PHYSICAL REVIEW D 95, 065007 (2017)

Majorana fermions in a box
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Motivated by potential applications to ultracold matter, we perform a theoretical study of Majorana
fermions confined to a finite volume, whose boundary conditions are characterized by self-adjoint
extension parameters. While the boundary conditions for Dirac fermions in (1 4 1)-d are characterized by a
1-parameter family, A = —A*, of self-adjoint extensions, for Majorana fermions 4 is restricted to +i. Based
on this result, we compute the frequency spectrum of Majorana fermions confined to a 1-d interval.
The boundary conditions for Dirac fermions confined to a 3-d region of space are characterized by
a 4-parameter family of self-adjoint extensions, which is reduced to two distinct 1-parameter families for
Majorana fermions. We also consider the problems related to the quantum mechanical interpretation of the
Majorana equation as a single-particle equation. Furthermore, the equation is related to a relativistic
Schrodinger equation that does not suffer from these problems. Here we restrict ourselves to theoretical
considerations without yet focusing on concrete cold matter applications.
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I. INTRODUCTION

Majorana fermions [1] result from Dirac fermions [2] by
imposing a reality condition on the Dirac spinor [3]. As a
result, Majorana fermions are neutral and are their own
antiparticles. In the minimal version of the standard model
of particle physics, neutrinos are electrically neutral left-
handed Weyl fermions [4] charged under the electroweak
SU(2), x U(1), gauge symmetry. In this case, no renor-
malizable neutrino mass terms exist, and thus, in this
minimal theoretical framework, neutrinos are massless
particles. Since the observation of neutrino oscillations,
it is known that neutrinos indeed must have a small nonzero
mass. When one extends the standard model by introducing
additional right-handed neutrino fields, one can construct
gauge invariant Dirac mass terms which involve the Higgs
field and give rise to nonzero neutrino masses via the Higgs
mechanism of electroweak symmetry breaking. Gauge
invariance then requires that the right-handed neutrino
fields are neutral under all gauge interactions. This in turn
implies that one can also construct gauge invariant renor-
malizable Majorana mass terms which do not involve the
Higgs field and thus give rise to neutrino masses, unrelated
to the energy scale of electroweak symmetry breaking.
Since the right-handed component does not participate in
the electroweak or strong gauge interactions, Majorana
neutrinos are extremely weakly interacting. In particular,
like any neutrino, they easily penetrate even dense materi-
als and can thus not be confined in any container. Still, in
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some extensions of the standard model with extra spatial
dimensions, neutrinos may be confined to finite regions of
the extra-dimensional space. Majorana edge states were
first discussed in the context of the overlap [5] and domain
wall fermion [6] construction of supersymmetric Yang-
Mills theory on the lattice, which has been studied in
numerical simulations in [7].

The confinement of Majorana neutrinos in finite regions
of space is also an interesting issue in condensed matter
physics. In particular, Majorana fermions, which may
emerge as edge modes of Kitaev wires [8] or of super-
conductors [9], have been discussed in the context of
topological quantum computation [10-15]. Majorana fer-
mions may also arise in engineered systems, such as
ultracold atoms in optical lattices or ion traps [16—18].
The Majorana fermions that arise at the edge of Kitaev wires
are essentially massless, because their mass is exponentially
suppressed with the length of the wire. The Majorana
fermions in engineered ultracold atom or trapped ion
systems, on the other hand, are in general massive. Since
the real systems are confined to a finite volume, the issue of
appropriate spatial boundary conditions arises. In particular,
when one imposes optical box trap potentials [19], one is
confronted with reflecting boundaries.

While in this paper we do not yet address concrete
problems concerning ultracold matter, we take these
systems as a motivation to investigate the (massive)
Majorana equation, restricted to a finite region in space,
using the theory of self-adjoint extensions [20,21]. In
previous work, we have analyzed the Schrodinger, Pauli,
and Dirac equations in a similar manner [22,23]. For
example, the perfectly reflecting wall of a box that confines
nonrelativistic Schrodinger particles without spin is

© 2017 American Physical Society
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characterized by a single self-adjoint extension parameter.
The most general boundary condition for relativistic Dirac
fermions (which generalizes the boundary conditions of the
MIT bag model [24-26]) is characterized by a 4-parameter
family of self-adjoint extension parameters [22]. As we will
show, imposing the Majorana reality condition on the
corresponding Dirac spinor restricts the admissible values
of the self-adjoint extension parameters. We then study the
Majorana equation both in (1 4+ 1) and in (3 + 1) dimen-
sions, with confining spatial boundary conditions.

The rest of this paper is organized as follows. In Sec. II
we investigate the Majorana equation in (1 + 1) dimen-
sions, review its symmetries, and relate it to a relativistic
Schrodinger-type equation with a consistent quantum
mechanical single-particle interpretation. In Sec. III we
study the self-adjoint extension parameters that character-
ize a perfectly reflecting boundary. The Majorana equation
is then solved for a particle confined to a finite interval. In
Sec. IV we extend these investigations to (3 4+ 1) dimen-
sions by reviewing the Majorana equation and its sym-
metries, and by again constructing an equivalent relativistic
Schrodinger-type equation. In Sec. V we construct a family
of self-adjoint extensions for (3 4 1)-d Majorana fermions,
confined to a finite region of space. Finally, Sec. VI
contains our conclusions.

II. MAJORANA FERMIONS
IN (1 + 1) DIMENSIONS

In this section we investigate the Majorana equation in
(1 + 1) dimensions. In particular, we review its symmetry
properties and investigate some problems related to its
quantum mechanical interpretation as a single-particle
equation.

A. The Majorana equation in (1 + 1) dimensions

Let us first consider the Dirac equation in (1 + 1)
dimensions

i0,%(x,1) = (ape+pMc?)¥(x,1), wwg:<%@ﬁ>7

01 5 10
o) "\ 1)
Here M is the fermion mass, c is the velocity of light, and

we have put 7 = 1. A consistent choice of the y-matrices is
provided in the Dirac basis

0__10) 1_0_<0 1>
y—ﬂ—<0 ) rEre={_ ) @2

where the space-time metric is given by g,, = diag(1,—1).
Alternatively, we can use a Majorana basis
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0 i i 0
7 = . = . (@3
! (i 0 > g (0 —i) (23)

in which the y-matrices have purely imaginary entries. The
Dirac and the Majorana basis are related by the unitary
transformation

1 /1 =i ~
U=— . =UPUT,  Y(x,t)=UY(x,1).
50 0) revrr v —vie

(2.4)

In the Majorana basis, the Dirac equation is consistent with
imposing the reality condition W(x,7)* = ¥(x, 7). In the
Dirac basis, the Majorana condition takes the form

W(x, 1) = UP(x. 1) = UP(x, )"
=U[U™Y(x,1)]" = UUTY¥(x, 1)*

A2 e
(0 o) ()=

wi(x ) =iy () wa(xt) =iy (x, 1) (2.5)

Introducing w(x, ) =y (x,t) the 2-component Dirac
equation reduces to the 1-component Majorana equation

i@,( wix.1) > = (apc —i—ﬂMcz)( .z//(x, ? )

iy (x, )"

= i0y(x, 1) = Mc*y(x,1) + cOp(x, 1)*. (2.6)

Here we have used p = —id,. Unlike for the Schrodinger
or Dirac equation, the right-hand side of the Majorana
equation involves both w(x,7) and w(x,1)*. As a conse-
quence, it cannot be interpreted as an ordinary quantum
mechanical Hamiltonian acting on a wave function y(x, 7).
In any case, a quantum mechanical single-particle inter-
pretation is problematical already for the Dirac equation.
Putting this caveat aside, one can still use the Dirac
Hamiltonian as well as other quantum mechanical operators
of the Dirac theory, acting on constrained Majorana wave
functions, to define expectation values for Majorana
fermions. For the expectation value of the energy one then
obtains
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)= [ astyr =wape-+ ey (V)

Mc?  —icO, 7
= [ dx(y*, =i
/ v w(—icax —Mc2)<iw*>
, Mc*y + cOp*
=/dX(W*,—n//)< . oy )
—icOy — iMc*y

= /dx(y/*iatlll—l—l//ia,l//*) = ic’),/dXIW2 =0.
(2.7)

In the last step we have used the Majorana equation. As we
will see in the next subsection, the total “probability”
2 [dx|y|* is indeed conserved. As a consequence, the
energy expectation value of a Majorana fermion state,
evaluated with the Dirac Hamiltonian, always vanishes.
The same is true for the momentum operator

)= [[astyr =00 (1)

= / dx(—iy* 0y — iy y*)

= —i/dxax|1//|2 =0. (2.8)

Here we have used partial integration and we have assumed
that the wave function vanishes at spatial infinity. The
expectation values of energy and momentum vanish
because a Majorana fermion is an equal weight super-
position of positive and negative energy and momentum
states. As a consequence, the solutions of the Majorana
equation do not include stationary energy eigenstates with a
unique (positive or negative) energy.

B. Conserved “‘probability” current

The Majorana equation is not invariant against multipli-
cation of y(x, 7) by an arbitrary U(1) phase, but only against
a change of sign. As a result, fermion number is conserved
only modulo 2. Interestingly, the Majorana equation still
inherits the conserved current of the Dirac equation,

(x, 1) =Px, )y (x, 1) =

p(x,t) = P(x, )y*¥(x, 1) = P(x,1)"P(x, 1)
= [y (x. )P + [y (x, 1),

jxt) = cP(x, )y P(x, 1) = c¥(x, 1) YOy P(x, 1)
= c¥(x, 1) a¥(x,1)
= clyi(x. ) wa(x, 1) +wax, 1)y (x, 1)),

(2.9)

which, after imposing the Majorana condition Eq. (2.5),
takes the form
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plet) =2 )P jler) = icly(e ) = p(x. 02,
(2.10)

Indeed, by using the Majorana equation (2.6), we obtain

Oup(x.1) + 0yj(x. 1)
=20y (x, )" 0 (x, 1) + w(x, 1) 0y (x, 1)7]
+ 2icly (x. 1) O (x. 1)" —w(x. )0y (x. 1)]
= =2iy(x, 1) [Mc?y(x,t) + cOap(x, 1)*]
+ 2iy (x, 1) [M Py (x, 1) + cOp(x, 1))
+ 2icly (x. 1) O (x. )" —w(x, )0y (x. 1)] = 0.
(2.11)

Although, just like for the Dirac equation, a quantum
mechanical single-particle interpretation of the Majorana
equation is problematical, and despite the fact that Majorana
fermion number is conserved only modulo 2, the continuity
equation implies that the total “probability”

/ dp(x, 1) = 2 / Al )P =1 (2.12)

is conserved.
C. Lorentz invariance

Let us consider a Lorentz boost

x—ut ct—%x

“iswe T isee

ct - 1 =B\ [ct o

()= D) ot
y:;:cosheé

1—v?/c?

<ct’> A <ct) A <cosh6 sinh9>
X)) x)’ ~ \'sinh@ cosh6 /)’

Under Lorentz boosts a Dirac spinor transforms as

/

X ct’

(2.13)

[% inh @
coshs sinh3

W (x, 1) = < )‘P(x’,t’). (2.14)

inh @ [%
sinh3 cosh?

For a Majorana spinor this implies

v (x, 1) = coshgy/(x’, )+ isinhgy/(x’, ). (2.15)

It is straightforward to show that the Majorana equation is
indeed invariant under this transformation.
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D. Parity, time-reversal, and charge conjugation

Let us now consider the discrete symmetries P, T, and C
for Majorana fermions in one spatial dimension. For a
Dirac fermion, the parity transformation P takes the form

1 0
PO (x, 1) = yPO¥(—x,1) = <O | )‘P(—x, 1=
PWl(x7 t) :U/I(_X, t)’ PWZ(X’ t) = _W2<_~x7 t)
(2.16)
This is inconsistent with the Majorana condition

wo(x, 1) = iy (x, 1)*. However, combining the Dirac parity
operation with a U(1) phase multiplication by i (which
alone is not a symmetry of the Majorana equation) we
obtain the Majorana parity transformation

P

w(x, 1) = iw(—x,1), (2.17)

which indeed leaves the Majorana equation invariant

i0,Py(x,1) = =0 (=x,1) =iMc*y(—x,t) +icO_qy(—x,1)*
=Mc?iy(—x,t) + O [iy(—x,1)|*

=Mc*Py(x,t)+cOPy(x,1)". (2.18)

As one would expect, under P the probability and current
densities transform as

2Py ()P = 2ip (—x, ) = p(=x.1),
ic[Py(x, 1) = Py (x.1)?]

icl=y(=x, 1) +y(-x.1)]

= —j(-=x.1).

p(x.1)
Pjx.1)

(2.19)

For a Majorana fermion, we define time-reversal as

T

y(x, 1) = yr(x, —1)", (2.20)

which again leaves the Majorana equation invariant

ia,Tl//(x, 1) =i0y(x,—1)" = —id_y(x,—1)*
= Mc?y(x,—1)* + cOap(x, —t)

=My (x, 1) + 0Ty (x, 1)". (2.21)

Under time-reversal the probability and current densities
transform as

Tp(x.t) =2y (x. )P = 2y (x. =) = p(x, 1),

Ty (x, 1) =Ty (x,1)?]
*2]

Tj(x,t) =ic

= icly(x,—1)* —w(x, ~1)

= —j<x, —t), (222)

PHYSICAL REVIEW D 95, 065007 (2017)

Finally, let us consider charge conjugation C, which for a
Dirac fermion takes the form

wox, 1) = iy (x, 1)". (2.23)

As it should, this implies that a Majorana fermion is
C-invariant

y(x, 1) = y(x,1). (2.24)
E. Propagation of wave packets
By inserting the plane wave ansatz
w(x,1) =Aexp(i(kx —wt)) + Bexp(—i(kx—wt)), (2.25)
into the Majorana equation (2.6) one obtains
2\2 | 2.2 @ —Mc?
® =/ (Mc*)* + k*c?, B=iA e (2.26)
C

such that the most general wave packet solution of the
Majorana equation is given by

wix 1) = / dk {A(k) exp(i(kx — o))

2

+iAk) LM e (—ithor - a)t))} @)

kc

The normalization condition, inherited from the Dirac
equation, then takes the form

o) = [t ()

2 w(w— Mc?
:2/dx|zp|2:—/dk|A(k)|27( - ),
T k=c

(2.28)

We have seen that the expectation values of energy and
momentum vanish because a Majorana fermion is its own
antiparticle. Let us now calculate the expectation value of
the velocity operator

2
v= 0w = ki, (2.29)
which takes the form
2 ® — Mc?
(0)(1) == / dKAP =25 = (1)(0), (2:30)
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and hence is time-independent. It is straightforward but
somewhat tedious to calculate the expectation value of the
position operator and one obtains

(x)(1) = (x)(0) + (v)(0)z

+im/&a%mw
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the nonrelativistic free particle Schrodinger equation for
which (x)(7) = (x)(0) + (v)(0)z [27].

F. Relation of the Majorana equation to a relativistic
Schrodinger equation

As we discussed before, it is well known that a quantum
mechanical single-particle interpretation of the Dirac or

Mc 5 ) Majorana equation is problematical. The right-hand side of
) (@ — Mc?)[exp(-2iwr) — 1] the Majorana equation cannot even be viewed as a quantum
1 Me mechanical Hamiltonian acting on a wave function,
(x)(0) = 2—9% / dkA(—k)A(k)?(a) - Mc?)? because it involves both y and w*. Let us map y to a
”1 @ ( M) Schrodinger-type wave function
wlw — C
=3 [ dkA(k)OA(k)* ——5—5— 2.31 2)2 262 - Mc?
o8 [aawpan PGS ey T e e
pc
The oscillatory contribution to (x)(#) involving exp(—2iwt) — i (2.32)
is reminiscent of “Zitterbewegung”. This term is not P= v '
present for the propagation of wave packets following  which obeys
|
M 2\2 2.2 M 2
i0,®(x, 1) = i0y(x.1) + i ALLS) ;f C T 0w (x. 1)
VMO T 2E — M
= My (1) + copx.ny - i V) IS My () + e ()
Mc?)? + p*c® = Mc?
=/ (Mc?)? + p*c? [w(x, 1) +i (Mc”) pf w(x, )"
=/ (Mc?)? + p*c?®(x,1). (2.33)

Remarkably, @ obeys a relativistic Schrodinger equation
with only positive energy states. In particular, the equation
for @ has a consistent quantum mechanical single-particle
interpretation, with /(Mc?)? + p?c? playing the role of
the Hamiltonian. In the context of point-particle relativistic
quantum mechanics it is no problem that this Hamiltonian
is nonlocal (i.e. it contains derivatives of arbitrary order).

Interestingly, while the Majorana equation allows only a
sign change of wy, the relativistic Schrodinger equation
allows global U(1) phase changes

2®(x, t) = exp(ia)®(x, 1), (2.34)

which give rise to a nonlocal conserved probability current
that was constructed in [28]. This current is not directly
related to the conserved local Majorana current of Eq. (2.10).
One can invert the relation between y and ® to obtain

1

2/ (Mc?)? + pc?
x{(V&;;Eﬁifgig—kkhg>¢%nt)

+ ipc®(x, t)*}

w(x 1) =

(2.35)

The simple U(1) symmetry of Eq. (2.34) then turns into the
complicated nonlocal transformation

1
2/ (M) + pPc?

“(x,1) =
X K (Mc?)? + p*c® + Mc2>“¢>(x, 1)

+ ipc*®(x, t)*}
B 1
2/ (Mc?)? + p*c?

x[((MHP+p%W+M&>mmm@uJ)

+ ipcexp(—ia)®(x, t)*} . (2.36)

Similarly, the simple Lorentz transformation for a Majorana
spinor of Eq. (2.15) turns into a complicated nonlocal
transformation rule for @, which is not very illuminating
in the present context but may be interesting to study in more
detail in the framework of relativistic quantum mechanics of
free particles (in contrast to quantum field theory) [29].
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The Schrodinger-type wave function @ inherits its P and T
symmetry properties from the Majorana “wave function” y

MC2 2 + 26‘2 —MC‘2
a0 = ") + AL Py, 1y
| ST - M
— ip(-an + VL w(ox, 1y
= i®(—x,1),

To(x, 1) =Ty (x, 1)+ i w(x. 1)’

/(MCZ)Z +p26‘2 —MC2T
pc

M22 22_M2
1) (Mc*)* + pc c

pc

w(x,—1)

= O(x,—1)". (2.37)
The introduction of @ and its corresponding relativistic
Schrodinger equation may provide a consistent quantum
mechanical single-particle interpretation of the Majorana
equation. Based on this, one could evaluate new expectation
values. For example, when evaluated with ® (rather than with
the Dirac spinor V¥ that obeys the Majorana condition), one
would obtain (x)(¢) = (x)(0) + (v)(0)¢ without any addi-
tional contribution from “Zitterbewegung”, such as the one in
Eqg. (2.31). While this is interesting, it is not the subject of the
current paper. Here we stay with the original Majorana
equation by imposing the Majorana condition on a Dirac
spinor, and accept the problems of its quantum mechanical
interpretation as a single-particle equation.

III. MAJORANA FERMIONS CONFINED
TO AN INTERVAL

In this section we investigate Majorana fermions in a
1-dimensional box. In particular, we study the self-adjoint
extension parameters that characterize a perfectly reflecting
boundary condition and we solve the Majorana equation for
a particle confined to an interval.

A. Perfectly reflecting walls for Majorana fermions

It is well known to the experts, but only rarely empha-
sized in quantum mechanics textbooks, that a quantum
mechanical wave function need not necessarily vanish at a
perfectly reflecting wall [22,30-32]. In fact, the most
general perfectly reflecting Robin boundary condition is
characterized by a self-adjoint extension parameter y € R
and takes the form y¥(0) 4+ 0,%(0) = 0. The standard
textbook boundary condition ¥(0) = 0 then corresponds to
the special case y = oo. The general Robin boundary
condition ensures that the nonrelativistic probability current
vanishes at the boundary. This implies that no probability is
leaking out of the box. More than this is not required for a
consistent unitary quantum mechanical evolution.

PHYSICAL REVIEW D 95, 065007 (2017)

Let us begin by studying the (1 + 1)-d Dirac equation on
the positive x-axis with a perfectly reflecting boundary at
x =0 [22]. In order to investigate the Hermiticity of the
Dirac Hamiltonian, we consider

(x|H|¥) = Aoo dxy (x)"[—caid, + pmc?¥(x)

_ A " dx{[—caid, + pmcy(x)}T9(x)
— icx(0)"a¥(0)

— (P|Hly)" - icy(0)'a®(0). (3.1)
which leads to the Hermiticity condition
2(0)a®(0) = 0. (3.2)

We now introduce the self-adjoint extension condition

w2(0) = Ay, (0), 1eC,

(3.3)
which reduces Eq. (3.2) to

01 Y(0) = 0)*A 0)* 0)=0
Lo ¥ = 102 420 (0) =

= 12(0) = =2"%1(0).

;((W(
(3.4)

In order for H to be self-adjoint, the domains of H and H T
must coincide, i.e. D(H) = D(H"). To achieve this, one
must request

A= (3.5)

i.e. A must be purely imaginary. Hence, for Dirac fermions
in 1-d there is a I-parameter family of self-adjoint exten-
sions that characterizes a perfectly reflecting wall. The self-
adjointness condition Eq. (3.3) implies
0 1
1 0
= clw1(0)w2(0) + w2(0) w1 (0)]

= c[w1(0)" A1 (0) + 1 (0)"2y1 (0)] = 0.

J(0) = cP(0)Ta¥(0) = c\p(oﬁ< >‘P(O)

(3.6)

Hence, as in the nonrelativistic case, the current j(0)
vanishes at the perfectly reflecting wall.

Majorana fermions obey the additional constraint
W, = Iy}, such that
w1(0) = w2 (0) =iy, (0)" = A =1=2==%i. (3.7)
Hence, Majorana fermions admit only two discrete self-

adjoint extensions, no longer a continuous 1-parameter
family.
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B. Majorana fermion in a 1-d box In order to maintain parity symmetry, we demand
Let us consider a 1-d box x € [-L/2,L/2] endowed that the parity transformed field also obeys the boundary
’ condition

with perfectly reflecting boundary conditions. For

Majorana fermions this means
s¢Pw(L/2) ="y (L/2)*

sap(L/2) = w(L/2)", = syiy(=L/2) = [iy(=L/2)]" = —iy(-L/2)"
s_y(=L/2) =w(=L/2)*,  s.,s_=+1.  (3.8) = 5. =S, (3.9)

p(x1)

p(x.1)

p(x1)

p(x.1)

p(x1)

S 5E =T/8 B

= E
= : .
a0 @ ]
os H h
ok . . . . i . . . . ]
5505 04 03 02 0.1 0 0.1 0.2 03 04 0.5
ST T
2 | !
= sk ]
= —_
s 1F t=T/4 ]

15 E =378

p(x.1)

p(x,t)

FIG. 1. Probability density p(x,?) for a Majorana fermion confined to a 1-d interval x/L = [—%,%} in the parity-respecting case

(s, = —s_) with MLc¢ = 1 for various times 7 in units of the period T = 27/ of the wave function. Note that p(x, 7) is periodic in time
with period 7/2. The probability density at t = T/4 is the parity image of the initial density, i.e. p(x, T/4) = p(—x,0). The state of
lowest frequency is shown in the top panels, while the first excited state is shown at the bottom.
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We now make the ansatz

w(x,t) = Aexp(i(kx — wt))
2

+ iA* %exp(—i(kx — wt))

+ Bexp(i(—kx — wt))

—iB* %exp(—i(—kx — o).

(3.10)

PHYSICAL REVIEW D 95, 065007 (2017)

with @ = /(Mc?)? + k*c*. Imposing the boundary con-

ditions of Eq. (3.8) then implies

w—Mc?—is kc

®—Mc?*+is ke’
w—Mc*—is_kc

w—Mc*+is_kc’

B = Aexp(ikL)

B = Aexp(—ikL)

(3.11)

If we choose parity-violating boundary conditions with
s_ = s, this implies

p(x.1)

p(x1)

1 1
0.5 04 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
2 T T T T
N T T T T T ]
1.5 F -
—~
% 1 F =378 3
Nl
= ]
05 [ —
oL L 1 L 1 L 1 L I ]
0.5 04 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5

p(x.1)

v o e

1 1
0.5 04 0.3 02 0.1 0.1 0.2 03 04 0.5
2 T T T T T T T T
15+ —
—~
%,k =0 ]
E E
05 —
0 L 1 1 1 1 i 1 1 1 1 ]
0.5 04 03 02 0.1 0 0.1 0.2 03 0.4 0.5
2 T T T T T T T
= ]
= -
= ]
1 L I L 1 L 1 ]
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
T T T T T T T ]
2 3
= =
= ]
| ! ! | ]
0.2 0.1 0.3 0.4 0.5
T T T T
2 ]
= 4
s ]
1 L L 1 ]
0.2 0.1 0.3 0.4 0.5
T T T T
2 ]
1 .
= L .
05 —
oL 1 L 1 L 1 L 1 L 1 ]
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FIG. 2. Probability density p(x,t) for a Majorana fermion confined to a 1-d interval x/L = [-3,1] in the parity-violating case

272

(s, = s_) with MLc = 1 for various times 7 in units of the period T = 27/ of the wave function. Note that p(x, ¢) is periodic in time
with period T'/2. Since parity is now violated, p(x, T/4) # p(—x,0). The state of lowest frequency is shown in the top panels, while the

first excited state is shown at the bottom.
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exp(ikL) = £1 = k = %n, nez  (3.12)

which is equivalent to the nonrelativistic momentum
quantization condition for the standard box boundary
condition W(+L/2) = 0. On the other hand, using parity-
symmetric boundary conditions with s_ = —s,, one
obtains the quantization condition

w—Mc?* + is ke
w—Mc* —is kc

M 2
= cos(kL) =F 7o
@

exp(ikL) = +
(3.13)

Let us first consider the massless limit M = 0, o = |k|c,
such that

1
cos(kL):O:>k:%<n+§>, neZ. (3.14)

This solution also applies to massive fermions in the high-
energy limit @ >> Mc?. In the nonrelativistic limit, on the
other hand, we obtain

Mc?

cos(kL) = F ——.
(kL) M + 4

(3.15)

In the low-energy limit % < Mc? this again leads to

cos(kL) =F 1 :>k:%n, nez  (3.16)
It should be noted that the discrete k-values resulting from

the quantization conditions as well as the corresponding

discrete frequencies w = +/(Mc?)? + k*c*> do not yield

stationary energy eigenstates. This is because the solution
of Eq. (3.10) is again a superposition of states with positive
and negative energy +w.

In the parity-respecting case (s, = —s_), the probability
density corresponding to the wave function of Eq. (3.10)
takes the form

2|Ak 2 5 o s
p(x, 1) = —5—[k*c* + 2kc(w — Mc?) sin(2kx) cos(2wt)
c

+ (ke + Mc? — w)(kc — Mc? + w)

x cos(2kx) + (Mc? — w)?], (3.17)
and the normalization factor is given by
1
AP =2kcL[kK*c* + (Mc? — w)?]
+2sin(kL)(kc+Mc? — ) (kc—Mc* + o).  (3.18)

The probability density of Eq. (3.17) is illustrated in Fig. 1.
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In the parity-violating case (s, = s_), the probability
density is given by a more complicated expression, which
we do not display here explicitly. The corresponding
probability density is illustrated in Fig. 2.

IV. MAJORANA FERMIONS
IN (3 + 1) DIMENSIONS

In this section we extend our previous considerations
from (1 + 1) to (3 4+ 1) dimensions. We again consider the
Majorana equation and its symmetries as well as a mapping
to a relativistic Schrodinger equation.

A. The Majorana equation in (3 + 1) dimensions

We start out with the Dirac equationin (3 4 1) dimensions

i0,¥(%. 1)@ pc + pMc?)P(3. 1),

wi(x,1)
X, t
W(x, 1) = wa(x, 1) ’
w3(x. 1)
wa(x.1)
SO A
a= , = . .
c 0 0 -1
For the y-matrices we choose the Dirac basis
05— (1] 0 >
0 -1/
, A 0 o
Y= yoal = < . >’ (4.2)
-t 0

where ¢ are the Pauli matrices and we use the space-time
metric g,, = diag(1,—1,—1,—1). Next, we consider the
Majorana basis

-0 (O 62) . <ial o>
Vv = s V= s
o> 0 0 io!
2 . 3
7~/2:<0 0) }73:(10' 0)
-2 0) 0 &)

in which the y matrices again have purely imaginary entries.
In this basis, the Majorana condition takes the simple form

(4.3)

Y(x, 1) =P(x, )" (4.4)

The Dirac and the Majorana basis are now related by the
unitary transformation
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U— 1|1 1 i =i
2l i1 |
- i 1 1
P =UrUY,  W(x 1) = U¥(x,1).  (4.5)
In the Dirac basis, the Majorana condition reads
(%, 1) = U¥(x. 1) = UP(%.1)*
=U[UY(X, )" = UUTY(%,1)*
0 0 0 —i v (X, 0)*
1{0 0 i O X, 1)*
_ 2 lllz(if ) N
410 i 0 O w3 (x, 1)*
- 0 0 O wa(X, 1)*
wa(X, 1) = iya (X, 1), wu(X 1) = =iy, (%, 1) =
Xt X, 1)*
<W3(q )) ——az(m(q )*> (4.6)
wa(X. 1) (. 1)
Introducing the two-component Majorana spinor
- wi (X, 1)
w(x, 1) = < . ), (4.7)
WZ(X’ [)

the 4-component Dirac equation reduces to the 2-component
Majorana equation

X, t - Xt
o, 00 N Gperpmey| VDS
iy(X,1) iy (X, 1)
—iy (X, )" iy (X,1)*
iO(x,t) = Mc*y(x,t)—co- pty(x,1)*. (4.8)

B. Conserved current

Again, the Majorana equation inherits the conserved
current of the Dirac equation,

(cp(F.1).j(F.1)) =
WX, 1) WX, 1),
7Y%, 1)

VX, )" (X, 1) =
(x, 1) =P )y P, 1) =

cP(%,

c¥(X,

KA.
/\
okt
~
~—
||

HYP(x, 1) = cP(x,1)°
1) 'a¥(x, ).

(4.9)

By imposing the Majorana condition Eq. (2.5), the charge
and current densities take the form
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p(E, 1) =2y (X, 1) w (X, 1),

i3 1) = —cp (X, 0)T56%y (%, 1) — ey (X, )26y (%,1).
(4.10)

By using the Majorana equation (2.6) it is again straight-
forward to verify the continuity equation

Op(3.1) + V- j(3.1) = 0. (4.11)

C. Lorentz invariance, parity, time-reversal,
and charge conjugation

Just as in (1 + 1) dimensions, it is straightforward to
show that the (3 + 1)-d Majorana condition Eq. (4.6) is
again Lorentz covariant. Let us also consider the discrete
symmetries P, T, and C for (3 4+ 1)-d Majorana fermions.
For a Dirac fermion field (X, ), parity P corresponds to
y"W(=X, t). This transformation is again incompatible with
the Majorana condition, but can be combined with a U(1)
phase multiplication by i, such that

B} . 1 0 3
PY(x, 1) = iy®W(=x,1) = i 0 1 Y(-x,1) =
Py (k1) = iy (=X%.1), Pya(X.1) = iwa (=X, 1),
Pus(X,0) = —ip3(=X,1),  Pya(x, 1) = —ipa (=X, 1).
(4.12)

Hence, for a (3 4 1)-d Majorana fermion parity takes the
form

Py(x,1) = (z%(f’ t)> = <Z:WI(_):C’ t>> = iy (=%.1).

wa(x, 1) iy (=X, 1)
(4.13)

This transformation is consistent with the Majorana con-
dition because

Pus(X,1) = —ips (=X, 1) = yo (=X, 1)* = Py (X, 1),

wa(X,1) = —ipy (=X, 1) = =y (=X, 0)" = ="y, (R, 1),
(4.14)

P

and it indeed leaves the Majorana equation invariant. This
is straightforward to show using

6*(6-p)*c®> = —6°6*6>-p =05 p.

(4.15)

For a Dirac fermion in (3 + 1)-d time-reversal takes the
form
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- >0 -
p(x,1) = (6 >‘P(x —1)*. (4.16)
0 o
For a Majorana spinor this implies
Tw(x,t) = c*yp(x, —1)*. (4.17)

It is again straightforward to check that this transformation
leaves the Majorana equation invariant.

Finally, let us consider charge conjugation C, which for a
(3 4+ 1)-d Dirac fermion takes the form

4.18
2 0 (4.18)

- 0 0*\y -
W3, 1) = ( ’ )‘P(x, ).
This implies that a Majorana fermion is indeed C-invariant

Cy(x, 1) = y(x,1). (4.19)

D. Relation of the (3 4 1)-d Majorana equation to a
relativistic Schrodinger equation

Let us also consider the relation of the (3 + 1)-d
Majorana equation to a relativistic Schrédinger equation.
In this case we construct

G - pco’

Mc*)* + p?c? + Mc?

DX, 1) = yw(x. 1) — w(x,1)",

p=—iV. (4.20)

It is straightforward to show that, just as in (1 4 1)-d,
®(x, 1) obeys the relativistic Schrodinger-type equation

i0,®(X,1) = \/(Mc?)? + p*®(x,1). (4.21)

In this case, @(X, ) is a 2-component spinor, which enjoys
a global U(2) symmetry

(%, 1) =QD(F.1), QeUQR). (4.22)

This symmetry is not manifest in the Majorana equation. In
fact, the U(2) symmetry is like an internal “flavor”
symmetry, while the two components of the original
Majorana spinor are related by space-time rotations.
Again, we can invert the relation between y and ©

1

2/ (Mc?)? + pc?
x K\/m + Mc2> o3 1)

45 pedd(i, t)*} .

w(x.1) =

(4.23)
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The U(2) symmetry of Eq. (4.22) then turns into the
nonlocal transformation

1
2v/(Mc?)? + p*c?

X [( (Mc*)? + p>c® + Mc2)9d>(7c, f)

Q

w(x, 1) =

+6 - pco*CO(X, t)*}

1
2y/(Mc?)? + p*c?

X [( (Mc*)? + p>c® + Mc2> QO(%, 1)

+ 6 peatQd(X, t)*} (4.24)

Just as in (1 + 1)-d, Lorentz invariance, which is
manifest in the Majorana equation, is represented by a
complicated nonlinear transformation of the Schrédinger-
type wave function @, which inherits its P and 7 symmetry
properties from the Majorana “wave function” y

=22
Pd(% £)—Prs(3 ) — o pco = )k
D) =y () P )
=22
P G-pco .
=0 Mc2)2+pzc2+Mczlp( *
=i®(=x,1),
=22
- 6-pco .
"O(x.) ="y (e 24 p2e? +MczT"”(x’t>
= > .2
R N 0-pco 2 =
=owbemi) MEP L+ M wix=)
=0®(x,—1)*. (4.25)

V. PERFECTLY REFLECTING WALLS FOR
(3 + 1)-d MAJORANA FERMIONS

In this section we study the self-adjoint extension
parameters that characterize a perfectly reflecting boundary
condition for (3 + 1)-d Majorana fermions. Let us first
consider Dirac fermions confined to a finite 3-d spatial
domain Q [22]. In order to investigate the Hermiticity of the
Hamiltonian we consider
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(| H ) — L Py () a- e + pM)E(R)
— [ @ (-i9)e -+ pu ()
- L Bx{(a- (=iV)e + My (3)} ¥ ()

e / i - () ()
0Q

= (Y[H|y)" - ic/ din - y(X)Ta¥ (%), (5.1)
0Q
which thus leads to the Hermiticity condition
y@)TAE)-aPE) =0,  Feo  (52)

Here 7(X) is the unit-vector normal to the boundary OQ.
Next we introduce the self-adjoint extension condition

() = (i)
A(¥) € GL(2,0),

x€0Q  (53)

which turns Eq. (5.2) to

<"3(})> — _i(3)-3A(F) A 6(’“ (x;> (5.4)

In order to guarantee self-adjointness of H, i.e. the equality
of the domains D(H) = D(H"), we demand

A(x) = —n(x) - 6A(x)"n(x) - 6
= n(X) - 6A(x) = —=[n(x) - 6A(X)]". (5.5)
Hence, 7(X) - 6A(X) is anti-Hermitian. For Dirac fermions,
there is thus a 4-parameter family of self-adjoint extensions
that characterizes a perfectly reflecting wall. In the MIT bag
model [24-26], the boundary condition was chosen as
A(X) = in(X) - 6. This maintains spatial rotation invariance
around the normal 72(X) on the boundary, but is not the most
general choice.
Let us now impose the Majorana condition Eq. (4.6),
which implies

PHYSICAL REVIEW D 95, 065007 (2017)

@ grzn) = (wsien)
i) =
() =) =
i (o) =0 (g

(5.6)

In order to be consistent with the Majorana condition

Eq. (4.6), the matrix A(X) of self-adjoint extension param-
eters must hence obey

AX)6?A(X)* = —0c°. (5.7)

How does this constraint affect the original 4-parameter

family of self-adjoint extensions? In order to answer this

question, let us perform a unitary transformation V(x) €
SU(2) that diagonalizes n(X) - o, i.e.

VX)n(x)-oV(x)" = o,
v(})z(})v(})* =Ax) =
cAMX) = ~[*2F)T,
A(X) *A(X)" = —6* (5.8)
First of all, we make the ansatz
A(X) = Ag(x) —|—71(?c)’ -0, Ao(X), 4;(x) € C. (5.9)
The condition
63/1()?)’ = —[a%(?c)’]*, (5.10)
then implies
A(X) ==d(X)" ) =)
lz(.}), - /12(})/*, /13(56)’ = —/13(})1*, (511)

which indeed represents a 4-parameter family of self-
adjoint extensions. The additional relation

A(X) 6*A(X)"* = —02, (5.12)

can be satisfied in two different ways. First, we assume that
A1 (%) = A,(x) = 0. In that case, Eq. (5.12) implies

Qo) = 15(3F)? =1, (5.13)
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which reduces the original 4-parameter family for Dirac
fermions to a 1-parameter family of self-adjoint extensions
for Majorana fermions. Alternatively, we may assume that
Ao(X)" = A3(x)" = 0. In that case, Eq. (5.12) implies
LX)+ )2 =1, (5.14)
which corresponds to another 1-parameter family of self-
adjoint extensions. Hence, we conclude that the boundary
conditions for Majorana fermions confined to a finite 3-d

spatial volume are characterized by two distinct 1-param-
eter families of self-adjoint extensions.

VI. CONCLUSIONS

Motivated by potential applications to ultracold matter,
we have investigated Majorana fermions confined to a 1-d
interval or to a 3-d finite volume. This required an
understanding of the self-adjoint extension parameters
that characterize the most general perfectly reflecting
boundary conditions. In contrast to (1 + 1)-d Dirac fer-
mions, whose hard wall boundary conditions are described
by a continuous 1-parameter family of self-adjoint exten-
sion parameters, there are only two discrete types of wall
boundary conditions for (1 + 1)-d Majorana fermions. In
three spatial dimensions, on the other hand, the most
general perfectly reflecting wall boundary condition for
Dirac fermions is characterized by a 4-parameter family of
self-adjoint extension parameters, while the corresponding

PHYSICAL REVIEW D 95, 065007 (2017)

boundary condition for Majorana fermions is characterized
by two different families of self-adjoint extensions, each
with only a single parameter. Based on these results, one
can derive the features of engineered systems of Majorana
fermions in a variety of confining spatial geometries,
which we did here explicitly for a 1-d interval. In addition,
we have mapped the Majorana equation in one and three
spatial dimensions to an equivalent nonlocal relativistic
Schrodinger-type equation, whose quantum mechanical
interpretation as a single-particle equation is not
problematic.

While we have developed the self-adjoint extension
theory for quantum mechanical Majorana fermions on
pure theoretical grounds, it is interesting to apply it to
ultracold matter systems such as Kitaev wires, super-
conductors, or ultracold atomic gases. In particular, one
may investigate which physical values of the self-adjoint
extension parameters are realized in concrete ultracold
matter systems. We leave such investigations for future
studies.
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