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We show there are analogs to the Unruh temperature that can be defined for any quantum field theory and
region of the space. These local temperatures are defined using relative entropy with localized excitations.
We show that important restrictions arise from relative entropy inequalities and causal propagation between
Cauchy surfaces. These suggest a large amount of universality for local temperatures, especially the ones
affecting null directions. For regions with any number of intervals in two spacetime dimensions, the local
temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue
this term might be universal, with a coefficient that is the same for any theory, and check analytically and
numerically that this is the case for free massive scalar and Dirac fields. In dimensions d ≥ 3, the local
terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from
the stress tensor. For a free scalar field, we classify the structure of the local terms.
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I. INTRODUCTION

In relativistic quantum field theory (QFT), the reduced
density matrix corresponding to the vacuum state on the
half spatial plane x0 ¼ 0, x1 > 0 is given by a universal
expression in terms of the stress tensor:

ρ ¼ ce−2π
R
x1>0

dd−1xx1T00ðxÞ: ð1Þ
This important result follows at the axiomatic level from
analyticity properties originating in Lorentz invariance
and positivity of energy and is tightly related to the
CPT theorem [1]. In the path integral, Euclidean formu-
lation is simply due to the fact that the density matrix in half
space has a representation in terms of a 2π rotation in the
ðx0; x1Þ plane (see, for example, [2,3]).
Even if (1) has a fairly simple derivation, its physical

interpretation has deservedly caused some wonder for a long
time. First, it illustrates an intriguing relation between entan-
glement invacuumand energy density. This relation is behind
the validity of entropy bounds coming from black hole
physics in theweak gravity limit, namely Bekenstein’s bound
[4], the generalized second law [5], and theBousso bound [6].
Second, if we write a density matrix as ρ ¼ e−K, where

K is called the modular Hamiltonian, Eq. (1) reveals that
the modular Hamiltonian for half space is an integral of a
local operator. K is, in fact, 2π times the generator of
boosts. For a conformal field theory (CFT), K is also local
for spheres. The locality is then related to a Killing
symmetry of the Rindler Wedge,1 and in the case of spheres

in a CFT, to a conformal Killing symmetry. However, from
the point of view of quantum information theory, this is
rather mysterious. On general grounds, we do not expect
locality to hold for nonrelativistic theories, or for the
reduced density matrices of regions different from half
space or nonvacuum states; in general, K will be given by a
nonlocal and nonlinear combination of the field operators
inside the region.
Formula (1) is related to Unruh temperature for accel-

erated observers [7] (and to Hawking temperature of black
holes). These observers evolve in time along boost orbits
and, hence, for them, time translations in the Rindler wedge
are generated by the modular Hamiltonian. The vacuum
state (1) is thermal with respect to this notion of time
translations.
Naively, we can think the state (1) is locally a Gibbs

thermal state with a local inverse temperature given by the
coefficient βx ¼ T−1

x ¼ 2πx1 of the energy density operator
in the exponent. This “local temperature” is completely
produced by entanglement with the complementary region
x1 < 0, it is point dependent, and carefully tuned such as
to keep all expectation values of operators in x1 > 0 to
coincide with vacuum expectation values. Hence, the
thermal interpretation has its limitations, in particular the
typical thermal wavelength βx is of the order of the distance
from the point to the boundary, and it has the same size as
the typical distance in which the temperature changes
appreciably, dβ=dx ¼ 2π. This is necessary in order for
local operators not to become really thermalized. However,
as we will explain in the next section, there is a precise way
to interpret the coefficient of the energy density T00 in the
modular Hamiltonian as a local inverse temperature using
relative entropy. This temperature essentially measures the

1The Rindler wedge is the spacetime region x1 > jx0j which is
the domain of dependence or causal completion of the half spatial
plane x0 ¼ 0, x1 > 0.
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distinguishability of vacuum from a local high energy
excitation. A related interpretation of Unruh temperature
has been discussed in [8] in terms of a local Carnot
temperature.
Another interesting point about (1) is that it holds both

for massless and massive fields. In the massive case,
entanglement is supposed to decay exponentially with
the distance to the boundary. However, no such exponential
behavior is seen in the modular Hamiltonian. The reason is
that for massive fields a linear increase in β ¼ T−1

corresponds to an exponential decrease in entropy. This
is certainly related to how a local temperature can encode
spatial entanglement efficiently in a universal way.
Modular Hamiltonians for other regions have been of

recent interest in relation with entropy inequalities and the
first law of entanglement [9]. This later gives the first order
variation of entanglement entropy under variations of the
state as the change on the expectation value of the modular
Hamiltonian. In the holographic context, the first law of
entanglement entropy in QFT has been related to Einstein
equations of the dual gravity theory [10]. Modular
Hamiltonians have also been recently studied in connection
with general properties of CFT [11].
It is a natural question whether these features of the

Rindler modular Hamiltonian can be generalized to other
regions and QFT. In this work, we propose a path to this
generalization. We are interested specifically in whether
local temperatures and the related local terms in K can be
defined, and when these local terms are proportional to the
stress tensor.
We use essentially properties of the relative entropy, and

causal evolution. We show that for any region and QFT
there is at least a maximum and a minimum local “null
temperatures”, depending on the point and a null direction.
However, for generic Cauchy surfaces and regions different
from spheres, the corresponding local contributions to K
cannot be always produced by the stress tensor in d ≥ 3.
We determine the possible structures of the local terms for a
free scalar field.
Local terms describe the high energy tail of the reduced

density matrix around a point, but are determined by
infrared data, such as the geometry of the region. A natural
conjecture is that there is a high degree of universality for
the null temperatures corresponding to the vacuum state
across different QFT, extending the universality of the
Rindler case. For example, one could wonder whether
the null temperatures depend only on the geometry of the
region, and when the maximum and minimum null temper-
atures actually coincide. We show this last statement is
correct for free scalars.
For free massive scalar and fermion fields in d ¼ 2, we

provide conclusive analytic and numerical evidence for this
universality. We show the local term for any multi-interval
region is proportional to the stress tensor in this case, with a
universal coefficient that is the same for fermions or scalars,
and is independent of mass. Our specific arguments for free

fields extend to higher dimensions in that the local term
should not depend on the mass parameter.

II. LOCAL TEMPERATURES FOR
GENERAL REGIONS

We first give a definition of local temperature appropriate
to the Rindler density matrix (1) that will be suitable to be
generalized to other regions. As we have recalled the
coefficient β ¼ 2πx of T00ðxÞ in (1) gives the inverse
Unruh temperature of an accelerated observer with accel-
eration x−1 that passes through the point x. There is no
consistent interpretation in terms of locally thermalized
expectation values since expectation values of operator in
the region coincide with vacuum ones. Hence, we adopt the
following strategy involving the relative entropy to define a
local temperature.
The relative entropy between two states reduced to a

region A writes

Sðρ1Ajρ0AÞ ¼ ΔhKAi − ΔSA ð2Þ

where ΔhKAi ¼ hKAi1 − hKAi0 is the variation in the
expectation value of the modular Hamiltonian KA ¼
− log ρ0A of the state ρ0 reduced to A, and ΔSA is the
difference of entropies S1A − S0A. Hence, if we obtain the
state ρ1 by acting on ρ0 with a unitary operatorUA localized
in A, the variation of entropies will vanish and we have

Sðρ1Ajρ0AÞ ¼ ΔhKAi ≥ 0: ð3Þ

If we perturb the vacuum with a unitary operator
localized in a small region around a point a in the spatial
surface x0 ¼ 0 inside the wedge (see Fig. 1), the expect-
ation value of T00 will be different from zero only in this
small region. Hence,

Sðρ1Ajρ0AÞ ¼ ΔhKAi ¼ 2π

Z
dd−1xx1hT00ðxÞi ∼ 2πa1E;

ð4Þ

where E is the expectation value of the total energy of the
excitation. Even if the excitation is not produced by a
unitary operator we expect the same result for high energy
localized excitations where the change in the entanglement
entropy is small compared with (4). However, (4) also
holds in the Rindler wedge for localized excitations of
arbitrarily small energy expectation value, produced by
local unitaries close to the identity.
Formula (4) is the same we would have obtained for the

relative entropy of an excitation of energy E above a
thermal state of inverse temperature β ¼ 2πa1 and the
thermal state itself, where these two states are now taken in
the full space not restricted to A. This follows because the
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modular Hamiltonian of the thermal state is K ¼ βH,
proportional to the Hamiltonian H.
Relative entropy measures how difficult is to distinguish

two states in an operational way. The probability of
confounding two states after N judiciously chosen mea-
surements falls to zero as p ∼ e−Sðρ1jρ0ÞN [12]. We can say
that in trying to distinguish the vacuum and the excitation
doing measurements restricted to operators localized in A
we find the excitation in the vacuum fluctuations in A
with the same probability as in a thermal state with
this temperature. Notably, this is independent of the
“composition” of the excitation, and only depends on
energy, and that is why it is determined by a temperature.
In a QFT, the algebras of operators and their states are

attached to the domain of dependence of spatial surfaces.
That is, the modular HamiltonianK and the relative entropy
between two states, will be the same for any two spatial
surfaces with the same causal completion or causal devel-
opment. For wedges with general positions (obtained by
rotating and boosting the Rindler wedge), the modular
Hamiltonian is given by

K ¼ 2π

Z
Σ
dσημTμνξ

ν; ð5Þ

ξν ¼ ωνδxδ; ð6Þ

where ωνδ ¼ jνtδ − jδtν, with jν, tδ two unit spatial and
temporal vectors orthogonal to the edge of the wedge. The
integral is over any Cauchy surface Σ for the wedge and ην

is the future pointing unit normal to Σ. K written in any
Cauchy surface is the same operator because it is the flux of
the conserved current ξμTμν. For a perturbation localized in
a small region near the spacetime point a inside the wedge,

we can take ξ as approximately constant in the region
where hTμνi is nonzero on Σ, and the local integralR
Σ dσηνhTμνi ¼ Pμ, the total momentum of the excitation.
Then

ΔK ¼ Pμξ
μðaÞ: ð7Þ

The relativistic generalization of an inverse temperature is
given by a vector ξμ such that the Gibbs state writes
ρ ∼ e−ξ

μPμ . Hence, in this specific sense given by relative
entropy, ξμðaÞ has the interpretation of a local inverse
temperature vector.

A. Relative entropy inequalities and
local temperatures

Now we try to generalize this structure of local temper-
atures for other regions. We use relative entropy inequal-
ities. The relative entropy is always positive and increasing
with the region size. If we excite the vacuum with a local
unitary inside A, we have for a region B bigger than A

ΔhKBi ≥ ΔhKAi ≥ 0: ð8Þ

Let us exemplify these inequalities with CFT and double
cones Dðp; qÞ formed by the intersection of the past of a
point q with the future of p, where p is in the past of q. For
the vacuum state of a CFT, the modular Hamiltonian in this
case is explicitly known and local [13]. As in the case of the
Rindler wedge it is given by the flux of a conserved current
Jμ ¼ Tμνξν on any Cauchy Σ surface for Dðp; qÞ,

K ¼
Z
Σ
dσημTμνξ

ν; ð9Þ

where ημ is the future-pointing unit vector normal to the
surface and

ξμðxÞ ¼ 2π

jq − pj2 ððq − xÞμðx − pÞ · ðq − pÞ

þ ðx − pÞμðq − xÞ · ðq − pÞ
− ðq − pÞμðx − pÞ · ðq − xÞÞ: ð10Þ

Jμ is a conformal current that vanish on p, q, and on the
spatial boundary of the double cone and ξμ is the associated
conformal Killing vector.
If we perturb the vacuum with a unitary operator

localized in the vicinity of a point a inside the double
cone, it must be that the expectation value ofK is positive in
the new state. For a perturbation localized in a small region
near a, we can take ξ as approximately constant in the
region where hTμνi is non zero on Σ, and the local integral
is again

R
Σ dσηνhTμνi ¼ Pμ. Then,

ΔK ¼ Pμξ
μðaÞ: ð11Þ

A

a

FIG. 1. We are testing the modular Hamiltonian of a region
(here the Rindler wedge A) by unitary operator well localized
around a point a on Cauchy surface (horizontal line in the figure).
The state produced from this unitary acting on the vacuum
spreads out in the past and future of the Cauchy surface.
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The inequality ΔK ≥ 0 implies that ξμðaÞ is a future
directed vector for any a inside Dðp; qÞ. This can be
explicitly checked from (10). In the same way, comparing
vacuum and the perturbed state, we have from monoto-
nicity of relative entropy that

ξμp0q0ðaÞ − ξμpqðaÞ ð12Þ
is also future pointing for any p0 to the past of p and any q0
to the future of q. That is, the vector ξpqðaÞ for fixed a is
increasing in the sense of the causal order determined by
the cone of future pointing vectors, for regions increasing
under inclusion. This can also be easily checked from (10)
by perturbing the end points.
The physical interpretation of this fact is very natural.

Thinking ξðaÞ as a vector determining the inverse local
temperature, this increases with larger regions, correspond-
ing to a decrease of temperature as we move the boundaries
of the region further away. Entanglement producing this
local temperature with more distant degrees of freedom is
weaker in vacuum.
Another example where the modular Hamiltonian is

known exactly is a massless Dirac field in d ¼ 2 for a
region formed by n disjoint intervals [14,15]. This
Hamiltonian contains local and nonlocal terms. The local
part writes in null coordinates x� ¼ x0 � x1,

Kloc ¼ 2π

Z
Aþ

dxþfþðxþÞTþþðxþÞ

þ 2π

Z
A−

dx−f−ðx−ÞT−−ðx−Þ; ð13Þ

where

f�ðx�Þ ¼
�Xn

i¼1

1

x� − a�i
þ
Xn
i¼1

1

b�i − x�

�−1
; ð14Þ

and ða�1 ; b�1 Þ, ða�2 ; b�2 Þ � � � ða�k ; b�k Þ are the null coordinates
of the end points of the k intervals, written in increasing
order. We will encounter these expressions again below
arising from a more general argument about QFT theories
in d ¼ 2.
The stress tensor components Tþþ and T−− for a

localized excitation are positive once integrated over the
excitation region and then we should have that fðxÞmust be
positive and increasing with the region size. fðxÞ is
explicitly positive. It is increasing with size because
(dropping the � for convenience)

dfðxÞ
dbi

¼ fðxÞ2
ðbi − xÞ2 > 0;

dfðxÞ
dai

¼ −
fðxÞ2

ðx − aiÞ2
< 0:

ð15Þ
In comparing regions with different number of compo-
nents, the inequality follows from these ones and the fact
that the function fðxÞ for k intervals tends (for fixed x) to
the one of k − 1 components when bi − ai → 0 (and

x ∉ ðai; biÞ) or when bi → aiþ1 (in this last case two
intervals coalesce to one). Interestingly, in this example,
the local temperature ð2πfðxÞÞ−1, is the sum of the temper-
atures (taken with positive sign), ð2πÞ−1ðx − aiÞ−1 or
ð2πÞ−1ðbi − xÞ−1, that would be generated on x by the
different boundaries independently, taking as the temper-
ature generated by each boundary independently the one
corresponding to the Rindler case.
The monotonicity inequalities have an interesting con-

sequence. Let us take a CFT and any bounded causally
complete region2 A (not necessarily a double cone) and a
point a inside A. Consider two double cones Dþ and D−

that include a, and such that D− ⊆ A ⊆ Dþ. Then, for any
unitary and well localized perturbation of vacuum around a
with momentum P, we have

P · ξD−ðaÞ ≤ ΔhKAi ≤ P · ξDþðaÞ: ð16Þ

This highly constraints the contributions of ΔK.3 For any
bounded region in any CFT, we have that the change of the
modular Hamiltonian for an arbitrary localized unitary
excitation is positive and bounded above and below by a
quantity that depends only on the geometry, and is linear in
the excitation momentum. In particular, the relative entropy
with the vacuum state (which measures distinguishability
between the two states) cannot exceed a bound proportional
to energy.
Note we are testing with relative entropy the local tail of

the density matrix around a point, but remarkably the form
of this tail depends on infrared details, i.e. the geometry of
the boundary far away. The local temperatures, if they
persist at all, might change for other states, for example a
global thermal state.
For nonconformal QFT, upper bounds can be derived

using the modular Hamiltonian of the Rindler wedge, that
has again a universal form. To get a lower bound for
nonconformal theories, we can think in a very small double
cone inside the region, in such a way the conformal
modular Hamiltonian of the UV fix point applies for
localized excitations. This double cone can be highly
boosted, extending along a null segment inside A, and
the relevant ξ vector takes a finite value as we take the null
limit (the limit of vanishing invariant size of the double
cone); see Fig. 2. In the limit, ξ is a null vector. We have for
the local excitation at a (in the limit of vanishing size),4

2A causally complete region is the domain of dependence of a
spatial surface.

3The information these inequalities provide is insensitive to
possible ambiguities in the modular Hamiltonian given by
operators seated at the region boundary. These terms do not
affect ΔK produced by a unitary inside the region.

4The limit we are considering here is different to the one in [6].
There the modular Hamiltonian for a region that converges to a
null surface was analyzed by taking the limit of a null surface
keeping the state constant, while here the perturbation is always
concentrated inside the region.
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ΔhKAi ≥ π
ðλðaÞ − λ−Þðλþ − λðaÞÞ

ðλþ − λ−Þ Pμζ
μ; ð17Þ

where λ is an affine parameter for the null segment xμðλÞ
passing through a, ζμ ¼ dxμðλÞ=dλ is the corresponding
future-pointing null vector, and λþ, λ− are the parameters of
the extreme points of the segment. The null segment has to
be fully included in causal region corresponding to A.5

This leads to the interesting observation that if we think
in any region A and the limit of localized excitations around
a ∈ A, we have

βgþða; A; P̂; vÞE ≥ βþða; A; P̂; vÞE ≥ ΔK

≥ β−ða; A; P̂; vÞE
≥ βg−ða; A; P̂; vÞE; ð18Þ

where we have written the inverse “temperatures”
β�ða; A; P̂; vÞ, depending on the point, the causal region,

the momentum direction P̂ and velocity v ¼ j~Pj=E, as the
maximal and minimal values of ΔK=E attainable for
different local excitation composition and energy with
the same momentum direction P̂ and velocity, and where
βg�ða; A; P̂; vÞ are universal geometrical bounds deter-
mined by the geometry alone as described above.6 In
general, there is a range in β allowed by the geometry, and

this range depends on the momentum direction and
velocity. For the special cases of the Rindler wedge or
spheres in CFT, this range collapses to a single value for β
and further, the value of β for each momentum direction
and velocity precisely comes from the projection of a
vector, Eq. (11),

β�ða; A; P̂; vÞE ¼ ξμðaÞPμ: ð19Þ

Wewill see below that both these features are lost for more
general regions in d ≥ 3.
In general, we will be interested in local excitations in the

limit of large energy because only in this limit we expect
the local temperatures are connected with local features of
the modular Hamiltonian. In particular, a standard way to
produce these high energy excitations is by doing a large
boost of a given excitation, and this excitation will be in a
null direction, v → 1. We will then be interested particu-
larly in local inverse temperatures in null directions, that we
call simply β�ða; A; P̂Þ.
If we can produce large energy excitations of nearly

null momentum P1 and P2 localized in arbitrarily small
regions around a we expect that we can also combine
them to be approximately decoupled when they are
localized in much smaller sizes that the separation dis-
tance. For a CFT, we can produce these states by scaling
far-away excitations. In that case, one could obtain the
contribution

ΔK ≃ βða; A; P̂1ÞE1 þ βða; A; P̂2ÞE2

¼ βða; A; Q̂; vÞðE1 þ E2Þ; ð20Þ

where

Q̂ ¼ E1P̂1 þ E2P̂2

jE1P̂1 þ E2P̂2j
;

v ¼ jE1P̂1 þ E2P̂2j
E1 þ E2

: ð21Þ

This introduces a convexity relation for the possible
values of inverse temperatures,

p1βða; A; P̂1Þ þ p2βða; A; P̂2Þ ¼ βða; A; Q̂; vÞ; ð22Þ

where the two probabilities p1, p2 are such that
p1 þ p2 ¼ 1. Analogously, one can consider decomposi-
tions in several null momenta. This convexity, coming from
the one of the momenta in the future cone, carries null
momenta to non-null momentum Q ¼ P1 þ P2. The rela-
tion (22) holds automatically if the inverse temperatures for
all directions and velocities come from a vector as in (19).
However, if the inverse temperatures in the null directions
βða; A; P̂Þ do not come from projections of a vector, (22)
leads to a range of possible βða; A; Q̂; vÞ for each non-null

+

A

FIG. 2. The causal region A (black) is included in the Rindler
wedge and includes a double cone elongated along a null line
(shown with dashed lines). The contributions to ΔK for these
three regions from a unitary excitation localized near a point
(marked with a red circle) are ordered according to the same
relations.

5It is not difficult to see that the set of geometric lower bounds
coming from (17) for generic theories is not improved thinking in
conformal theories where we can use spheres that are not small.
Then these lower bounds are completely universal.

6βgþða; A; P̂; vÞ is the minimum of the quantity ξ0 þ P̂iξiv
among all ξμ available for upper bounds and βgþða; A; P̂; vÞ is the
maximum of this quantity for all ξμ available for lower bound.
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momentum, even if the null βða; A; P̂Þ are unique (the
maximum and minimum coincide). The special features or
“composition” of the excitation that in this case leads to a
range in β is the presence of different clusters moving with
different directions. The reason for this range of β is that in
the future cone the null vectors are “pure” and cannot be
decomposed as sums of other vectors while the timelike
momenta can be decomposed as sums of null momenta, and
this decomposition is highly nonunique. A non-null vector
in a certain small volume of the future cone can still be
decomposed uniquely as a sumof justd fixed null vectors. If
we give arbitrary null temperatures for just d null directions
we can construct a unique vector ξ which produces these
null temperatures and uniquely extend the null temperatures
to other null and non-null directions. However, if we choose
an arbitrary null temperature for an extra ðdþ 1Þth null
vector, the results for non-null vectors will depend on the
decomposition.

B. Causal propagation and local temperatures
in null directions

Given the high degree of universality of the contribution
for ΔK due to local excitations a natural idea is that a
generalization of the Rindler result applies for any region,
that is, the local contributions are of the form

ΔK ¼ Pμξ
μðxÞ; ð23Þ

for some vector field ξμðxÞ. For high-energy excitations,
this contribution might come from a local term in the
modular Hamiltonian analogous to the one in the Rindler
wedge,

Klocal ¼
Z
Σ
dσημTμνξ

ν: ð24Þ

This now need not be exactly conserved, it must only
give the dominant expectation value for highly localized
energetic excitations.
We will see that (23) is not possible in general, consid-

ering only high energy excitations.
Let us take two different Cauchy surfaces Σ1 and Σ2 for

the same region. The full modular Hamiltonian written in
these surfaces has to be the same operator giving the same
value of ΔK. Let us take a state that contains a very
energetic excitation with a trajectory sharply localized
along a null ray of tangent vector χ (see Fig. 3). This type
of excitations always exist, and can be constructed by
taking a state created by an operator localized in a very
small ball and then boosting it. The momentum of the
excitation will be approximately parallel to the null ray,
Pμ ∼ χμ. The expectation value of K computed in the two
Cauchy surfaces will be (23) with ξ written in the vicinity
of two points x1, x2 respectively, which are connected by
the null ray

x1 − x2 ¼ yχ; ð25Þ

for some number y. The contributions to the modular
Hamiltonian are then P · ξðx1Þ and P · ξðx2Þ. From the
equality of these contributions we get

χ · ðξðx1Þ − ξðx2ÞÞ ¼ 0: ð26Þ

For infinitesimal displacements of the Cauchy surface, this
equation, together with (25), gives

χνχμð∂μξνÞ ¼ 0 ð27Þ

for any null vector χ. Then the symmetrized gradient of ξ
must be proportional to the metric, and we must have

∂μξν þ ∂νξμ ¼
2

d
gμνð∂ · ξÞ: ð28Þ

This is exactly the equation satisfied by infinitesimal
coordinate transformations xμ0 ¼ xμ þ ϵξμ which are con-
formal transformations of Minkowski metric.
Therefore, Eq. (24) must have the same form as the

generators of conformal transformations would have if the
theory were conformal, which is not surprising given that
the argument only involved the geometry of null rays.
However, the unitary modular flow induced by the modular
Hamiltonian e−iKτ must preserve the algebra of operators in
the region. This is only possible if the modular flow keeps
the operators localized on the spatial boundary of the region
fixed. Then it must be that ξ vanishes on ∂V. A ξ satisfying
(28) can only vanish in spheres for d ≥ 3 (or the limit case
of a plane). As a consequence, the local term can be of the
form (24) only if the region is a sphere. We know this is the

FIG. 3. The modular Hamiltonian written in two different
Cauchy surfaces must have the same expectation value when
vacuum is perturbed by an energetic ray which follows an
approximately null trajectory.
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case of a CFT, but in principle this could also be the case of
non-CFT for spheres in d ≥ 3.
For d ¼ 2, the situation is different. Using null coor-

dinates x� ¼ x0 � x1 Eq. (28) only requires that ∂−ξþ ¼
∂þξ− ¼ 0. Therefore, any functions ξþðxþÞ, ξ−ðx−Þ will
satisfy the requirement. Then it is possible that the local
temperatures for high energy null excitations are produced
by a term in the modular Hamiltonian that is just an integral
of the stress tensor, for any theory and any number of
intervals. We have seen this happens for free fermions,
Eq. (13).
We conclude that we expect that local temperatures in the

null directions, that is, in the limit E → ∞, P2 fixed, to be
conserved by propagation, and thus a function of the null
ray. We can write for this null directions

βða; A; P̂Þ ¼ βða0; A; P̂Þ; for ða − a0Þ ¼ λð1; P̂Þ; ð29Þ

for some number λ. Except in d ¼ 2 (and spheres) the
local temperatures cannot depend on the momentum
direction in a simple vectorial form as in (19) for generic
regions and Cauchy surfaces. This holds for the maximal
and minimal temperatures along null directions, which
have to be conserved along the direction of the null ray.
This also prevents a simple form (24) for the operator
giving place to these temperatures. The reason for this
impossibility is that a vector at each point has little
information to accommodate all constraints coming from
causal propagation and the boundary of the region. We
will see in the next section what kind of operators can do
the job for scalars in d ≥ 3.
Since the temperatures for null directions do not come

generically from a vector, it must be that there is a nonzero
range of temperatures for non-null directions, according to
the discussion at the end of the previous section. However,
it can still be the case that the temperatures in the null
directions, in the limit of large energy, be unique and the
maximum and minimum coincide. In any case, it is clear
the temperatures in the null directions have a more
fundamental nature and more interesting properties than
the ones in generic directions.

C. Argument for the universality of local
temperatures in d = 2

In d ¼ 2, we have two null directions and inverse
temperatures, which we can call simply βðx;�Þ, sup-
pressing the dependence on A (this is not to be confused
with β�, here the two signs correspond to the two null
directions). These are simply the null components ξ� of
the vector ξ in (24) if there is a local term proportional to
the stress tensor that gives the relevant contribution. The
null temperatures satisfy local equations of motion
∂�βðx;∓Þ ¼ 0 that simply state they are conserved along
null rays. In Minkowski space, this does not give us much

information, and the general solution is given by arbitrary
functions βðx�;�Þ.
However, assuming an analytic continuation of the

functions βðx;�Þ to imaginary time t → −it, writing for
the complex coordinates z ¼ x1 þ ix0, z̄ ¼ x1 − ix0, the
equations are transformed to ∂ z̄β ¼ 0 and ∂zβ̄ ¼ 0, with
analytic and antianalytic solutions βðzÞ, β̄ðz̄Þ.
Near the boundaries of the region βðzÞ should vanish in

the way the modular Hamiltonian of Rindler space does
(linearly in the distance to the boundary point). Hence,
βðzÞ−1 should have simple poles, all with the same residue
ð2πÞ−1, at the left boundary points ai of the intervals and
−ð2πÞ−1 at the right boundary points bi. These are poles of
a geometric origin, and for the vacuum state we do not see
what could be the origin of other singularities in the
complex plane. In particular, at the point of infinity, β
must diverge (giving zero local temperature because it is far
away from the boundaries) and β−1 should go to zero.
Then, assuming β−1 to be analytic everywhere, including
infinity, with only simple poles at the boundary, the unique
solution is

βðzÞ−1 ¼ 1

2π

X
i

�
1

z − ai
þ 1

bi − z

�
: ð30Þ

This gives a unique βðzÞ which coincides with the one for
the free massless fermion described in ([14]). The same
happens for the antianalytic part. These local temperatures
are also correct for massless scalars [15].
As the argument leading to this function is independent

of the details of the theory, and in particular involves only
null propagation, we think this might be the universal form
of the local term in d ¼ 2. We will check this is the case
for massive scalars and massive fermions in the following
sections.
An analogous argument in more dimensions would

involve an analytic continuation to imaginary time of
the statement that βðx; A; P̂Þ does not depend on the
direction along the ray parallel to P̂, or, in other words,
that the null temperatures are a functions of null rays.
Questions about holomorphic functions of null rays
have been discussed in the literature in terms of twistor
space [16]. We hope to return to this interesting point in
a future work.

III. LOCAL TERMS IN MODULAR
HAMILTONIANS

Let us imagine what is the possible form of the operator
producing the leading term in ΔK for an energetic and
well localized excitation around a point a. We can think
locally the geometric coefficients (such as the vector ξðaÞ
in the Rindler case) can be taken constant, and the
contribution is dominated by terms formed by products
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of operators near a. We only need the form of these
operators at small distances from a and to each other.
In principle, this part will dominate the contribution.
Likewise, to evaluate the leading term of the contributions
we can use a counting of dimensions corresponding to the
UV fix point of the theory. We expect a leading local
contribution of the form

K ≃X
k

RγðaÞ
Z
V
dd−1x1 � � � dd−1xkGðx1;…; xkÞ

× ϕΔ1ðx1Þ � � �ϕΔkðxkÞ: ð31Þ
Here RγðaÞ stands for a quantity of dimension −γ
depending on geometric parameters of the region
and eventually on the scales of the theory, that is
approximately constant around the point of interest.
Gðx1;…; xkÞ stands for an homogeneous function of the
coordinates of some degree. The Δi are the scaling
dimensions of the different field operators (which might
contain time derivatives of the field operators) that
serve as a generating basis for the operator content of
the theory. The integration is on a small region V,
a ∈ V, on the Cauchy surface.7 Since we can test with
excitations increasingly localized in neighborhoods
around any point in this patch, the function
Gðx1;…; xkÞ has to be homogeneous under scaling
around any point. Then it must also be translational
invariant, and a function of coordinate differences. Even
if we are looking at very localized contributions, we
cannot use OPE to simplify this expression since the
excitation is always assumed to be small inside the
cloud of operators (31).
K is dimensionless, and then the scaling dimension of

the integral in (31) is γ. This means that taking states
scaled down with dilatations by a factor λ the expectation
value of the integral will scale by a factor λγ. For the
Rindler wedge or the sphere in a CFT, this dimension is
1, being proportional to the momentum. Hence, we need
that γ ≤ 1 in order to respect the relative entropy bound.
In particular, there must be one term such that γ ¼ 1, and
this is the leading term we are considering. We would
like to constrain the scaling dimensions and the number
of operators appearing in (31) to have a restricted class of
possibilities. In principle, a large operator dimension can
be compensated by large powers on the coordinates in the
function G.
There is a problem in obtaining additional informa-

tion from (31). This is the fact that, in principle, the
sum is over an infinite series, and we do not have any
small parameter that select some specific term from the
others. Hence, it is difficult to understand the meaning
of (31).

Let us, however, assume naively that we can analyze
each term separately. If we test with a very localized
excitation there will be a contribution to ΔK where
only one of the operators acquire a large expectation
value. If this excitation is scaled, the energy will scale
as l−1, with l the size of the excitation. On the other
hand the expectation value hϕΔiðxÞi ∼ l−Δi . Then, there
is a contribution to ΔK ∼ l−Δi ld−1 ¼ ld−1−Δi , where the
expectation value of the other operators and the values
of Gðx1;…; xkÞ are frozen. We then obtain Δi ≤ d; the
operators have to be relevant. We can rephrase this
constraint as that the cloud of operators scale globally
as the energy, but if Δi > d, testing with enough detail
we could see hard elements inside the cloud, and this
is not allowed. In principle, there is no problem with
this constraint in d ¼ 2, since the stress tensor can
always be producing the local term. For d > 2, we
have seen the stress tensor alone cannot account for
the condition of causal propagation of energetic null
signals and other relevant operators are needed. This
would imply the existence of relevant operators for all
CFT in d > 2. However, the analysis seems to be too
naive to arrive to this conclusion, as the following
argument shows.
We can take a further step and consider a generic

nonlocal term in the modular Hamiltonian, but not
necessarily a term that gives the local contributions we
were looking for. That is, this term is of the form (31), but
without further conditions on the functions G. Nonlocal
terms (k > 1) are needed generically in the modular
Hamiltonian. For example, regions with more than one
connected component must have nonlocal terms to
account for nonzero mutual information between the
regions; otherwise, the density matrix factorizes.
Suppose we test with a state formed by k localized
excitations at the same time, located at fixed distances
between them, and scale the energies of these excitations
independently as l−α1 ;…; l−αk . We get from monotonicity
of relative entropy that

Yk
i¼1

l−αiðΔi−ðd−1ÞÞ ≤ maxðl−αiÞ: ð32Þ

From this, in the limit of small l, we get
X

αiΔi ≤ ðd − 1Þ
X

αi þmax αi ∀αi > 0: ð33Þ

Making all αi equal, we have, in particular,
X
i

Δi ≤ kðd − 1Þ þ 1: ð34Þ

This last inequality requires there is at least one Δ
satisfying

Δ ≤ ðd − 1Þ þ k−1 < d; ð35Þ
7A proper mathematical definition of this expression might

need some small smearing in the time direction.
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which is strictly relevant.8 This argument seems to suggest
that any theory would need to contain relevant operators.
However, some d ¼ 2 models are known which do not
contain relevant operators [18]. This illustrates the lim-
itations on the interpretation of the infinite sum (31).
In the particular case of free fields, we can go beyond in

this analysis because we know the vacuum state is Gaussian
and the sum in (31) contains only quadratic term in the
fields. We are going to analyze in more detail the scalar
fields in general dimensions and, in the next section, turn
attention to the effect of a mass for free fields.

A. Structure of local terms for free scalars

Let us consider a free massive real scalar field and
creating a state acting on vacuum with a unitary localized
operator. We can use the coherent states

jαi ¼ ei
R

dx ~αðxÞϕðxÞj0i; ð40Þ

where ~αðxÞ is real. We have

½ϕðxÞ; ei
R

dx ~αðyÞϕðyÞ� ¼ ei
R

dx ~αðyÞϕðyÞ

×
Z

dy ~αðyÞi½ϕðxÞ;ϕðyÞ�

¼ ei
R

dx ~αðyÞϕðyÞαðxÞ; ð41Þ

where we have written

αðxÞ ¼ −
Z

dyΔðx − yÞ ~αðyÞ;

Δðx − yÞ ¼ −i½ϕðxÞ;ϕðyÞ�: ð42Þ

The function Δðx − yÞ is a real antisymmetric solution of
the homogeneous equations of motion which vanishes
outside the light-cone. Hence, αðxÞ is also a solution of
the equations of motion ð∂2 þm2ÞαðxÞ ¼ 0, which
vanishes outside the future and past of the support of
~αðxÞ. Our notation jαi for the state is due to the fact that
this state depends on the wave α rather than function ~α used
to create it. We then have

e−i
R

dx ~αðxÞϕðxÞϕðxÞei
R

dx ~αðxÞϕðxÞ ¼ ϕðxÞ þ αðxÞ: ð43Þ

Using this, we have for the two point function

hαjϕðxÞϕðyÞjαi ¼ h0jϕðxÞϕðyÞj0i þ αðxÞαðyÞ: ð44Þ

The vacuum subtracted two point functions are purely
classical, given by the replacement of the operator ϕðxÞ
by the classical function αðxÞ. In particular, for the stress
tensor,

hαjTμνjαi − h0jTμνj0i
¼ ∂μαðxÞ∂ναðxÞ

− gμν
1

2
ð∂βαðxÞ∂βαðxÞ þm2αðxÞ2Þ: ð45Þ

From (43) we know that scaling the function α → λα
without scaling the coordinates, the expectation values of
products of n fields will have a term scaling like λn. Since
the expectation value of the stress tensor scales as λ2 we can
deduce from the inequalities for the Rindler wedge that the
vacuum modular Hamiltonian for any bounded region has

8For d ¼ 2 CFT, we can make this argument more precise. We
have a unitary representation of the infinite dimensional group of
reparametrizations of the two null coordinates (see, for example,
[17]). We can use these unitaries in our tests of relative entropy.
We are thinking in writing the modular Hamiltonian in a null
surface in terms of chiral fields on this surface. All coordinates in
the following will be null, let say xþ coordinates. Let xþ0 ¼
fðxþÞ be one such reparametrization which is equal to xþ outside
some small interval, and it is invertible, f0ðxþÞ ≠ 0. This defines
a localized unitary Uf in the xþ axis such that

U†
fTþþðxþÞUf ¼ ðf0ðxþÞÞ2TþþðfðxþÞÞ

þ c
24π

�
3

2

�
f00

f0

�
2

−
f000

f0

�
; ð36Þ

where c is the central charge and the second term in the right hand
side is called the Schwarz derivative. This last term gives the
expectation value of the stress tensor in the state Ufj0i. Its
integral is the total energy and has to be positive,

c
24π

Z
dxþ

�
3

2

�
f00

f0

�
2

−
f000

f0

�
¼ c

48π

Z
dxþ

�
f00

f0

�
2

: ð37Þ

On a product of primary fields, these unitaries act covariantly as

Ufϕ
Δ1ðx1Þ � � �ϕΔkðxkÞU†

f ¼ f0ðx1ÞΔ1 � � � f0ðxkÞΔkϕΔ1

× ðfðx1ÞÞ � � �ϕΔkðfðxkÞÞ: ð38Þ

Then, for a generic homogeneous term, we have

ΔK ¼ RðaÞ
Z

dx1 � � � dxkGðx1;…; xkÞðf0ðx1ÞΔ1 � � � f0ðxkÞΔkC0

× ðfðx1Þ;…; fðxkÞÞ − C0ðx1;…; xkÞÞ; ð39Þ

where C0ðx1;…; xkÞ ¼ h0jϕΔ1ðx1Þ � � �ϕΔkðxkÞj0i. We can take a
function fðxÞ that is different from x only in small intervals of fix
size b around the points x̄1;…; x̄k, but where the derivative f0
acquire much larger values l−1. We can take fðxÞ to be formed
piecewise by exponentials ∼e�x=l to make this shape. Exponen-
tials locally minimize the contribution to the energy (37). The
energy will scale with fixed b as E ∼ l−1. The expression (39)
have a contribution for xi around x̄i where we can take
Gðx1;…; xkÞ ∼ Gðx̄1;…; x̄kÞ and C0ðx1;…; xkÞ ∼ C0ðx̄1;…; x̄kÞ
as roughly constant, and ΔK will essentially scale as

ΔK ∼ ðlÞ−
P

k
1
Δi × lk, giving the same bounds on dimensions

as in (35).
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to be quadratic in the fields. Of course, we can also deduce
this from the fact that correlation functions for the free field
are Gaussian [19].
This great simplification allow us to write the modular

Hamiltonian in any Cauchy surface as a bilinear in the
fields and momentum operators. From (44) it also follows
that if one of the coordinates of the two fields involved
in K falls outside of the support of α, this nonlocal part
does not contribute to ΔK. The leading local contribution
around some small patch V around the point a where we
want to test with our coherent state, scaling for high
energies in the same way as the Rindler Hamiltonian,
must have a general form

Z
V
dd−1xdd−1yðMðx − yÞϕðxÞϕðyÞ þ Nðx − yÞ _ϕðxÞ _ϕðyÞ

þQðx − yÞϕðxÞ _ϕðyÞÞ: ð46Þ

_ϕ is the derivative of the field in the normal direction to the
Cauchy surface, and x, y are local Cartesian coordinates on
this surface. The fields ϕ and _ϕ form a complete basis for
operators. All kernels are real, andM and N are symmetric.
Since numerical terms on the modular Hamiltonian are
irrelevant in our analysis we do not care about the ordering
of operators. These kernels depend on the point a, though
we are not writing this explicitly. For a surface at t ¼ 0
in a time reflection symmetric causal region, the kernel
Qðx − yÞ ¼ 0. For the vacuum subtracted contribution
due to a coherent state, we have to replace ϕðxÞ by αðxÞ
in (46).
In order that this contribution has the same scaling as

the Rindler Hamiltonian as we scale the coordinates in
αðxÞ → αðλxÞ, we need the kernels M, N, and Q to be
exactly homogeneous distributions of scaling dimensions
dþ 1, d − 1, and d, respectively. A homogeneous distri-
butionHðx1; x2;…; xkÞ of k real variables and dimensionΔ
is such that Hðλx1; λx2;…; λxkÞ ¼ λ−ΔHðx1; x2;…; xkÞ.
The distributions M, N, Q are functions of d − 1 variables.
Homogeneous distributions are classified [20]. For a
number d − 1 of variables and dimensions d − 1, d, and
dþ 1, they include combinations of derivatives of the delta
function (which has dimension d − 1), and regularized
power functions:

MðxÞ ¼ −
1

2
aij∂i∂jδðxÞ þ

1

2
jxj−ðdþ1Þmðx̂Þ; ð47Þ

NðxÞ ¼ b
2
δðxÞ þ 1

2
jxj−ðd−1Þnðx̂Þ; ð48Þ

QðxÞ ¼ ci∂iδðxÞ þ jxj−dqðx̂Þ: ð49Þ

mðx̂Þ, nðx̂Þ and qðx̂Þ are functions on the unit sphere such
that [20]

Z
dΩmðx̂Þx̂ix̂j ¼ 0;
Z

dΩnðx̂Þ ¼ 0;
Z

dΩqðx̂Þx̂i ¼ 0: ð50Þ

As explained above, all quantities aij, b, ci, mðx̂Þ, nðx̂Þ,
qðx̂Þ, are slowly varying functions of the point a which are
considered as constants in the small patch V of interest,
and they all have dimensions of length.
The terms involving the delta functions correspond to

local operators in the modular Hamiltonian. An integral
of stress tensor components produce terms of this kind.
The power functions do not come from integrals of local
operators. As argued in the preceding section, for
general regions and Cauchy surfaces these terms are
needed in dimensions d ≥ 3. Notice the functions m, n,
q, depend on d − 2 variables, and thus have the potential
to encode the details of the boundary surface of the
region A. Without this freedom we have seen it is not
possible to satisfy the constraints of causal propagation
and vanishing of the modular Hamiltonian at the
boundary ∂A.
It is interesting to note that other regularizations of the

powers functions with the right dimensions exist, but they
are not fully homogeneous. For example, instead of the
principal value of 1=x we can use 1=jxj. The action of this
distribution on a test function αðxÞ is defined by

lim
ϵ→0

�Z
jxj>ϵ

dx
αðxÞ
jxj þ 2αð0Þ logðϵÞ

�
: ð51Þ

Applying this distribution to the scaled function αðλxÞ we
get instead

lim
ϵ→0

�Z
jxj>ϵ

dx
αðxÞ
jxj þ 2αð0Þ logðϵÞ

�
− 2αð0Þ logðλÞ; ð52Þ

which is not invariant under scaling but has a logarithmic
correction. In the present context, this would lead to a
violation of the relative entropy inequalities.9 This is the
reason behind the conditions (50) in general dimensions.
Now we see what information we can obtain from the

propagation between different Cauchy surfaces together
with the relative entropy inequalities. We use coherent

9However, the distribution 1=jx − yj does make perfect sense
as a correlator of scalar fields of dimension 1=2 in Euclidean
CFT. The reason is that in Euclidean field theory the distributions
act over a space of test functions that vanish (with all their
derivatives) at the coincidence point x ¼ y. On this test function
space (that we cannot use here), this distribution is homogeneous
under the scaling of coordinates as a CFT correlator of primary
fields must be.
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states again as test states. Taking into account α is a real
solution of the Klein-Gordon equation,10 we write it as

αðxÞ ¼
Z

dd−1p

ð2πÞðd−1Þ=2
ffiffiffiffiffiffiffiffiffi
2j~pj

p ða~pe−ij~pjtþi~p·~x þ a�~pe
ij~pjt−i~p·~xÞ:

ð53Þ

On the spatial surface we have

αð~xÞ ¼
Z

dd−1p

ð2πÞðd−1Þ=2
ffiffiffiffiffiffiffiffiffi
2j~pj

p ðei~p·~xa~p þ e−i~p·~xa�~pÞ; ð54Þ

_αð~xÞ ¼ −i
Z

dd−1p

ð2πÞðd−1Þ=2
ffiffiffiffiffiffiffiffiffi
2j~pj

p j~pjðei~p·~xa~p − e−i~p·~xa�~pÞ:

ð55Þ

We are using a massless approximation since we are
interested in high energy excitations, and set p0 ¼ �j~pj.
The Fourier transform of a homogeneous distribution of

dimension Δ is again a homogeneous distribution, of
dimension n − Δ in the conjugate variables, with n the
dimension of the space. We have for a generic homo-
geneous distribution

ĤðpÞ ¼
Z

dxneipx
hðx̂Þ
jxjΔ ¼ ĥðp̂Þ

jpjn−Δ : ð56Þ

The functions hðx̂Þ and ĥðp̂Þ have the same dimension and
are nonlocally related by

ĥðp̂Þ ¼ lim
ϵ→0þ

Γ½n − Δ�
Z

dΩxðϵ − ip̂ · x̂ÞΔ−nhðx̂Þ: ð57Þ

For Δ ¼ n, nþ 1, nþ 2, corresponding to our kernels n, q,
m, we have to define these integrals by analytic continu-
ation in Δ, and the limit is well defined because of the
conditions (50). The relevant kernel of p̂ · x̂ in (57) is
logarithmic in these cases.
Using (54) and (55) into (46) we have for the local

contributions to ΔK written in momentum space,

ΔK ¼ 1

2

Z
dd−1pj~pj

�
a�~p
a−~p

�T� βðp̂Þ γðp̂Þ
γ�ðp̂Þ βð−p̂Þ

�� a~p

a�−~p

�
;

ð58Þ

where we have defined

βðp̂Þ ¼ 1

2
ð ~mðp̂Þ þ ~nðp̂Þ þ ~qðp̂Þ þ ~qðp̂Þ�Þ;

γðp̂Þ ¼ 1

2
ð ~mðp̂Þ − ~nðp̂Þ þ ~qðp̂Þ − ~qðp̂Þ�Þ; ð59Þ

with

~mðp̂Þ ¼ aijp̂ip̂j þ m̂ðp̂Þ; ~nðp̂Þ ¼ bþ n̂ðp̂Þ;
~qðp̂Þ ¼ cip̂i þ iq̂ðp̂Þ: ð60Þ

We recall aij, ci, and b are real, m̂ðp̂Þ and n̂ðp̂Þ are real
and symmetric while q̂ðp̂Þ ¼ q̂ð−p̂Þ�. This gives ~mðp̂Þ
and ~nðp̂Þ real and symmetric while ~qðp̂Þ ¼ − ~qð−p̂Þ�.
Consequently, βð�p̂Þ are real and γðp̂Þ ¼ γð−p̂Þ symmet-
ric. We see from (60) that the full kernels on the unit sphere
when written in momentum space do not have the restric-
tions (50). These restrictions are precisely lifted by the
addition of the delta function kernels in coordinate space.
The matrix in (58) has to be positive semi-definite for

each value of p̂ to have positive relative entropy.11 That is,
βð�p̂Þ ≥ 0, and βðp̂Þβð−p̂Þ ≥ jγðp̂Þj2.
Now, the projection of the momentum of the excitation in

some future-directed timelike vector ξ writes

ξμPμ ¼ 1

2

Z
dd−1pj~pj

�
a�~p
a−~p

�T� ξ0 þ ξip̂i 0

0 ξ0 − ξip̂i

�

×

� a~p

a�−~p

�
: ð61Þ

This quantity constitutes an upper bound and a lower bound
on (58) for different ξ. The comparison between (61) and
(58) can be done in each independent direction of the
momentum, implying that the difference of matrices have
to be positive definite.
For an excitation highly concentrated in a single

momentum direction p̂, a~p ≠ 0, a−~p ∼ 0, we recognize
from the comparison between (61) and (58) that βða; p̂Þ
(where we explicitly recall the dependence on the point a)
is exactly what we have called inverse temperature in the
null direction determined by p̂ at the point a. This must be
preserved by causal propagation, being the same for any
point in the null ray passing through a in direction p̂,

βða; p̂Þ ¼ βðb; p̂Þ; a − b ¼ λð1; p̂Þ: ð62Þ

If we excite a~p and a−~p together, and look at the
contribution in another Cauchy surface, the possible
presence of a nonzero γðp̂Þ points to nonlocal correlations
for the contributions of the two wave packet in this new
surface. These cross terms still scale as the energy.10These are not particle excitations but coherent states corre-

sponding to the wave αðxÞ which can have positive or negative
energy, while the quantum state is of positive energy, as it must
be; see Eq. (45).

11The contributions to the integral for ~p and −~p are identical
and independent of the contributions in other directions.

LOCAL TEMPERATURES AND LOCAL TERMS IN MODULAR … PHYSICAL REVIEW D 95, 065005 (2017)

065005-11



We can also write the local term (46) in terms of creation
and annihilation operators by introducing the correspond-
ing expansions of the field operators, with the approxima-
tion that the kernels are taken with a constant form in the
small region of interest. The result is the same as (58) where
now a~p, a�~p are annihilation and creation operators, and the
ordering is not relevant since we are not interested in
constant terms in the modular Hamiltonian. We see that for
excitations of any kind, not necessarily coherent states,
with momentum highly concentrated in a null direction, the
contribution of the modular Hamiltonian is

K ≃ βða; p̂Þ
Z

dd−1pj~pja�~pa~p: ð63Þ

This indicates that there is no range in the null temper-
atures, and we have that the maximum and minimum
coincide,

βþða; p̂Þ ¼ β−ða; p̂Þ ¼ βða; p̂Þ: ð64Þ

For d ¼ 2, m̂ðp̂Þ and n̂ðp̂Þ can have two possible values
for the two null directions, but they have to be symmetric
and because of (50) the two values have to sum zero.
Hence, they vanish. When going back to the coordinate
representation, for example, the contribution ofm would be

Z
dxdy∂xϕðxÞ

1

x − y
∂yϕðyÞ; ð65Þ

where the distribution is understood in principal value
regularization. This is antisymmetric, and then (65) van-
ishes. For intervals on the t ¼ 0 line, ~qðp̂Þ ¼ 0 by time
reflection symmetry. Then we have generically a local term
in this case

Z
dxðf1ðxÞ _ϕ2 þ f2ðxÞð∂xϕÞ2Þ: ð66Þ

This is the integral of a local operator but still not
necessarily the stress tensor since it may be f1 ≠ f2. For
the massless limit, the chiral components ∂x�ϕ decouple,
and this is consistent with (66) only for f1 ¼ f2. Then we
have a term proportional to T00.
The argument in Sec. II C hinted that only the stress

tensor appears, and the coefficient functions should be
universal and given by (13). This is the case of massless
free fields [14,15]. But actually we have not proved that
these coefficients are independent of mass or that some-
thing like f1 ≠ f2 cannot happen when there is a mass. We
turn to this analysis in more detail in the next sections.

IV. LOCAL TERMS FOR FREE FIELDS IN d = 2

In this section, we argue that the leading local terms in
the modular Hamiltonian for free fermion and scalar fields

in d ¼ 2 for any number of intervals have the same form
given by (13), (14), independently of the field mass. This is
in accordance with the argument in Sec. II C for univer-
sality of the local terms across different theories based on
causal propagation and analyticity on the Euclidean plane.
We will further check this result numerically in the next
section.
A complete description of the reduced density matrix for

a free field can be achieved if we can diagonalize the
correlator kernel in the region of interest. For example, for a
Dirac field on n intervals on the x0 ¼ 0 surface the modular
Hamiltonian is

K ¼
Z
A
dxdyψ†ðxÞHðx; yÞψðyÞ; ð67Þ

where

H ¼ − logðC−1 − 1Þ; ð68Þ

and

Cðx − yÞ ¼ h0jψðxÞψ†ðyÞj0i ð69Þ

is the equal time correlator kernel.
In [14], we obtained a complete diagonalization of

C in the massless case, in a region A ¼ ða1; b1Þ∪
ða2; b2Þ∪ � � �∪ðan; bnÞ formed by n intervals on the
x0 ¼ 0 line in d ¼ 2. A complete set of eigenfunctions
for each chirality (see [14,15]) is

ψk
sðxÞ ¼

1

Nk

Q
i≠kðx − aiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
Q

i¼1ðx − aiÞðx − biÞ
p e−isωðxÞ;

wðxÞ ¼ ln

�
−
Yn
i¼1

x − ai
x − bi

�
∈ ð−∞;∞Þ; ð70Þ

with the normalization factor

Nk ¼
ffiffiffiffiffiffi
2π

p �Q
i≠kðak − aiÞQ
iðak − biÞ

�
1=2

: ð71Þ

There are n degenerate eigenvectors for k ¼ 1;…; n, with
eigenvalue parametrized by s ∈ ð−∞;∞Þ,

Z
A
dxCðx − yÞψk

sðyÞ ¼
1

2
ðtanhðπsÞ þ 1Þψk

sðxÞ: ð72Þ

The eigenvectors are normalized according to

Z
A
dxψk�

s ðxÞψ 0
s
k0 ðxÞ ¼ δk;k0δðs − s0Þ: ð73Þ

Therefore, using (68) the kernel H of the modular
Hamiltonian writes
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Hðx; yÞ ¼
Z

ds
Xn
k¼1

ψk
sðxÞð2πsÞψk

sðyÞ�: ð74Þ

The result contains local and nonlocal terms. The local
term is

Hðx; yÞloc ¼ 2πfðxÞδ0ðx − yÞ þ πf0ðxÞδðx − yÞ; ð75Þ
with f given by ([14]). The delta function just makes the
delta prime term Hermitian. Once this is plugged into (67)
it gives the term proportional to the stress tensor (13). See
[15] for details. The point we want to make here is that this
local term proportional to δ0ðx − yÞ appears because the
dependence on s of the integrand in (74) is of the form
seiðwðxÞ−wðyÞÞ, what gives a δ0ðwðxÞ − wðyÞÞ. This singular
term will not be modified if the eigenfunctions ψk

sðxÞ
change but have the same limit for s → �∞. Hence, for the
massive case we are going to argue that in this limit of large
jsj the eigenfunctions of C go to the eigenfunctions of the
massless problem. In that case, the massive Hamiltonian
has the same leading local term as the massless one.
However, analyzing the effect of the mass in the

eigenvalue problem (72) in the limit of large s is compli-
cated. This is an integral equation, where the mass enters
changing the correlator kernel in an important way. This
correlator will be written in terms of Bessel functions of
mðx − yÞ, where this product cannot be taken small in
general. The limit of large jsj corresponds to eigenvalues of
C near 0 or 1, what does not give any evident clue.
In order to proceed, we rewrite the eigenvalue problem

(72) into a different form. The proof of the following
statement will be presented in [15]. Let SðxÞ be a solution
of the massive Euclidean Dirac equation in the plane,
smooth everywhere except at a cut located on the region A
in the line x2 ¼ 0, where the function jumps with a fixed
factor, according to the following boundary condition

Sþðx1Þ ¼ lim
x2→0þ

Sðx1; x2Þ

¼ −e2πs lim
x2→0−

Sðx1; x2Þ

¼ −e2πsS−ðx1Þ; x1 ∈ A: ð76Þ

Then it follows that SþðxÞ, x ∈ A, is a solution of the
eigenvalue problem (72). This transform the problem of
integral equations into one of partial differential equations
with boundary conditions.
The question is then what happens for the solution SðxÞ

as we make the jump on the cut arbitrarily large, s → �∞.
This large jump factor will necessarily produce large
gradients in SðxÞ in the region of the plane near the cut.
Large gradients reduce the effect of the mass in the Dirac
equation. This leads to the desired result that the eigen-
functions are independent of mass in the large jsj limit.
The complete massive solution of this problem is not

known. But let us exemplify the idea with the simple

problem of a cut in the line x1 > 0. In polar coordinates
ðr; θÞ, the solution of the equation for one of the spinor
components that satisfy ð−∇2 þm2ÞSð~xÞ ¼ 0, with the
boundary conditions (76), is proportional to

S ¼ m1=2−isKis−1=2ðmrÞeðsþi=2Þθ; ð77Þ

whereK is the Bessel function. Notice s plays the role of an
angular momentum. For large angular momentum and a
fixed r, jsj ≫ mr, the solution is independent of the mass

Sðr;mÞ → consr−1=2þiseðsþi=2Þθ jsj ≫ mr; ð78Þ

disregarding if mr is big or small.
Another way to convince oneself the mass does not play

a role in large jsj eigenvectors is to think that the boundary
condition in (76) can be imposed by adding a potential to
the Dirac equation localized on the cut,

ðγμ∂μ þmþ γ0ðiπ þ 2πsÞΘAðx1Þδðx2ÞÞSð~xÞ ¼ 0; ð79Þ

where ΘAðx1Þ is equal to 1 on the cut and 0 elsewhere. This
potential just imposes the boundary conditions. With large
jsj we have a large potential term on A, and this again
makes the mass to be negligible in the region near the cut.
These arguments apply as well for the case of higher

dimensions, since Eqs. (72) and (76) are still valid, and
the boundary values of SðxÞ give the eigenfunctions of
the correlator. In this sense, we expect again the
eigenfunctions of the massive problem converge to the
ones of the massless one for jsj ≫ mR, for the typical
scale R of the region. We also expect that only the large
jsj part of the problem is related to local terms, since
singular terms in the modular Hamiltonian kernel cannot
appear without an improper integral. Hence, we expect
that local terms in any dimensions will be insensitive to
mass. This would imply, for example, the leading high
energy local term on a sphere is the usual one for a CFT
in terms of the stress tensor.
The case of the scalar field is analogous (a complete

account will be presented elsewhere [15]). The massless
limit has a local term in the modular Hamiltonian given
again by (13). Now the problem in the plane that gives the
solution of the relevant eigenvalue problem is a function
satisfying the Euclidean Klein-Gordon equation

ð−∇2 þm2ÞSð~xÞ ¼ 0 ð80Þ

everywhere except at the cut A, where we impose the
boundary condition

Sþðx1Þ ¼ lim
x2→0þ

Sðx1; x2Þ ¼ e2πs lim
x2→0−

Sðx1; x2Þ

¼ e2πsS−ðx1Þ; x1 ∈ A: ð81Þ
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The relevant functions are the limit on the cut of the
function and its time derivative, SþðxÞ, ∂2SþðxÞ. Because
of the same reasons as above, we expect that the limit of
large jsj gives functions independent of the mass, for any
fixed mass. Then the modular Hamiltonian has always the
same leading local term.
In addition, the Appendixes contain two explicit analytic

calculations for the massive fermion field. In Appendix A,
we have computed the modular Hamiltonian for one interval
perturbatively in the mass to first order. We get some
interesting information about nonlocal terms, in particular
there are “quasilocal” terms with fields in reflected
positions, for example, of the form ∼m

R
dx ðx−aÞðb−xÞ

b−a ×
ψ†ðxÞγ0ψðbþ a − xÞ. We get a local term equivalent to the
massless one but where T00ðxÞ is replaced by the massive
energy density. That is, the local term contains a (subleading
for large energies) term 2π

R
dxfðxÞmψ†γ0ψ , with the same

coefficient as the one of T00 in the massless case. In
Appendix B, we show this last feature has to remain true
nonperturbatively in the mass. The reason is that causal
propagation between different surfaces erases the local term
of the mass and creates one from the leading local kinetic
term. Then the coefficient of the mass term is always the
same as the one of the kinetic term.

V. FREE FIELDS IN d = 2: RESULTS FROM
LATTICE CALCULATIONS

In this section, we test the results obtained in the
previous section using techniques in the lattice for different
configurations. We calculate the modular Hamiltonian for
massive scalar and fermion fields on one and two intervals
finding a perfect matching between the local parts of these
modular Hamiltonians and the one in (13). Our strategy is
to calculate modular Hamiltonian kernels from the discrete
two point correlators and from there, extract the local
contribution Kloc. This would be straightforward but two
subtleties make these calculations tricky.
The first one is that the modular Hamiltonian is roughly

speaking proportional to inverse temperatures times energy.
For high-energy modes, and in particular for the local terms
we are interested in, the contribution of the modular
Hamiltonian is large, corresponding to the fact that these
modes are little excited in the vacuum fluctuations. These
large numbers in K come from logarithms of correlations
functions that are vanishing small, and there are many
modes that pile up to exponentially small eigenvalues of the
correlations functions. These modes do not contribute
much to the entanglement entropy and in consequence
they do not need to be treated in detail in standard
computations of entanglement entropy. However, they give
important contributions to the modular Hamiltonian, spe-
cially for the local terms. As a result, we are forced to use
very high numerical precision to account for these modes,
and the number of digits of precision needed increases with
the size of the region in the lattice and the mass. For lattices

of up to 200 points, we had to use around 600 digits to get
consistent results. This large precision can be understood
more quantitatively as follows. We have seen in the
previous section that we have eigenvalues for the correlator
(for the fermion, for example) which pile up around 1 as
1 − e−2πs for large eigenvalue parameter s; see (72). Taking
into account that s acts as a momentum in a phase factor we
can understand that for a lattice of L points we are getting
values of s as large as L=ϵ, or the number of lattice points.
To get the right local term we need to get right the
eigenvalues and eigenvectors for this large s ∼ L=ϵ. The
corresponding eigenvalues differ from one by an exponen-
tially small number. As an example for L ¼ 200 lattice
points we get a rough indication of the correct number of
digits needed e−2π200 ∼ 10−546. This also shows the diffi-
culties in going to larger lattices.
The second subtlety comes from extracting the relevant

delta function or its derivatives from the lattice results.
We explain how this is achieved in more detail below.

A. Scalar field

Suppose we have a set of bosonic coordinates ϕi and its
conjugate momenta πj with usual canonical commutation
relations ½ϕi; πj� ¼ δij and ½ϕi;ϕj� ¼ ½πi; πj� ¼ 0.We define
the vacuum correlators inside the region of interest V

hϕiϕji ¼ Xij; hπiπji ¼ Pij;

hϕiπji ¼ hπjϕii� ¼
i
2
δij: ð82Þ

In one spatial dimension for a real massive scalar with
Hamiltonian

H ¼ 1

2

X∞
n¼∞

ðπ2n þ ðϕnþ1 − ϕnÞ2 þm2ϕ2
nÞ; ð83Þ

the two point correlators X and P are explicitly given by

hϕnϕmi ¼
Z

π

−π
dx

eixðm−nÞ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ð1 − cos xÞ

p ;

hπnπmi ¼
Z

π

−π
dx

1

4π
eixðm−nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ð1 − cos xÞ

q
: ð84Þ

Moreover, in the free field case, it can be shown that
the modular Hamiltonian K defined through the density
matrix as

ρV ¼ ce−K; ð85Þ

with c such that TrðρÞ ¼ 1, can be written in terms of the
relevant two point correlators of the theory. For a review,
see [21]. We have
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K ¼
X

ðMijϕiϕj þ NijπiπjÞ; ð86Þ

with

M ¼ P:L; N ¼ L:X; L ¼ 1

2C
log

�
Cþ 1

2

C − 1
2

�
;

ð87Þ
where C ¼ ffiffiffiffiffiffiffi

XP
p

.

1. One interval

Since we are interested in the continuum limit of the
local modular Hamiltonian, we calculate (84) and (86) for
different masses mλ and interval lengths Lλ, keeping mλLλ

fixed, to finally read the local modular Hamiltonian from
the limit Lλ → ∞ of the relevant kernels. More specifically,
for a given L ≤ Lmax, where Lmax ¼ 200 is fixed by the
total lattice size, we first calculate the correlators Xij, Pij,
with i, j ≤ L, and massm ¼ const=L to finally evaluate the
modular hamiltonian from (87). We repeat the calculation

for different lengths Lλ ¼ 50λ with λ ¼ 1, 2, 3, 4 keeping
mλLλ ¼ ðmLÞcontinuum fixed.
In Fig. 4(a), it is shown what we obtain for the kernel

Nλ¼4. In this example, we can see that Nλ is almost
diagonal. In fact, if we plot Nλða; jÞ for a fixed a as a
function of j, we find that the main contribution comes
from the diagonal but there are also smaller ones from first
and second neighbors Nða; a� 1; 2Þ. This is shown in
Fig. 4(b) for the case a ¼ 3

5
L and the maximal size of the

lattice λ ¼ 4 (200 points). Here we list some numbers for
the λ ¼ 4 case

Nðð3=5ÞL; ð3=5ÞLÞ ¼ 159.11838; ð88Þ

Nðð3=5ÞL; ð3=5ÞL − 1Þ ¼ −2.22265; ð89Þ

Nðð3=5ÞL; ð3=5ÞLþ 1Þ ¼ −2.16739: ð90Þ

On the other hand, according to our ansatz for one
interval,

(a)

(c) (d)

(b)

FIG. 4. Scalar in a single interval. Kernel N for a scalar field.
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Kloc ¼ 2π

Z
L

0

dx
xðL − xÞ

L
T00ðxÞ; ð91Þ

it should be in the continuum

Nlocðx; yÞ ¼ πfðxÞδðx − yÞ; ð92Þ

with fðxÞ ¼ xðL−xÞ
L .

Naively, the delta function in (92) should be associated
to the diagonal Nλ

ii. Instead, we find a better approxi-
mation in the lattice to the continuum delta with the
correct scaling ~N ¼ Nði; i − 1Þ þ Nði; iÞ þ Nði; iþ 1Þ.
This quantity in the lattice grows linearly with λ as it
must be from the delta function contribution to (92).
There should be also some other next neighbors con-
tributing to the delta function but we find their contri-
bution is small. These contributions also get mixed with
nonlocal terms, but the nonlocal terms do not scale with λ
and we can select the local term doing a fit in λ.
We can formalize this approximation to the delta

function as follows. This will be useful later when
dealing with delta derivative kernels. Let us evaluate

Piþ1
j¼i−1 bjgðxjÞ with gðxÞ a test function and xi ¼ iϵ

the continuum coordinate of the point i, with ϵ the lattice
spacing. Then,

Xiþ1

j¼i−1
bjgðxjÞ ¼ bi−1gðxi−1Þ þ bigðxiÞ þ biþ1gðxiþ1Þ

¼ ðbi−1 þ bi þ biþ1ÞgðxiÞ
þ ðbiþ1 − bi−1Þg0ðxiÞϵþOðϵ2Þ: ð93Þ

Hence, the sum of the lattice values corresponds to the
coefficient of a delta function. If these values go to zero
fast enough outside the diagonal is enough to keep first
neighbors as we do here.
We show in fig. 4(c) the results for the case mL ¼ 3 and

L ¼ 25λ and 1 ≤ λ ≤ 8. Once the identification of ðNλ
ii þ

Nλ
iiþ1 þ Nλ

ii−1Þ with the coefficient of the delta function is
done, we look for the continuum limit. For that, we fit the
pairs ðλ; Nλ

ii þ Nλ
iiþ1 þ Nλ

ii−1Þ for each point λxi, i < 25

with the function a0 þ a1ð25λÞ þ a−1ð25λÞ−1. The con-
tinuum limit of the coefficient of the delta function

(a)
(b)

(c)

FIG. 5. Scalar in a single interval. Kernel M for a scalar field of mass mL ¼ 1.
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AA

BBAB

BA

ε

LL ε
ε

ε

FIG. 6. The generic form of the kernel matrices for two intervals A, B, separated by a distance ε.

(a)

(b)

FIG. 7. Kernel N for a scalar in two intervals. The total size of the lattice is Nmax ¼ 2Lþ ε, the mass mNmax ¼ 1, and ε ¼ Nmax=10.

(a)

(b)

FIG. 8. KernelM for a scalar in two intervals with equal size L separated by a distance ε. The massmNmax ¼ 1 and ε ¼ Nmax=10, with
NMax ¼ 2Lþ ε.

LOCAL TEMPERATURES AND LOCAL TERMS IN MODULAR … PHYSICAL REVIEW D 95, 065005 (2017)

065005-17



(for L ¼ 1) corresponds to the linear coefficient a1, that we
call ~Nx ¼ a1ðxÞ.
The result a1 (scaled to L ¼ 1) is shown in Fig. 4(d)

for the case mL ¼ 1. This agrees very well with the
prediction. For example, for the middle point x ¼ 1

2
,

we obtain 0.7826 compared to the expected value
π
4
¼ 0.7853.
The same analysis has been done for the kernel M

(Fig. 5). In Fig. 5(a), we show what we obtain for the case
L ¼ 200 and mL ¼ 1. According to our ansatz, Mloc

should be

Mlocðx; yÞ ¼ −πfðxÞδ00ðx − yÞ ð94Þ

with fðxÞ ¼ xðL−xÞ
L . In this case, the identification of the

discrete version of δ00ðx − yÞ follows from an argument
analogous to the one used in the identification of
the δðx − yÞ.

For a test function gðxÞ, let us evaluate again (93) but up
to order ϵ2, and keeping up to five neighbors

Xiþ1

j¼i−1
bjgðxjÞ ¼

�Xiþ5

j¼i−5
bj

�
gðxiÞ þ

�Xiþ5

j¼i−5
ði − jÞbj

�
g0ðxiÞϵ

þ
�Xiþ5

j¼i−5
bj

ði − jÞ2
2

�
g00ðxiÞϵ2 þ… ð95Þ

Then, to select the coefficient of the second derivative
of the delta function we have to sum the lattice values
around the diagonal with certain weights dictated by the
last term in (95), ~M ¼ −ðMðx; xþ 1Þ þ 4Mðx; xþ 2Þ þ
9Mðx; xþ 3Þ þ 16Mðx; xþ 4Þ þ 25Mðx; xþ 5ÞÞ where
we use that the data is highly symmetric around the
diagonal. We use a sum up to five neighbors because
we find this improves the result. While the data gets
small fast outside the diagonal, still the coefficients in

(a) (b)

(c)

FIG. 9. Fermion in a single interval. Kernel H0 for a massive fermion field of mass mL ¼ 1.
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the sum increase, and we have to take these terms into
account.
For getting the continuum limit, we use L ¼ 50λ, λ ¼ 1,

2, 3, 4. The numerical continuum limit corresponds to a1
in the fit a0 þ a1ð50λÞ þ a−1ð50λÞ−1 for ~M. This is plotted
in Fig. 5(c).
Let us note that in Fig. 5(c) the continuum limit for

middle points is not included. The reason is that in this
region, as seen in Fig. 5(a), there is also an antidiagonal
nonlocal contribution. This mixes with the local one and
introduces unwanted corrections to ~M that do not corre-
spond to the δ00 we are looking for.

2. Two intervals

We also study the case of two intervals shown in Fig. 6.
In this case, we take sets with Nmax ¼ 2Lþ ε ¼ 40λ with
λ ¼ 1, 2, 3, 4, 5, ε ¼ Nmax=10 and m ¼ 1=Nmax. We repeat
the previous analysis for the kernels N shown in Fig. 7 and
M in Fig. 8. In these cases, we have used a very high
numerical precision. The correlators are calculated with
800 digits. According to our experience, the precision we

have used for one interval that was 360 digits for mL ¼ 1
and 600 digits for mL ¼ 3 was not enough in the present
case. As before, we find the local kernels match with the
expectations (13),

Nlocðx; yÞ ¼ πfðxÞδðx − yÞ; ð96Þ

Mlocðx; yÞ ¼ −πfðxÞδ00ðx − yÞ; ð97Þ

with

fðxÞ ¼ xðNmax−ε
2

− xÞðNmaxþε
2

− xÞðNmax − xÞ
ðNmax − εÞðεNmax

4
þ ðx − Nmax

2
Þ2Þ : ð98Þ

In the kernelM, we find the reading of the δ00 is much more
difficult than in the one interval case. Again, this is due to
the nonlocal contributions as seen in Fig. 8(b), where we
have included the ~Mλ for λ ¼ 3, 4. In the plot, one sees that
for the points in the first (second) interval closer to the
second (first) one, the nonlocal contributions are stronger

(a) (b)

(c)

FIG. 10. Fermion in a single interval. Kernel H1 for a massive fermion field of mass mL ¼ 1.
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and strongly deform the local δ00 for the sizes up to
200 points we are considering.

B. Massive fermion fields

For fermion fields, the modular Hamiltonian kernel H
can be written in terms of the nonvanishing two point
correlator [21]

H ¼ − log ðC−1 − 1Þ; ð99Þ
where

Cij ¼ hψ iψ
†
ji: ð100Þ

The correlator (100) in the lattice is given by

Cjk ¼
1

2
δjk −

Z
π

−π
dx

mγ0 þ sinðxÞγ0γ1
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ sin2ðxÞ

p e−ixðj−kÞ: ð101Þ

1. One interval

In this case, for a set of length L, the correlator and the
modular Hamiltonian are matrices of 2L × 2L, since for
each pair ði; jÞ, Cij and Hij are 2 × 2 matrices. As before,
we calculate (100) and (99) for different masses mλ and
segment lengths Lλ ¼ 50λ with λ ¼ 1, 2, 3, 4 such that
m ¼ 1=L. In Figs. 9(a) and 10(a), we show what we obtain
for H0ði; jÞ and H1ði; jÞ in (99) for L ¼ 200, where we
have defined

H ¼ H1γ
0γ1 þH0γ

0: ð102Þ

Here H0 and H1 are L × L matrices. According to our
results it should be these kernels contain local terms in the
continuum limit

H0ðx; yÞ ∼ πfðxÞ2mδðx − yÞ; ð103Þ

and

H1ðx; yÞ ∼ πfðxÞ2δ0ðx − yÞ; ð104Þ

with fðxÞ ¼ xðL−xÞ
L .

In the kernel H0, the identification of the delta function
in the lattice is as above: we consider the quantity ~H ¼
H0ði; iÞ þH0ði; iþ 1Þ þH0ði; i − 1Þ with first neighbors.
In this case, the scaling with L is different from the one
of the scalar kernel N. Here the presence of the mass
in (103) makes ~H independent of L (we are taking
m ¼ 1=L).
On the other hand, in the kernel H1, we again have to

find a quantity which scales linearly with L. From the same
argument already used for the delta and second derivative
delta functions, we find ~H1 ¼ ðH1ði; iþ 1Þ−H1ði; i− 1ÞÞþ
3ðH1ði; iþ 3Þ−H0ði; i−3ÞÞþ � � �.
For H0, shown in Fig. 9, as in the scalar kernel M,

there is a nonlocal (antidiagonal) contribution. Because
of this, we skip the continuum limit of the middle points.
In any case, the data show very good agreement with the
expectations.

2. Two intervals

For the two intervals case, we take Nmax ¼ 2Lþ
ϵ ¼ 50λ, ϵ ¼ Nmax=5, m ¼ 1=Nmax, λ ¼ 1, 2, 3, 4. The
kernels H0 and H1 are shown in Figs. 11 and 12. Here,
again, we find the nonlocal contributions in H0 makes
difficult the calculation of the continuum limit for the
points in the first (second) interval close to the second (first)
interval. However, again, we find overall agreement with
expectations.

(a)
(b)

FIG. 11. Fermion in two intervals. Kernel H1 for a massive fermion field of mass mNmax ¼ 1 and ε ¼ Nmax=5.
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VI. DISCUSSION

The modular Hamiltonian of the Rindler wedge is local
and proportional to the energy density. This locality cannot
be generalized to other regions in general QFT; the
corresponding modular Hamiltonians must necessarily
contain nonlocal terms. We have proposed that the right
path to generalize the Rindler result is to look at contri-
butions to the relative entropy with localized excitations.
This allows us to define local temperatures analogous to
Unruh temperature in Rindler space. We have seen that
local temperatures in null directions have some degree of
universality. In particular, they are bounded by universal
geometric quantities. We have shown these temperatures
are the same for d ¼ 2 free scalar and fermions independ-
ently of the mass. The mass should not alter the null
temperatures for free fields in higher dimensions either.
The strongest conjecture one could formulate given our

present understanding is the following. In any dimensions,
null temperatures would be uniquely defined by the
geometry and be universal across all QFT. Further, we

could also think there is no range of possible temperatures
in null directions. We have shown this last statement holds
for free scalars.
This proposal is a universal connection between temper-

ature and geometry through vacuum entanglement in high
energy modes. It tells of an imprint of the geometry on the
high energy tail of the reduced density matrices, exactly as
it happens in the Hawking radiation from a black hole. If
the conjecture is correct, the peculiarity of the Rindler
wedge for all QFT, and of spheres in CFT, would be only
that the nonlocal terms exactly cancel in these cases, while
the null temperatures would extend the geometric univer-
sality to any region.
It is interesting to note that thinking in the space of all

QFT, the statement that there is a unique null temperature
for each theory, that is, the maximum and minimum null
temperatures agree, implies the proposed universality. If the
null temperatures are not universal, combining independent
theories we would obtain another theory with a range of
possible null temperatures.

(a)

(b)

(c)

FIG. 12. Fermion in two intervals. Kernel H0 for a massive fermion field of mass mNmax ¼ 1 and ε ¼ Nmax=5.
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These null temperatures could come from the projections
of an inverse temperature vector in d ¼ 2 and, hence,
correspond to a local term involving the stress tensor in this
case, but this is not possible for d > 2 and generic Cauchy
surfaces. For d > 2, there must be contributions other than
the stress tensor to the modular Hamiltonian, but they
should still scale as the energy for localized excitations.
There are several questions we left to future research.

Perhaps the natural next step is to understand the case of
interacting CFT in d ¼ 2. For d > 2, we know the local
temperatures exist, but in interacting theories we do not
know the structure of the operators in K that gives place to
these contributions.
For d ¼ 2, we argued that a simple analytic continuation

in the complex plane of the propagation equations of the
null temperatures gives place to the right null temperatures
found for free models. It would be interesting to generalize
this purely geometric argument to more dimensions. We
need an analogous equation that extends holomorphically
the statement that null temperatures are functions of null
rays, and then impose the vanishing of the modular
Hamiltonian on the boundary of the region at the same
rate as in Rindler space, as a boundary condition. Perhaps
this question can be explored using twistor techniques.
Another interesting question is if some of these struc-

tures survive for states different from the vacuum. In
principle, the local temperatures defined for the limit of
large energies should not depend on low energy excitations
above the vacuum, such as a single particle state or a
coherent state in a free theory. Hence, there should be a
large number of states sharing the same null temperatures.
On the other hand, some mild perturbations of the state, but
containing an exponential tail of large energy excitations
would modify the temperatures in an important way,
specially far from the boundaries. This is the case of a
thermal state. For the free massless models in d ¼ 2, and
for a general d ¼ 2 CFT in an interval [3], the thermal case
can be obtained by conformal transformations. It is clear
that the local temperatures are given by solving a problem
about a holomorphic function with poles at the boundary of
the region analogous to the one solved in Sec. II C, but now
the space where this function lives is not the complex plane
but the cylinder. We wonder for what class of states the
local temperatures could be similarly codified in a geom-
etry. There are other states like ρ ∼ e−γ

ffiffiffi
H

p
that are “super-

thermal” and local temperatures cannot be defined
for them.
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APPENDIX A: EXPANSION OF THE MODULAR
HAMILTONIAN FOR SMALL MASS

FOR A d = 2 DIRAC FIELD

In this appendix, we compute the modular Hamiltonian
of a Dirac field in d ¼ 2 for one interval of length L to first
order in the mass. The modular Hamiltonian is quadratic in
the fields and has the form

K ¼
Z

L

0

dxdyψ†ðxÞHðx; yÞψðyÞ: ðA1Þ

with the kernel Hðx; yÞ given by [21]

H ¼ −
Z

∞

1=2
dβðRðβÞ þ Rð−βÞÞ; ðA2Þ

in terms of the resolvent

RðβÞ ¼ ðC − 1=2þ βÞ−1; ðA3Þ

whereCðx; yÞ ¼ h0jψðxÞψ†ðyÞj0i is the correlator kernel in
the interval of size L. Expanding C to first order in the mass
we have

RðβÞ ¼ R0ðβÞ − R0ðβÞδCR0ðβÞ þ � � � ðA4Þ

with [14]

R0ðβÞðx; yÞ ¼
Z

∞

−∞
dsψ sðxÞMðβ; sÞψ�

sðyÞ;

Mðβ; sÞ ¼
�
β1 − tanhðπsÞ γ

3

2

�−1
; ðA5Þ

ψ sðxÞ ¼
L1=2

ð2πÞ1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðL − xÞp e−iszðxÞ;

zðxÞ ¼ log

�
x

ðL − xÞ
�
; ðA6Þ

δCðx; yÞ ¼ −
m
2π

ðγE − logð2Þ þ logðmjx − yjÞÞγ0: ðA7Þ

Here γ3 ¼ γ0γ1, with γμ the Dirac matrices, and γE is the
Euler constant. The eigenvectors are normalized as in (73).

1. The zero order

At zeroth order in a mass expansion we have that

Z
∞

1=2
dβðMðβ; sÞ þMð−β; sÞ ¼ 2πsγ3: ðA8Þ

and then
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H0 ¼ −γ3
Z

∞

−∞
ds

sLe−isðzðxÞ−zðyÞÞ

ðxðL − xÞyðL − yÞÞ1=2

¼ 2πiLγ3

ðxðL − xÞyðL − yÞÞ1=2 δ
0ðzðyÞ − zðxÞÞ

¼ i2πγ3
�
xðL − xÞ

L
δ0ðx − yÞ þ ðL − 2xÞ

2L
δðx − yÞ

�
:

ðA9Þ

The term proportional to the delta function is just such that
the whole kernel is Hermitian. Taking into account that the
Dirac Hamiltonian writes

iαx∂x ¼ iγ3∂x; ðA10Þ

this gives the zeroth order term for the modular
Hamiltonian

K0 ¼
Z

L

0

dx2π
xðL − xÞ

L
T00ðxÞ; ðA11Þ

with T00 ¼ ði=2Þψ†γ3∂↔xψ .

2. The first order

Now we want to compute the first order correction to the
local part of the modular Hamiltonian due to the mass of the
fermion. In order to do that, we integrate in β first

Z
∞

1=2
dβðMðβ; sÞγ0Mðβ; s0Þ þMð−β; sÞγ0Mð−β; s0ÞÞ

¼ 4πγ0ðsþ s0Þ coshðπsÞ coshðπs
0Þ

sinhðπðsþ s0ÞÞ : ðA12Þ

For doing the intermediate integral in (A4), we separate the
contribution of δC in two parts, constant, and proportional
to log jx − yj. Let us call the constant term

k ¼ −
m
2π

ðγE − logð2Þ þ logðmÞÞ; ðA13Þ

and the corresponding contribution to H we call H1;0.
Using [14]

Z
L

0

dxψ sðxÞ ¼
�
π

2

�
1=2

L1=2sechðπsÞ ðA14Þ

we get

H1;0 ¼ kL2πγ0
Z

∞

−∞
ds

×
Z

∞

−∞
ds0

e−iðszðxÞ−s0zðyÞÞ

ðxðL − xÞyðL − yÞÞ1=2
ðsþ s0Þ

sinhðπðsþ s0ÞÞ :

ðA15Þ

Changing variables to u ¼ sþ s0 and v ¼ s − s0 we obtain

H1;0 ¼ kL2π2γ0
δðzðxÞ þ zðyÞÞ

ðxðL − xÞyðL − yÞÞ1=2

×
Z

∞

−∞
du

ue−i
u
2
ðzðxÞ−zðyÞÞ

sinhðπuÞ
¼ 4kπ2γ0

xy
L
δðxþ y − LÞ: ðA16Þ

This is a curious nonlocal term. It is not completely
nonlocal since it mixes only x with L − x. It modifies
the form of the Rindler modular Hamiltonian near the
boundary, but nonlocally with the other boundary.
Now, we are going to study the contribution to the

modular hamiltonian proportional to m log jx − yj and we
will name this as H1;1. We have to compute

H1;1 ¼ −2mγ0
Z

ds
Z

ds0ðsþ s0Þ

×
coshðπsÞ coshðπs0Þ
sinhðπðsþ s0ÞÞ ψ sðxÞψ�

s0 ðyÞ

×
Z

dx0
Z

dy0ψ�
sðx0Þ log jx0 − y0jψ s0 ðy0Þ: ðA17Þ

In order to do the integrals, we define a function

Fðx0Þ ¼
Z

dy0 log jx0 − y0jψ s0 ðy0Þ: ðA18Þ

and we use the fact that [14]

F0ðx0Þ¼
Z

dy0
1

x0−y0
ψ s0 ðy0Þ¼ iπ tanhπs0ψ s0 ðx0Þ; ðA19Þ

and then

Fðx0Þ ¼ iπ tanhðπs0Þ
Z

x0

0

dxψ s0 ðxÞ þ A; ðA20Þ

where A is a constant of integration that we can fix using
the value of the integral on y0 for x0 ¼ 0 in (A18)

A ¼
Z

dy0 log j− y0jψ s0 ðy0Þ

¼
ffiffiffiffiffiffi
Lπ
2

r
sechðπs0Þ

�
logðLÞ þH−is0−1

2

�
: ðA21Þ

Here H−is0−1
2
the Harmonic number function. With this we

arrive to
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Fðx0Þ ¼
ffiffiffiffiffiffi
Lπ
2

r
sechðπs0Þ

�
logðLÞ þH−is0−1

2

�
−

ffiffiffiffiffiffi
2π

p
tanh ðπs0Þðx0Þ12−is0 ðL − x0Þ12þis0

2F1ð1; 1; 32 − is0; x0LÞffiffiffiffi
L

p ð2s0 þ iÞ ; ðA22Þ

and the correction to the modular Hamiltonian kernel can be written as

H1;1 ¼ −2mγ0
Z

ds
Z

ds0ðsþ s0Þ coshðπsÞ coshðπs
0Þ

sinhðπðsþ s0ÞÞ ψ sðxÞψ�
s0 ðyÞ

Z
dx0Fðx0Þψ�

sðx0Þ: ðA23Þ

Now, we perform the integral in x0 and obtain the anti-symmetrized expression in the variables s, s0

Z
dx0Fðx0Þψ�

sðx0Þ¼
1

4
πLcschðπðs−s0ÞÞ

�
tanhðπsÞ

�
H−is0−1

2
þHis0−1

2
þ2 logðLÞ

�
− tanhðπs0Þ

�
H−is−1

2
þHis−1

2
þ2 logðLÞ

��
:

ðA24Þ

Note that the terms proportional to logðLÞ gives integrals like those in (A16) and then the result is going to be proportional
to δðxþ y − LÞ,

−mLπ logðLÞ
Z

dsds0ψ sðxÞψ 0
s
�ðyÞ sþ s0

sinhðπðsþ s0ÞÞ ¼ −2πm logðLÞ xy
L
δðxþ y − LÞ: ðA25Þ

The terms involving the harmonic functions can be integrated using the change of variables u ¼ sþ s0, v ¼ s − s0. With
this, the expression to study is

mL2

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xyðL − xÞðL − yÞp

Z
dudvucschðπuÞcschðπvÞððH−1

2
iðuþv−iÞ þH1

2
iðuþvþiÞÞðsinhðπuÞ − sinhðπvÞÞ

−ðH−1
2
iðu−v−iÞ þH1

2
iðu−vþiÞÞðsinhðπuÞ þ sinhðπvÞÞÞe−1

2
iðuðzðxÞ−zðyÞÞþvðzðxÞþzðyÞÞÞ: ðA26Þ

The singular terms come from the constant values of the
factor of the exponential in the integrand in the limit
u; v → �∞. Subtracting these constant limits of (A26) we
obtain an integral in u, v that is finite, but difficult to
compute. This will lead to a completely nonlocal contri-
bution. However, our interest is to compute the contribution
of singular terms to the modular Hamiltonian. In order to
extract the term proportional to δðx − yÞ, we use that the
expansion of the integrand when u → ∞ goes as
4v coshðvÞ. Performing the integrals in u and v we obtain
the result from (A26)

2πmyðL − yÞ
L

δðx − yÞ: ðA27Þ

Now, we can analyze the v → ∞ limit of the integrand in
(A26) in order to extract another singular term for the
modular Hamiltonian coming from this limit. The resulting
expression is

mL2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xyðL − xÞðL − yÞp

×
Z

dudvucschðπuÞ
�
log

�
1

jvj
�
− γE þ logð2Þ

�

× e−
1
2
iðuðzðxÞ−zðyÞÞþvðzðxÞþzðyÞÞÞ: ðA28Þ

The term proportional to ð−γE þ logð2ÞÞ can be integrated
and gives

2πmð−γE þ logð2ÞÞ xy
L
δðxþ y − LÞ: ðA29Þ

The integral of the term involving the logð 1
jvjÞ leads to

−
πmL2

ð ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffi
L − y

p þ ffiffiffi
y

p ffiffiffiffiffiffiffiffiffiffiffi
L − x

p Þ2j logð xy
ðL−xÞðL−yÞÞj

− 2πmγE
xy
L
δðxþ y − LÞ: ðA30Þ

Then, the final result for the singular terms of the first
order correction to the Modular Hamiltonian can be written

H1;0 þH1;1 ¼ 2πm
xðL − xÞ

L
δðx − yÞγ0

þ 2πm
xðL − xÞ

L
ð2 log 2 − 3γE − logðmLÞÞ

× δðxþ y − LÞγ0

þ mπxðL − xÞ
Ljy − Lþ xj γ

0 þ nonsingular: ðA31Þ
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We recognize the local term is equivalent to the term that
would come from (A11) if we use the massive expression
for T00. We see a term like the last one in (A31) is seen
numerically in Fig. 9(c).

APPENDIX B: PROPAGATION AND
SUBLEADING LOCAL TERMS FOR

A DIRAC FIELD IN d = 2

The modular Hamiltonian written in a spatial surface Σ is

K ¼
Z
Σ
ds1ds2ψ†ðs1ÞHðs1; s2Þψðs2Þ ðB1Þ

where s1, s2 are distance parameters.
The modular Hamiltonian can be written in any other

surface for the same causal region V using the propagation
equation for the field

ψðxÞ ¼
Z
Σ0
ds0Sðx − x0Þγμη0μðs0Þψðs0Þ; ðB2Þ

ψ̄ðxÞ ¼
Z
Σ0
ds0ψ̄ðs0Þγμη0μðs0ÞSðx0 − xÞ; ðB3Þ

where

Sðx − yÞ ¼ fψðxÞ; ψ̄ðyÞg ¼ ðiγμ∂μ þmÞiΔðx − yÞ; ðB4Þ

and ημ is the normal to the surface. We are using
signature ðþ;−;−; � � �Þ.
Then let us look at how the local terms propagate. A

local term in Σ0 will arise from a local term in Σ convoluted
with the singular terms in the Green function Sðx − x0Þ.
Because the integrals that give place to a local term in Σ0 are
for a compact region of the coordinate s, no other singular
terms can arise from the finite terms. Let us then look at the
singularity structure of the Green function. We have

iΔðxÞ ¼ ½ϕðxÞ;ϕð0Þ�

¼
Z

d2p
2π

ϵðp0Þδðp2 −m2Þe−ipx

¼ ϵðx0Þθðx2Þi ImðK0ðim
ffiffiffiffiffi
x2

p
ÞÞ

π
: ðB5Þ

Since

i
ImðK0ðiyÞÞ

π
∼ −

i
2
þOðy2Þ ðB6Þ

for small positive argument y, we have that iΔðxÞ is smooth
everywhere except at the null cone where it has a jump
which is the same as the one of the function

−
i
4
ðϵðxþÞ þ ϵðx−ÞÞ: ðB7Þ

This is constant inside each of the two light cones.
We will be using null coordinates

xþ ¼ x0 þ x1; x− ¼ x0 − x1; ðB8Þ

x0 ¼ðxþ þ x−Þ=2; x1 ¼ ðxþ − x−Þ=2; ðB9Þ

∂þ ¼ 1

2
ð∂0 þ ∂1Þ; ∂− ¼ 1

2
ð∂0 − ∂1Þ; ðB10Þ

gμν ¼
�
0 2

2 0

�
; gμν ¼

�
0 1=2

1=2 0

�
: ðB11Þ

We will also be using the chiral representation for Dirac
matrices where γ3 ¼ γ0γ1 is diagonal

γ3 ¼
�
1 0

0 −1

�
; γ0 ¼

�
0 1

1 0

�
: ðB12Þ

The projection over chiralities are

Qþ ¼ 1þ γ3

2
; Q− ¼ 1 − γ3

2
; ðB13Þ

and

γμ∂μ ¼ 2γ0ðQþ∂þ þQ−∂−Þ: ðB14Þ

The singularity structure of the anticommutator in chiral
representation and null coordinates is then given by

SðxÞ≃ 1

4
ðγμ∂μ − imÞðϵðxþÞþ ϵðx−ÞÞ

¼ 1

4
ð2γ0ðQþ∂þ þQ−∂−Þ− imÞðϵðxþÞþ ϵðx−ÞÞ

¼ γ0
�

δðxþÞ −i m
4
ðϵðxþÞþ ϵðx−ÞÞ

−i m
4
ðϵðxþÞþ ϵðx−ÞÞ δðx−Þ

�
;

ðB15Þ

plus less singular terms.
Let us think in the propagation of a local term propor-

tional to the stress tensor:

Z
Σ
dsημTμνaν: ðB16Þ

The stress tensor writes (both for massive and massless
fields)

Tμν ¼ i
4
ψ̄ðγμ∂↔ν þ γν∂↔μÞψ : ðB17Þ
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We are interested in the propagation from the operator in a
given point x on the surface Σ to another surface Σ0.
Without loss of generality we can take the coordinate
system such that the normal vector ημðxÞ ¼ ð1; 0; � � �Þ. The
operator at x in the integral (B16) then writes

a0T00 þ a1T01 ¼ ψ̄ðxÞ
�
a0
�
−
i
2

�
γ1∂↔x þ

i
2
a1γ0∂↔x

��
ψðxÞ

¼ i
2
ψ̄ðxÞγ0ðaþQ− − a−QþÞ∂

↔

xψðxÞ:
ðB18Þ

Here the symmetrized derivatives act only on the fermion
fields and not on the components of aμ. The propagation is
given by
Z
Σ0
ds01ds

0
2

Z
Σ
dxψ̄ðx01Þηβðs01ÞγβSðx01 − xÞ

×
i
2
γ0ðaþQ− − a−QþÞ∂

↔

xSðx − x02Þηαðs02Þγαψðx02Þ:
ðB19Þ

Using that for the integrals on the length parameter along a
surface

γ0ηαðsÞγαds ¼
�−dx− 0

0 dxþ

�
; ðB20Þ

we can rewrite (B19) as

Z
Σ0

Z
Σ
dxψ̄ðx01Þγ0

�−dx0−1 0

0 dx0þ1

�

× γ0
�
δðx0þ1 −xþÞ 0

0 δðx0−1 −x−Þ

�
i
2
γ0ðaþQ− −a−QþÞ∂

↔

x

× γ0
�
δðxþ−x0þ2 Þ 0

0 δðx− −x0−2 Þ

�
γ0
�−dx0−2 0

0 dx0þ2

�
ψðx02Þ

¼−
Z
Σ0
dx−a−ðx−Þψ̄ðx−Þγ0Qþ i

2
∂↔x−ψðx−Þ

þ
Z
Σ0
dxþaþðxþÞψ̄ðxþÞγ0Q− i

2
∂↔xþψðxþÞ; ðB21Þ

where a� is computed on the surface Σ. Then if aμ is
defined everywhere by the components a−ðx−Þ, independ-
ently of xþ, and aþðxþÞ, independent of x−, as given by the
values on Σ, we have using (B17) on Σ0 that the operator
(B21) reads
Z
Σ0
dsημaνTμν ¼

Z
Σ0
dsðηþaþTþþ þ η−a−T−−Þ

¼
Z
Σ0
dxþaþTþþ −

Z
Σ0
dx−a−T−−; ðB22Þ

where we have used

dsðηþ; η−Þ ¼ ðdxþ;−dx−Þ: ðB23Þ

We have changed the signs due to the differentials x− with
respect to x but we have not changed the integration
limits.12 This keeps the same form as in the original
surface. In this case, no nonlocal terms are generated.
Of course, for the massless field this is just a conse-

quence of the fact that jμ ¼ aνTμν is a conserved current
and its flux is independent of the surface. In fact, when
∂þa− ¼ ∂−aþ ¼ 0, using that in the massless case the trace
is zero Tþ− ¼ 0, and ∂þTþþ ¼ 0, ∂−T−− ¼ 0, by con-
servation,

∂μTμνaν ¼ Tþþ∂þaþ þ T−−∂−a− ¼ 0: ðB24Þ

In the massive case, we have two changes. The first one
is the change in the equation (B18) to incorporate the mass
term in the stress tensor

a0T00 þ a1T01 ¼ ¼ i
2
ψ̄ðxÞγ0ðaþQ− − a−QþÞ∂

↔

xψðxÞ
þ a0ψ̄ðxÞmψðxÞ: ðB25Þ

The second change is the additional terms in the propa-
gator. These are nonsingular, but contracted with the
derivative term of the stress tensor kernel will produce
delta functions. Only first order terms in the mass will
produce delta functions, all combinations with more
powers give nonlocalized terms. The term produced by
the addition to the stress tensor gives

Z
Σ0

Z
Σ
dxψ̄ðx01Þγ0

�−dx0−1 0

0 dx0þ1

�

× γ0
�
δðx0þ1 − xþÞ 0

0 δðx0−1 − x−Þ

�
a0m

× γ0
�
δðxþ − x0þ2 Þ 0

0 δðx− − x0−2 Þ

�

× γ0
�−dx0−2 0

0 dx0þ2

�
ψðx02Þ: ðB26Þ

Note this term does not produce localized terms in the
surface Σ0 since it involves a delta function between two
points in Σ0 whose coordinates xþ and x− coincide with the
corresponding coordinate of the point x in Σ. That is, the
singular perturbations propagate at light velocity in differ-
ent directions generating a possible quasilocal term.
Then it rests the perturbations of the propagator computed

with the massless kernel for the stress tensor. We have

12Note that this practice is convenient because we only have to
keep track of the change on the differentials but it involves a
subtle point: it requires we introduce a sign when a delta function
on the x− variable has been eliminated by integration.
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Z
Σ0

Z
Σ
dxψ̄ðx01Þγ0

�−dx0−1 0

0 dx0þ1

�

× γ0
�
δðx0þ1 − xþÞ 0

0 δðx0−1 − x−Þ

�
i
2
γ0ðaþQ− − a−QþÞ∂

↔

x

× −i
m
4
ðϵðxþ − x0þ2 Þ þ ϵðx− − x0−2 ÞÞ

× γ0
�−dx0−2 0

0 dx0þ2

�
ψðx02Þ þ H:c: ðB27Þ

The two derivatives with different directions can be made to
act to the same side since derivating the components of aμ

will produce nonsingular terms. We get

Z
Σ0

Z
Σ
dxψ̄ðx01Þγ0

�−dx0−1 0

0 dx0þ1

�

× γ0
�
δðx0þ1 − xþÞ 0

0 δðx0−1 − x−Þ

�
γ0

1

2
ðaþQ− − a−QþÞ

×mðδðxþ − x0þ2 Þ − δðx− − x0−2 ÞÞγ0
�−dx0−2 0

0 dx0þ2

�
ψðx02Þ

þ H:c: ðB28Þ

This has local and quasilocal terms. The quasilocal terms
cancel the ones produced by (B26).
The local terms are

−
m
2

Z
Σ0
ψ†ðxÞγ0ψðxÞð−a−ðx−Þdxþ þ aþðxþÞdx−Þ: ðB29Þ

Using

−a−dxþ þ aþdx− ¼ −2dsaμημ; ðB30Þ

we get

m
Z
Σ0
dsψ†ðxÞγ0ψðxÞaμημ: ðB31Þ

That is, the local term generated on Σ0 by the original term
in Σ has again the form of the flux of the stress tensor where
the vector aμ has propagated in the same way than in the
massless case. The mass appearing in the new surface is
the field mass coming from the propagator, disregarding the
possible mass term we could have written in the original
surface. The term in derivatives generates the mass term by
itself, with the propagating mass.
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