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In this paper, we present a detailed study of the problem of classical stability of U(1) gauged Q-balls.
In particular, we show that the standard methods that are suitable for establishing the classical stability
criterion for ordinary (nongauged) one-field and two-field Q-balls are not effective in the case of U(1)
gauged Q-balls, although all the technical steps of calculations can be performed in the same way as those
for ordinary Q-balls. We also present the results of numerical simulations in models with different scalar
field potentials, explicitly demonstrating that, in general, the regions of stability of U(1) gauged Q-balls are
not defined in the same way as in the case of ordinary Q-balls. Consequently, the classical stability criterion
for ordinary Q-balls cannot be applied to U(1) gauged Q-balls in the general case.
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I. INTRODUCTION

A class of nontopological solitons, initially proposed in
[1] and known as Q-balls [2], has been widely discussed in
the literature during the past years. It is interesting to
mention that generalization from the global U(1) symmetry
to the gauge U(1) symmetry was proposed in the paper [3],
which was published together with [1] (in the same issue of
the journal). Later such a theory was examined in the well-
known paper [4]. One can also recall papers [5–7], where
gauged Q-balls1 were examined mainly from a theoretical
point of view, as well as papers [8–14], where solutions for
gauged Q-ball were obtained numerically.
Stability of such nontopological soliton solutions, in

particular, the classical stability, is an important problem.
The well-known classical stability criterion for ordinary
(nongauged) Q-balls, which is dQ

dω < 0, where Q is the
Q-ball charge, was derived in [15,16]. One may suppose
that analogous classical stability criterion is valid for U(1)
gauged Q-balls. However, there is no rigorous mathemati-
cal proof supporting this hypothesis.
In the present paper we will try to derive the classical

stability criterion for such gauged Q-balls. Instead of using
the approach of [15,16], for the calculations we will apply
the Vakhitov-Kolokolov method [17,18], which was used
for derivation of the classical stability criterion for the
systems described by the nonlinear Schrödinger equation
(for a more detailed discussion of the stability of localized
solutions in the systems described by the nonlinear
Schrödinger equation, see [19–21]). We will show that
this method works very well for the case of ordinary one-
field and two-field Q-balls, but does not provide any

information about the possible classical stability criterion
of U(1) gauged Q-balls, although all the technical steps of
calculations can be performed in this case too. We will also
provide numerical simulations of classical (in)stabilities in
models with different scalar field potentials, supporting the
results of analytical considerations.
The paper is organized as follows. As a demonstration of

the Vakhitov-Kolokolov method, in Sec. II we present the
proof of the classical stability criterion for the case of
ordinary one-field and two-field Q-balls. In Sec. III we
make an attempt to derive the classical stability criterion for
the case of U(1) gauged Q-balls and discuss the reasons
why this attempt is unsuccessful. We also present the
results of numerical simulations of classical (in)instabilities
of gauged Q-balls. In the Conclusion we briefly discuss the
obtained results.

II. CLASSICAL STABILITY OF
ORDINARY Q-BALLS

In this section, we will derive the classical stability
criterion for the case of one-field and two-field Q-balls.2

For the first time, this criterion was derived in [16] for one-
field Q-balls and in [15] for the model with two scalar
fields, which was proposed and examined in that paper. The
proof of [15,16] was based on examining the properties of
the energy functional of the system, while keeping the
charge fixed. As was noted in the Introduction, instead of
using the same approach, we will apply the Vakhitov-
Kolokolov method [17,18], which was used to obtain the
classical stability criterion for the systems described by the

1For simplicity, from here on, we call U(1) gauged Q-balls
“gauged Q-balls”.

2Although solutions in two-field models like the one of [15]
are not Q-balls in the sense of Coleman’s definition of Q-balls [2],
they are of the same kind, so we also call such soliton solutions
“Q-balls”.
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nonlinear Schrödinger equation. This method is based on
the use of only the linearized equations of motion for the
perturbations above the background solution. Wewill apply
this method to the case of U(1) gauged Q-balls, but first we
will demonstrate how it works in the simpler cases of
ordinary one-field and two-field Q-balls (from the math-
ematical point of view, two-field Q-balls are closer to the
gauged Q-balls than the one-field Q-balls, so the explicit
examination of this case makes sense). So, let us proceed
to the case of one-field Q-balls, which we will study in
detail.

A. One-field Q-balls

Let us start with the standard action, describing a complex
scalar fieldϕ in the flat (dþ 1)-dimensional space-timewith
the coordinates xμ ¼ ft; ~xg, μ ¼ 0; 1;…; d; in the form

S ¼
Z

dtddxð∂μϕ
�∂μϕ − Vðϕ�ϕÞÞ: ð1Þ

For a Q-ball solution, we consider the standard ansatz

ϕðt; ~xÞ ¼ eiωtfðrÞ; ð2Þ

where r ¼
ffiffiffiffiffi
~x2

p
and fðrÞ is a real functionwhich is supposed

to have no nodes [without loss of generality, we can set
fðrÞ > 0 for any r] and to satisfy the conditions

∂rfðrÞjr¼0 ¼ 0; lim
r→∞

fðrÞ ¼ 0: ð3Þ

In this case, the function fðrÞ satisfies the equation

ω2f þ Δf −
dV

dðϕ�ϕÞ
����
ϕ�ϕ¼f2

f ¼ 0; ð4Þ

where Δ ¼Pd
i¼1 ∂i∂i. The charge of a Q-ball is defined in

the standard way as

Q ¼ i
Z

ðϕ∂0ϕ
� − ϕ�∂0ϕÞddx ¼ 2ω

Z
f2ddx: ð5Þ

In order to examine the classical stability of a Q-ball, on
should consider small perturbations above the background
solution (2) and examine the corresponding linearized
equations of motion. The standard ansatz for the perturba-
tions takes the form [22,23]

ϕðt; ~xÞ ¼ eiωtfðrÞ þ eiωtðað~xÞeiρt þ bð~xÞe−iρ�tÞ: ð6Þ

Note that the functions að~xÞ and bð~xÞ are not supposed to
be spherically symmetric. From the very beginning, it is
convenient to use the notations

ξ1ð~xÞ ¼ að~xÞ þ b�ð~xÞ; ξ2ð~xÞ ¼ að~xÞ − b�ð~xÞ: ð7Þ

With these notations, the corresponding linearized equa-
tions of motion take the form

L1ξ1 − 2ωρξ2 − ρ2ξ1 ¼ 0; ð8Þ

L2ξ2 − 2ωρξ1 − ρ2ξ2 ¼ 0; ð9Þ

where the operators L1 and L2 are defined as

L1 ¼ −Δþ UðrÞ þ 2SðrÞ − ω2; ð10Þ

L2 ¼ −Δþ UðrÞ − ω2 ð11Þ

with

UðrÞ ¼ dV
dðϕ�ϕÞ

����
ϕ�ϕ¼f2ðrÞ

;

SðrÞ ¼ d2V
dðϕ�ϕÞ2

����
ϕ�ϕ¼f2ðrÞ

f2ðrÞ: ð12Þ

Possible instabilities are described by solutions to Eqs. (8)
and (9) with Imρ ≠ 0.
Using Eqs. (8) and (9) it is possible to show (see the

detailed derivation in Appendix A) that the following
relation fulfills

ρ2 ¼ ρ�2: ð13Þ

This equation has two obvious solutions: ρ ¼ γ and ρ ¼ iγ,
where γ is a real constant. Since we are interested in
classical instabilities, below we will consider only the
case ρ ¼ iγ.
As was noted above, the unstable modes can only have

the form

ϕðt; ~xÞ ¼ eiωtfðrÞ þ eiωteγtðuð~xÞ þ ivð~xÞÞ; ð14Þ

where γ is a real constant and uð~xÞ, vð~xÞ are real functions.
In what follows, we will consider γ ≠ 0 and use the
notations u, v instead of ξ1 and ξ2. In these notations,
the linearized equations of motion take the form

Δuþ ω2uþ 2ωγv − γ2u − Uu − 2Su ¼ 0; ð15Þ

Δvþ ω2v − 2ωγu − γ2v −Uv ¼ 0: ð16Þ

Let us introduce the operators Lþ and L− defined by

Lþ ¼ L1 ¼ −ΔþUðrÞ þ 2SðrÞ − ω2; ð17Þ

L− ¼ L2 þ γ2 ¼ −Δþ UðrÞ − ω2 þ γ2; ð18Þ

and the operator
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L̂ ¼
�
Lþ 0

0 L−

�
: ð19Þ

Note that we have added γ2 to the definition of the operator
L−. The necessity for this step will become clear later.
In the operator form, the linearized equations of motion

for the functions u and v look like

�
Lþ 0

0 L−

�
Ψ ¼ −γ2

�
u

0

�
þ 2ωγ

�
v

−u

�
; ð20Þ

where the notation

Ψ ¼
�
u

v

�
ð21Þ

is introduced for convenience.
Now let us look at the properties of perturbations,

following from the linearized equations of motion. First,
by multiplying Eq. (16) by f, integrating the result over the
spatial volume and using the fact that L2f ¼ 0 [see Eq. (4)],
we get

hΦjΨi ¼
Z

ΦTΨddx ¼ 0; ð22Þ

where

Φ ¼
�
2ωf

γf

�
: ð23Þ

Relation (22) is simply the consequence of the total charge
conservation.
Second, there are obvious zero modes (i.e., the eigen-

states with the zero eigenvalue, not the lowest modes) of the
operator L̂:

L̂Ti ¼ L̂

� ∂if

0

�
¼ 0: ð24Þ

The existence of the eigenstates Ti, i ¼ 1;…; d, is the
corollary of the fact that Lþ∂if ¼ 0, whereas ∂if are just
the translational modes. Note that since fðrÞ > 0 for any r,
it is the eigenfunction of the lowest eigenstate of the
operator L− with the eigenvalue γ2 > 0 [for example, for
d ¼ 3 it corresponds to the 1s level in the spherically
symmetric quantum mechanical potential UðrÞ − ω2 þ γ2],
so all the eigenstates of the operator L̂ with the zero and
negative eigenvalues are defined by the corresponding
eigenstates of the operator Lþ.

3 At this point we should
impose the following restriction on the spectrum of the
operator Lþ, which is crucial for the subsequent proof:

(i) the operator Lþ has only one negative eigenvalue.
For the one-dimensional case d ¼ 1 this restriction fulfills
automatically. Indeed, the translational mode ∂xf has only
one node, thus there is only one eigenstate with negative
eigenvalue [24]. However, this is not so for the case d > 1.
For example, for d ¼ 3 the translational modes ∂if form the
2p level and it is possible that this level is energetically
higher than, say, 1s and 2s levels (for an example of
such situation in atomic physics, see [25]). However, the
restriction on the number of eigenstates of Lþ with negative
eigenvalues seems to be fulfilled at least for the simple scalar
field potentials which are usually considered for Q-balls.
And third, from Eq. (20) it follows that

hΨjL̂jΨi ¼ −γ2hujui: ð25Þ
It is clear that if hΨjL̂jΨi > 0, then there are no unstable
modes above the Q-ball solution. So, the question is under
which conditions the lowest possible value of hΨjL̂jΨi is
positive, taking into account the extra condition (22)? This
question leads to the variational problem for the functional

I ¼ hΨjL̂jΨi − θhΦjΨi − λðhΨjΨi − C2Þ; ð26Þ
where θ and λ are the Lagrange multipliers, the second
Lagrange multiplier λ stands for the normalization con-
dition hΨjΨi ¼ C2, where C ≠ 0 is a real constant of the
corresponding dimension. The standard variational pro-
cedure leads to the equation

2L̂Ψ − 2λΨ − θΦ ¼ 0: ð27Þ
Now we take the orthonormal system of eigenfunctions of
the operator L̂, which is supposed to be full, and decom-
pose Ψ and Φ in these eigenfunctions. Let us label the
lowest eigenfunction and eigenvalue of the operator L̂ as
ψ−1 and λ−1, respectively, where λ−1 < 0 (as was noted
above, we suppose that there is only one such eigenvalue),
the zero modes ψ0;i ∼ Ti correspond to the eigenvalue
λ0 ¼ 0, and all the other modes ψn with n > 0 are such that
λn > 0. We also choose ψn such that they are dimensionless
and hψnjψni ¼ 1 for any n.
It is clear that hTijΦi ¼ 0, so the decomposition of Φ

takes the form

Φ ¼
X∞
n¼−1
n≠0

dnψn; ð28Þ

where dn are the coefficients of the decomposition.4

Thus, from Eq. (27) we get

3This is the first reason to add γ2 to the definition of the
operator L−—all eigenvalues of L− are positive and there are no
zero modes of the operator L̂ coming from L−.

4Of course, the set of eigenstates of the operator L̂ is not
necessarily discrete; there may exist a continuous part of the
spectrum. So, the most general form of the decomposition looks
like Φð~xÞ ¼PN

n¼−1
n≠0

dnψnð~xÞ þ
R∞
λc

dð~λÞψð~λ; ~xÞd~λ. However, the

existence of the continuous part of the spectrum does not change
the proof if λc > λ1 > 0. So, for the sake of simplicity, below
wewill use the decomposition (28) instead of the more general one.
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Ψ ¼ θ

2

X∞
n¼−1
n≠0

dn
λn − λ

ψn: ð29Þ

Multiplying Eq. (27) by ΨT, integrating the result over
the spatial volume and using the conditions (22) and
hΨjΨi ¼ C2, we obtain

hΨjL̂jΨi ¼ λhΨjΨi ¼ λC2: ð30Þ

Thus, the sign of hΨjL̂jΨi is defined by the sign of λ.
The next step of the proof is to find a minimal value of λ.

To this end, we take Eq. (22) and substitute (28) and (29)
into it. We get the equation

θ

2

X∞
n¼−1
n≠0

d2n
λn − λ

¼ 0; ð31Þ

which defines possible values of λ for which the extra
condition (22) is satisfied. Let us define the function

FðλÞ ¼
X∞
n¼−1
n≠0

d2n
λn − λ

ð32Þ

It is clear that everywhere except the points λn, the
function FðλÞ is a monotonically growing function. A
schematic representation of this function is presented in
Fig. 1. It is clear that, due to the monotonic growth of FðλÞ,
the minimal possible value of the solution to equation
FðλÞ ¼ 0 is positive for Fð0Þ < 0; see Fig. 1. So, if
Fð0Þ < 0, then there cannot be unstable modes in the
perturbations above the Q-ball solution.
The last step is to represent the value of Fð0Þ through the

known characteristics of the Q-ball. In order to do it, we
write Fð0Þ as

Fð0Þ ¼
X∞
n¼−1
n≠0

d2n
λn

¼ hΦjL̂−1jΦi: ð33Þ

Next, we observe that by differentiating Eq. (4) with respect
to ω, we get

Lþ
df
dω

¼ 2ωf: ð34Þ

The latter allows to construct the column

 
df
dω
f
γ

!
, for which

the relation

L̂

 df
dω
f
γ

!
¼
�
2ωf

γf

�
¼ Φ ð35Þ

fulfills,5 leading to

 df
dω
f
γ

!
¼ L̂−1Φ: ð36Þ

Substituting the latter formula into (33), we arrive at

Fð0Þ ¼
Z

ð 2ωf γf Þ
 df

dω
f
γ

!
ddx

¼
Z �

2ωf
df
dω

þ f2
�
ddx ¼ 1

2

dQ
dω

; ð37Þ

where we have used the definition of the Q-ball charge (5).
Thus, if dQ

dω < 0, the minimal possible value of λ such that

0
1 1 2

F

0
1 1 2

F

(a) (b)

FIG. 1. Schematic representation of the function FðλÞ for the cases with Fð0Þ < 0 (a) and Fð0Þ > 0 (b). The dashed lines correspond
to the asymptotes λ ¼ λn, the dots mark the smallest solutions of equation FðλÞ ¼ 0, and the squares mark the points ð0; Fð0ÞÞ.

5This is the second reason to add γ2 to the definition of the
operator L−.

A. G. PANIN and M. N. SMOLYAKOV PHYSICAL REVIEW D 95, 065006 (2017)

065006-4



the condition (22) holds, is positive, leading to the
positivity of the minimal possible value of hΨjL̂jΨi in
accordance with (30). The latter means that there are no
unstable modes with γ ≠ 0 for dQ

dω < 0. This ends the proof.
The following remarks are in order.
(i) The condition dQ

dω > 0 does not mean that there exist
unstable modes—the results presented above and the
results of [15,16] (analogously to the corresponding
results of [17,18] for the nonlinear Schrödinger
equation) only state that there are no unstable modes
if dQ

dω < 0 (of course, if the restriction on the number
of negative eigenvalues of the operator Lþ is
fulfilled). However, the explicit analyses of insta-
bilities in different models, which were carried out in
[22,23,26], show that at least in the models dis-
cussed in these papers there do exist unstable modes
for dQ

dω > 0.
(ii) What if there are two different negative eigenvalues

of the operator Lþ (and, consequently, of the
operator L̂)? This situation is schematically repre-
sented in Fig. 2. One can see that in this case there
always exists negative solution to the equation
FðλÞ ¼ 0, which invalidates the classical stability
criterion dQ

dω < 0. Meanwhile, we are not aware of
any explicit example of a Q-ball, for which the
operator Lþ has more than one negative eigenvalues
and which is classically unstable for dQ

dω < 0.
(iii) What if there is another zero mode ψ ðþÞ

0 of the
operator Lþ? Then, the operator L̂ has the zero mode

ψ0 ¼
�
ψ ðþÞ
0

0

�
. Using (35), it is easy to show that

hψ0jΦi ¼ 0, so this mode does not contribute to the
decomposition (28).

(iv) In principle, it is possible that the positive part of the
spectrum of the operator L̂ is purely continuous and

starts at λc > 0. Then, for any λ such that λ−1 <
λ < 0 we have

FðλÞ ¼ d2−1
λ−1 − λ

þ
Z

∞

λc

d2ð~λÞ
~λ − λ

d~λ

<
d2−1
λ−1

þ
Z

∞

λc

d2ð~λÞ
~λ

d~λ ¼ Fð0Þ ¼ 1

2

dQ
dω

; ð38Þ

where λ−1 < 0. Thus, if dQ
dω < 0, then FðλÞ < 0 for

any λ−1 < λ < 0 and it is impossible to have
negative roots of the equation FðλÞ ¼ 0. The latter
leads to the absence of unstable modes.

(v) Q-balls with ω ¼ 0 are always classically unstable.
The solution to Eq. (20), describing the unstable
mode, has the form

Ψ ∼
�
ψ−1ð~xÞ

0

�
; γ ¼

ffiffiffiffiffiffiffiffiffiffi
−λ−1

p
: ð39Þ

(vi) It is clear that the proof presented above works for
solutions of form (2) (and without nodes) in the
space-time with compact spatial dimensions.

(vii) The proof presented above does not work for the
scalar condensate solutions of the form fð~xÞ ¼
fceiωt, where fc is a constant, even in the space-
time with compact spatial dimensions (in this case
the charge of the condensate is finite). Indeed, in
our notations the classical stability condition [27] for
such a condensate is

d2V
dðϕ�ϕÞ2

����
ϕ�ϕ¼f2c

≥ 0; ð40Þ

whereas

ω2 ¼ dV
dðϕ�ϕÞ

����
ϕ�ϕ¼f2c

ð41Þ

defines the value of fc [27]. With these relations, the
operator Lþ has the form

Lþ ¼ −Δþ 2
d2V

dðϕ�ϕÞ2
����
ϕ�ϕ¼f2c

f2c; ð42Þ

which implies that, due to (40), Lþ has no negative
eigenvalues. The latter makes the Vakhitov-Kolo-
kolov approach inapplicable in this case. An extra
indication of this fact is the absence of the corre-
sponding translational mode (∂ifc ≡ 0). Moreover,
it is possible to show that for the stable scalar
condensate satisfying (40) the relation dQc

dω > 0

fulfills [28].

0
1 1 2

F

FIG. 2. Schematic representation of the function FðλÞ for the
case with the extra negative eigenvalue λ� of the operator L̂. The
dashed lines correspond to the asymptotes λ ¼ λn and λ ¼ λ�;
the dot labels the smallest solution of equation FðλÞ ¼ 0.
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B. Two-field Q-balls

Here we consider the action of form

S ¼
Z

dtddx
�
∂μϕ

�∂μϕþ 1

2
∂μχ∂μχ − Vðϕ�ϕ; χÞ

�
; ð43Þ

where ϕ is a complex scalar field and χ is a real scalar field.
For the two-field Q-ball, we consider the ansatz

ϕðt; ~xÞ ¼ eiωtfðrÞ; ð44Þ

χðt; ~xÞ ¼ gðrÞ; ð45Þ

where again r ¼
ffiffiffiffiffi
~x2

p
, fðrÞ and gðrÞ are real functions,

fðrÞ > 0 for any r, and

∂rfðrÞjr¼0 ¼ 0;

lim
r→∞

fðrÞ ¼ 0;

∂rgðrÞjr¼0 ¼ 0;

lim
r→∞

gðrÞ ¼ 0: ð46Þ

A well-known example of the soliton solution in such a
model can be found in [15].
The functions fðrÞ and gðrÞ satisfy the equations of

motion

ω2f þ Δf −
∂V

∂ðϕ�ϕÞ
����
ϕ�ϕ¼f2

χ¼g

f ¼ 0; ð47Þ

Δg −
∂V
∂χ
����
ϕ�ϕ¼f2

χ¼g

¼ 0: ð48Þ

The charge of the Q-ball is defined by (5).
We start from the ansatz

ϕðt; ~xÞ ¼ eiωtfðrÞ þ eiωteγtðuð~xÞ þ ivð~xÞÞ; ð49Þ

χðt; ~xÞ ¼ gðrÞ þ eγtφð~xÞ; ð50Þ

where γ is a real constant. Analogously to the case of the
one-field Q-ball, the linearized equations of motion for the
perturbations u, v, and φ can be represented in the operator
form

0
B@

Lu Y 0

Y Lφ 0

0 0 L−

1
CAΨ ¼ −γ2

 u
1
2
φ

0

!
þ 2ωγ

0
B@

v

0

−u

1
CA; ð51Þ

where

Ψ ¼

0
B@

u

φ

v

1
CA; ð52Þ

Lu ¼ −ΔþUðrÞ þ 2SðrÞ − ω2; ð53Þ

Lφ ¼ −
Δ
2
þWðrÞ; ð54Þ

L− ¼ −Δþ UðrÞ − ω2 þ γ2; ð55Þ

and

UðrÞ ¼ ∂V
∂ðϕ�ϕÞ

����
ϕ�ϕ¼f2ðrÞ

χ¼gðrÞ

; SðrÞ ¼ ∂2V
∂ðϕ�ϕÞ2

����
ϕ�ϕ¼f2ðrÞ

χ¼gðrÞ

f2ðrÞ;

ð56Þ

WðrÞ ¼ 1

2

∂2V
∂χ2

����
ϕ�ϕ¼f2ðrÞ

χ¼gðrÞ

; YðrÞ ¼ ∂2V
∂ðϕ�ϕÞ∂χ

����
ϕ�ϕ¼f2ðrÞ

χ¼gðrÞ

fðrÞ:

ð57Þ

As in the one-field case, it is also possible to show that
unstable modes can have only the form (49) and (50);
see Appendix B for details.
Let us define the matrix operators

L̂ ¼

0
B@

Lu Y 0

Y Lφ 0

0 0 L−

1
CA; Lþ ¼

�
Lu Y

Y Lφ

�
: ð58Þ

In full analogy with the case of one-field Q-balls, we can
show that
(1)

hΨjL̂jΨi ¼ −γ2hujui − γ2

2
hφjφi: ð59Þ

(2) By multiplying the equation for the field v by f,
integrating the result over the spatial volume and
using Eq. (47), we get

hΦjΨi ¼ 0; where Φ ¼

0
B@

2ωf

0

γf

1
CA: ð60Þ

Again, this relation is the consequence of the total
charge conservation.

(3) By differentiating Eqs. (47) and (48) with respect to
xi, we get

Lþ

� ∂if

∂ig

�
¼ 0; ð61Þ
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leading to

L̂Ti ¼ L̂

0
B@

∂if

∂ig

0

1
CA ¼ 0: ð62Þ

Ti are the zero modes of the operator L̂ such
that hTijΦi ¼ 0.

(4) By differentiating Eqs. (47) and (48) with respect to
ω, we get

Lþ

 
df
dω
dg
dω

!
¼
�
2ωf

0

�
; ð63Þ

leading to

L̂

0
BB@

df
dω
dg
dω
f
γ

1
CCA ¼ Φ: ð64Þ

Now we have all the ingredients which are necessary to
obtain the classical stability criterion for two-field Q-balls.
Again, since all the eigenstates of the operator L̂ with the
zero and negative eigenvalues are defined by the corre-
sponding eigenstates of the operator Lþ, we assume that
there is only one negative eigenvalue of the operator Lþ
(the same restriction on the number of negative eigenvalues
of an analogous operator was obtained for the two-field
model proposed and examined in [15]). Analogously to the
one-field case, it is not difficult to show that even if there
exist other zero modes of the operator Lþ, they do not
contribute to the corresponding decomposition ofΦ. In this
case we can perform all the necessary steps of the proof, in
full analogy with the one-field case [i.e., considering the
variational problem, expanding Ψ and Φ in the eigenfunc-
tions of the operator L̂, constructing the function FðλÞ,
etc.]. Finally, we get

Fð0Þ ¼ hΦjL̂−1jΦi

¼
Z

ð 2ωf 0 γf Þ

0
BB@

df
dω
dg
dω
f
γ

1
CCAddx

¼
Z �

2ωf
df
dω

þ f2
�
ddx ¼ 1

2

dQ
dω

: ð65Þ

The latter means that there are no unstable modes with
γ ≠ 0 for dQ

dω < 0.
It is possible that the positive part of the spectrum of the

operator Lþ is purely continuous and starts from λc ¼ 0. In
this case we expect dð~λÞ → 0 for ~λ → 0 because of (64),

which makes dQ
dω finite. Such a situation may appear, for

example, in the two-field models discussed in [29,30].
Again, in full analogy with the one-field case [see (38)], it is
easy to show that in this case there are no unstable modes
for dQ

dω < 0 (of course, if Lþ has only one negative
eigenvalue).
We have shown that the Vakhitov-Kolokolov method

[17,18] for obtaining the classical stability criterion for the
systems described by the nonlinear Schrödinger equation
can be generalized not only to the relativistic case of one-
field Q-balls, but also to the case of, say, two-field Q-balls.
The only substantial difference of the two-field case with
the one-field case is the form of the operator Lþ: in the one-
field case it has the standard “quantum mechanical” form,
whereas in the two-field case it has the matrix form with
diagonal entries having the form of “quantum mechanical”
operators and with the nonzero off-diagonal elements (like
the one in [15]). In fact, the eigenvalue problem for the
operator Lþ is reduced to the system of coupled second-
order differential equations of motion. However, due to the
fact that the diagonal entries of this matrix are the operators
which are bounded from below, even though there exist
nonzero off-diagonal elements, one can hope that at least in
the most cases the whole operator Lþ is bounded from
below and has only one negative eigenvalue.
Now we are ready to pass to the case of U(1) gauged

Q-balls.

III. CLASSICAL (IN)STABILITY OF
U(1) GAUGED Q-BALLS

It is reasonable to suppose that if the same classical
stability criterion (dQdω < 0) is valid for U(1) gauged Q-balls,
then it can be obtained in the way fully analogous to the one
used for ordinary Q-balls. As will be shown below, all the
technical steps, which are necessary for obtaining the proof
for U(1) gauged Q-balls, can be performed in the same way
as for ordinary Q-balls. However, in the gauged case there
exist some obstacles, which invalidate the classical stability
criterion dQ

dω < 0. This conclusion will be supported by the
numerical simulations in several explicit cases.
Let us consider the action of the form

S ¼
Z

dtd3x

�
ð∂μϕ� − ieAμϕ�Þð∂μϕþ ieAμϕÞ

− Vðϕ�ϕÞ − 1

4
FμνFμν

�
; ð66Þ

where e is the coupling constant. We will focus only on the
(3þ 1)-dimensional case, for which the A0 component of
the gauge field of the Q-ball behaves as A0ðrÞ ∼ 1

r at large r.
We take the standard spherically symmetric ansatz for the
scalar and gauge fields [3,4]:

PROBLEM WITH CLASSICAL STABILITY OF U(1)… PHYSICAL REVIEW D 95, 065006 (2017)

065006-7



ϕðt; ~xÞ ¼ eiωtfðrÞ; fðrÞjr→∞ → 0; ∂rfðrÞjr¼0 ¼ 0;

ð67Þ

A0ðt; ~xÞ ¼ A0ðrÞ; A0ðrÞjr→∞ → 0; ∂rA0ðrÞjr¼0 ¼ 0;

ð68Þ

Aiðt; ~xÞ≡ 0; ð69Þ

where again r ¼
ffiffiffiffiffi
~x2

p
, fðrÞ > 0, and A0ðrÞ are real func-

tions. The equations of motion for fðrÞ and A0ðrÞ,
following from action (66), take the form

ΔA0 − 2eðωþ eA0Þf2 ¼ 0; ð70Þ

ðωþ eA0Þ2f þ Δf −
dV

dðϕ�ϕÞ
����
ϕ�ϕ¼f2

f ¼ 0: ð71Þ

The charge of the Q-ball is defined by

Q ¼ 2

Z
ðωþ eA0Þf2d3x: ð72Þ

A. Analytical considerations

For perturbations above the Q-ball solution, from the
very beginning we consider the following ansatz:

ϕðt; ~xÞ ¼ eiωtfðrÞ þ eiωteγtðuð~xÞ þ ivð~xÞÞ; ð73Þ

A0ðt; ~xÞ ¼ A0ðrÞ þ eγta0ð~xÞ; ð74Þ

Aiðt; ~xÞ ¼ eγtaið~xÞ ð75Þ

with γ ≠ 0. The corresponding linearized equations of
motion for the fields u, v, a0, and ai take the form (we
do not present the derivation here—it is straightforward,
although rather bulky)

Δu −Uu − 2Suþ ðωþ eA0Þ2u − γ2uþ 2ðωþ eA0Þγv
þ 2eðωþ eA0Þfa0 ¼ 0; ð76Þ

Δv −Uvþ ðωþ eA0Þ2v − γ2v − 2ðωþ eA0Þγu
− eγfa0 þ ef∂iai þ 2e∂ifai ¼ 0; ð77Þ

Δa0 − 2e2f2a0 − γ∂iai − 4eðωþ eA0Þfu − 2eγfv ¼ 0;

ð78Þ

Δai − ∂i∂jaj − 2e2f2ai þ γ∂ia0 − γ2ai

− 2eðf∂iv − v∂ifÞ ¼ 0; ð79Þ

where UðrÞ and SðrÞ are defined by (12). From here and
below the terms like ∂iai or ∂ifai should be considered as

∂iai ¼
P

3
k¼1 ∂kak and ∂ifai ¼

P
3
k¼1 ak∂kf, respectively.

One can see that the resulting system of linearized
equations of motion (76)–(79) for u, v, a0, and ai is time
independent, which is expected for the method of separa-
tion of variables. The parameter γ in (73)–(75) is the same
for the scalar and gauge fields, otherwise we would get
extra time-dependent terms in the linearized equations for
u, v, a0, and ai, which would make the Vakhitov-
Kolokolov approach unusable.
Equations (76)–(79) are invariant under the

transformations

v → vþ efβð~xÞ; a0 → a0 − γβð~xÞ; ai → ai − ∂iβð~xÞ;
ð80Þ

which are the consequence of the gauge transformations
ϕ → ϕeieα, Aμ → Aμ − ∂μα with αðt; ~xÞ ¼ eγtβð~xÞ. It is
convenient to work with gauge invariant variables, so we
introduce the new gauge invariant fields

ξ ¼ vþ ef
∂iai
Δ

; q0 ¼ a0 − γ
∂iai
Δ

;

qi ¼ ai − ∂i

�∂jaj
Δ

�
; ð81Þ

where ð…Þ
Δ ¼ Δ−1ð…Þ with Δ−1 being the inverse Laplace

operator. In these notations, equations of motion (76)–(79)
take the form

Luu − 2eðωþ eA0Þfq0 ¼ −γ2uþ 2ðωþ eA0Þγξ; ð82Þ

Lqq0 − 2eðωþ eA0Þfu ¼ eγfξ; ð83Þ

L−ξ ¼ −2ðωþ eA0Þγu − eγfq0 þ 2e∂ifqi; ð84Þ

Lqqi −
γ2

2
qi ¼ −

γ

2
∂iq0 þ eðf∂iξ − ξ∂ifÞ; ð85Þ

where

Lu ¼ −ΔþUðrÞ þ 2SðrÞ − ðωþ eA0Þ2; ð86Þ

Lq ¼
Δ
2
− e2f2; ð87Þ

L− ¼ −Δþ UðrÞ − ðωþ eA0Þ2 þ γ2: ð88Þ

Equations (82)–(85) suggest the following form of the
operators L̂ and Lþ:
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L̂¼

0
BBBBB@

Lu −2eðωþeA0Þf 0 0

−2eðωþeA0Þf Lq 0 0

0 0 L− 0

0 0 0
�
Lq−

γ2

2

�
I3×3

1
CCCCCA

ð89Þ

and

Lþ ¼
�

Lu −2eðωþ eA0Þf
−2eðωþ eA0Þf Lq

�
; ð90Þ

where I3×3 is the 3 × 3 unit matrix. In these notations,
Eqs. (82)–(85) can be rewritten as

L̂Ψ ¼

0
BBBBBBBBB@

−γ2uþ 2ðωþ eA0Þγξ
eγfξ

−2ðωþ eA0Þγu − eγfq0 þ 2e∂ifqi
− γ

2
∂1q0 þ eðf∂1ξ − ξ∂1fÞ

− γ
2
∂2q0 þ eðf∂2ξ − ξ∂2fÞ

− γ
2
∂3q0 þ eðf∂3ξ − ξ∂3fÞ

1
CCCCCCCCCA
;

Ψ ¼

0
BBBBBBBBBB@

u

q0
ξ

q1
q2
q3

1
CCCCCCCCCCA
: ð91Þ

As in the case of ordinary (nongauged) Q-balls, we can
show that
(1)

hΨjL̂jΨi ¼ −γ2hujui: ð92Þ

In derivation of this relation we have used the
integration by parts in terms like hqij∂ijq0i and
the fact that ∂iqi ¼ 0; see the definition of qi in (81).

(2) By multiplying Eq. (84) by f, integrating the result
over the spatial volume and using Eq. (71) and
∂iqi ¼ 0, we get

hΦjΨi ¼ 0; where Φ ¼

0
BBBBBBBBBB@

2ðωþ eA0Þf
ef2

γf

0

0

0

1
CCCCCCCCCCA
: ð93Þ

Again, this relation is also the consequence of the
total charge conservation.

(3) By differentiating Eqs. (70) and (71) with respect to
xi, we get

Lþ

� ∂if

∂iA0

�
¼ 0; ð94Þ

leading to

L̂Ti ¼ L̂

0
BBBBBBBBBB@

∂if

∂iA0

0

0

0

0

1
CCCCCCCCCCA

¼ 0: ð95Þ

Here Ti are the zero modes of the operator L̂ such
that hTijΦi ¼ 0.

(4) By differentiating Eqs. (70) and (71) with respect to
ω, we get

Lþ

 
df
dω
dA0

dω

!
¼
�
2ðωþ eA0Þf

ef2

�
; ð96Þ

leading together with L−f ¼ γ2f to

L̂

0
BBBBBBBBBB@

df
dω
dA0

dω
f
γ

0

0

0

1
CCCCCCCCCCA

¼ Φ: ð97Þ

Thus, we have all the key ingredients which are necessary
for performing the proof along the lines of the proof for
nongauged Q-balls.
A few important remarks are in order here.
(i) For the spherically symmetric perturbations qi ≡ 0.

Indeed, in such a case aið~xÞ ¼ xiaðrÞ, which leads to
qi ≡ 0 for (81).

(ii) It should be noted that Eqs. (83)–(85) are not
independent. Indeed, by acting ∂i on Eq. (85) and
using (84) we can get Eq. (83) and, alternatively, by
acting ∂i on Eq. (85) and using (83) we can get
Eq. (84). This suggests that one can simply remove
Eq. (83) or Eq. (84) from the whole system of
equations. However, at least for performing the
derivation of the stability criterion along the
lines of the Vakhitov-Kolokolov approach, all four
equations of motion are necessary. Indeed, without
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Eq. (83) it is impossible to get the relations (95) and
(96); whereas without Eq. (83) or Eq. (84) we cannot
get the relation

hΨjL̂jΨi ¼ −ðsome nonnegative valueÞ;
for the matrix operator L̂, which is crucial for the
proof. For the nonspherically symmetric perturba-
tions, the only obvious exception is e ¼ 0. In this
case, equations for q0, qi completely decouple
[A0ðrÞ≡ 0 in this case] and we can use the equations
for the fields u and ξ only—effectively the system
reduces to the one-field case discussed in Sec. II A.

However, the operator L̂ defined by (89) is unbounded
from below. This follows from the fact that the operator

Lq −
γ2

2
is unbounded from below [look at the sign in front

of Δ in (87)], whereas the corresponding off-diagonal
elements are equal to zero. Thus, the corresponding
negative part of the spectrum is defined only by the

spectrum of the operator Lq −
γ2

2
. Moreover, due to the

fact that fðrÞ rapidly tends to zero at r → ∞, one expects

that the operator Lq −
γ2

2
has a negative continuous spec-

trum starting at −γ2. In this situation the sign of the
corresponding function Fð0Þ does not provide any infor-
mation about possible classical stability regions of the
Q-ball, at least within the framework of the generalized
Vakhitov-Kolokolov approach.
At the moment it is not clear whether or not the existence

of the negative spectrum is just a technical artifact of the
approach used here; we can only guess. Maybe, due to the
repulsive nature of the electromagnetic field, this means
that nonspherically symmetric perturbations (i.e., such that
qi≢0) destroy any U(1) gauged Q-ball.
Just for completeness of the study, we can proceed with

considering only the spherically symmetric perturbations
above the gauged Q-ball. In this case qi ≡ 0, so we can use
the set of reduced operators and fields to examine this
problem. Namely, we take

L̂3 ¼
�
Lþ 0

0 L−

�
; Ψ3 ¼

0
B@

u

q0
ξ

1
CA;

Φ3 ¼

0
B@

2ðωþ eA0Þf
ef2

γf

1
CA: ð98Þ

In this case

L̂3

0
B@

∂if

∂iA0

0

1
CA ¼ 0; L̂3

0
B@

df
dω
dA0

dω
f
γ

1
CA ¼ Φ3;

hΨ3jL̂3jΨ3i ¼ −γ2hujui: ð99Þ

We see that this setup is almost the same as the one in the
two-field case discussed in Sec. II B. So, performing the
same steps as those in Sec. II, we arrive at

Fð0Þ ¼ hΦ3jL̂3
−1jΦ3i

¼
Z �

2ðωþ eA0Þf
df
dω

þ ef2
dA0

dω
þ f2

�
d3x

¼ 1

2

dQ
dω

; ð100Þ

where the gauged Q-ball charge is defined by (72). Thus,
one may think that if dQ

dω < 0, then Eq. (92) cannot be
fulfilled for a nonzeroΨ, leading to the absence of classical
instabilities.
Formally, we have obtained the classical stability cri-

terion for the spherically symmetric perturbations above the
gauged Q-ball solution. However, the question about the
number of negative eigenvalues of the operator Lþ, defined
by (90), appears to be rather complicated, even though for
the spherically symmetric perturbations it effectively
reduces to the one-dimensional problem. Indeed, the
diagonal entry Lu of the operator Lþ is bounded from
below, whereas the diagonal entry Lq is unbounded from
below. This differs considerably from the case of the
ordinary two-field Q-ball, in which all the diagonal entries
are bounded from below.
Let us look at the eigenvalue problem for the operator Lþ

more precisely. For r → ∞, using the fact that fðrÞ very
rapidly tends to zero with r, we get

Δ
2
q0 ≈ λq0: ð101Þ

It means that for any λ < 0 and for r → ∞

q0 ∼
sinð ffiffiffiffiffiffiffiffi

−2λ
p

rÞ
r

; q0 ∼
cosð ffiffiffiffiffiffiffiffi

−2λ
p

rÞ
r

: ð102Þ

Such a behavior of the solutions corresponds to the modes
from continuous spectrum. Thus, even if there exists a
solution to the eigenvalue problem of the operator Lþ with
the negative eigenvalue λ, it belongs to the continuous
spectrum, which invalidates the use of the Vakhitov-
Kolokolov approach in this case. Of course, there are
nonzero off-diagonal elements of the operator Lþ, so one
can assume that at least in some very special cases the
spectrum of the operator Lþ does not contain negative
eigenvalues at all, demonstrating the classical stability of
the corresponding gauged Q-ball with respect to spherically
symmetric perturbations. But so far we have no definite
answer to the question of whether or not such a possibility
can be realized.
Note that, contrary to the cases discussed in Secs. II A

and II B, here we do not have a rigorous mathematical proof
that the ansatz (73)–(75) is the only possible for unstable
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modes. However, it is the simplest form of perturbations for
unstable modes that passes through the linearized equations
of motion; so even if there exist other types of unstable
modes, the use of the ansatz (73)–(75) is sufficient for
demonstration of the inapplicability of the Vakhitov-
Kolokolov approach for gauged Q-balls.
In principle, the fact that the Vakhitov-Kolokolov

approach does not work for gauged Q-balls does not mean
that the case in which gauged Q-balls with dQ

dω < 0 are
classically stable and gauged Q-balls with dQ

dω > 0 are
classically unstable cannot be realized, such a conclusion
does not follow from the results presented above. However,
these results imply that, contrary to the case of nongauged
Q-balls, one cannot suppose that in the most cases there is a
direct connection between the sign of dQ

dω and the classical
stability of gauged Q-balls. In the next subsection we will
demonstrate that it is indeed so.

B. Numerical simulations

In the present section we will examine the classical
stability or instability of gauged Q-balls by performing
numerical simulations in the spherically symmetric case.
We will consider the models with the following scalar field
potentials:

Vðϕ�ϕÞ ¼ M2ϕ�ϕ − λϕðϕ�ϕÞ2; ð103Þ

Vðϕ�ϕÞ ¼ M2ϕ�ϕθ
�
1 −

ϕ�ϕ
v2

�
þM2v2θ

�
ϕ�ϕ
v2

− 1

�
;

ð104Þ

Vðϕ�ϕÞ ¼ −μ2ϕ�ϕ lnðβ2ϕ�ϕÞ; ð105Þ

where λϕ > 0, θ is the Heaviside step function with the
convention θð0Þ ¼ 1

2
. M, v, μ and β are the parameters of

the scalar field potentials.
For the case of nongauged Q-balls, potential (103) was

introduced in [22]. The piecewise potential (104) was
introduced in a more general form in [1], the corresponding
nongauged Q-balls in such a model were thoroughly
examined in [26] (see also [31] for a model with similar
scalar field potential). Potential (105) was introduced in
[32]; the corresponding nongauged Q-balls in this model
were thoroughly examined in [23]. An interesting feature of
the nongauged theory with potential (105) is that not only
can the Q-ball solutions be obtained analytically in this
model, but also the analysis of perturbations above the
Q-ball can be made fully analytically [23], providing an
explicit demonstration of the validity of the classical
stability criterion dQ

dω < 0 in this model.
For the U(1) gauged Q-balls, potential (103) was

considered in [12], potential (104) in [12] and (in a more
general form) in [7], and potential (105) in [7,13,14].

Now we turn to a description of our method for
examining classical (in)stability of gauged Q-balls. Since
we will consider only the spherically symmetric evolution
with Aφ ≡ 0, Aθ ≡ 0, from the very beginning we impose
the gauge

Arðt; rÞ≡ 0: ð106Þ

In this case the equations of motion take the form

∂2
tϕþ 2ieA0∂tϕþ ie∂tA0ϕ − e2A2

0ϕ −
1

r
∂2
rðrϕÞ

þ dV
dðϕ�ϕÞϕ ¼ 0; ð107Þ

1

r
∂2
rðrA0Þ þ ieðϕ�∂tϕ − ϕ∂tϕ

� þ 2ieA0ϕ
�ϕÞ ¼ 0: ð108Þ

There is also the equation of motion for the field Ar, which
plays the role of a constraint in the gauge Ar ≡ 0. However,
this equation can be deduced from Eqs. (107) and (108), so
we keep only Eqs. (107) and (108) for the numerical
simulations. We will be interested in spatially localized and
regular configurations satisfying the boundary conditions

∂rϕðt; rÞjr¼0 ¼ 0; ϕðt; rÞjr→∞ ¼ 0; ð109Þ

∂rA0ðt; rÞjr¼0 ¼ 0; A0ðt; rÞjr→∞ ¼ 0: ð110Þ

We begin with finding numerically gauged Q-ball
solutions fðrÞ and A0ðrÞ, satisfying Eqs. (70) and (71)
with boundary conditions (67) and (68), using the shooting
method. Then we slightly perturb the obtained solutions for
the scalar field as

ϕðt; rÞjt¼0 ¼ fðrÞ þ δϕðrÞ; ð111Þ

∂tϕðt; rÞjt¼0 ¼ iωfðrÞ þ δ _ϕðrÞ; ð112Þ

where δϕðrÞ, δ _ϕðrÞ are small perturbations. These pertur-
bations are generated randomly in the Fourier space with
the white noise spectrum; their average amplitude is of the
order of 10−2fmax in the region of the gauged Q-ball core,
where fmax is the maximum value of the scalar field profile
of a Q-ball. Then we numerically evolve these perturbed
configurations forward in time. For a gauged Q-ball
solution, we make 10 different attempts to randomly
perturb it and evolve it forward in time. In our simulations,
we use the stable second-order iterated Crank-Nicolson
scheme [33] (see Appendix C for details). Such perturba-
tions eventually destroy classically unstable gauged
Q-balls, while the classically stable gauged Q-balls survive
and drop some charge outside its core by means of
spherical waves.
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We start with gauged Q-balls in a theory with potential
(103). Our simulations show that there are no classically
stable gauged Q-ball solutions in this theory. An analogous
result was obtained for the corresponding nongauged
Q-balls in [22]. Formally, this fact is in agreement with
the classical stability criterion dQ

dω < 0, because all Q-balls
in this model are such that dQdω > 0 in the gauged [22] and in
the nongauged [12] cases.
Now we turn to the model with potential (104).

According to our simulations with different values of the
effective coupling constant evM (for the details of the model,
as well as for theQðωÞ dependencies for different values of
ev
M, see [12]), there exist both classically stable and unstable
gauged Q-balls. A typical example is presented in Fig. 3.6

One can see that the derivative dQ
dω can be positive and

negative; it changes its sign in two points ω0, ωc which
correspond to dQ

dω ¼ ∞ (for details, see [12]) and dQ
dω ¼ 0,

respectively. Classically unstable gauged Q-balls are
marked by the short-dashed line in Fig. 3. For these
solutions the inequality dQ

dω > 0 fulfills, which formally is
in agreement with the classical stability criterion.
Meanwhile, the inequality dQ

dω > 0 also fulfills for gauged
Q-balls on the upper branch of the QðωÞ dependence. We
have failed to find any instabilities of such gauged Q-balls
during our numerical simulations with different values of
ev
M. Note that this fact does not contradict the classical
stability criterion: first, we have examined only the case of
spherically symmetric perturbations, whereas an unstable
mode (if exists) for these solutions can be nonspherically

symmetric. Second, as it was mentioned above, even in the
case of ordinary (nongauged) Q-balls, the classical stability
criterion does not guarantee that there exist unstable modes
in the case dQ

dω > 0, it just states that there are no classical
instabilities if dQ

dω < 0. On the other hand, this situation
differs from the case of nongauged Q-balls, for which
usually there exist unstable modes for Q-balls with dQ

dω > 0.
Now let us turn to the most complicated case of gauged

Q-balls in the model with potential (105). This model was
discussed in detail in [14], demonstrating rather compli-
cated structure of the gauged Q-ball solutions. Contrary to
the cases of potentials (103) and (104), here we will not
discuss all types of the gauged Q-ball solutions which exist
in this model. We will restrict ourselves only to solutions
which will be useful for examining classical stability.
We start with the values of the gauge coupling constant

such that e2 ≪ β2μ2 holds, corresponding to the case in
which the gauge interaction is much weaker than the scalar
field self-interaction. In such a case the characteristics of
gauged Q-balls are very close to those of the corresponding
nongauged Q-balls [7]. Numerical simulations with e

βμ ¼
0.1 show that gauged Q-balls with dQ

dω < 0 are classically
stable with respect to spherically symmetric perturbations,
whereas gauged Q-balls with dQ

dω > 0 are classically unsta-
ble with respect to spherically symmetric perturbations.
This result is in agreement with the classical stability
criterion for nongauged Q-balls. One may assume that it
happens because the backreaction of the gauge field is very
small and classical stability or instability is governed
mainly by the scalar field.
Now we turn to the values of the gauge coupling constant

such that e2 ≳ β2μ2 holds, corresponding to the case in
which the gauge interaction becomes comparable with the
scalar field self-interaction. For the numerical analysis, we
take e

βμ ¼ 1.1. In this case, there exist many families of the
gauged Q-ball solutions, satisfying Eqs. (70) and (71) with
the boundary conditions (67) and (68). These solutions
describe gauged Q-balls with a different and rather non-
trivial form. In Fig. 4(a) one can find the plane of initial
values fð0Þ, ωþ eA0ð0Þ for the gauged Q-balls in this
model [one can see that now even the combination ωþ
eA0ð0Þ does not uniquely characterize a gauged Q-ball].
The corresponding QðωÞ dependence is presented in
Fig. 4(b). The number n labels the number of maxima
(global or local) which has the gauged Q-ball scalar field
profile fðrÞ. For illustration purposes, we restrict ourselves
to solutions with n ≤ 3. Particular examples of gauged
Q-ball solutions, which belong to different families, are
presented in Fig. 5. These solutions are marked by
asterisks, dots or circles in Fig. 4.
It is interesting to note that the number of maxima n does

not change along the each family line for solutions located
in the right part of the plot in Fig. 4(a). Meanwhile,
solutions located in the left part of the plot in Fig. 4(a)

FIG. 3. QðωÞ dependence of gauged Q-balls in the model with
potential (104) for ev

M ¼ 0.02. The long-dashed line stands for the
nongauged Q-balls. The solid line stands for the classically stable
gauged Q-balls. The short-dashed line stands for the classically
unstable gauged Q-balls. ω0 and ωc correspond to the points
where dQ

dω ¼ ∞ and dQ
dω ¼ 0, respectively. From here and below,

we present only the case ω ≥ 0, the case ω < 0 is fully
symmetric.

6Note that, contrary to the case of ordinary Q-balls, gauged
Q-balls with finite charge and energy exist even for ω ¼ M in the
model with potential (104); see [12]. It is interesting to note that it
is the parameter ωþ eA0ð0Þ that uniquely characterizes a gauged
Q-ball in this model [12], not ω like in the nongauged case.
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form the spiral such that n coincides with the number of
windings of the spiral.
Another interesting feature of the model with potential

(105) is the existence of the so-called Q-shells [9]—
solutions with vanishingly small (but positive) values of
the scalar field fðrÞ in the inner part of the solution. There
are also solutions which represent gauged Q-balls inside
Q-shells [see Fig. 5(c)]. In a given model, such solutions
may exist if a Q-shell with a rather large radius and a
gauged Q-ball are such that the frequency ω of the gauged
Q-ball is almost the same as the value ωs þ eAs

0ð0Þ of the
Q-shell, representing the continuity condition of the fields
at the matching radius. Such solutions are similar to gauged
Q-balls with a nonmonotonic profile of the scalar field
fðrÞ, described above, but with one exception—for the
“gauged Q-ball inside Q-shell,” the scalar fields of the
Q-ball and Q-shell at the matching point (which is a local
minimum of the scalar field profile of the “gauged Q-ball
inside Q-shell”) are vanishingly small, which differs from
the case of nonmonotonic gauged Q-balls.

Finally, let us discuss the classical stability of gauged
Q-balls in this model for e

βμ ¼ 1.1. Classically stable and
unstable gauged Q-balls (of course, with respect to spheri-
cally symmetric perturbations) are marked in Fig. 6 by the
solid and dashed lines respectively. One can see from Fig. 6
that there are stable solutions with dQ

dω < 0 and dQ
dω > 0, as

well as unstable solutions with dQ
dω < 0 and dQ

dω > 0. At least
among the obtained solutions, classically stable gauged
Q-balls include only solutions from the family with n ¼ 1
and the “gauged Q-ball inside Q-shell” solutions. All other
solutions are classically unstable. For example, the gauged
Q-ball solution, marked by the dot in Fig. 6, belongs to the
family with n ¼ 1. Evolution in time of this perturbed
gauged Q-ball is shown in Fig. 7, where the scalar field
profile is presented at different moments of time. Moreover,
dQ
dω < 0 for this Q-ball. This explicit example demonstrates
that even in the case of spherically symmetric perturba-
tions, there is no connection between the sign of dQ

dω and the
classical stability of gauged Q-balls in the general case,

(a) (b)

FIG. 4. Gauged Q-balls in the model with potential (105) for e=βμ ¼ 1.1—the plane of initial data ðfð0Þ;ωþ eA0ð0ÞÞ (a) and QðωÞ
dependence (b). Different families of solutions are represented by different lines. On the main part of plot (a), some parts of the curves,
corresponding to the lines which are visible on plot (b), appear to be hidden by the solid line on plot (a) [this happens because some
solutions of different types have the values of initial data, which are much closer to each other than the effective resolution of plot (a)]. In
particular, the upper circle on plot (a) lies on the long-dashed line, which is hidden by the solid curve. Some of such hidden lines are
shown in the right inset of plot (a), where only the lines for solutions with n ¼ 2, 3 are presented. The scalar field profiles of the solutions
marked by asterisks, dots and circles are presented in Fig. 5.

(a) (b) (c)

FIG. 5. Profiles of the gauged Q-ball scalar field fðrÞ for the solutions marked in Fig. 4 by asterisks (a), dots (b), and circles (c).
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which supports the analytical results obtained in Sec. III A.
Thus, the classical stability criterion for nongauged Q-balls
dQ
dω < 0 cannot be applied to gauged Q-balls in the general
case.

IV. CONCLUSION

In the present paper, we examined the problem of
classical stability of U(1) gauged Q-balls. For ordinary
(nongauged) Q-balls there exists the well-known classical
stability criterion [15,16], stating that Q-balls with dQ

dω < 0
are classically stable if the additional restriction on the
number of negative eigenvalues of the corresponding
operator (the operator Lþ in our notations) holds. In
principle, the latter condition usually holds for ordinary
Q-balls. So, there arises the question of whether this
criterion is valid for U(1) gauged Q-balls.
As a preliminary step, we presented the derivation of the

classical stability criterion for the one-field and two-fields
nongauged Q-balls. Contrary to the original derivation in
[15,16], our method is based on the use of only the
linearized equations of motion for the perturbations above

the gauged Q-ball. In fact, our method is a generalization of
the well-known Vakhitov-Kolokolov method [17,18],
which was used to obtain the classical stability criterion
for the systems described by the nonlinear Schrödinger
equation.
This generalized Vakhitov-Kolokolov approach was

applied to the case of U(1) gauged Q-balls. However,
although all the technical steps of calculations can be
performed in the same way as those for ordinary Q-balls
(especially, for two-field Q-balls), it is impossible to draw
any conclusion about the validity of the classical stability
criterion dQ

dω < 0 for the case of Uð1Þ gauged Q-balls. The
problem is that, even in the simple case of spherically
symmetric perturbations, the structure of the operator Lþ
is such that it is very unlikely that it has only one negative
eigenvalue, which is crucial for the validity of the
classical stability criterion. In such a case one may
conclude that the classical stability criterion dQ

dω < 0,
which is valid at least for most of the ordinary (non-
gauged) Q-balls, cannot be applied to U(1) gauged Q-
balls in the general case.
To support the conclusion following from the analytical

considerations, we performed numerical simulations of the
time evolution of perturbed U(1) gauged Q-balls for the
case of spherically symmetric perturbations. The results of
simulations demonstrate that there exist classically stable
U(1) gauged Q-balls with dQ

dω > 0 and, which is much more
important, classically unstable U(1) gauged Q-balls with
dQ
dω < 0. At the moment it is not clear whether the U(1)
gauged Q-balls, which are classically stable with respect to
spherically symmetric perturbations, remain stable in the
case of nonspherically symmetric perturbations. In any
case, the numerical simulations indeed support the con-
clusion that the standard classical stability criterion for
ordinary (nongauged) Q-balls cannot be applied to U(1)
gauged Q-balls in the general case.

(a) (b)

FIG. 6. Classically stable and classically unstable gauged Q-balls in the model with potential (105) for e=βμ ¼ 1.1 on the plane of
initial data ðfð0Þ;ωþ eA0ð0ÞÞ (a) and on the QðωÞ dependence (b). Stable solutions are represented by solid lines, unstable solutions
are represented by dashed lines. Again, some lines on plot (a), corresponding to visible lines on plot (b) (including the shorter solid
lines), appear to be hidden on plot (a) by the curve, corresponding to the longest solid line on plot (b) (see also Fig. 4).

FIG. 7. The scalar field profile of the classically unstable
gauged Q-ball at different moments of time. The initial solution
(at μt ¼ 0) is marked by the dot in Fig. 6.
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APPENDIX A: RESTRICTION ON THE FORM OF
PERTURBATIONS FOR ONE-FIELD Q-BALLS

Let us consider the quantities hξ2jL2L1jξ1i and
hξ1jL1L2jξ2i.7 From Eqs. (8) and (9) we easily get

hξ2jL2L1jξ1i ¼ 2ωρhξ2jL2jξ2i þ ρ2hξ2jL2jξ1i; ðA1Þ

hξ1jL1L2jξ2i ¼ 2ωρhξ1jL1jξ1i þ ρ2hξ1jL1jξ2i: ðA2Þ

Again, using Eqs. (8) and (9) we get

hξ2jL2jξ2i ¼ 2ωρhξ2jξ1i þ ρ2hξ2jξ2i; ðA3Þ

hξ2jL2jξ1i ¼ 2ωρ�hξ1jξ1i þ ρ�2hξ2jξ1i; ðA4Þ

hξ1jL1jξ1i ¼ 2ωρ�hξ2jξ1i þ ρ�2hξ1jξ1i; ðA5Þ

hξ2jL1jξ1i ¼ 2ωρhξ2jξ2i þ ρ2hξ2jξ1i: ðA6Þ

Equation (A5) was obtained using the fact that
hξ1jL1jξ1i† ¼ hξ1jL1jξ1i. Using the obvious relation
hξ1jL1L2jξ2i† ¼ hξ2jL2L1jξ1i, from (A1) and (A2) we
obtain

2ωρhξ2jL2jξ2i þ ρ2hξ2jL2jξ1i
¼ 2ωρ�hξ1jL1jξ1i þ ρ�2hξ2jL1jξ1i: ðA7Þ

Substituting Eqs. (A3)–(A6) into (A7) and multiplying the
result by ρ ≠ 0, we arrive at

ðρ2 − ρ�2Þð2ωhξ2jξ1i þ ρhξ2jξ2i þ ρ�hξ1jξ1iÞ ¼ 0: ðA8Þ

Equation (A8) is fulfilled if one of the following simpler
equations fulfills

ρ2 ¼ ρ�2; ðA9Þ

2ωhξ2jξ1i þ ρhξ2jξ2i þ ρ�hξ1jξ1i ¼ 0: ðA10Þ

Let us consider the second equation. Equation (A3)
together with (A10) results in

hξ2jL2jξ2i þ ρ�ρhξ1jξ1i ¼ 0: ðA11Þ

According to Eq. (4)

L2f ¼ 0: ðA12Þ

By the definition, the function fðrÞ > 0 for any r, i.e., it
has no nodes. That means that f is the eigenfunction
of the lowest eigenstate [in the case d ¼ 3 it corresponds to
the 1s level in the spherically symmetric quantum mechani-
cal potential UðrÞ − ω2 þ γ2], and there are no negative
eigenvalues of the operator L2. Thus, we get hξ2jL2jξ2i ≥ 0
for any ξ2. Since hξ1jξ1i ≥ 0 and ρ�ρ ≥ 0, except the trivial
solution ξ1 ≡ 0, ξ2 ≡ 0, Eq. (A11) has the following
solutions:

ξ2 ∼ fðrÞ; ρ ¼ 0 or ðA13Þ

ξ2 ∼ fðrÞ; ξ1 ≡ 0: ðA14Þ

The first solution obviously does not indicate any insta-
bility, whereas the second solution together with Eq. (9)
also leads to ρ ¼ 0.
Finally, the only case, which can describe possible

unstable modes (i.e., those with Imρ ≠ 0), is defined
by Eq. (A9).

APPENDIX B: RESTRICTION ON THE FORM OF
PERTURBATIONS FOR TWO-FIELD Q-BALLS

Let us consider the following general form of perturba-
tions above the two-field Q-ball:

ϕðt; ~xÞ ¼ eiωtfðrÞ þ eiωtðað~xÞeiρt þ bð~xÞe−iρ�tÞ; ðB1Þ

χðt; ~xÞ ¼ gðrÞ þ cð~xÞeiρt þ c�ð~xÞe−iρ�t: ðB2Þ

The corresponding linearized equations of motion can be
represented as

L1Ξ1 ¼ ρ2Ξ1 þ 2ωρΞ2 − ρ2Ξc; ðB3Þ

L2Ξ2 ¼ ρ2Ξ2 þ 2ωρΞ1 − 4ωρΞc; ðB4Þ

where

Ξ1 ¼
�
aþ b�

2c

�
; Ξ2 ¼

�
a − b�

0

�
; Ξc ¼

�
0

c

�

ðB5Þ

and7Here, hf1jf2i is defined as hf1jf2i ¼
R
f�1ð~xÞf2ð~xÞddx.
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L1 ¼
�
Lu Y

Y Lφ

�
; L2 ¼

�
−ΔþU − ω2 0

0 0

�

ðB6Þ

with Lu, Lφ, Y, U defined by (53), (54), (56), and (57).
Again, as in the one-field case, from Eqs. (B3) and (B4) we
can get8

hΞ2jL2L1jΞ1i ¼ 2ωρhΞ2jL2jΞ2i þ ρ2hΞ2jL2jΞ1i; ðB7Þ

hΞ1jL1L2jΞ2i ¼ 2ωρhΞ1jL1jΞ1i þ ρ2hΞ1jL1jΞ2i
− 4ωρhΞ1jL1jΞci: ðB8Þ

Using Eqs. (B3) and (B4), we obtain

hΞ1jL1jΞci ¼ ρ�2hcjci; ðB9Þ

hΞ2jL2jΞ2i ¼ 2ωρhΞ2jΞ1i þ ρ2hΞ2jΞ2i; ðB10Þ

hΞ2jL2jΞ1i ¼ 2ωρ�hΞ1jΞ1i þ ρ�2hΞ2jΞ1i − 8ωρ�hcjci;
ðB11Þ

hΞ1jL1jΞ1i ¼ 2ωρ�hΞ2jΞ1i þ ρ�2hΞ1jΞ1i − 2ρ�2hcjci;
ðB12Þ

hΞ2jL1jΞ1i ¼ 2ωρhΞ2jΞ2i þ ρ2hΞ2jΞ1i: ðB13Þ

Equation (B12) was obtained using the fact that
hΞ1jL1jΞ1i† ¼ hΞ1jL1jΞ1i. Using the obvious relation
hΞ1jL1L2jΞ2i† ¼ hΞ2jL2L1jΞ1i, from (B7) and (B8) we
obtain

2ωρhΞ2jL2jΞ2i þ ρ2hΞ2jL2jΞ1i
¼ 2ωρ�hΞ1jL1jΞ1i þ ρ�2hΞ2jL1jΞ1i
− 4ωρ�ρ2hcjci: ðB14Þ

Substituting Eqs. (B9)–(B13) into (B14), we arrive at

ðρ2 − ρ�2Þð2ωhΞ2jΞ1i þ ρhΞ2jΞ2i þ ρ�hΞ1jΞ1i
− 2ρ�hcjciÞ ¼ 0: ðB15Þ

Multiplying the latter equation by ρ ≠ 0 and using
Eq. (B10), we arrive at

ðρ2 − ρ�2ÞðhΞ2jL2jΞ2i þ ρ�ρhΞ1jΞ1i − 2ρ�ρhcjciÞ ¼ 0:

ðB16Þ

Using the definition of Ξ1 and Ξ2, finally we get

ðρ2 − ρ�2Þðhξ2j − Δþ U − ω2jξ2i þ ρ�ρhξ1jξ1i
þ 2ρ�ρhcjciÞ ¼ 0; ðB17Þ

where

ξ1 ¼ aþ b�; ξ2 ¼ a − b�: ðB18Þ

Since, analogously to the one-field case, hξ2j − Δþ U −
ω2jξ2i ≥ 0 for any ξ2, nontrivial solutions with ρ ≠ 0
should satisfy the condition

ρ2 ¼ ρ�2; ðB19Þ

leading to ρ ¼ γ or ρ ¼ iγ, where γ is a real constant. Thus,
unstable modes can have only the form (49) and (50).

APPENDIX C: NUMERICAL METHOD

Here we present a more detailed description of the
numerical method used to solve the equations of motion
(107) and (108). First, we introduce the new variable

~r ¼ r
rþ r0

; ðC1Þ

which maps the infinite space on the unit size sphere.
Here r0 is a constant parameter. With this coordinate, the
boundary conditions (109) and (110) appear to be imposed
at the points ~r ¼ 0 and ~r ¼ 1. In our simulations, we define
the fields on the uniform grid with N ¼ 2000 points which
cover this interval. Note that in terms of the physical
distance the grid is not uniform. Half of the grid points
cover the range r ∈ ½0; r0�, where the grid is approximately
uniform with the spacing varying from △r ¼ r0△~r to
△r ¼ 4r0△~r. The remaining points cover the interval r ∈
½r0;∞Þ with the spacing △r≃ r2△~r=r0 for r ≫ r0. In our
simulations, the parameter r0 is chosen to be of the order of
twice the Q-ball radius, so we have approximately one
and the same spacing △r in the region of the Q-ball
core. We use the second-order central finite difference
formulas to discretize the derivatives with respect to time ~t
(here ~t is the dimensionless variable corresponding to the
physical time t) and radius ~r in the equations of motion for
the fields.
Outgoing waves leaving the interaction region are

removed with the help of the Kreiss-Oliger filter [34].
After each time step △~t we apply the following operator:

ϕ →

�
1 −

ϵ△~tð△~rÞ4
24

∂4
~r

�
ϕ; ðC2Þ

to the field ϕ, where ϵ < 1 is the constant introduced to
maintain the stability of this procedure. For solutions which
are smooth enough, this procedure modifies the scalar field
by the fourth-order term, which is smaller than the error of

8The terms of the form hF1jOjF2i are defined as hF1jOjF2i ¼R ðF†
1OF2Þddx.
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the numerical scheme in the region of the core of the
gauged Q-ball.
To demonstrate how this operator works, let us consider

its action (with the derivative ∂4
~r discretized by the second-

order central finite difference formula) on the Fourier
modes of the field ϕ. We get

ϕ~k →

�
1 − ϵ△~tsin4

�
~k△~r
2

��
ϕ~k: ðC3Þ

One can see that the low frequency modes with ~k ≪ 1=△~r
remain practically intact; their amplitudes appear to be
modified by the factor ð1 − ϵ△~tð~k△~r=2Þ4Þ, which is very
close to unity. This is the case of the modes located in the
central region r ∈ ½0; r0� in the physical space,where the grid
resolution is high enough. As for the modes ~k ∼ 1=△~r, the
factor in (C3) is less than unity in this case and the amplitudes
of these modes vanish after ∼1=△~t time steps. Roughly
speaking, such modes correspond to the scalar waves which
propagate in the physical space out from the Q-ball core and
appear in the region of the physical space where the grid is
sparse. This method is similar to the one used in [35].
As was mentioned above, the derivatives in the equations

of motion are discretized by the second-order central finite

difference formulas. The resulting system of the nonlinear
equations of motion is solved by the variant of the iterated
Crank-Nicolson method used in [36]. Namely, for the time
step ~tn, ~tn þ△~t we make iterations such that in each
iteration the gauge field A0 and the terms ∂tA0,

dV
dðϕ�ϕÞ in

Eq. (107) and the terms ðϕ�∂tϕ − ϕ∂tϕ
�Þ, ϕϕ� in Eq. (108)

(but not the terms with spatial derivatives in both equations)
are calculated using the data obtained in the previous
iteration according to the scheme presented in [36] [for the
first iteration, we use the data from the previous time step
for the time derivatives ∂tA0 in (107) and ∂tϕ, ∂tϕ

� in
(108)]. Then, these terms are considered as the coefficients
depending only on the spatial coordinate ~r, so formally we
solve the linear equations of motion (homogeneous for the
scalar field ϕ and inhomogeneous for the gauge field A0)
using the implicit Crank-Nicolson scheme. After each
iteration, we get more accurate results for the fields and
more accurate values of the corresponding terms in the
equations of motion, which are used for the next iteration.
We find that three iterations are enough to achieve the
accuracy of the solution which is better than the accuracy of
the discretization. Since the scheme is implicit, it is stable
with respect to von Neumann stability analysis for more
than two iterations [36].

[1] G. Rosen, J. Math. Phys. (N.Y.) 9, 996 (1968).
[2] S. R. Coleman, Nucl. Phys. B262, 263 (1985); B269, 744

(E) (1986).
[3] G. Rosen, J. Math. Phys. (N.Y.) 9, 999 (1968).
[4] K.-M. Lee, J. A. Stein-Schabes, R. Watkins, and L. M.

Widrow, Phys. Rev. D 39, 1665 (1989).
[5] V. Benci and D. Fortunato, J. Math. Phys. (N.Y.) 52, 093701

(2011).
[6] V. Benci and D. Fortunato, Chaos Solitons Fractals 58, 1

(2014).
[7] I. E. Gulamov, E. Y. Nugaev, and M. N. Smolyakov, Phys.

Rev. D 89, 085006 (2014).
[8] C. H. Lee and S. U. Yoon, Mod. Phys. Lett. A 06, 1479

(1991).
[9] H. Arodz and J. Lis, Phys. Rev. D 79, 045002 (2009).

[10] Y. Brihaye, V. Diemer, and B. Hartmann, Phys. Rev. D 89,
084048 (2014).

[11] J. P. Hong, M. Kawasaki, and M. Yamada, Phys. Rev. D 92,
063521 (2015).

[12] I. E. Gulamov, E. Y. Nugaev, A. G. Panin, and M. N.
Smolyakov, Phys. Rev. D 92, 045011 (2015).

[13] V. Dzhunushaliev and K. G. Zloshchastiev, Central Eur. J.
Phys. 11, 325 (2013).

[14] T. Tamaki and N. Sakai, Phys. Rev. D 90, 085022 (2014).
[15] R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13, 2739

(1976).
[16] T. D. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).

[17] N. G. Vakhitov and A. A. Kolokolov, Radiophys. Quantum
Electron. 16, 783 (1973).

[18] A. A. Kolokolov, J. Appl. Mech. Tech. Phys. 14, 426
(1973).

[19] V. G. Makhankov, Phys. Rep. 35, 1 (1978).
[20] V. G. Makhankov, Yu. P. Rybakov, and V. I. Sanyuk, Phys.

Usp. 37, 113 (1994).
[21] N. Akhmediev and A. Ankiewicz, Solitons. Nonlinear

Pulses and Beams (Chapman & Hall, London, 1997).
[22] D. L. T. Anderson and G. H. Derrick, J. Math. Phys. (N.Y.)

11, 1336 (1970).
[23] G. C. Marques and I. Ventura, Phys. Rev. D 14, 1056

(1976).
[24] L. D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-

Relativistic Theory (Butterworth-Heinemann, Oxford, 1981).
[25] J. P. Connerade, V. K. Dolmatov, P. A. Lakshmi, and S. T.

Manson, J. Phys. B 32, L239 (1999).
[26] I. E. Gulamov, E. Y. Nugaev, and M. N. Smolyakov, Phys.

Rev. D 87, 085043 (2013).
[27] E. Nugaev and A. Shkerin, Phys. Lett. B 747, 287 (2015).
[28] E. Nugaev, A. Shkerin, and M. Smolyakov, J. High Energy

Phys. 12 (2016) 032.
[29] A. Levin and V. Rubakov, Mod. Phys. Lett. A 26, 409

(2011).
[30] E. Y. Nugaev and M. N. Smolyakov, Eur. Phys. J. C 77, 118

(2017).
[31] S. Theodorakis, Phys. Rev. D 61, 047701 (2000).

PROBLEM WITH CLASSICAL STABILITY OF U(1)… PHYSICAL REVIEW D 95, 065006 (2017)

065006-17

http://dx.doi.org/10.1063/1.1664693
http://dx.doi.org/10.1016/0550-3213(85)90286-X
http://dx.doi.org/10.1016/0550-3213(86)90520-1
http://dx.doi.org/10.1016/0550-3213(86)90520-1
http://dx.doi.org/10.1063/1.1664694
http://dx.doi.org/10.1103/PhysRevD.39.1665
http://dx.doi.org/10.1063/1.3629848
http://dx.doi.org/10.1063/1.3629848
http://dx.doi.org/10.1016/j.chaos.2013.10.005
http://dx.doi.org/10.1016/j.chaos.2013.10.005
http://dx.doi.org/10.1103/PhysRevD.89.085006
http://dx.doi.org/10.1103/PhysRevD.89.085006
http://dx.doi.org/10.1142/S0217732391001597
http://dx.doi.org/10.1142/S0217732391001597
http://dx.doi.org/10.1103/PhysRevD.79.045002
http://dx.doi.org/10.1103/PhysRevD.89.084048
http://dx.doi.org/10.1103/PhysRevD.89.084048
http://dx.doi.org/10.1103/PhysRevD.92.063521
http://dx.doi.org/10.1103/PhysRevD.92.063521
http://dx.doi.org/10.1103/PhysRevD.92.045011
http://dx.doi.org/10.2478/s11534-012-0159-z
http://dx.doi.org/10.2478/s11534-012-0159-z
http://dx.doi.org/10.1103/PhysRevD.90.085022
http://dx.doi.org/10.1103/PhysRevD.13.2739
http://dx.doi.org/10.1103/PhysRevD.13.2739
http://dx.doi.org/10.1016/0370-1573(92)90064-7
http://dx.doi.org/10.1007/BF01031343
http://dx.doi.org/10.1007/BF01031343
http://dx.doi.org/10.1007/BF00850963
http://dx.doi.org/10.1007/BF00850963
http://dx.doi.org/10.1016/0370-1573(78)90074-1
http://dx.doi.org/10.1070/PU1994v037n02ABEH000006
http://dx.doi.org/10.1070/PU1994v037n02ABEH000006
http://dx.doi.org/10.1063/1.1665265
http://dx.doi.org/10.1063/1.1665265
http://dx.doi.org/10.1103/PhysRevD.14.1056
http://dx.doi.org/10.1103/PhysRevD.14.1056
http://dx.doi.org/10.1088/0953-4075/32/10/101
http://dx.doi.org/10.1103/PhysRevD.87.085043
http://dx.doi.org/10.1103/PhysRevD.87.085043
http://dx.doi.org/10.1016/j.physletb.2015.06.008
http://dx.doi.org/10.1007/JHEP12(2016)032
http://dx.doi.org/10.1007/JHEP12(2016)032
http://dx.doi.org/10.1142/S0217732311034992
http://dx.doi.org/10.1142/S0217732311034992
http://dx.doi.org/10.1140/epjc/s10052-017-4681-4
http://dx.doi.org/10.1140/epjc/s10052-017-4681-4
http://dx.doi.org/10.1103/PhysRevD.61.047701


[32] G. Rosen, Phys. Rev. 183, 1186 (1969).
[33] J. Crank and E. Nicolson, Adv. Comput. Math. 6, 207

(1996) [Proc. Cambridge Philos. Soc. 43, 50 (1947),
reprint].

[34] H.-O. Kreiss and J. Oliger, Methods for the Approximate
Solution of Time Dependent Problems, Global Atmospheric

Research Program Publication No. 10 (World Meteoro-
logical Organization, Case Postale No. 1, CH-1211 Geneva
20, Switzerland, 1973).

[35] E. P. Honda and M.W. Choptuik, Phys. Rev. D 65, 084037
(2002).

[36] S. A. Teukolsky, Phys. Rev. D 61, 087501 (2000).

A. G. PANIN and M. N. SMOLYAKOV PHYSICAL REVIEW D 95, 065006 (2017)

065006-18

http://dx.doi.org/10.1103/PhysRev.183.1186
http://dx.doi.org/10.1007/BF02127704
http://dx.doi.org/10.1007/BF02127704
http://dx.doi.org/10.1017/S0305004100023197
http://dx.doi.org/10.1103/PhysRevD.65.084037
http://dx.doi.org/10.1103/PhysRevD.65.084037
http://dx.doi.org/10.1103/PhysRevD.61.087501

