frequently considered version of the so called
dynamical Casimir effect (DCE) [7], also known as
“motion-induced radiation”.
Amore startling situation appearswhen a purely quantum,

dissipative, frictional force arises between bodies moving
with constant relative speed. Here, the effect is due to the
quantum degrees of freedom, living on the moving media,
which are excited out of the vacuum, while the EM field is
nevertheless required as a mediator for those fluctuations.
The resulting effect, termed “Casimir friction,” has been
extensively studied and some of the issues involved in its
calculation have spurred some debate [8–11].

We recall that Casimir friction predictions have been
obtained mostly for dielectric materials. In this paper, we
study the same effect, but for two graphene sheets. We
argue that graphene has unusual properties which render its
theoretical study more interesting. Indeed, because of
graphene’s low dimensionality and particular crystalline
structure, its low-energy excitations behave as massless
Dirac fermions (with the Fermi velocity vF playing the
role of light’s speed). This yields an unusual semimetallic
behavior [12], as well as peculiar transport and optical
properties [13–15].
In natural units (which we adopt here) the mass dimen-

sions of the response function of graphene in momentum
space can only be given by the momentum itself. Indeed,
the only other ingredients: vF and the effective electric
charge of the fermions, are dimensionless. And, when a
sheet is moving at a constant speed v, another dimension-
less object, v itself, enters into the game (see below). Thus
the nontrivial dependence of the macroscopic, Casimir
friction observables, will exhibit the remarkable property of
being a function of v and vF, the overall (trivial) dimen-
sions of the respective magnitude being determined purely
by geometry: size and distance between sheets, like in the
static Casimir effect between perfect mirrors.
A somewhat related but different effect, also termed

quantum friction,” has been studied for graphene in
Ref. [16]. Note, however, that in that work the system
consists of a single static graphene sheet over an SiO 2
substrate. The frictional force acts, in this case, on
graphenes charge carriers, which are assumed to have a
constant drift velocity v with respect to the substrate.
In our study below, we start from a consideration of the

microscopic model for two graphene sheets coupled to the
EM field. Those microscopic degrees of freedom corre-
spond to Dirac fields in 2þ 1 dimensions which, in a
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functional integral formulation, are integrated out. That
integration, plus the free gauge field action, produces an
in-out effective action for the latter. Integrating the gauge
field, we finally get an effective action for the full system,
the imaginary part of which accounts for the dissipative
effects in the system, a procedure we have followed in our
previous works [17,18].
We perform our calculations within a functional integral

formalism [19,20], and after evaluating the probability of
vacuum decay, we relate the imaginary part of the in-out
effective action to the frictional force on the plates, and plot
the latter as a function of the velocity v.
The structure of this paper is as follows: in Sec. II, we

introduce the microscopic model considered in this article.
Then we derive an ‘effective action’ for the EM field,
namely, an Euclidean action which, in our description, is a
functional of Aμ, the gauge field corresponding to the
vacuum EM field. In order to achieve that, we need to find
the form of the vacuum polarization tensor for moving
graphene (as seen from rest) assuming relativistic effects
can be neglected.
In Sec. III, we calculate the full effective action resulting

from the integration of the EM field. That effective action,
when rotated to Minkowski space, is applied to the calcu-
lation of the probability of vacuum decay, as a function of
the velocity of the sliding graphene sheet. In Sec. IV, we
relate the imaginary part of the in-out effective action to the
dissipated power, and thereby to the frictional force on the
moving plate. Section V contains our conclusions.

II. THE MODEL

We first introduce the Euclidean action S, for the EM
field plus the two graphene sheets—one of them static, the
other moving at a constant velocity (which is assumed to be
parallel to the sheets). The action depends on the gauge
field and on the Dirac fields, the latter confined to the
mirrors. S naturally decomposes into three terms,

S½A; ψ̄ ;ψ � ¼ Sð0Þ
g ½A� þ Sð0Þ

d ½ψ̄ ;ψ � þ SðintÞ
dg ½ψ̄ ;ψ ; A�; ð1Þ

where Sð0Þ
g is the free (i.e., empty-space) action for the EM

field,

Sð0Þ
g ½A� ¼ 1

4

Z
d4xFμνFμν; ð2Þ

with Fμν ¼ ∂μAν − ∂νAμ, while Sð0Þ
d and SðintÞ

dg are the
actions for the free Dirac matter fields and for their
interactions with the gauge field, respectively. Indices from
the middle of the Greek alphabet (μ; ν;…) run from 0 to 3,
with x0 ≡ ct.
Both Sð0Þ

d and SðintÞ
dg are localized on the regions occupied

by the two sheets, which we denote by L and R (each letter
will be used to denote both a mirror and the spatial region it

occupies). Our choice of Cartesian coordinates is such that
L is defined by x3 ¼ 0 and R by x3 ¼ a. We adopt
conventions such that ℏ ¼ c ¼ 1.
We introduce Γ, the effective action for the full system

defined in (1) by S. It can be written in terms ofZ, the zero-
temperature partition function, which may be represented
as a functional integral,

e−Γ ≡ Z ≡
Z

½DA�Dψ̄Dψe−S½A;ψ̄ ;ψ �; ð3Þ

where ½DA� is the gauge field functional integration
measure including gauge fixing.
The effect of the Dirac fields on the gauge field is taken

into account by integrating out the former, we introduce
Seff , as follows:

e−Seff ½A� ≡
Z

Dψ̄Dψe−S½A;ψ̄ ;ψ �; ð4Þ

so that

e−Γ ≡
Z

½DA�e−Seff ½A�: ð5Þ

Recalling our previous discussion and conventions, we
write the effective action as

Seff ½A� ¼ Sð0Þ
g ½A� þ SðintÞ

g ½A�: ð6Þ

In the next two subsections, we deal with the determination
of SðintÞ

g , which is the result of the integration of the
fermionic degrees of freedom.

A. Effective action contribution due to the static sheet

As in [21], the effective interaction term for the
gauge field in the presence of graphene sheets stems from
two essentially 2þ 1-dimensional theories, coupled to

the 3þ 1-dimensional gauge field. Therefore, SðintÞ
g ¼

SðLÞ
g þ SðRÞ

g , where each term is due to the respective plate.
The fact that one of the sheets is moving is irrelevant to
the dimensionality of those theories, since the surface it
occupies is invariant under the sliding motion.
Let us first consider SðLÞ

g ½A�, due to the static sheet at
x3 ¼ 0. Up to the quadratic order in the gauge field,
following [21], we write such contribution as follows,

SðLÞ
g ½A� ¼ 1

2

Z
d3x∥

Z
d3y∥Aαðx∥; 0ÞΠαβðx∥; y∥ÞAβðy∥; 0Þ;

ð7Þ

where indices from the beginning of the Greek alphabet
(α; β;…) are assumed to take the values 0,1,2 and are used
here to label spacetime coordinates on the 2þ 1-dimensional
world volume of each sheet. Those coordinates have been
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denoted collectively by x∥. Regarding the corresponding
2þ 1-dimensional Fourier momentum, we use k∥ ≡
ðk0; k1; k2Þ, and k∥ ≡ ðk1; k2Þ for its spatial part.
The tensor kernel Παβ is the vacuum polarization tensor

(VPT) for the matter field on the L plane. Under the
assumptions of time independence, as well as invariance
under spatial rotations and translations, this tensor can be
conveniently decomposed in Fourier space into orthogonal
projectors. Indeed, since it has to verify the Ward identity:

kα ~ΠαβðkÞ ¼ 0; ð8Þ
(the tilde is used to denote Fourier transformation) the
irreducible tensors (projectors) along which ~Παβ may be
decomposed must satisfy the condition above and may be
constructed using as building blocks the objects: δαβ, kα,
and nα ¼ ð1; 0; 0Þ. By performing simple combinations
among them, we also introduce: k̆α ≡ kα − k0nα, and
δ̆αβ ≡ δαβ − nαnβ.
Since we cannot guarantee that the VPT will be propor-

tional to P⊥
αβ ≡ δαβ −

kαkβ
k2 , we construct two independent

tensors satisfying the transversality condition (8), Pt and
Pl, defined as follows:

Pt
αβ ≡ δ̆αβ −

k̆αk̆β
k̆2

ð9Þ

and

Pl
αβ ≡ P⊥

αβ − Pt
αβ: ð10Þ

Defining also:

P∥
αβ ≡

kαkβ
k2

; ð11Þ

we verify the algebraic properties:

P⊥ þ P∥ ¼ I;

Pt þ Pl ¼ P⊥

PtPl ¼ PlPt ¼ 0;

P∥Pt ¼ PtP∥ ¼ 0;

P∥Pl ¼ PlP∥ ¼ 0;

ðP⊥Þ2 ¼ P⊥; ðP∥Þ2 ¼ P∥;

ðPtÞ2 ¼ Pt; ðPlÞ2 ¼ Pl: ð12Þ

Note that δαβ, P⊥
αβ, and P∥

αβ are second order Lorentz
tensors. The other projectors, Pt and Pl are not: they
explicitly single out the timelike coordinate in their
definition. On the other hand, Lorentz tensors will tend
to Galilean ones in the low speed limit.

For a general medium, one has

~Παβðk∥Þ ¼ gtðk0;k∥ÞPt
αβ þ glðk0;k∥ÞPl

αβ; ð13Þ

where gt and gl are model-dependent scalar functions.
If the matter-field action were relativistic, we would have

gt ¼ gl ≡ g, a scalar function of k∥, and the VPTwould be
proportional to a single projector:

~Παβðk∥Þ ¼ gðk∥ÞP⊥
αβ: ð14Þ

On the other hand, for the case of graphene, we may
present the well-known results for its VPT [12], as
follows:

~Παβðk∥Þ ¼
e2Njmj
4π

F

�
k20 þ v2Fk∥

2

4m2

�

×

�
Pt

αβ þ
k20 þ k∥

2

k20 þ v2Fk∥
2
Pl

αβ

�
ð15Þ

where:

FðxÞ ¼ 1 −
1 − xffiffiffi

x
p arcsin½ð1þ x−1Þ−1

2�; ð16Þ

m is the mass (gap), N the number of 2-component Dirac
fermion fields, and vF the Fermi velocity (in units where
c ¼ 1).
Here we will consider gapless graphene (m ¼ 0) and

define αN ≡ e2N
16
, so that

~Παβ ¼ αN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ v2Fk∥

2

q �
Pt

αβ þ
k20 þ k∥

2

k20 þ v2Fk∥
2
Pl

αβ

�

¼ αN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ k∥

2

q 2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ v2Fk∥

2

k20 þ k∥
2

s
Pt

αβ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ k∥

2

k20 þ v2Fk∥
2

s
Pl

αβ

3
75: ð17Þ

We see explicitly that the mass dimension of the VPT is
given by the momentum, as mentioned in the Introduction.
We conclude the discussion on SðLÞ

g (we work at the
second order in the coupling constant) by writing it in a
3þ 1-dimensional-looking form,

SðLÞ
g ½A� ¼ 1

2

Z
d4x

Z
d4yAαðxÞVðLÞ

αβ ðx; yÞAβðyÞ; ð18Þ

where VðLÞ
αβ ðx; yÞ is given by

VðLÞ
αβ ðx; yÞ ¼ δðx3ÞΠαβðx∥; y∥Þδðy3Þ: ð19Þ
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B. Effective action due to the moving graphene sheet

We already know the expression for the effective action
due to the static mirror at x3 ¼ 0; let us see now how to
derive from it the corresponding object for the moving
sheet at x3 ¼ a. We assume that its constant velocity is
much smaller than c, so that the form it adopts in two
different inertial systems may be derived using Galilean
transformations. Besides, the material media descriptions
are usually restricted to the same regime, namely, small
speeds with respect to the laboratory system (the response
functions are usually defined in a comoving system).
Since we need to write the effective action in one and the

same system, we need to write the gauge field appearing in

SðRÞ
g in the laboratory system, the one used in the previous

subsection. We also need to refer them to the same choice
of coordinates. Thus,

SðRÞ
g ½A� ¼ 1

2

Z
d4x

Z
d4yAαðxÞVðRÞ

αβ ðx; yÞAβðyÞ; ð20Þ

where

VðRÞ
αβ ðx; yÞ ¼ δðx3 − aÞΠ0

αβðx∥; y∥Þδðy3 − aÞ; ð21Þ
where the prime in an object denotes its form in the
comoving system. To write the expression above more
explicitly, we need to introduce the transformations
x0∥ ¼ ΛðvÞx∥, where x∥ is the column vector

x∥ ¼

0
B@

x0
x1
x2

1
CA:

Those transformations can be obtained by keeping the
first nontrivial term in an expansion in powers of v. Since
we have adopted conventions such that c ¼ 1, and our
metric is Euclidean, we see that

ΛðvÞ ¼

0
B@

1 v 0

−v 1 0

0 0 1

1
CA ð22Þ

(i.e., they are rotation matrices expanded for small angles).
We have only kept the three spacetime coordinates corre-
sponding to the sheets, since the role of the x3 coordinate
is irrelevant here. Note that the matrix includes the trans-
formation of the time coordinate, while Galilean trans-
formations do not include that transformation and are
given by:

ΛGðvÞ ¼

0
B@

1 0 0

−v 1 0

0 0 1

1
CA: ð23Þ

The EM field, on the other hand, transforms as
A0
αðx0Þ ¼ ΛαβAβðxÞ. Regarding the VPT, we have

Π0
αβðx0∥; y0∥Þ ¼ ΛαγΛβδΠγδðx∥; y∥Þ: ð24Þ

Thus,

Π0
αβðx∥; y∥Þ ¼ ΛαγΛβδΠγδðΛ−1x∥;Λ−1y∥Þ: ð25Þ

Then we see that

VðRÞ
αβ ðx; yÞ ¼ δðx3 − aÞΛαγΛβδΠγδðΛ−1x∥;Λ−1y∥Þδðy3 − aÞ:

ð26Þ

In momentum space, we can write

~Π0
αβðk∥Þ ¼ ΛαγΛβδ

~ΠγδðΛ−1k∥Þ
¼ ΛαγΛβδ

~Πγδðk0 − vk1; k1 þ vk0; k2Þ: ð27Þ

C. The full effective action SðintÞ
g for graphene

Putting together the previous results, we have that

SðintÞ
g ¼ 1

2

Z
d4x

Z
d4yAαðxÞ½VðLÞ

αβ ðx; yÞ

þ VðRÞ
αβ ðx; yÞ�AβðyÞ; ð28Þ

or

SðintÞ
g ½A� ¼ 1

2

Z
dx3

Z
dy3

Z
d3k∥
ð2πÞ3

× ~A�
αðk∥; x3Þ½δðx3Þ ~Παβðk∥Þδðy3Þ

þ δðx3 − aÞ ~Π0
αβðk∥Þδðy3 − aÞ� ~Aβðk∥; y3Þ; ð29Þ

with ~Π0
αβðk∥Þ as defined in (27).

Let us now study in more detail the form of ~Π0
αβðk∥Þ.

We have

~Π0
αβðk∥Þ ¼ gtðΛ−1k∥ÞP0t

αβ þ glðΛ−1k∥ÞP0l
αβ: ð30Þ

Now, we will see that the two projectors remain invariant
under Galilean transformations. Indeed, we first note that
the Lorentz projectors, which enter into the definition of the
Galilean ones, are indeed invariant (we use the approximate
Lorentz form for the transformation matrix),

P0⊥
αβðk∥Þ ¼ ΛαγΛβδP⊥

γδðΛ−1k∥Þ ¼ P⊥
αβðk∥Þ ð31Þ

P0∥
αβðk∥Þ ¼ ΛαγΛβδP

∥
γδðΛ−1k∥Þ ¼ P∥

αβðk∥Þ; ð32Þ

while for the Galilean tensor Pt, we verify explicitly
that
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P0t
αβðk∥Þ ¼ ðΛGÞαγðΛGÞβδPt

γδððΛGÞ−1k∥Þ ¼ Pt
αβðk∥Þ:

ð33Þ

Since Pl is defined in terms of the previously considered
three projectors, we see that

P0l
αβ ¼ Pl

αβ: ð34Þ

Thus, we conclude that

~Π0
αβðk∥Þ ¼ gtðΛ−1k∥ÞPt

αβ þ glðΛ−1k∥ÞPl
αβ: ð35Þ

We are interested in small relative velocities between the
plates, so we are able to use the simpler expression,

~Π0
αβðk∥Þ ¼ gtðk0 − vk1; k1 þ vk0; k2ÞPt

αβ

þ glðk0 − vk1; k1 þ vk0; k2ÞPl
αβ; ð36Þ

where

gtðk∥Þ ¼ αN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ v2Fk

2
∥

q
:

glðk∥Þ ¼ αN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ v2Fk

2
∥

q k20 þ k2
∥

k20 þ v2Fk
2
∥

ð37Þ

III. EFFECTIVE ACTION

With all the previous considerations, we are now in a
position to write the total action for the gauge field,
containing the effective influence of the graphene plates.
In Fourier space,

Sg½A� ¼
1

2

Z
dx3

Z
dy3

Z
d3k∥
ð2πÞ3

× ~A�
αðk∥; x3ÞMαβðk∥; x3; y3Þ ~Aβðk∥; y3Þ ð38Þ

where the kernel Mαβðk∥; x3; y3Þ can be written as

Mαβðk∥;x3;y3Þ¼M0
αβðk∥;x3;y3ÞþMint

αβðk∥;x3;y3Þ; ð39Þ

where M0 is the free kernel for the vacuum EM field,

M0
αβðk∥; x3; y3Þ ¼ −∂2

3δðx3 − y3ÞP∥
αβ

þ ð−∂2
3 þ k2∥Þδðx3 − y3Þ½Pl

αβ þ Pt
αβ�;
ð40Þ

and Mint contains the effective interaction with the plates’
internal degrees of freedom:

Mint
αβðk∥; x3; y3Þ ¼ ~VðLÞ

αβ ðk∥; x3; y3Þ þ ~VðRÞ
αβ ðk∥; x3; y3Þ:

ð41Þ

The generating functional for the system is defined by

Z ¼
Z

½DA�e−Sg½A�; ð42Þ

where ½DA� is gauge-fixed. Formally, it is equivalent to
writing

Z ¼ ½det ðMαβðk∥; x3; y3ÞÞ�−1
2: ð43Þ

Now, since we have chosen a complete set of projectors
fP∥;Pt;Plg, we can uniquely decompose the gauge field
in their directions ~Aα ≡ ~A∥

α þ ~At
α þ ~Al

α, thus writing the
functional integral over A as three independent functional
integrals:

½D ~A� ¼ D ~A∥D ~AtD ~Al: ð44Þ

This means that the integrating functional for the system
can be written as the direct product of three independent
integrating functionals:

Z ¼ ½detðM∥ðk∥; x3; y3ÞÞ�−1
2½det ðMtðk∥; x3; y3ÞÞ�−1

2

× ½det ðMlðk∥; x3; y3ÞÞ�−1
2 ≡ Z∥ZtZl; ð45Þ

where we have defined the kernels:

M∥ðk∥; x3; y3Þ ¼ −∂2
3δðx3 − y3ÞP∥; ð46Þ

Mlðk∥; x3; y3Þ ¼ fð−∂2
3 þ k2∥Þδðx3 − y3Þ

þ glðk0; k1; k2Þδðx3Þδðy3Þ
þ glðk0 − vk1; k1 þ vk0; k2Þ
× δðx3 − aÞδðy3 − aÞgPl; ð47Þ

and

Mtðk∥; x3; y3Þ ¼ fð−∂2
3 þ k2∥Þδðx3 − y3Þ

þ gtðk0; k1; k2Þδðx3Þδðy3Þ
þ gtðk0 − vk1; k1 þ vk0; k2Þ
× δðx3 − aÞδðy3 − aÞgPt: ð48Þ

Given Eq. (46), it is easy to see that Z∥ is a free
contribution that does not account for the presence of the
plates. It is thus simply a normalization factor, and we shall
not take it into account in the following. The remaining
factors Zt and Zl are formally equivalent but different,
except for relativistic materials.
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Regarding the effective action, it is easy to see that it
shall have two independent contributions:

Γ≡ Γt þ Γl ¼ 1

2
tr logMt þ 1

2
tr logMl: ð49Þ

We shall now work out the formal expression for Γt; the
corresponding expression for Γl is obtained by the sub-
stitutions gt → gl, Pt → Pl. As in previous works [17,20],
we will perform a perturbative expansion in the coupling
constant, e ≪ 1, and keep only the lowest-order non-
trivial term.
Explicitly taking the trace over all discrete and continu-

ous indices in this term we get a TΣ global factor, T
denoting the elapsed time and Σ the sheets’ area (this is a
reflection of the time and (parallel) space translation
invariances of the system). Since Γt is extensive in those
magnitudes, we work instead with γt ≡ Γ

TΣ, which is
given by

γt ¼ −
1

4

Z
d3k∥
ð2πÞ3

Z
dx3

Z
dy3

×
Z

du3

Z
dv3Gαγðk∥; x3; y3Þ

× Vt
γδðk∥; y3; u3ÞGδβðk∥; u3; v3ÞVt

βαðk∥; v3; x3Þ: ð50Þ

Here, Gαγðk∥; x3; y3Þ denotes the respective components of
the free Euclidean propagator for the gauge field, and we
have introduced

Vt ≡ ½gtðk0; k1; k2Þδðx3Þδðy3Þ
þ gtðk0 − vk1; k1 þ vk0; k2Þ
× δðx3 − aÞδðy3 − aÞ�Pt: ð51Þ

We only consider in what follows the “crossed” terms,
namely, those involving both gtðk0; k1; k2Þ and
gtðk0 − vk1; k1 þ vk0; k2Þ, since they are the only ones
that lead to friction (the others can be shown to be v
independent).
Taking into account that, in the Feynman gauge,

Gαβðk∥; x3; y3Þ≡ δαβGðk∥; x3; y3Þ ¼ δαβ

Z
dk3
2π

eik3ðx3−y3Þ

k2∥ þ k23
;

ð52Þ

and the properties of the projectors, we see that

γt ¼ −
1

2

Z
d3k∥
ð2πÞ3Gðk∥; a; 0ÞGðk∥; 0; aÞgtðk0; k1; k2Þ

× gtðk0 − vk1; k1 þ vk0; k2Þ: ð53Þ

The procedure and outcome for the Γl contribution are
entirely analogous, thus we may write (s ¼ t, l)

γs ¼ −
1

2

Z
d3k∥
ð2πÞ3Gðk∥; a; 0ÞGðk∥; 0; aÞgsðk0; k1; k2Þ

× gsðk0 − vk1; k1 þ vk0; k2Þ: ð54Þ

Thus,

γs ¼ −
1

8a3

Z
d3k∥
ð2πÞ3

e−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
þk2

1
þk2

2

p

k20 þ k21 þ k22
gsðk0; k1; k2Þ

× gsðk0 − vk1; k1 þ vk0; k2Þ; ð55Þ

where we have rescaled the momenta akα → kα in order
to factorize the dependence of the effective action with
the distance between sheets. Note that γs is the effective
action per unit time and area, and therefore has units
of ðlengthÞ−3.
Before evaluating the imaginary part of the real time (in-

out) effective action, we would like to stress that the
Euclidean effective action γ, when evaluated at v ¼ 0,
gives the usual Casimir interaction energy per unit area EC
between the graphene sheets. As described in the
Appendix A, the result is

EC ≈ −
α2N
128π

1

a3
1

vF
: ð56Þ

As expected, due to the absence of dimensionful constants
in the microscopic description of graphene, the Casimir
energy has the usual 1=a3 dependence of the static vacuum
interaction energy for perfect conductors. Eq. (56) is
quadratic in the coupling constant αN , while the Casimir
force found in [22] is linear. The reason is that we calculate
the force between two graphene plates, while in [22] the
interaction between a perfect conductor and a graphene
sheet is considered.

A. Imaginary part of the effective action

In order to compute the imaginary part of the in-out
effective action, we have to rotate the Euclidean result to
real time. To that end, we will rewrite each contribution in a
way that simplifies the forthcoming discussion. Note that
we can write the two functions gt and gl as follows:

gtðk∥Þ ¼ αN

Z þ∞

−∞

dk3
π

k20 þ v2Fk
2
∥

k20 þ v2Fk
2
∥ þ k23

ð57Þ

glðk∥Þ ¼ αN

Z þ∞

−∞

dk3
π

k20 þ k2
∥

k20 þ v2Fk
2
∥ þ k23

: ð58Þ

Then, we see that
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γt ¼ −
α2N
8a3

Z
dk3
π

Z
dp3

π

Z
d3k∥
ð2πÞ3

×
e−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
þk2

1
þk2

2

p

k20 þ k21 þ k22

k20 þ v2Fk
2
∥

k20 þ v2Fk
2
∥ þ k23

×
ðk0 − k1vÞ2 þ v2F½ðk1 þ k0vÞ2 þ k22�

ðk0 − k1vÞ2 þ v2F½ðk1 þ k0vÞ2 þ k22� þ p2
3

; ð59Þ

and

γl ¼ −
α2N
8a3

Z
dk3
π

Z
dp3

π

Z
d3k∥
ð2πÞ3

×
e−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
þk2

1
þk2

2

p

k20 þ k21 þ k22

k20 þ k2
∥

k20 þ v2Fk
2
∥ þ k23

×
k20 þ k2

∥

ðk0 − k1vÞ2 þ v2F½ðk1 þ k0vÞ2 þ k22� þ p2
3

: ð60Þ

In real time, the longitudinal contribution to the effective
action is

γl ¼ iα2N
8a3

Z
dk3
π

Z
dp3

π

Z
d3k∥
ð2πÞ3

e2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
−k2

∥þiϵ
p

k20 − k2
∥ þ iϵ

×
k20 − k2

∥

k20 − v2Fk
2
∥ − k23 þ iϵ

×
k20 − k2

∥

ðk0 − k1vÞ2 − v2F½ðk1 − k0vÞ2 þ k22� − p2
3 þ iϵ

:

ð61Þ

We shall be concerned first with the integral along k0,
which may be first conveniently written as follows:

Z
∞

0

dk0
e2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
−k2

∥þiϵ
p

k20 − k2
∥ þ iϵ

½f1ðk0Þf2ðk0Þ þ f1ð−k0Þf2ð−k0Þ�

ð62Þ

where

f1ðk0Þ≡
k20 − k2

∥

k20 − v2Fk
2
∥ − k23 þ iϵ

f2ðk0Þ≡
k20 − k2

∥

ðk0 − k1vÞ2 − v2F½ðk1 − k0vÞ2 þ k22� − p2
3 þ iϵ

:

ð63Þ

In order to perform this integral, we proceed along a
similar line to the one followed in [17], namely, to study the
analytical structure of the functions f1 and f2 in order to
perform a Wick rotation by means of a Cauchy integration
on the quarter of a circle located in the first quadrant. Note
that the rest of the integrand is the same as the one dealt
with in [17]: it presents two branch cuts and two poles,
none of them in the first quadrant; hence, they do not
contribute to the Cauchy integral. Let us then consider the
poles of f1ðk0Þ ¼ f1ð−k0Þ; they are located at

k0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
∥ þ k23 − iϵ

q
≈

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
∥ þ k23

q
∓ iϵ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
∥ þ k23

q : ð64Þ

Since none of them is located in the first quadrant, they will
not contribute to the Cauchy integral either. For the f2ðk0Þ
function, they are located at

kð�Þ
0 ¼ 1

ð1 − v2Fv
2Þ
n
vk1ð1 − v2FÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k21ð1 − v2FÞ2 þ ð1 − v2Fv

2Þ½ðv2F − v2Þk21 þ v2Fk
2
2 þ p2

3 − iϵ�
q o

: ð65Þ

It can be seen that only kð−Þ0 may have a positive
imaginary part (and thus be located in the first quadrant).

We shall denote its position by ΛA ≡ kð−Þ0 . The condition
for it to belong to the first quadrant is ReΛA > 0. We first
note that, if k1 < 0, then ReΛA < 0 and there is no pole
located on the first quadrant. On the other hand, for positive
values of k1, one can show that

ReΛA > 0⇔ − ðv2F − v2Þk21 − ðv2Fk22 þ p2
3Þ > 0:

Clearly, when v < vF, the lhs of the last equation is
negative-definite, and the inequality can never be fulfilled.
Hence, for velocities smaller than the Fermi velocity of the

material, this pole can never be located in the first quadrant.
Finally, when v > vF, we will have a pole in the first
quadrant when

k1 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
2 þ p2

3

v2 − v2F

s
: ð66Þ

Proceeding in a completely analogous way for the
f2ð−k0Þ term, one can also check that just one pole may
belong to the first quadrant when v > vF. The position of
that pole is given by

ΛB ¼ ΛA − 2vk1
1 − v2F
1 − v2Fv

2
: ð67Þ
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The pole is located on the first quadrant for momenta such
that

k1 < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
2 þ p2

3

v2 − v2F

s
: ð68Þ

Based on the previous analysis, we are now ready to
perform the Cauchy-integral along the quarter of a circle, in
a rather similar fashion as we did in [17]. The result is

γl ¼ iα2N
8a3ð2πÞ3

Z
dk3
π

Z
dp3

π

Z
dk2

×
Z

dk1

�
−i
Z

∞

0

dp0

e−2k∥

k2∥

× f1ðip0Þ½f2ðip0Þ þ f2ð−ip0Þ�

þ 2πiθðv − vFÞ
"
θ

 
k1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
2 þ p2

3

v2 − v2F

s !

× ResðFAðk0Þ;ΛAÞ

þ θ

 
−k1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
2 þ p2

3

v2 − v2F

s !
ResðFBðk0Þ;ΛBÞ

#)
;

ð69Þ

where

FAðk0Þ ¼ FBð−k0Þ ¼
e2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
−k2

∥þiϵ
p

k20 − k2
∥ þ iϵ

f1ðk0Þf2ðk0Þ: ð70Þ

Since we are interested in computing the dissipative
effects on the system, we shall take the imaginary part of
the effective action. It is easy to see that f1ðp0Þ ∈ R and
that f2ðip0Þ þ f2ð−ip0Þ ∈ R also. Hence, the imaginary
part of the longitudinal contribution to the effective action
will be given by

Imγl ¼ −
α2N

16π2a3
θðv − vFÞ

Z
dk3
π

Z
dp3

π

Z
dk2

×
Z

dk1Im

�
ResðFAðk0Þ;ΛAÞθ

×

 
k1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
2 þ p2

3

v2 − v2F

s !)
: ð71Þ

From this equation, we see that there is no longitudinal
contribution to the quantum friction for plates moving with
a relative velocity smaller than the Fermi velocity of the
material.
Regarding the transversal contribution to the effective

action, let us first rotate it back to real time:

γt ¼ iα2N
8a3

Z
dk3
π

Z
dp3

π

Z
d3k∥
ð2πÞ3

e2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
−k2

∥þiϵ
p

k20 − k2
∥ þ iϵ

×
k20 − v2Fk

2
∥

k20 − v2Fk
2
∥ − k23 þ iϵ

×
ðk0 − k1vÞ2 − v2Fðk1 − k0vÞ2 − v2Fk

2
2

ðk0 − k1vÞ2 − v2F½ðk1 − k0vÞ2 þ k22� − p2
3 þ iϵ

:

ð72Þ

The calculation is entirely similar to the previous case. The
imaginary part of the transversal contribution to the in-out
effective action reads

Imγt ¼ −
α2N

16π2a3
θðv − vFÞ

Z
dk3
π

Z
dp3

π

×
Z

dk2dk1Im

(
ResðFCðk0Þ;ΛAÞθ

×

 
k1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
2 þ p2

3

v2 − v2F

s !)
; ð73Þ

with

FCðk0Þ ¼
e2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
−k2

∥þiϵ
p

k20 − k2
∥ þ iϵ

f3ðk0Þf4ðk0Þ; ð74Þ

and

f3ðk0Þ ¼
k20 − v2Fk

2
∥

k20 − v2Fk
2
∥ − k23 þ iϵ

f4ðk0Þ ¼
ðk0 − k1vÞ2 − v2Fðk1 − k0vÞ2 − v2Fk

2
2

ðk0 − k1vÞ2 − v2F½ðk1 − k0vÞ2 þ k22� − p2
3 þ iϵ

:

ð75Þ

Hence, we arrive at the important conclusion that there will
not be quantum friction between two graphene plates
unless they move at a relative velocity larger than the
Fermi velocity of the internal excitations in graphene. Note
that a velocity threshold effect has also been shown to
appear in dielectric materials [23], as a consequence of a
different, Cerenkov-like effect.
The remaining integrals and the limit ϵ → 0, needed to

obtain the imaginary part of the effective action, can be
performed with some analytical and numerical calculations
that are detailed in the Appendix B. The results are shown
in Fig. 1, where it may be seen that the transverse
contribution is much smaller than the longitudinal one.
Then, the first plot on Fig. 1 shows the behavior of the
leading contribution to the imaginary part of the effective
action as a function of the relative velocity v, for a Fermi
velocity of vF ¼ 0.003.
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IV. FRICTIONAL FORCE

In order to quantify the dissipation, a rather convenient
observable is the dissipated power (and its related dis-
sipative force). Let us see how that power is related to the
imaginary part of the in-out effective action.
Dissipation arises here when the Dirac vacuum becomes

unstable against the production of a real (i.e., on shell)
fermion pair. The probability P of such an event, during
the whole history of the plates, is related to the effective
action by

2ImΓ ¼ P ¼ T
Z

d3k∥pðk∥Þ; ð76Þ

where pðk∥Þ is the probability per unit time of creating a
pair of fermions on the plates with total momentum k∥. The
result is proportional to the whole time elapsed T, since we
are in a stationary regime (we assume this time to be a very
long one after the mirror was set to motion). Note that k∥ is
the three-momentum injected on the system by the external
conditions, i.e. the motion of the R-mirror. The explicit
expression for pðk∥Þ can be read from Eqs. (61) and (72).
It can be written as

pðk∥Þ ¼
Z

dk3

Z
dp3δðk0 − ΛAÞhðk∥; k3; p3Þ; ð77Þ

for some function h. The presence of the δ function
highlights the fact that the integration in the k0-complex
plane captures the contribution of a single pole at k0 ¼ ΛA.
On the other hand, the total energy E accumulated in the

plates due to the excitation of the internal degrees of
freedom is given by

E ¼ T
Z

d3k∥jk0jpðk∥Þ: ð78Þ

This energy is provided by the external source that keeps
the plate moving at a constant velocity, against the fric-
tional force (per unit area) Ffr. The energy balance is

E
TΣ

¼ vFfr: ð79Þ

From the reasoning above, it is easy to see that, in order
to obtain the dissipated power, we can simply insert jk0j in
Eqs. (61) and (72), repeat the procedure of the last section,
and multiply the result by 2=v. Note that the insertion of
jk0j does not spoil the discussion about the position of the
poles, that remains unchanged. The results for the longi-
tudinal and transverse contributions to the force are shown
in Fig. 2. We plot the frictional force normalized by the
static Casimir force between the graphene sheets FC, given
in Eq. (56).
In Fig. 3 we show the force for velocities close to the

Fermi velocity. There, it can be seen that the system
undergoes three different regimes regarding dissipation.
For v < vF, as already mentioned, there are no dissipative
effects on the system, and the total frictional force vanishes.
For velocities vF < v < 2vF, a frictional force appears, but
it grows comparatively slow with the velocity. For v > 2vF,
however, the frictional force starts growing rapidly when
the velocity increases.
The existence of a threshold may be justified as follows.

Let us consider the momentum and energy balance in a
small time interval δt, assuming that both the frictional
force and the dissipated energy are driven by pair creation.
The only relevant component of the total momentum P of
the pair for the (momentum) balance is the one along the
direction of the velocity v. Relating that component of P to
the frictional force, we see that

Ffrδt ¼ Px: ð80Þ

On the other hand, the energy balance reads

Ffrvδt ¼ E; ð81Þ

where E is the energy of the pair. But, since the fermions are
both on-shell, we have

FIG. 2. Modulus of the transversal and longitudinal contribu-
tions to the force per unit of area Ffr acting on the plate as a
function of its relative velocity, for a typical graphene Fermi
velocity vF ¼ 0.003. The force is normalized by the static
Casimir force between the plates.

FIG. 1. Imaginary part of the effective action per unit of time
and area, as a function of the relative velocity of the plate,
for a typical graphene Fermi velocity vF ¼ 0.003, in units of

A ¼ α2N
32π2

1
a3.

QUANTUM FRICTION BETWEEN GRAPHENE SHEETS PHYSICAL REVIEW D 95, 065012 (2017)

065012-9



E ≥ vFjPxj ð82Þ

(the equal sign corresponds to a pair with momentum along
the direction of v). Dividing Eq. (81) and Eq. (80), and
taking into account Eq. (82), we see that a necessary
condition for friction to happen is

v ≥ vF: ð83Þ

V. CONCLUSIONS

In this paper, we computed the vacuum friction between
graphene sheets subjected to a sidewise motion with
constant relative velocity. The interaction between the 2þ
1 Dirac fields in the graphene sheets and the electromag-
netic field has been taken into account using the known
results for the comoving vacuum polarization tensor,
properly transformed to the laboratory system in the case
of the moving sheet. We have seen that this interaction
generates an imaginary part in the effective action, that in
the nonrelativistic limit can be interpreted as due to the
excitation of the internal degrees of freedom produced by
the relative motion between sheets. Therefore, the dissi-
pation effect arises due to the fact the Dirac vacuum
becomes unstable against the production of a real (i.e.,
on shell) fermion pair. We also computed the frictional
force between plates using a slight modification of the
calculation of the imaginary part of the effective action.
The results for the imaginary part of the effective action

and for the frictional force show an interesting phenome-
non: there is a threshold for quantum friction effects, that is,
there is no quantum friction when the relative velocity
between sheets is smaller than the Fermi velocity. We have
presented a simple argument that justifies the existence of
this threshold.
The frictional force computed in this paper ismuch smaller

than the usual Casimir force between graphene sheets, which
in turn is smaller than the Casimir force between perfect
conductors (at least when considering gapped graphene, see

Ref. [22]). However, one may envisage situations in which
the frictional force couldbemore relevant. Indeed, it has been
pointed out that, at high temperatures, the Casimir force
between a graphene sheet and a perfect conductor becomes
comparable with that between perfect conductors [24].
Moreover, doping can strongly enhance the Casimir force
between graphene sheets [25]. It would be of interest to
generalize the results of the present paper to compute the
frictional force in those situations, and discuss whether the
enhancement of the Casimir force have a corresponding
effect in the frictional force or not.
On the other hand, we have found that the frictional force

vanishes identically for speeds smaller than vF. From the
point of view of applications, graphene has been regarded
as one of the most promising new materials, both for its
electronic and mechanical properties. Our results imply, for
example, that when graphene is used in a micro-mechanical
device, Casimir friction, and its concomitant energy dis-
sipation, will not be present below the threshold, which
presumably will be the best scenario for most applications.
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APPENDIX A: STATIC CASIMIR FORCE
BETWEEN TWO GRAPHENE SHEETS

In absence of dissipative effects (i.e., for v ¼ 0), the
Euclidean vacuum persistence amplitude is

Z ¼ e−E0T; ðA1Þ
where T is the elapsed time, and E0 is the zero-point energy
of the EM field. This means that the Casimir energy per unit
of area EC ¼ E0=Σ can be obtained from the Euclidean
effective action of the plates when their relative velocity
vanishes, that is EC ¼ γEuclðv ¼ 0Þ.
Taking v ¼ 0 in Eq. (55), and recalling the definitions of

gt and gl of Eq. (37), the transversal contribution to the
zero-point energy is

Et
C ¼ −

1

8a3

Z
d3k∥
ð2πÞ3

e−2
ffiffiffiffiffiffiffiffiffi
k2
0
þk2∥

p
k20 þ k2∥

g2t ðk0; k∥Þ

¼ −
1

48

α2N
ð2πÞ2

1

a3
ð1þ 2v2FÞ: ðA2Þ

Analogously, the longitudinal contribution is given by

El
C ¼ −

1

8a3

Z
d3k∥
ð2πÞ3

e−2
ffiffiffiffiffiffiffiffiffi
k2
0
þk2∥

p
k20 þ k2∥

g2l ðk0; k∥Þ

¼ −
1

16

α2N
ð2πÞ2

1

a3
arccosðvFÞ
vF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2F

p : ðA3Þ

FIG. 3. Modulus of the force per unit of area acting on the plate
as a function of its relative velocity, for velocities close to the
Fermi velocity of graphene, vF ¼ 0.003. The force is normalized
by the static Casimir force between the plates.
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Considering that typical Fermi velocities are much
smaller than the velocity of light, the leading contribu-
tion to the static Casimir energy between two graphene
sheets comes from the longitudinal effective action and
reads

EC ≈ −
α2N
128π

1

a3
1

vF
: ðA4Þ

Therefore the Casimir attractive force acting on the
sheets results

FC
3α2N
128π

1

a4
1

vF
: ðA5Þ

APPENDIX B: DETAILS OF THE CALCULATION
OF THE IMAGINARY PART OF THE

EFFECTIVE ACTION

In order to obtain a final expression for the imaginary
part of the effective action, it is necessary to compute the
desired residues. We will repeat the procedure we did in
[17]. Let us start with the longitudinal part:

ResðFAðk0Þ;ΛAÞ
≡ lim

k0→ΛA

ðk0 − ΛAÞFAðk0Þ

¼ e2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
A−k

2
∥þiϵ

p
Λ2
A − k2

∥ þ iϵ

Λ2
A − k2

∥

Λ2
A − v2Fk

2
∥ − k23 þ iϵ

×
Λ2
A − k2

∥

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
1ð1 − v2Þ2 þ ð1 − v2Fv

2Þðv2Fk22 þ p2
3Þ

p ;

ðB1Þ

where in the last factor we have explicitly used the fact
that the denominator is positive-definite and thus the limit
ϵ → 0 can be taken with no further harm.
It could be shown that Λ2

A − k2
∥ is definite-negative

in all the integration region (that is, for k1 >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
2 þ p2

3=ðv2 − v2FÞ
p

). This can be easily seen when
explicitly taking both v and vF ≪ 1, but the relation still
holds for arbitrary values of v; vF < 1. This means that we
can set ϵ ¼ 0 everywhere except in the second factor of
(B1), that can be written as

1

Λ2
A − v2Fk

2
∥ − k23 þ iϵ

¼ 1

gðk1Þ þ iϵ
; ðB2Þ

with

gðk1; k2; k3; p3Þ ¼ Λ2
A − v2Fk

2
∥ − k23: ðB3Þ

Now we can explicitly take the limit ϵ → 0,

1

gðk1; k2; k3; p3Þ þ iϵ
→ p:v:

�
1

g

�
− iπδðgðk1; k2; k3; p3ÞÞ:

ðB4Þ

Therefore, the longitudinal contribution to the imaginary
part of the effective action reads

Imγl

¼ α2N
32πa3

θðv − vFÞ
Z

dk3
π

Z
dp3

π

×
Z

dk1

Z
dk2δðgðk1; k2; k3; p3Þθ

×

 
k1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
2 þ p2

3

v2 − v2F

s !
ðB5Þ

×e−2
ffiffiffiffiffiffiffiffiffiffiffi
k2
∥−Λ

2
A

p k2
∥−Λ2

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
1ð1−v2Þ2þð1−v2Fv

2Þðv2Fk22þp2
3Þ

p :

ðB6Þ
Note that we have a four-dimensional integration of a
function multiplied by the Dirac-delta function composed
with g,

Z
d4κF ðκÞδðgðκÞÞ ¼

Z
S=gðκÞ¼0

dσ
F ðκÞ
j∇gðκÞj ; ðB7Þ

where in our case κ ¼ ðk1; k2; k3; p3Þ. The second hand is
an integration over the three-dimensional surface defined
by gðk1; k2; k3; p3Þ ¼ 0. We can think this surface as the
one defined by the equations k1 ¼ x1ðk2; k3; p3Þ and
k1 ¼ x2ðk2; k3; p3Þ, with

x1ðk2; k3; p3Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðk2; k3; p3Þ − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðk2; k3; p3Þ

p
v2ðv2F − 1Þ2ðvv2F þ v − 2vFÞðvv2F þ vþ 2vFÞ

s

ðB8Þ

x2ðk2; k3; p3Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðk2; k3; p3Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðk2; k3; p3Þ

p
v2ðv2F − 1Þ2ðvv2F þ v − 2vFÞðvv2F þ vþ 2vFÞ

s

ðB9Þ

where
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uðk2; k3; p3Þ ¼ v2ð1 − v2FÞfp2
3ðv2F þ 1Þ þ k22v

2
F½v2Fðv2ðv2F þ 1Þ − 2Þ þ 2� þ k23½1þ v2Fðv2ðv2F þ 1Þ − 3Þ�g

wðk2; k3; p2Þ ¼ v2ð1 − v2FÞ2fk43v2Fðv2 − 1Þ2 þ k23½k22v2v2Fð2ðv2 − 2Þ þ v4F þ 1Þ þ p2
3ðv2ðv4F þ 1Þ − 2v2FÞ�

þ k42v
2v4F½1þ ðv2 − 2Þv2F þ v4F� þ k22p

2
3v

2v2Fðv4F þ 1Þ þ p4
3v

2
Fg: ðB10Þ

Then, we have

Imγl ¼ α2N
32πa3

θðv − vFÞ
Z

dk3
π

Z
dp3

π

Z
dk2

Z
dk1
X
i¼1;2

δðk1 − xiÞ
j∇gðk1; k2; k3; p3Þjk1¼xi

θ

 
k1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
2 þ p2

3

v2 − v2F

s !
ðB11Þ

×e−2
ffiffiffiffiffiffiffiffiffiffiffi
k2
∥−Λ

2
A

p k2
∥ − Λ2

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
1ð1 − v2Þ2 þ ð1 − v2Fv

2Þðv2Fk22 þ p2
3Þ

p : ðB12Þ

The result of the integration over k1 can be written as a Heaviside step function of a rather involved expression depending on
the rest of the integration variables. This, and the remaining integrals, have been performed numerically.
The calculation of γt proceeds in a similar way.
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