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We study the possibility that massless particles, such as photons, are produced by a gravitational wave.
That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning
into two photons, i.e., gþ g → γ þ γ. Here we calculate the rate at which a gravitational wave creates a
massless scalar field. This is done by placing the scalar field in the background of a plane gravitational
wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a
nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current.
We associate this with the production of scalar field quanta by the gravitational field. This effect has
potential consequences for the attenuation of gravitational waves since the massless field is being produced
at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the
electric field replaced by the gravitational wave background and the electron/positron field quanta replaced
by massless scalar “photons.” Since the produced scalar quanta are massless there is no exponential
suppression, as occurs in the Schwinger effect due to the electron mass.
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I. INTRODUCTION

As early as 1855 Faraday recognized the possibility of a
relationship between gravity and electricity [1] through his
observation, “Such results, if possible, could only be
exceedingly small; but, if possible, i.e. if true, no terms
could exaggerate the value of the relation they would
establish.”More recently the potential relationship between
gravity and the electromagnetic interactions has been
examined for individual quanta in terms of gravitons and
photons [2–4] using Feynman diagrams or in terms of
electromagnetic waves and gravitational waves [5–7] (i.e.,
large collections of photons and gravitons). The perturba-
tive, Feynman-diagrammatic calculations of Refs. [2–4]
give transitions from gravitons to photons which are
consistent with Faraday’s expectation that this effect is
“exceedingly small.” For example, in Ref. [2] it was found
that the cross section for two gravitons going to two
photons (gþ g → γ þ γ)1 is of the order σ ∼ 10−110 cm2

for a wave whose frequency is set by the electron rest mass
ω ∼me. For such a small cross section this process is not
important, even for gravitons traveling cosmological

distances. The frequencies involved in the detection by
LIGO of GW150914 [9] where much lower than ω ∼me,
which would make the cross sections even smaller. The
point of these estimates is that one gets a small, but nonzero
result for this process. In this paper we want to examine the
production of massless quanta from a gravitational wave
background. This can be viewed as a gravitational variant
of the Schwinger effect where a strong, static electric field
can produce electron-positron pairs [10]. In the present case
the background field is that of a gravitational wave instead
of a static electric field and the particles produced are
massless scalar particles (which are stand-ins for photons)
instead of electrons-positrons. In the usual Schwinger effect
the electron-positron production rate per unit volume is
given by

Γeþe− ¼ e2E2
0

4π3
exp

�
−πm2

e

eE0

�
: ð1Þ

This process is exponentially suppressed by the last term in
the expression above (E0 is the magnitude of the electric
field, me is the electron mass, and e is the electron charge).
In the case studied here—a gravitational field creating
massless quanta—there will be no exponential suppression
since the mass associated with the fields is zero.
A final important point about taking the scalar field to be

massless is that it has been shown [11] that a gravitational
plane wave cannot create a scalar field if the scalar field is
massive. The caveat given in Ref. [11] for when it might be
possible to create a scalar field from a gravitational plane
wave is exactly when the scalar field is massless. This also
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1Since here we have in mind to calculate how a gravitational

plane wave—which is composed of many gravitons—is con-
verted into a massless field, the gravitons would be taken as going
in the forward direction and the massless field created from the
gravitational wave would also be going in the forward direction,
as expected from energy-momentum conservation [8].
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fits in with the particle view point of Ref. [8] where the
decay of gravitons into other particles was investigated, and
from very simple kinematic arguments it was shown that
graviton decay was only possible when the graviton
decayed into other massless particles.
The potential significance of the process where electro-

magnetic radiation is produced from a gravitational wave
background is that this would lead to a weakening or
attenuation of the gravitational wave, since the creation of
the electromagnetic radiation would come at the expense of
the gravitational wave. If the production of electromagnetic
radiation via gravitational waves is significant, one would
need to take this into account when using the detected
amplitude of the gravitational wave to determine the
characteristics of the event, such as the distance to the
source of the gravitational waves. For example, this
attenuation would mean that the source of the gravitational
wave was closer than implied by the measured amplitude.
Another consequence of this process is that one might think
to look for the electromagnetic radiation which was
produced by the gravitational wave. In fact, there is a
claim [12] that the gravitational wave detection by LIGO,
GW150914 [9], was potentially accompanied by a γ-ray
signal. Our calculations below will show that a gravita-
tional wave might produce electromagnetic radiation, but
rather than being in the γ-ray range, the electromagnetic
radiation produced would have extremely long wave-
lengths, on the order of hundreds of kilometers.
Previously, the question of production of electromag-

netic radiation from a gravitational background was exam-
ined by two of the authors [6] using the formalism of the
Unruh-DeWitt detector. The resulting scalar field quanta
production rate found in this way was small, but not as
small as indicated by the Feynman diagram calculations
[2–4] for individual quanta. Based on the Unruh-DeWitt
detector calculations of Ref. [6], it was possible that the
production of electromagnetic radiation via a gravitational
wave background might have an attenuating effect on the
gravitational wave. This difference between the Feynman-
diagrammatic calculations of Refs. [2–4] and the Unruh-
DeWitt detector calculations of Ref. [6] can be compared to
the situation that occurs when calculating the decay rate,
Γeþe−, for the Schwinger effect. The expression for Γeþe−
given in Eq. (1) is nonperturbative (this can be seen by the
presence of exp ½− const

E0
�) and cannot be obtained via the

perturbative method of Feynman diagrams.
In Minkowski space-time the calculation of vacuum pair

production via different methods gives identical results. For
example, one can calculate the Schwinger effect via the
trace-log method originally used by Schwinger, or via the
“scattering/tunneling” of some charged field by the poten-
tial due to the background uniform electric field, and the
results are the same. (This comparison of different methods
of calculating the Schwinger effect can be found in
Refs. [13,14] as well as in Ref. [15].) However, in curved

space-times, different methods for calculating particle
production can give different results for the production
rate, as discussed in several papers [16–18]. As pointed out
in Ref. [16], the difficulty of studying particle production in
the presence of a nonasymptotically flat gravitational
background is that the definition of the particle production
rate can depend on the method of calculation (e.g., using a
creation/annihilation operator versus using a definition of a
vacuum state versus using a Feynman Green function). In
Ref. [16] the vacuum-to-vacuum amplitude was calculated
in the path integral approach for Friedmann-Robertson-
Walker (FRW) space-time. The amount by which this
amplitude differed from unity was used to obtain the
particle production rate and it was found to give a different
particle production rate from the usual method of diago-
nalization of the Hamiltonian. While this warning about
different calculation methods yielding different particle
production rates may not necessarily apply to the gravita-
tional wave backgrounds, which are the focus of this
paper,2 we nevertheless mention it to point out the subtle
issues which surround the definition of particles in curved
space-times, and determining if a given space-time will
have particle production associated with it or not. Finally,
we note that Ref. [18] gave arguments that for general time-
dependent metrics the issue of the definition of particles
and whether or not particle production occurs is still an
unresolved problem.
In this paper, we obtain the particle production rate by

calculating the conserved 4-current of a massless, scalar
field in a gravitational wave background and then compar-
ing this to the massless, scalar field in flat space-time. We
take the difference between these two situations—a scalar
field in a gravitational wave background versus a scalar
field in Minkowski space-time—as a measure of the rate of
particle production. This 4-current method for calculating
the production rate and/or super radiance is similar to that
used in Refs. [18–21]. The 4-current method employed
here can also be compared to the work of Gertsenshtein [5],
who investigated the production of electromagnetic radi-
ation when a gravitational wave encountered a region of
space-time with a uniform magnetic field. There, the
interaction between the magnetic field and gravitational
wave background produced electromagnetic radiation.
Here we replace the magnetic field by a massless scalar
field. Recently, Mösta et al. [22] carried out a study similar
to that of Gertsenshtein, where they studied the electro-
magnetic radiation produced by a gravitational waves
coming from a pair of inspiraling black holes embedded
in a constant magnetic field.

2This difference in particle production rates, calculated via
different methods, occurs in space-times where it is not clear how
to define asymptotic states. This is the case for the FRW space-
time considered in Ref. [16], but it is not the case for the
gravitational wave background.
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In Sec. II we study the solution of a massless scalar
field in a gravitational wave background and use this to
calculate a particle production rate. In Sec. III we use the
results of Sec. II to give a rough estimate of an attenuation
length for the gravitational wave due to the production of
electromagnetic radiation from the gravitational wave.

II. SCALAR FIELD IN GRAVITATIONAL
WAVE BACKGROUND

In this paperwe use amassless scalar field as a stand-in for
the more physically realistic massless photon. The justifi-
cation for this is that one can write a vector field as
AμðxνÞ ¼ ϵμφðxνÞ, where ϵμ is the polarization 4-vector
and φðxνÞ is a scalar function which obeys the massless
Klein-Gordon equation. The vector field Aμ certainly has
more degrees of freedom (because of ϵμ) as compared to a
simple scalar field, but this would at most change the
production rate by some factor of order unity. At the level
of individual quanta one can point to Ref. [3] where the cross
sections for gravitons Compton scattering from scalar and
vector particles were given, i.e., the processes Sþ g →
Sþ g and γ þ g → γ þ g. These Compton scattering dia-
grams can be rotated to give graviton production processes,
i.e., gþ g → Sþ S and gþ g → γ þ γ. From Ref. [3] the
diagrammatic evaluations of both processes are nonzero,
although they do differ by numerical factors of order unity
due to the different spins of the scalar versus vector particles.
With this justification we begin by placing a massless

scalar field in curved space-time and writing down the
Klein-Gordon equation coupled to the space-time described
by the metric gμν,

1ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

p �
∂μgμν

ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q
∂ν

�
φ ¼ 0: ð2Þ

For our background we take a plane gravitational wave
with the þ polarization. The metric for this can be written
as [23],

ds2 ¼ −dt2 þ dz2 þ fðuÞ2dx2 þ gðuÞ2dy2: ð3Þ
The variables in the metric, u ¼ z − t and v ¼ zþ t, are

light-cone coordinates and the metric components fðuÞ and
gðuÞ will be required to be oscillatory functions, as
expected for a gravitational wave background. The deter-
minant of the metric is jgμνj ¼ det½gμν] and

ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

p ¼ fg.
Substituting this into Eq. (2),

1

fg

�
−∂tðfgÞ∂tþ

1

f2
∂xðfgÞ∂xþ

1

g2
∂yðfgÞ∂yþ∂zðfgÞ∂z

�

×φ¼0: ð4Þ

Since u is only a function of z and t the expression can be
expanded,

�
−∂2

t −
1

fg
∂tðfgÞ∂t þ

1

f2
∂2
x þ

1

g2
∂2
y þ ∂2

z þ
1

fg
∂zðfgÞ∂z

�

× φ ¼ 0: ð5Þ

Applying the chain rule for the t and z derivatives,
∂tðfgÞ ¼ −∂uðfgÞ, ∂zðfgÞ ¼ ∂uðfgÞ, ð∂2

z − ∂2
t Þ ¼ 4∂u∂v,

ð∂t þ ∂zÞ ¼ 2∂v, ð∂z − ∂tÞ ¼ 2∂u, and multiplying by
f2g2,

ð4f2g2∂u∂v þ 2fg∂uðfgÞ∂v þ g2∂2
x þ f2∂2

yÞφ ¼ 0: ð6Þ

At this point we are still looking at the exact solution
to the Klein-Gordon equation using the metric of Eq. (3).
To evaluate the solution for a weak gravitational wave
the linearized gravity approximation will be introduced
in the terms of the metric [fðuÞ ¼ 1þ εðkuÞ and gðuÞ ¼
1 − εðkuÞ] and substituted into Eq. (6). Also note that the
metric of Eq. (3) describes a wave propagating in the z
direction and the x and y spatial directions must be
physically indistinguishable. Based on the isotropy of
space-time and assuming a nonthermal vacuum [6,8,24],
we take ð∂2

y − ∂2
xÞφ ¼ 0 as a property of our scalar field

solution. Using this and collecting terms together, Eq. (6)
can be expressed as

½4ð1 − 2ε2 þ ε4Þ∂u∂v − 4ð1 − ε2Þεð∂uεÞ∂v þ ð1þ ε2Þ∂2
x

þ ð1þ ε2Þ∂2
y�φ ¼ 0: ð7Þ

We now assume that εðkuÞ ¼ hþeiku, i.e., oscillatory
functions typical for gravitational waves in linearized
general relativity. In this expression hþ is the dimensionless
amplitude of the gravitational wave. Substituting into
Eq. (7), we obtain

ð4F∂u∂v − 4ikG∂v þHð∂2
x þ ∂2

yÞÞφ ¼ 0; ð8Þ
where

FðkuÞ≡ ð1 − 2h2þe2iku þ h4þe4ikuÞ;
GðkuÞ≡ ðh2þe2iku − h4þe4ikuÞ;
HðkuÞ≡ ð1þ h2þe2ikuÞ: ð9Þ

Equation (8) is separable by taking φ ¼
XðxÞYðyÞUðuÞVðvÞ and identifying the eigenvalue equa-
tions for XðxÞ and YðyÞ as

∂2
xX ¼ −k2xX → X ¼ eikxx;

∂2
yY ¼ −k2yY → Y ¼ eikyy: ð10Þ

Note that the x and y direction eigenfunctions are simply
free waves, as is to be expected since the gravitational wave
is in the u ¼ z − t direction. Setting 2k2xy ≡ k2x þ k2y and
using Eq. (10), we find that Eq. (8) becomes
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F
∂uU
U

∂vV
V

− ikG
∂vV
V

−H
k2xy
2

¼ 0: ð11Þ

Now since the light-front coordinate v is orthogonal to u
and since the gravitational wave only depends on u, one
expects that the eigenfunction VðvÞ is also solved by a free
plane wave, as was the case for XðxÞ and YðyÞ. This is
indeed the case and we find

−i∂vV ¼ kvV → V ¼ eikvv: ð12Þ

Substituting Eq. (12) into Eq. (11) yields

ikvF
∂uU
U

þ kkvG −
k2xy
2

H ¼ 0: ð13Þ

Defining the eigenvalue λ≡ k2xy
2kv
, Eq. (13) can be

rearranged as

i
∂uU
U

¼ λ
H
F
− k

G
F
: ð14Þ

This equation can be integrated to give

U ¼ Ae
λ
ke

−λ
kð1−h2þe2ikuÞð1 − h2þe2ikuÞ12ðλk−1Þe−iλu: ð15Þ

A is a normalization constant which we will fix later. The
first term (e

λ
k) is needed to ensure that as hþ → 0 (i.e., the

gravitational wave is turned off) the eigenfunction for the u
direction becomes a free plane wave, e−iλu. Collecting
together all the terms in x, y, v, and u directions gives the
solution of the scalar field in the gravitational wave
background,

φ ¼ Ae
λ
ke

− λ
kð1−h2þe2ikuÞð1 − h2þe2ikuÞ12ðλk−1Þe−iλueikvveikxxeikyy:

ð16Þ
This solution for the scalar field given in Eq. (16) is very
similar to the solution found in Ref. [15] for the static
electric field pair production evaluated in light-front coor-
dinates. Taking the limit hþ → 0 of Eq. (16) returns the
expected Minkowski vacuum solution for the scalar field,

φ0 ¼ Ae−iλueikvveikxxeikyy → AeiðkvþλÞteiðkv−λÞzeikxxeikyy:

ð17Þ

In the last expression we have reverted from light-front to
Cartesian coordinates. It is clear that the scalar field in

Eq. (17) is a free wave. By defining an energy k0 ¼ kv þ k2xy
2kv

and a momentum in the z direction kz ¼ kv −
k2xy
2kv

and using

the previously defined k2x þ k2y ¼ 2k2xy, one can check that
the energy-momentum of the free solution in Eq. (17)
satisfies the usual kinematic relationship for a free particle
in Minkowski space-time, namely, k20 ¼ k2x þ k2y þ k2z .

We now use the result for the scalar field given in
Eq. (16) to calculate the associated 4-current density which
will then allow us to calculate the rate of pair production of
the scalar field from the gravitational wave background.
The u component of the scalar field 4-current is given in
terms of φ as

ju ¼ −iðφ�∂uφ − φ∂uφ
�Þ: ð18Þ

Substituting φ from Eq. (16) into Eq. (18), we find that
the time-averaged u component of the 4-current is

hjui ¼ −2A2λ − A2

�
9

2

λ3

k2
−
12λ2

k
þ 13

2
λ − k

�
h4þ: ð19Þ

The brackets represent the time averaging. In obtaining
this expression we have taken the light-front coordinate
averages for the cosines: hcos2ð2kuÞi ¼ 1

2
, hcos4ð2kuÞi ¼

3
8
, and hcosð2kuÞi ¼ hcosð4kuÞi ¼ 0. Also, we have
dropped terms higher than h4þ.
We now examine various limits of Eq. (19). First, in the

limit when the gravitational wave vanishes, hþ → 0, the
current becomes ju → −2λA2 → −1=V, where we have
fixed the normalization constant A ¼ 1ffiffiffi

V
p 1ffiffiffiffi

2λ
p by requiring

that there be one particle per volume V. Another option for
A would be to use the condition that there be 2λ particles
per volume V, which would give A ¼ 1ffiffiffi

V
p . Section 4.3 of

Ref. [25] discusses the various normalization conditions for
scalar fields. Second, in the presence of both the scalar field
(λ ≠ 0) and gravitational wave (hþ ≠ 0), Eq. (19) indicates
how the current is modified by the potential represented by
the gravitational background. For certain values of λ, k, and
hþ the current in Eq. (19) gives a larger outgoing current
than incoming. This can be likened to the calculation of the
Penrose superradiance process [21] where one “scatters” a
real scalar field from a rotating black hole and the outgoing
scalar field may have more energy than the incoming field.
Finally, one can take the limit λ → 0, kv → 0, and kxy → 0,
i.e., the initial scalar field is taken to its vacuum state. In this
way one obtains what is called the Minkowski persistence

amplitude [26]. Because of the definition λ≡ k2xy
2kv

the limit
λ → 0 also means kxy → 0. In this limit the scalar field
and its 4-current (16) do not reduce to the vacuum case (i.e.,
φ0 → 0 and ju → 0), but rather reduce to

φ →
1ffiffiffiffi
V

p 1ffiffiffiffiffi
2k

p ð1 − h2þe2ikuÞ−1
2 and ju →

signðkÞ
2V

h4þ:

ð20Þ

In Eq. (20) we have written out explicitly the normalization
constant A ¼ 1ffiffiffi

V
p 1ffiffiffiffi

2k
p . As before V is the volume in which

the scalar field is placed. This normalization of φ
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(especially the 1ffiffiffiffi
2k

p factor) is consistent with the normali-

zation found in Ref. [20] via theWronskian condition. Note
that ju in Eq. (20) is of order h4þ. There are h2þe�2iku terms
in ju that arise when one substitutes φ from Eq. (20) into
Eq. (18). However these terms time average to zero. In Eq.
(18) it is only terms that involve products of terms such as,
h2þe2iku and h2þe−2iku, that give a nonzero value after time
averaging. This explains why one is justified in keeping the
metric and φ to order h2þ while the current derived from φ is
of order h4þ. If one could write out the metric to order h4þ
then φ should have terms like h4þe4iku. However, these
terms—when run through the definition of the current in
Eq. (18)—would time average to zero unless they were
products of terms like h4þe4iku and h4þe−4iku. These “direct”
product terms would be of order h8þ and would contribute to
the current ju, but the highest nonzero terms would still be
of order h4þ since the h2þ terms time average to zero. Terms
from Eq. (18) that were “cross” products, such as h4þe4iku

and h2þe−2iku, or h4þe4iku and 1, time average to zero. There
are other cases in general relativity where the metric is of
lower order in hþ as compared to the quantity calculated
from the metric. One common example is the energy
carried by a linearized gravitational wave where the metric
is kept to order hþ while the energy-momentum calculated
from this metric is to order h2þ [27]. As a final comment
on the order of hþ, we note that if one only kept terms
of order h2þ in the scalar field (7) then the vacuum limit
for the scalar field given in Eq. (20) would become
φ ∝ ð1 − 2h2þe2ikuÞ−1

4, which to order h2þ has the same
expansion as φ from Eq. (20) and yields the same ju as in
Eq. (20) to order h4þ.
The result in Eq. (20) can be related to the Higgs

mechanism [28] where a scalar field develops a nonzero

vacuum expectation value of φ ¼
ffiffiffiffiffi
m2

2λ

q
due to a potential

with a quartic self-interaction term plus tachyonic mass
term (i.e., −m2φ2 þ λφ4). The self-interacting scalar poten-
tial in the usual Higgs mechanism is time independent. In
the present case the scalar field develops a nonzero vacuum
expectation value [the scalar field expression in Eq. (20)]
due to the background gravitational wave potential.
Because of the space- and time-dependent nature of the
background gravitational field the vacuum expectation
value from Eq. (20) is also space and time dependent,
i.e., the e2iku term in the expression for φ. Since the vacuum
expectation value in this case is space and time dependent,
one has a nonzero 4-current in the u ¼ z − t direction,
ju ¼ 1

2V h
4þ, as opposed to the usual Higgs mechanism case

where the constant vacuum expectation value of the scalar

field gives a zero 4-current associated with φ ¼
ffiffiffiffiffi
m2

2λ

q
.

Another difference between the present example and the
canonical Higgs mechanism is that in the present case the
interaction that leads to the vacuum expectation value of φ

in Eq. (20) comes from the interaction between the scalar
field and the gravitational field. In the canonical Higgs
mechanism the vacuum expectation value is due to the λϕ4

self-interaction of the scalar field. Thus the nonzero scalar
vacuum expectation value of the present case can be
compared to the version of the Higgs mechanism that
occurs in superconductors, where it is the phonons of the
background lattice that are responsible for the interaction
that binds electrons into Cooper pairs and which leads to
superconductivity.
The important point about Eq. (20) is that ju ≠ 0 even

though we have taken the scalar field to its Minkowski
vacuum state. We interpret this nonzero ju as being
connected to a nonzero production rate of the scalar field
by the gravitational wave background. (In the next section
we draw the exact connection between ju and the pro-
duction rate.) That one should get a nonzero result for the
process of gravitons converting to these scalar “photons”
is supported by the Feynman diagram amplitudes like
gþ g → γ þ γ which are nonzero [2–4].
The calculation of the production of the scalar field via the

time-varying gravitational wave background of Eq. (3) can
be compared to the similar calculation for de Sitter space-
time fromRef. [29]. There, a massive scalar field was placed
in the time-dependent de Sitter space-time and the amplitude
of the scalar field in the de Sitter background was used to
determine the scalar field production rate at the expense of
the gravitational field. Unlike the de Sitter space-time
metric, there is no horizon in the gravitational wave metric.
In the above discussion, the ansatz functions fðuÞ and

gðuÞ were not exact solutions to the plane-wave space-time
of Eq. (3). We now briefly show that one obtains similar
results for an exact plane-wave, oscillatory metric, showing
that the results are not an artifact of the approximate metric.
In order for fðuÞ and gðuÞ in Eq. (3) to be exact solutions

to the Einstein field equations they need to satisfy the
condition f̈=f þ g̈=g ¼ 0 [23]. A simple exact, plane-wave
solution is given by f ¼ eikue−ku and g ¼ eikueku. These
ansatz functions have oscillatory wave parts (eiku) but they
also have exponentially growing or decaying amplitudes
(e�ku). Near u ¼ 0 one has oscillating wave solutions due
to the eiku parts of the ansatz function, but as umoves away
from u ¼ 0 the e�ku terms act like growing/decaying
amplitudes. Because of this these solutions can only be
of use for a restricted range of u near u ¼ 0.
Asymptotically, as u → ∞, the functions fðuÞ and gðuÞ
are not physically acceptable. By substituting f ¼ eikue−ku

and g ¼ eikueku into Eq. (6),

ð4e4iku∂u∂v þ 2e2iku∂uðe2ikuÞ∂v þ e2ikue2ku∂2
x

þ e2ikue−2ku∂2
yÞφ ¼ 0; ð21Þ

and making the substitution φ ¼ UðuÞVðvÞXðxÞYðyÞ ¼
UðuÞeikvveikxxeikyy,
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�
i
∂uU
U

−k−e−2ikue2ku
k2x
4kv

−e−2ikue−2ku
k2y
4kv

�
¼ 0: ð22Þ

In the limit when the gravitational wave is absent (i.e.,
k → 0) the solution to Eq. (22) is again given by Eq. (17).
When k ≠ 0 the solution is Eq. (22),

U ¼ Aeð
ð1−iÞ
4k λxe−2ikue2kuþð1þiÞ

4k λye−2ikue−2kuÞe−iku: ð23Þ

As before, A is a constant and λx ≡ k2x
4kv

and λy ≡ k2y
4kv
. As

before, if we take the limit of the massless scalar field to its
vacuum state (i.e., taking the limit kx → 0, ky → 0, λx;y → 0,
and kv → 0) one finds UðuÞ → 1ffiffiffi

V
p 1ffiffiffiffi

2k
p e−iku, so that as

before φ does not go to zero but rather φ → 1ffiffiffi
V

p 1ffiffiffiffi
2k

p e−iku.

In this limit we have again written out the normalization
constant as 1ffiffiffi

V
p 1ffiffiffiffi

2k
p . As before, we can calculate the current in

the u direction in this limit and find that

ju ¼ lim
ðkx;kyÞ→0

− iðU�∂uU − U∂uU�Þ ¼ −signðkÞ
V

: ð24Þ

There is no explicit amplitude hþ in this case since the
changing amplitudes of the ansatz functions fðuÞ and gðuÞ
are given by e�ku.
There are other exact plane-wave solutions one could

examine. The simplest is fðuÞ ¼ gðuÞ ¼ u [30] which
represents a plane-wave pulse rather than an oscillatory
wave. Performing the above analysis with fðuÞ ¼ gðuÞ ¼ u
leads to ju ¼ 0 in the vacuum limit rather than the nonzero
result of Eq. (20) or Eq. (24). Thus the nonzero result for ju
for the oscillatory ansatz functions is nontrivial.

III. ESTIMATED ATTENUATION LENGTH

In this section we use the vacuum current ju of the last
section to estimate the production rate of massless quanta
from the gravitational wave background. Other, recent
works which connected the particle production rate with
currents in curved space-times can be found in Refs. [18–
20]. In Ref. [19] the connection between the current and the
production rate per unit volume was given by

Γ
V
ΔT ≈ jjuj; ð25Þ

where ΔT is a characteristic time for the problem and V is

the volume of the system as before. Using jjuj ¼ h4þ
2V from

Eq. (20) and taking the characteristic time asΔT ∼ 1
ω, where

ω is the frequency of the gravitational wave, we arrive at the
production rate

Γ ¼ ωh4þ
2

: ð26Þ

We now use this production rate to estimate the effect
this has on the decay of the amplitude hþ. We ignore the

effect of the usual 1r falloff in hþ due to the spherical nature
of the outgoing gravitational wave. If we take Ng as the
number of gravitons, then the standard result for the change
of Ng due to Γ reads

dNg

dt
¼ −ΓNg → c

dNg

dz
¼ −ΓNg: ð27Þ

In anticipation that we will be more interested in a decay
length than a decay time, we have taken dt → dz=c. As a
starting assumption we will take the number of gravitons as
Ng ∝ h2þ, which is motivated by a similar relationship in
QED where the number of photons is related to the square
of the vector potential, Nγ ∝ AμAμ. In this way, and using
the decay rate from Eq. (26), Eq. (27) becomes

dðh2þÞ
dz

¼ −
ω

2c
h4þðh2þÞ →

dhþ
dz

¼ −
1

4
kh5þ; ð28Þ

where k ¼ cω. Equation (28) has the solution

hþðzÞ ¼ ðkzþ K0Þ−1=4; ð29Þ

where K0 ¼ ðhð0Þþ Þ−4 and hð0Þþ is the value of hþ at z ¼ 0.
What Eq. (29) shows is that for large distances (i.e., large z)
hþ falls off like ∝ z−1=4, which is slower than the z−1 ∼ r−1

falloff due to the spherical nature of the outgoing gravi-
tational wave. Thus the main factor in determining the
falloff of hþ at large distances is just the usual 1

r falloff.
However, near the source of the gravitational wave, z ¼ 0,
the falloff in hþ due to the conversion of the gravitational
wave field into the massless field could be important. We
can use Eq. (29) to make an estimate of the attenuation
length Λ of the gravitational wave due to the conversion
into electromagnetic radiation. If we define the decay

length Λ as the distance over which hþðz ¼ ΛÞ ¼ 1
2
hð0Þþ

we find that

Λ ¼ 15

kðhð0Þþ Þ4
→

1.5 × 107

ðhð0Þþ Þ4
m: ð30Þ

In the last expression we have assumed a frequency of
ω ∼ 300 Hz, which yields k ¼ ω

c ∼ 10−6 m−1. This esti-
mate of the frequency is a very simple and rough estimate
based on the upper range of the “chirp” for GW150914. In
Table I we give different Λ’s for different initial gravita-

tional wave amplitudes hð0Þþ .
The size of the observable Universe is approximately

1027 meters, so from Table I we see that the estimated decay

length will be important only if hð0Þþ is fairly large, of the
order of 10−5 or larger. The take away message from Table I
is that the conversion of the gravitational background wave
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into the massless field is significant only close to the source
of the gravitational waves where hþ is large.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have looked at the possibility that a
gravitational wave background could create massless scalar
particles/fields. The massless scalar field quanta were taken
as a simplified model of a photon. This is similar to the
Schwinger effect but with the static electric field replaced
by a gravitational wave background and the electron/
positron replaced by massless scalar “photons.” Since
the created field was massless, we did not have the
exponential suppression of the particle production rate
which one finds in the Schwinger effect. Because of this
lack of exponential suppression one expects the conversion
of gravitational waves into electromagnetic radiation to
potentially play a more prominent, physical role. In
particular, we suggested that the creation of photons at
the expense of the gravitational wave field would lead to an
additional falloff of the dimensionless amplitude hþ with
distance from the source, in addition to the usual 1

r falloff.
Based on the production rate per unit volume given in
Eq. (26), we made an estimate of the decay length for
various amplitudes hþ, given in Table I. Unless hþ > 10−5,
our estimate for the decay length Λ given in Table I is so
large that one would not expect this process to weaken the
gravitational wave even over cosmological distances. This
is in agreement with the conclusions based on Feynman
diagram calculations [2]. But close enough to the source
one will have hþ ≥ 10−5, so in this near region one might
expect the attenuation to be important. Since we used a
gravitational plane wave this ignored the 1

r falloff for a more
realistic spherical wave. The overall conclusion, both from
Table I and from Eq. (29), is that the production of the
massless field φ coming from the gravitational wave
background and the subsequent attenuation of the gravi-
tational wave background would only be important near the
source of the gravitational wave.
One of the main results of this paper is the calculation of

the scalar field (16) and associated 4-current (19) in the case
when the scalar field is placed in a gravitational wave
background. In the vacuum limit (i.e., kx → 0, ky → 0,
λx;y → 0, and kv → 0) the scalar field and 4-current take the

nonzero limits φ → 1ffiffiffi
V

p 1ffiffiffiffi
2k

p ð1 − h2þe2ikuÞ−1
2 and ju ¼ 1

2V h
4¼.

This can be likened to a time-dependent, Higgs-like
mechanism where the scalar field develops a nonzero
vacuum expectation value. The difference from the usual
Higgs mechanism is that here the effect is driven by the
interaction of the scalar field with a gravitational back-
ground instead of with a self-interaction (i.e., λϕ4). Also,
here the vacuum value of the scalar field is space-time
dependent. This Higgs-like mechanism via the gravitational
background can be compared to the symmetry breaking
that occurs in superconductors, where it is the background
lattice and phonons which provide the mechanism leading
to a nonzero expectation value for Cooper pairs. This
connection to the Higgs mechanism will be discussed
further in an upcoming paper [31].
Finally, there are two predictions of physical phenome-

non that would occur if the production of photons from the
gravitational wave background were significant. First, the
amplitude hþ measured by a detector on Earth would be
smaller due to the fact that this amplitude would decrease
not only from the 1

r falloff for an outward traveling wave,
but also the amplitude would decrease as r−1=4 due to the
production of photons from the gravitational wave back-
ground. From the r−1=4 dependence of the particle pro-
duction rate one can see that this effect would only be
important relatively close to the source. Second, the
gravitational wave would produce electromagnetic radia-
tion/photons traveling in the same direction as the initial
gravitational wave. In fact, it has already been suggested
[12] that a γ-ray signal which was detected in the same time
frame as the gravitational wave signal might be related to
the detected gravitational wave. If the production mecha-
nism of electromagnetic radiation from the gravitational
wave background proposed here occurs and is significant,
then we would predict that the gravitational wave signal
should also be accompanied by an electromagnetic signal.
However, in our process this electromagnetic signal
should have roughly the same frequency as that of the
gravitational wave. Thus we would predict that the electro-
magnetic wave coming from the gravitational wave would
have extremely long wavelengths, on the order of hundreds
of kilometers, i.e., the associated electromagnetic wave
would have very large wavelengths. These wavelengths are
of such a length that they could easily have gone undetected
up to now.
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TABLE I. Various values of the decay length Λ versus hð0Þþ for
ω ≈ 3 × 102 Hz and k ≈ 10−6 m−1. We begin with hþ ≈ 10−21

which is roughly the measured strain reported for GW150914 [9].

hð0Þþ Λ meters

10−21 1091

10−15 1067

10−9 1043

10−5 1027

10−3 1019
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