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We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without
particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent
superchargesQ and Q†. Each supercharge is built solely from spinless fermion operators and depends on a
parameter g. The system is strongly interacting for small g, and in the extreme limit g ¼ 0, the number of
zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the
system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g
and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite
chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that
the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at
low energies.

DOI: 10.1103/PhysRevD.95.065001

I. INTRODUCTION

Besides an artificial fine-tuning, one nontrivial way to
guarantee the existence of gapless excitations is to use
spontaneous symmetry breaking. If ordinary bosonic sym-
metry is spontaneously broken, we expect the emergence
of gapless bosonic degrees of freedom known as Nambu-
Goldstone (NG) bosons. If, on the other hand, fermionic
symmetry is spontaneously broken, we expect the emer-
gence of gapless fermionic degrees of freedom known as
NG fermions.
One important example of fermionic symmetries is what

is called supersymmetry (SUSY) [1,2], where the anti-
commutator of its generators gives the Hamiltonian. A
motivation of SUSY in particle physics is to render the
hierarchy problem less severe, but SUSY itself has yet to be
observed experimentally. Therefore, SUSY, if any, must be
spontaneously broken in our world. In relativistic systems,
it is known that spontaneous SUSY breaking leads to
massless fermions called Goldstinos as a NG fermion [2,3].
An effective description of the Goldstinos is well under-
stood by using the nonlinear realization of the SUSY [4].
On the other hand, explicit SUSY in lattice models

[5–11] and emergent SUSY at quantum critical points
[12–17] have recently been discussed in the condensed
matter literature. In some systems, spontaneous SUSY
breaking occurs and gives rise to NG fermions. For example,
Yu and Yang introduced a model with SUSY in the context
of cold atoms. In the model, it was shown that SUSY is

spontaneously broken and there exist gapless excitations
with quadratic dispersion, which implies the existence of NG
fermions [7]. In 2þ 1 and 3þ 1-dimensional topological
superconductors, the topologically protected edge/surface
Majorana fermion is identified with a NG fermion arising
from spontaneous SUSY breaking [13].
In contrast to relativistic systems, the nature of NG

fermions in nonrelativistic systems is less well under-
stood. While the classification theory of nonrelativistic
NG bosons [18–20] has received renewed attention
[21,22], its naive application to SUSY may lead to a
wrong conclusion. In our previous work, we developed a
theory of NG fermions in lattice systems and studied the
properties of NG fermions in the extended Nicolai model
[23], which is a generalization of the model studied by
Nicolai in the 1970s [24,25]. The model exhibits sponta-
neous SUSY breaking accompanied by NG fermions with
a linear dispersion. We have clarified at which point the
hidden assumption in the argument of the NG bosons,
such as decoupling from the other gapless excitations, is
violated.
In this paper, we introduce another curious example of

spontaneous SUSY breaking. The model is constructed
solely out of fermions on the lattice, which is analogous to
the Nicolai model, but it has only Z2 symmetry rather than
the U(1) symmetry. It turns out that the NG fermions have a
cubic dispersion relation in the wave number p without
fine-tuning. This is again unexpected from the general
theories of nonrelativistic NG bosons. We note that the
model with cubic dispersion is discussed in the study of
topological phases of matter [26–28] and quantum spin*sannomiya@cams.phys.s.u‑tokyo.ac.jp
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liquids [29,30], and our model may be used to naturally
realize such a cubic dispersion relation.
The organization of this paper is as follows. In Sec. II, we

introduce the system we study and describe the symmetries
of the model. We then introduce the Hamiltonian as the
anticommutator of the two supercharges. In Sec. III, we
focus on the case where SUSY is unbroken and show that
the number of SUSY singlets, the zero-energy ground
states, grows exponentially with the system size. In Sec. IV,
we first provide a precise definition of spontaneous SUSY
breaking. We then prove that SUSY is spontaneously
broken in finite and infinite chains when g > 0 and
g > 4=π, respectively. In Sec. V, we study the low-energy
properties of the model using rigorous inequality and
numerical diagonalization. We provide strong evidence
for the existence of a massless excitation and show that
its dispersion is cubic. The conclusion is given in Sec. VI.
In Appendix A, we present the results for the number of the
ground states in the g ¼ 0 model with open boundary
conditions. In Appendix B, we present a random
generalization of the Z2 Nicolai model i.e., the SUSY
Sachdev-Ye-Kitaev (SYK) model [31,32]. The derivation
of some of the formulas used in the main text is presented in
Appendixes C and D. In Appendix E, we discuss the
stability of the cubic dispersion against SUSY-preserving
perturbations. In Appendix F, we present a generalization
of the model on a two-dimensional triangular lattice.

II. MODEL

We consider a system of spinless fermions on a chain of
lengthN. For each site j, we define a creation (annihilation)
operator as c†j (cj). These operators obey the canonical
anticommutation relations

fcj; c†i g ¼ δj;i; fci; cjg ¼ fc†i ; c†jg ¼ 0; ð1Þ

for all i; j ¼ 1;…; N. We denote the number operators by
nj ≔ c†jcj (j ¼ 1;…; N) and write the total fermion num-
ber as F ≔

P
N
j¼1 nj.

A. Supercharges and Hamiltonian

Let us define the supercharge as

Q ≔
XN
j¼1

ðgcj þ cj−1cjcjþ1Þ; ð2Þ

where periodic boundary conditions (PBC) are assumed.
The other supercharge Q† is defined as the Hermitian
conjugate of Q. Both Q and Q† are nilpotent and made up
solely of fermion operators. In terms of these supercharges,
the Hamiltonian of our model is defined as

H ¼ fQ;Q†g: ð3Þ

We refer to this model as the Z2 Nicolai model. In the
following, we consider the case g ≥ 0 since H with g ≤ 0
can be achieved by a local unitary transformation C:
cj → icj, c†j → −ic†j . We frequently use the following
properties that follow directly from the definition Eq. (3):
(i) all energy eigenvalues of H are non-negative, (ii) states
with a positive energy come in pairs, and (iii) any state
with zero energy is a ground state and is annihilated by
both Q and Q† [2,5,6].
Since each summand in Q is local and fermionic, the

Hamiltonian H is local as well. To see this, let us derive the
explicit expression for H. After some algebra, we have

H ¼ Hfree þH1 þH2 þ g2N; ð4Þ

where

Hfree ¼ g
XN
j¼1

ð2cjcjþ1 − cj−1cjþ1 þ H:c:Þ; ð5Þ

H1 ¼
XN
j¼1

ð1 − 3nj þ 2njnjþ1 þ njnjþ2Þ; ð6Þ

H2 ¼
XN
j¼1

ðc†jc†j−1cjþ2cjþ3 þ H:c:Þ

þ
XN
j¼1

½ðnj−1 þ nj − 1Þc†jþ1cj−2 þ H:c:�: ð7Þ

A schematic of each term in the Hamiltonian is shown
in Fig. 1. The first term Hfree describes the pairing terms
of nearest and next-nearest-neighbor particles. Since it is
quadratic, one can easily solve it (see Appendix C for
details). The second term H1 consists of the on-site
potential and the repulsive interaction between two par-
ticles on nearest-neighbor or next-nearest-neighbor sites.
The third term H2 is rather complicated, but the first line
represents a pair hopping term. The second line of Eq. (7)
can be thought of as the third-neighbor hopping term,
the amplitude of which is influenced by the presence or
absence of fermions between the sites.

B. Symmetries

The Z2 Nicolai model has various symmetries, including
both fermionic and ordinary symmetries. The supercharges
are conserved charges that commute with the Hamiltonian

½H;Q� ¼ ½H;Q†� ¼ 0; ð8Þ

which follows from the nilpotency ofQ andQ†. Because of
the pairing terms, the model does not have U(1) symmetry.
Instead, it has Z2 symmetry, i.e., H commutes with the
fermionic parity
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½H; ð−1ÞF� ¼ 0: ð9Þ

We note in passing that a supersymmetric lattice model
with only Z2 symmetry but different from our Z2 Nicolai
model has been studied in the context of integrable
models [33].
We remark that the symmetry is enhanced to U(1) when

g ¼ 0, which follows from the fact that Q=Q† at the point
decreases/increases the fermion number F by exactly 3. As
a result, the terms H1 and H2 in Eqs. (6) and (7) commute
with F.
Let us discuss the other symmetries. The supercharge Q

(Q†) is invariant under sending cj → cjþ1 (c
†
j → c†jþ1). As

a consequence, the Hamiltonian is invariant under trans-
lation by one site. Next, we introduce the inversion-like
unitary operator U that acts as

U−1cjU ¼
�
icN−j j ¼ 1;…; N − 1

icN j ¼ N:
ð10Þ

The explicit expression for U in terms of fermion operators
can be derived by noting that the operator Pi;j ¼ 1−
ðc†i − c†jÞðci − cjÞ permutes ci and cj [34]. Under this
symmetry operation, the supercharges Q and Q† are
invariant up to phase factors,

U−1QU ¼ iQ; U−1Q†U ¼ −iQ†: ð11Þ

Therefore, we have

U−1HU ¼ fU−1QU;U−1Q†Ug ¼ H; ð12Þ

which implies that U commutes with H. The operator U
plays a crucial role in our analysis below.

III. SUSY SINGLETS

In this section, we restrict ourselves to the case g ¼ 0
where the supercharge in Eq. (2) becomes

Q ¼
XN
j¼1

cjcjþ1cjþ2; ð13Þ

and the Hamiltonian reduces toH ¼ H1 þH2. Similarly to
the original Nicolai model [24,35], SUSY is unbroken in
this case, i.e., the ground-state energy is exactly 0. This is
easily verified by noting that the state with a fermion on
every other site,

� � � • ∘ • ∘ • ∘ • ∘ • ∘ • ∘ • ∘ • ∘ • ∘ � � � ;
is annihilated by bothQ andQ†. Here, ∘ and • denote empty
and occupied sites, respectively, and the total number of
sitesN is assumed to be even for simplicity. There are many
other states annihilated by bothQ andQ†. For example, the
state with a fermion on every third site,

� � � • ∘∘ • ∘∘ • ∘∘ • ∘∘ • ∘∘ • ∘∘ � � � ;
is another ground state. In fact, the number of the zero-
energy ground states grows exponentially with the system
size. In Sec. III A, we present numerical results and discuss
how fast the ground-state degeneracy increases with N.
In Sec. III B, using a transfer matrix method, we count the
number of ground states which can be written as product
states. In Sec. III C, we obtain a lower bound on the number
of the ground states by computing the Witten index.

A. Numerical results

The second row of Table I shows the number of the zero-
energy ground states for periodic chains up toN ¼ 16 sites.
The results are obtained by numerical diagonalization.
The data obtained suggest that the number of the ground
states (Z) grows exponentially with N. From the fit to the
data, we find

Z ∼ 1.761N; ð14Þ

where the data for N ¼ 14, 15, 16 are used for the fit.
Thus we have an extensive ground-state entropy when
g ¼ 0. The ground-state entropy per site reads SGS=N ¼
lnZ=N ∼ 0.566.

FIG. 1. Schematics of individual terms in the Hamiltonian H.
(a) the paring term (Hfree), (b) the nearest-neighbor and the next-
nearest-neighbor repulsive interactions (H1), and (c) the first line
of the third term (H2). Green (gray) balls represent spinless
fermions.
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The model with open boundary conditions can be
studied in the same way. From the results obtained, we
conjecture that the ground-state entropy per site is exactly
given by SGS=N ¼ ln x� ∼ 0.571, where x� is the real root
of the cubic equation x3 − 2x − 2 ¼ 0. The result obtained
is remarkably close to the value in the periodic case. We
provide evidence for this conjecture in Appendix A.

B. Counting classical ground states

An extensive ground-state entropy is a common feature
in many supersymmetric lattice models and is called
superfrustration [6,8,9,11]. To get a better understanding
of superfrustration in our model, it is instructive to consider
the product states annihilated by both Q and Q†. In the
following, they are referred to as classical ground states. In
fact, they are the ground states of H1, the classical part of
the Hamiltonian where frustration in the classical sense
exists because the nearest and next-nearest-neighbor inter-
actions cannot be minimized simultaneously.
It is easy to see that a product state which does not

contain the configuration ∘∘∘ or • • • in any three consecu-
tive sites is a classical ground state. This can be rephrased
as follows: a classical ground state is a state in which the
configuration of any three consecutive sites is one of the
following: f∘∘•; ∘ • ∘; ∘ • •; •∘∘; •∘•; • • ∘g. From this 3-site
rule, one can construct a transfer matrix and count the
number of classical ground states exactly. Following the
standard procedure, one can express Zcl, the number of
classical ground states, in terms of the transfer matrix as
Zcl ¼ TrTN , where

T ¼

0
BBB@

0 0 1 0

1 0 1 0

0 1 0 1

0 1 0 0

1
CCCA: ð15Þ

Here, the order of the basis states is f∘∘; ∘•; •∘; ••g. The
eigenvalues of T can be computed analytically, and are
given by

λ ¼ 1� ffiffiffi
5

p

2
; exp

�
� 2πi

3

�
: ð16Þ

Thus, we have

Zcl ¼
�
1þ ffiffiffi

5
p

2

�N

þ
�
1 −

ffiffiffi
5

p

2

�N

þ 2 cos

�
2πN
3

�
: ð17Þ

When N is large, Zcl is dominated by the contribution
from the largest eigenvalue λmax of T. Therefore, we have
Zcl ¼ ðλmaxÞN ∼ ð1.618ÞN for large N. The fact that
Zcl < Z clearly shows the existence of entangled ground
states that cannot be simply expressed as product states.

C. Witten index

We now derive a better lower bound for Z by computing
the Witten index. To this end, let us first consider the
structure of the space of states. Because of the U(1)
symmetry at g ¼ 0, the fermion number F is conserved
and the Hamiltonian is block diagonal with respect to F.
Since Q=Q† decreases/increases F by exactly 3, the total
Hilbert space can be divided into three sectors Hf (f ¼ 0,
1, 2), where Hf denotes the sector of all states with F ¼ f
mod 3. In each sector, the Witten index is defined as

Wf ¼ TrHf
½ð−1ÞFe−βH�; ð18Þ

where β ≥ 0.
Since all positive-energy states come in pairs with the

same energy but the opposite ð−1ÞF, only the zero-energy
states contribute to Wf. Therefore, W ¼ P

fjWfj gives a
lower bound for Z. The explicit value of Wf can be
computed by noting that each Wf is independent of β
and can be evaluated in the limit β → 0. After some
manipulation of binomial coefficients, we have

W ¼
X2
f¼0

jWfj ¼
�

2 × 3
N−1
2 N∶odd

4 × 3
N
2
−1 N∶even

: ð19Þ

For both even and odd N, the Witten index W grows
exponentially with N and a lower bound for the ground-
state entropy per site is obtained as SGS=N ≥ ln 3=2 ¼
0.549…, which is slightly smaller than the true value
obtained numerically. We note that the computation of the
Witten index here does not rely on translation invariance,
and thus applies to a model with random couplings such
as the supersymmetric SYK model [31,32]. In fact, the
authors of Ref. [32] carried out a similar analysis and
obtained consistent results.

TABLE I. Ground-state degeneracy of the periodic chain with g ¼ 0 up to N ¼ 16 sites. Z, Zcl, and W refer to the number of zero-
energy states, the number of classical ground states, and the Witten index, respectively.

N 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Z 6 12 20 36 54 108 172 324 530 984 1672 3028 5232 9388
Zcl 6 6 10 20 28 46 78 122 198 324 520 842 1366 2206
W 6 12 18 36 54 108 162 324 486 972 1458 2916 4374 8748
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Though the Witten index gives a lower bound for Z, it
does not tell us their exact values. Another powerful tool
to study Z is cohomology of Q [5,6]. The nontrivial
cohomology classes ofQ are in one-to-one correspondence
with the zero-energy ground states. Therefore, it would be
interesting to use cohomology to compute Z exactly. This
is, however, beyond the scope of the present study and is
left for future work.

IV. SPONTANEOUS SUSY BREAKING

In this section, we show that spontaneous SUSY
breaking occurs in the Z2 Nicolai model. We start with
a precise definition of spontaneous SUSY breaking [23].

Definition: SUSY is said to be spontaneously broken if
the ground-state energy per site is strictly positive.

For finite-size systems, the definition simply states that
SUSY is spontaneously broken if there is no zero-energy
state. We note that the Hamiltonian is non-negative by
construction. For the infinite-size system, the definition
excludes the possibility that SUSY is restored in the
infinite-volume limit, as pointed out by Witten [2].
Thus, the definition is applicable to both finite and the
infinite-size systems. Below we discuss the two cases
separately.

A. Spontaneous SUSY breaking in finite chains

Let us prove that SUSY is spontaneously broken in finite
systems when g > 0. The proof is parallel to the one given
in [23]. We first note that the following operator,

Oj ¼ c†j

�
1 −

1

g
ðcjþ1cjþ2 − cj−1ciþ1 þ cj−2cj−1Þ

þ 2

g2
cj−2cj−1cjþ1cjþ2

�
; ð20Þ

satisfies fQ;Ojg ¼ g for all j ¼ 1; 2;…; N. This can be
verified by a straightforward calculation. Next, we suppose
that there exists a zero-energy state jψ0i ≠ 0. Then, from
the fact that the state jψ0i is annihilated by both Q and Q†,
we find

hψ0jfQ;Ojgjψ0i ¼ 0: ð21Þ

However, this contradicts the fact that g > 0. Thus, we have
no zero-energy state unless g ¼ 0. This proves the sponta-
neous SUSY breaking.
We note that the absence of zero-energy states simply

implies W ¼ Tr½ð−1ÞFe−βH� ¼ 0 for g > 0. The disconti-
nuity of the Witten index at g ¼ 0 can be understood as
follows. As we see in the next section, the dispersion of
excitations becomes flatter and flatter with decreasing g,
and is completely flat in the limit g ¼ 0. Thus, we expect

that a large number of excitation energies go to 0 simulta-
neously when approaching g ¼ 0, and the abrupt change in
the Witten index is allowed.

B. SUSY breaking in the infinite-volume limit

Let us next prove that SUSY is spontaneously broken in
the infinite-volume limit when g is sufficiently large. To
this end, we use Anderson’s argument [36–40], which gives
a lower bound for the ground-state energy. The proof is
again parallel to the one in [23].
Let E0 be the true ground-state energy of the chain of

length N. Because the sum of the lowest energies of the
individual terms in Eq. (4) is equal to or less than E0, we get
the following inequality:

E0 ≥ Ng2 þ Efree
0 ; ð22Þ

where Efree
0 is the ground-state energy of Hfree. Here, we

have used the fact that the ground-state energy of H1 þH2

(the Hamiltonian for g ¼ 0) is 0, as shown in the previous
section. Dividing both sides of Eq. (22) by N, we have the
following inequality,

eðNÞ ≥ g2 þ efreeðNÞ; ð23Þ
where we denote the ground-state energies per site ofH and
Hfree by eðNÞ and efreeðNÞ, respectively. This inequality is
valid for all N. In the infinite-volume limit, efreeðNÞ
becomes −4g=π. A detailed derivation is given in
Appendix C. From the result, we find that the ground-
state energy per site in the infinite-volume limit, say e0, is
bounded from below as

e0 ≥ g

�
g −

4

π

�
: ð24Þ

Therefore, it is clear that SUSY is broken spontaneously in
the infinite system when g > 4=π. The condition is suffi-
cient but may not be necessary. In fact, numerical results
suggest that spontaneous SUSY breaking occurs in the
infinite-volume limit unless g ¼ 0. We expect that a more
sophisticated method can prove this rigorously, but leave
this possibility for future work.

V. NAMBU-GOLDSTONE FERMIONS

In the previous section, we have shown that SUSY is
spontaneously broken when parameter g is larger than 0
(4=π) for finite (infinite) systems. In this section, we show
the existence of massless fermionic excitations. In Sec. VA,
we prove, with a variational argument, the existence of an
excited state whose excitation energy is bounded from
above by a linear dispersion relation. In Sec. V B, we show
numerical results obtained by exact diagonalization. The
results provide convincing evidence that the lowest excited
states have cubic dispersion.
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A. Variational argument

In this subsection, we prove that spontaneous SUSY
breaking leads to the existence of massless fermionic
excitations. We use the Bijl-Feynman ansatz [41], which
was used to study the low-lying excitations of the
Heisenberg antiferromagnets [42–44]. We assume the
condition that g > 4=π so that SUSY is spontaneously
broken, and that the ground-state degeneracy does not
increase as system size N increases. This is reasonable
because our numerical results suggest that the ground-
state degeneracy is 2 when N is odd, while it is 4 when
N is even.
Let jψ0i be a normalized ground state ofH. Without loss

of generality, we assume that jψ0i is annihilated by the
supercharge Q. The state Q†jψ0i is another ground state
with the same energy. Since the fermionic parity ð−1ÞF and
the inversion-like operator U in Eq. (10) commute with H,
jψ0i can be chosen to be an eigenstate of ð−1ÞF and U.
Note that the eigenvalues of U take the form eiθ (θ ∈ R)
because of the unitarity of U. For the purpose of our
discussion, we define local supercharges as

qj ¼ gcj þ cj−1cjcjþ1: ð25Þ

The Fourier transform of qj is then defined as

Qp ≔
XN
j¼1

e−ipjqj: ð26Þ

Here, the wave number p takes values p ¼ 2πm=N
(m ∈ Z). We note that Qp becomes the supercharge Q

when p ¼ 0. The operators Qp and Q−p (Q†
p and Q†

−p) are
related to each other by U as

U−1QpU ¼ iQ−p; U−1Q†
pU ¼ −iQ†

−p: ð27Þ

We now introduce the following variational states,

jψ1pi ¼ ðQp þQ†
pÞjψ0i; jψ2pi ¼ iðQ†

p −QpÞjψ0i;
ð28Þ

and assume p ≠ 0. Here, the states jψ1pi and jψ2pi are
orthogonal to the ground states jψ0i andQ†jψ0i since jψ ipi
(i ¼ 1, 2) is a linear combination of two states with nonzero
momentaþp and −p [45]. We get the variational energy as
follows:

ϵvarðpÞ ¼
1

2

�hψ1pjHjψ1pi
hψ1pjψ1pi

þ hψ2pjHjψ2pi
hψ2pjψ2pi

�
− E0

¼ h½Qp; ½H;Q†
p��i0

hfQ†
p;Qpgi0

: ð29Þ

Here, the symbol h� � �i0 denotes the expectation value in the
ground state, i.e., hψ0j � � � jψ0i.
To evaluate the numerator, it is important to note that the

local supercharges satisfy the following locality:

fqi; q†jg ¼
�
nonzero ji − jj ≤ 2

0 otherwise
: ð30Þ

From the above relations and the identity ½H;Q†
p� ¼

½Q†; fQ;Q†
pg�, we find that the commutator ½H;Q†

p� is a
sum of local operators. However, ½Qp; ½H;Q†

p�� may not be
local. To obtain an upper bound of the dispersion, we use
the Pitaevskii-Stringari inequality [46],

jhψ j½A†; B�jψij2 ≤ hψ jfA; A†gjψihψ jfB;B†gjψi; ð31Þ

which holds for any state jψi and arbitrary operators A, B.
The proof of this inequality can be found in [23,46]. With
this inequality, we have

ϵvarðpÞ2 ≤
hf½Qp;H�; ½H;Q†

p�gi0
hfQ†

p;Qpgi0
: ð32Þ

For clarity, we introduce two functions of wave number p
defined by

fdðpÞ ¼ hfQp;Q
†
pgi0; ð33Þ

fnðpÞ ¼ hf½Qp;H�; ½H;Q†
p�gi0; ð34Þ

in terms of which Eq. (32) is rewritten as

ϵvarðpÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
fnðpÞ
fdðpÞ

s
: ð35Þ

First, let us examine fdðpÞ. With Eq. (27) and the fact
that jψ0i is an eigenstate ofU, we find that fdðpÞ is an even
function of p. Then it follows from fdð0Þ ¼ E0 that
we have

fdðpÞ ¼ N

�
E0

N
þOðp2Þ

�
: ð36Þ

Here, fdðpÞ is of the order of N (with the ground-state
energy density E0=N fixed) from the locality Eq. (30)
and is nonvanishing for small p. A more precise estimate
of fdðpÞ is presented in Appendix D. Next, we examine
the numerator fnðpÞ. Using the locality conditions
Eq. (30), we find that fnðpÞ is also of the order of
N. With Eq. (27) again, we find that fnðpÞ is an even
function of p. Since Q and Q† are conserved charges
(½H;Q� ¼ ½H;Q†� ¼ 0), we have fnð0Þ ¼ 0. Therefore,
we get
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fnðpÞ ¼ NðCp2 þOðp4ÞÞ; ð37Þ

where C is a non-negative constant. Then we have

ϵvarðpÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
C

E0=N

s
jpj þOðp2Þ: ð38Þ

This clearly shows the existence of massless excitations.
Since the trial states and the ground state jψ0i have the
opposite parities, these excitations can be thought of as
fermionic ones, i.e., Nambu-Goldstone fermions.
In the above argument, the assumption that the ground-

state degeneracy is finite and constant for the same parity of
N plays an important role since the possibility that the trial
states become other ground states orthogonal to jψ0i and
Q†jψ0i for small p can be excluded.

B. Numerical result

In the previous subsection, we proved the existence of
massless excitation. One might think that the inequality
Eq. (38) implies a linear dispersion. However, the actual
dispersion in the Z2 Nicolai model is most likely to be
cubic in p. In order to verify this, we first consider the
large-g limit. In the large-g limit, the Hamiltonian is
dominated by the constant term and the free part,

H ∼ g2N þHfree: ð39Þ

HamiltoniansH1 andH2 in Eq. (4) are negligible since they
are independent of g. Using the Bogoliubov transformation,
Hamiltonian Hfree can be rewritten as

Hfree ¼ 2g
X

0<p≤π
ðjfðpÞjd†1pd1p − jfðpÞjd†2pd2pÞ: ð40Þ

Here, fðpÞ ¼ i½2 sinðpÞ − sinð2pÞ� and the momentum p
takes values 2πm=N (m ∈ Z). Precise definitions of the
quasiparticle operators, d1p, d2p, can be found in
Appendix C. From Eq. (40), one can see that the lowest-
lying excitation energy of Hfree is given by EðpÞ ¼
2gjfðpÞj. When p is small enough (p ≪ π), EðpÞ can
be approximated as

EðpÞ ¼ 2gj2 sinðpÞ − sinð2pÞj ∼ 2gjpj3:

Thus, the dispersion is indeed cubic in the large-g limit.
Now the question is whether or not the dispersion

is cubic for moderate values of g. To see this, we
calculated dispersion relation with exact diagonalization
with N ¼ 10;…; 15. The energy spectrum of the total
Hamiltonian with PBC for g ¼ 4 is shown in Figs. 2 and 3.
In Fig. 2, we display energy spectra for odd N, while we
display those for even N in Fig. 3.

In Fig. 2, the gray solid curve is the one-particle
excitation spectrum of the free Hamiltonian Hfree for
g ¼ 4 as a function of p, and the gray dotted curve is the
two-particle spectrum with total momentum P, which is
described as 4gjfðP=2Þj. The dispersion fits to the gray
solid curve and is quite likely to be cubic in the vicinity
of p ¼ 0. We expect that the energy levels below the
gray dotted curve correspond to those of m-particle
bound states with m > 2. It is known in ferromagnetic

FIG. 2. Dispersion relation of the Z2 Nicolai model for g ¼ 4.
We plot energy spectrum εðpÞ for N ¼ 11, 13, 15. Here, p is the
wave number. The gray solid curve indicates the one-particle
dispersion relation ofHfree and is described by 2gjfðpÞj. The gray
dotted curve is described by 4gjfðp=2Þj and indicates the
dispersion of two-particle bound states of Hfree.

FIG. 3. Dispersion relation of the Z2 Nicolai model for g ¼ 4.
We plot energy spectrum εðpÞ for N ¼ 10, 12, 14. Here, p is the
wave number. The gray solid curve indicates the one-particle
dispersion relation ofHfree and is described by 2gjfðpÞj. The gray
dotted and dashed curves are described by 4gjfðp=2Þj and
2gjfðπ − pÞj, respectively. They indicate the dispersion of
two-particle bound states of Hfree.
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spin cahins that some energy eigenvalues of bound states
are lower than those of scattering states [47].
The results of exact diagonalization for evenN with PBC

are shown in Fig. 3. The definitions of gray solid and dotted
curves are the same as those in Fig. 2. In Fig. 3, the
dispersion relation is again likely to be cubic around p ¼ 0
since it fits the gray solid curve. From the plot, we see that
the energy spectrum is symmetric about p ¼ π=2. Because
of this symmetry, we have also cubic dispersion around
p ¼ π. The gray dashed curve is described by 2gjfðπ − pÞj,
which shows good agreement with the data.
In order to provide further evidence of cubic dispersion,

we plot the first excitation energies relative to the ground
state as a function of 1=N3 for g ¼ 2, 4, 6, 8. They are
calculated using exact diagonalization withN ¼ 10;…; 20.
The results are shown in Fig. 4. Since 1=N is proportional
to the wave number p, Fig. 4 tells us that the lowest
excitation energy is cubic in p. This result is consistent
with the excitation spectrum shown in Figs. 2 and 3 and
the single-particle energy spectrum of Hfree in Eq. (40).
Therefore, the NG fermions in our system have cubic
dispersion at low energies.
An interesting question is whether this cubic dispersion

is stable to the addition of small perturbations. We partially
answer this question by using a scaling argument and
numerical calculations. We find that the dispersion in the
vicinity of p ¼ 0 is still cubic even in the presence of
SUSY-preserving perturbations (see Appendix E for
details).

VI. CONCLUSION

In this paper, we have introduced and studied a lattice
fermion model without U(1) symmetry but with Z2

symmetry in one dimension, whose Hamiltonian is defined
as the anticommutator of the superchargesQ andQ†. When
g ¼ 0, SUSY is unbroken and the ground-state entropy is
extensive, i.e., the number of the zero-energy states grows

exponentially with the system size N. When g is nonzero,
SUSY is spontaneously broken in finite chains. For the
infinite chain, we showed that SUSY is spontaneously
broken when jgj > 4=π. We numerically found that the
number of the ground states is finite and depends only on
the parity of N unless g ¼ 0.
Our analysis has revealed the nature of the low-lying

excitations in the Z2 Nicolai model. With a variational
approach, we proved that there exist low-lying states whose
energies are bounded from above by a linear dispersion.
This result clearly shows the existence of gapless excita-
tions. Furthermore, using exact diagonalization, we showed
that the dispersion relation of our model is cubic in wave
number p, ω ∝ jpj3, at low energies.
The low-lying excitation of the extended Nicolai model,

which has U(1) symmetry, is described by a conformal field
theory with central charge c ¼ 1 [23]. Thus, this low-
energy effective theory has emergent Lorentz invariance.
By contrast, the low-energy theory of the model introduced
in this paper explicitly breaks Lorentz invariance since the
dispersion is cubic.
The model we introduced is the first example in which

NG fermions with cubic dispersion are realized by the
spontaneous SUSY breaking. This dispersion relation is
protected unless one introduces extra degrees of freedom,
and one cannot lower its power as long as we preserve the
SUSY. This is remarkable for the following two reasons.
First of all, from the algebraic structure and the symmetry
breaking pattern alone, we may expect the linear dispersion
relation [e.g. as in the U(1) symmetric generalized Nicolai
model [23]], but we encounter the cubic dispersion.
Secondly, we nevertheless cannot modify the dispersion
relation, and the cubic dispersion relation is actually stable.
Gapless excitations are at the core of universality and

nontrivial infrared physics. One may use our exotic cubic
dispersion relation with nontrivial dynamical critical expo-
nent to explore new phases of condensed matters. In this
respect, we note that our model can be extended to higher
dimensions. In Appendix F, we demonstrate that a gener-
alization of our model to the two-dimensional triangular
lattice also exhibits NG fermions with cubic dispersion in
the large-g limit. In particular, we find that the two-
dimensional dispersion relation of our NG fermions is
the same as that of the Majorana fermion excitations
discussed in a class of quantum spin liquids on the
triangular lattice [29,30]. Given the same dispersion rela-
tion, it is an interesting question to ask if we can realize
SUSY and its spontaneous breaking in such quantum spin
systems.
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APPENDIX A: ZERO-ENERGY STATES
IN g= 0 OPEN CHAINS

Here we present our results for the number of ground
states in the model with g ¼ 0 and open boundary con-
ditions. The supercharge for the open chain takes the
following form:

Q ¼
XN−2

j¼1

cjcjþ1cjþ2: ðA1Þ

As in the periodic case, SUSY is unbroken in this case. We
numerically calculated the number of the zero-energy
grounds states Z for chains of length N ¼ 3; 4;…; 16.
The results obtained are summarized in the second row of
Table II.
We find that the numbers Z follow the sequence

A107383 in the On-Line Encyclopedia of Integer
Sequences [48], which is defined by the following recur-
rence relation,

ZN ¼ 2ZN−2 þ 2ZN−3; Z0 ¼ 1;

Z1 ¼ 2; Z2 ¼ 4; ðA2Þ

where we denote by ZN the number of the ground states of
the chain of length N. For large N, this number scales as
ZN ∼ ðx�ÞN , where x� ∼ 1.769 is the real root of the cubic
equation x3 − 2x − 2 ¼ 0. Although we cannot prove this
analytically, we believe that the result holds for arbitrary N.
We remark that the result extends to the inhomogeneous

case where the supercharge takes the form

Q ¼
XN−2

j¼1

sjcjcjþ1cjþ2; ðA3Þ

with spatially varying couplings sj ≠ 0 (j ¼ 1; 2;…; N).
Surprisingly, our numerical results suggest that the number
of the ground states remains unchanged for an arbitrary set
of sj. Therefore, we conjecture that the numbers ZN are
robust against perturbations that make Q inhomogeneous.

The number of the classical ground states (Zcl) can be
computed in the same fashion as in the periodic case
discussed in the main text. The analytic expression for Zcl is
given by

Zcl ¼
2

5

�
ð5 − 2

ffiffiffi
5

p
Þ
�
1 −

ffiffiffi
5

p

2

�N−2

þ ð5þ 2
ffiffiffi
5

p
Þ
�
1þ ffiffiffi

5
p

2

�N−2�
: ðA4Þ

Their numerical values are shown in the third row of
Table II, along with the Witten indices in the forth row.
Clearly, they are equal to or smaller than the exact values
of Z.

APPENDIX B: SUSY SYK MODEL

The Z2 Nicolai model discussed in the main text was
defined on a one-dimensional lattice. Instead, let us con-
sider the infinite-range random supercharge

Q ¼
XN
i¼1

gici þ
XN
i;j;k¼1

Cijkcicjck; ðB1Þ

where gi and Cijk are random Gaussian variables with the
variance

hgig�i i ¼
2g
N2

; hCijkC�
ijki ¼

2J
N2

: ðB2Þ

Let us first consider the case with gi ¼ 0 (i ¼ 1;…; N).
Defining the Hamiltonian by H ¼ fQ;Q†g, we obtain the
SUSY version of the SYK model, which is also discussed
in [31,32]. The original SYK model has an infinite-range
random four-Fermi interaction and possesses a nontrivial
large-N solution. It is supposed to describe a holographic
dual of a black hole. In a similar manner, we expect that the
SUSY version of the SYKmodel with the supercharge (B1)
describes a holographic dual of a supersymmetric or
extremal black hole (effectively in 1þ 1 space-time
dimensions).
Some of the interesting features of the Z2 Nicolai model

studied in the main text are shared with the SUSY version
of the SYK model. For example, the ground state of the
model for fixed Cijk is exponentially degenerate. The
number of the ground states and the Witten index for

TABLE II. Ground-state degeneracy of the open chain with g ¼ 0 up to N ¼ 16 sites. Z, Zcl, andW refer to the number of zero-energy
states, the number of classical ground states, and the Witten index, respectively.

N 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Z 6 12 20 36 64 112 200 352 624 1104 1952 3456 6112 10816
Zcl 6 10 16 26 42 68 110 178 288 466 754 1220 1974 3194
W 6 12 18 36 54 108 162 324 486 972 1458 2916 4374 8748
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various N are shown in Table III. In most cases, the
inequality Z ≥ W is saturated. The exceptional cases where
Z > W are consistent with those found in Ref. [32].
One may formally study the large-N scaling solution for

the (quenched-average) two-point function

hc†ðτÞcð0Þi ¼ C
sgnðτÞ
jJτj1=3 ðB3Þ

by solving the Schwinger-Dyson equation with the scaling
ansatz [49]. We, however, note that the model has expo-
nentially degenerate ground states, so the meaning of the
scaling solution should be understood better.
As in the Z2 Nicolai model discussed in the main text,

having nonzero g makes the SUSY spontaneously broken
(for a fixed set of gi and Cijk). One would expect a Nambu-
Goldstone mode, but since the model is not translationally
invariant, it is more nontrivial to discuss the dispersion
relation. It is an interesting future direction to see if such a
deformation is related to black holes with spontaneous
SUSY breaking.

APPENDIX C: GROUND-STATE ENERGY OF
THE AUXILIARY FREE-FERMION PROBLEM

In this appendix, we calculate the exact ground-state
energy of the free Hamiltonian Eq. (5), with PBC. The
Hamiltonian in Fourier space is

Hfree ¼ 2g
X

0<p≤π
ðc†p; c−pÞ

�
0 f�ðpÞ

fðpÞ 0

�� cp

c†−p

�

with fðpÞ ¼ iðsinð2pÞ − 2 sinðpÞÞ; ðC1Þ

where cp ≔
P

je
−ipjcj=

ffiffiffiffi
N

p
and the wave number p takes

the values

p ¼ 2π

N
l; l ∈ N: ðC2Þ

After the Bogoliubov transformation, the Hamiltonian
reads

Hfree ¼ 2g
X

0<p≤π
ðjfðpÞjd†1;pd1;p − jfðpÞjd†2;pd2;pÞ: ðC3Þ

Here, d1;p and d2;p are quasiparticle operators
which are defined as d1;p ≔ ðc†p − ic−pÞ=

ffiffiffi
2

p
and

d2;p ≔ ðc†p þ ic−pÞ=
ffiffiffi
2

p
, respectively. They satisfy ordi-

nary anticommutation relations,

fdi;p; dj;p0g ¼ 0; fdi;p; d†j;p0 g ¼ δi;jδp;p0 ði; j ¼ 1; 2Þ:
ðC4Þ

One of the ground states of Hfree is fully filled by
quasiparticles d2;p with negative energies, i.e.,Y

0<p≤π
d†2;pjvaci; ðC5Þ

where jvaci is the vacuum (d2;pjvaci ¼ d1;pjvaci ¼ 0 for
all p). One finds the ground-state energy of Hfree as

Efree
0 ¼ −2g

X
0<p≤π

jfðpÞj: ðC6Þ

Since fðπÞ ¼ 0, we can add p ¼ π to the sum. For a chain
of even length N, one finds

Efree
0 ¼ −

4g
tanðπ=NÞ ; ðC7Þ

while, for odd N, one gets

Efree
0 ¼ −g

2ðcosðπ=NÞ þ 1Þ2
sinð2π=NÞ : ðC8Þ

Both the ground-state energies approach the same value
Efree
0 ∼ −4gN=π in the infinite-volume limit N → ∞.

APPENDIX D: A LOWER BOUND FOR f dðpÞ
Similarly to the lower bound for the ground-state energy,

we have

fQp;Q
†
pg ≥ HfreeðpÞ þ g2N: ðD1Þ

Here, we write A ≥ B to denote that A − B is positive
semidefinite. The modified free Hamiltonian HfreeðpÞ is
defined as

HfreeðpÞ ≔ 2g cosp
XN
j¼1

ðc†jþ1c
†
j þ cjcjþ1Þ

− g
XN
j¼1

ðc†jþ1c
†
j−1 þ cj−1cjþ1Þ: ðD2Þ

As in the case of Hfree discussed in Appendix C, whether
the length of the chain is even or odd is important in the

TABLE III. Ground-state degeneracy of the SUSY SYK model with gi ¼ 0 and fixed Cijk up to N ¼ 16 sites. Z and W refer to the
number of zero-energy states and the Witten index, respectively.

N 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Z 6 12 20 36 54 108 168 324 486 972 1460 2916 4374 8748
W 6 12 18 36 54 108 162 324 486 972 1458 2916 4374 8748

SANNOMIYA, KATSURA, and NAKAYAMA PHYSICAL REVIEW D 95, 065001 (2017)

065001-10



calculation of the ground-state energy of a free hopping
Hamiltonian [23,38].
Let us derive the condition under which the denominator

of Eq. (35) becomes positive. First, we examine the case of
even N. A straightforward calculation shows that the
operator Hfree is bounded from below as

HfreeðpÞ ≥ −
4g cosp
tanðπ=NÞ : ðD3Þ

Applying this inequality to Eq. (D1), we get

fQp;Q
†
pg ≥ Ng

�
g −

4

π
cosp

�
: ðD4Þ

When g > ð4=πÞ cosp, the dominator of Eq. (35) must be
positive. Since cosp is equal to or smaller than unity, the
dominator of Eq. (35) must always be positive when
g > 4=π, in which case SUSY is spontaneously broken.
Next, we examine the chain of odd length N. When N is

odd, we get the following inequality:

HfreeðpÞ ≥ −2g
�
cosðπNÞ þ 1

sinðπNÞ
cospþ sin2ðπNÞ

sinð2πN Þ
�
: ðD5Þ

This inequality is more complex than that for even N. For
jpj < π

3
and N ≥ 4, the right-hand side of this inequality is

bounded from below as follows:

ðRHSÞ ¼ −2g
1þ cosðπNÞ
sinð2πN Þ

�
1þ ð2 cosp − 1Þ cos

�
π

N

��

≥ 2g
1þ cosðπNÞ
sinð2πN Þ

× 2 cosp

≥ 2gN cosp; ðD6Þ

where we have used the fact that cosp > 1=2 and the
inequality sinx≥2x≥=π which is valid when 0≤x≤π=2.
Applying the inequality Eq. (D6) to Eq. (D1), we have

fQp;Q
†
pg ≥ Ngðg − 2 cospÞ: ðD7Þ

In this way, we get a rigorous lower bound for fdðpÞ in
Eq. (35). Since cosp is smaller than unity, fdðpÞ must be
nonvanishing for g > 2. This gives a sufficient condition
under which the inequality Eq. (38) holds.

APPENDIX E: STABILITY OF CUBIC
DISPERSION

In this section, we discuss the stability of the
cubic dispersion of the Z2 Nicolai model near p ¼ 0
against perturbations using a scaling argument used in
[29] and numerical calculations. We restrict ourselves to
perturbations that do not break SUSY explicitly. This can
be done by adding to the supercharge Q an odd polynomial

in cj (j ¼ 1; 2;…; N) which is local in space. In the
continuum limit, the unperturbed supercharge Eq. (2) is
written as follows,

Q ¼
Z

dxðgψ þ ψ∂ψ∂2ψÞ: ðE1Þ

Here, ψ is a fermionic field whose scaling dimension is 1=2
in 1þ 1 dimensions, and the symbol ∂ denotes the spatial
derivative. Perturbations to Q in the continuum limit are
written as ψ∂ψ∂3ψ and so on. Since the term ψ∂ψ∂3ψ
leads to the most relevant perturbations to the Hamiltonian,
below we keep only this term and neglect other terms
containing higher derivatives. The modified supercharge in
the continuum limit reads

Qm ¼
Z

dxðgψ þ ψ∂ψ∂2ψ þ λψ∂ψ∂3ψÞ; ðE2Þ

from which the Hamiltonian is defined asHm¼fQ†
m;Qmg.

In a Lagrangian formulation, perturbations in the action are
written as Z

dxdτ∂ψ∂3ψ þ H:c:; ðE3Þ
Z

dxdτ∂ψ†∂2ψ†∂ψ∂3ψ þ H:c:; ðE4Þ

and so on. Here, τ is the imaginary time. From the
following scaling transformation,

x0 ¼ bx; τ0 ¼ bzτ and ψ 0 ¼ b−1=2ψ ðb > 1Þ;
ðE5Þ

we see that a quadratic term like Eq. (E3) with s-spatial
derivatives has scaling dimension s − z, and a quartic term
like Eq. (E4) with s-spatial derivatives has scaling dimen-
sion s − zþ 1, where z is the dynamical critical exponent.
From the results in the main text it is natural to assume
z ¼ 3, in which case the scaling dimensions of the terms
Eq. (E3) and Eq. (E4) are 1 and 5, respectively. Therefore,
these terms are irrelevant and do not affect the dispersion
relation. Other interaction terms in Hm are more irrelevant
since they have higher derivatives. We emphasize that the
application of the above argument is limited to perturba-
tions that do not break SUSY explicitly.
In order to provide supporting evidence for the above

argument, we carry out numerical calculation and deter-
mine the dispersion relation. We consider the following
supercharge,

Q ¼
XN
j¼1

ðgcj þ g3cj−1cjcjþ1 þ g5cj−2cj−1cjcjþ1cjþ2Þ;

ðE6Þ
where g3 and g5 are parameters. The sum of the first and
the second terms is identical to the supercharge of the
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Z2 Nicolai model, with the exception of the coefficient g3.
The Hamiltonian of this model is defined by

H ¼ fQ†; Qg: ðE7Þ

We study the dispersion relation of the model using the
exact diagonalization method for N ¼ 12;…; 20 with
periodic boundary conditions. In Fig. 5, we plot the first
excitation energies relative to the ground state as a function
of 1=N3 for g ¼ 2, 4, 6, 8, g3 ¼ 1=3 and g5 ¼ 1=5.
The results obtained show that the first energy excitation
scales with 1=N3 and becomes 0 in the infinite-size limit.
This means that the dispersion is gapless and cubic at low
energies.
From the above argument, we conclude that the cubic

dispersion of the Z2 Nicolai model is stable against
perturbations which do not break SUSY explicitly.

APPENDIX F: GENERALIZATION TO
TWO DIMENSIONS

In this section, we consider an extension of the Z2

Nicolai model to those in two dimensions. In particular, we
introduce a model on a two-dimensional triangular lattice.
We note in passing that a supersymmetric lattice fermion
model on the triangular lattice has been discussed by Huijse
and her collaborators [11]. Their model is completely
different from ours since the fermion number of Huijse’s
model is conserved while the model discussed in this
appendix does not conserve it.
The supercharge of our model is defined as follows:

Q ¼ g
X
r

cðrÞ þ 1

3

X
r

cðrÞcðrþ δ1Þcðr − δ3Þ; ðF1Þ

where r denotes the position of a lattice site in the triangular
lattice, cðrÞ is the annihilation operator of the fermion at
site r, and δi (i ¼ 1, 2, 3) are the vectors along nearest-
neighbor bonds which satisfy the following relation,

δ1 þ δ2 þ δ3 ¼ 0: ðF2Þ

As in the one-dimensional case, annihilation and creation
operators of fermions satisfy

fcðrÞ; cðr0Þg ¼ fc†ðrÞ; c†ðr0Þg ¼ 0; fcðrÞ; c†ðr0Þg ¼ δr;r0 :

ðF3Þ
We note that the supercharge is nilpotent, i.e., Q2 ¼ 0. In
the large-g limit, by neglecting the four-Fermi interactions,
the Hamiltonian becomes

H ¼ fQ;Q†g ∼ g2N

þ g
3

X
r;r0

ðfcðrÞ; c†ðr0Þc†ðr0 þ δ1Þc†ðr0 − δ3Þg þ H:c:Þ;

ðF4Þ
where N is the total number of sites. The second term in
Eq. (F4) can be written as

g
X

i¼1;2;3

X
r

ðc†ðrÞc†ðrþ δiÞ þ H:c:Þ: ðF5Þ

Using Fourier transformation, it can be rewritten as

g
X

i¼1;2;3

X
q

ðeiq·δi c†ðqÞc†ð−qÞ þ H:c:Þ; ðF6Þ

where c†ðqÞ denotes the Fourier transform of c†ðrÞ, and the
sum runs over all momenta q included in the Brillouin zone
of the triangular lattice. By a straightforward calculation,
we get the following result for any i ¼ 1, 2, 3,

g
X
q

eiq·δic†ðqÞc†ð−qÞ

¼ g
2

X
q

eiq·δi c†ðqÞc†ð−qÞ þ g
2

X
q

e−iq·δi c†ðqÞc†ð−qÞ

¼ g
2

X
q

ðeiq·δi − e−iq·δiÞc†ðqÞc†ð−qÞ

¼ ig
X
q

sinðq · δiÞc†ðqÞc†ð−qÞ: ðF7Þ

By using this result, we have

H ∼ g2N þ
X
~q

ðc†ðqÞ; cð−qÞÞ
�

0 h�ðqÞ
hðqÞ 0

��
cðqÞ

c†ð−qÞ

�
;

ðF8Þ
where the function hðqÞ is defined as

hðqÞ ≔ ig
X
i

sinðq · δiÞ: ðF9Þ

In a two-dimensional triangular lattice, the three unit vectors
are defined as follows: δ1 ¼ ð1; 0Þ, δ2 ¼ ð−1=2; ffiffiffi

3
p

=2Þ,

FIG. 5. The lowest excitation energy ΔE of H [Eq. (E7)] as a
function of 1=N3 for g ¼ 2, 4, 6, 8, g3 ¼ 1=3 and g5 ¼ 1=5. Lines
are fits to the data of N ¼ 17;…; 20.
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δ3 ¼ ð−1=2;− ffiffiffi
3

p
=2Þ. With this convention, the function

hðqÞ can be written in the following form:

hðqÞ ¼ ig

�
sinðqxÞ þ sin

�
−
1

2
qx þ

ffiffiffi
3

p

2
qy

�

− sin

�
1

2
qx þ

ffiffiffi
3

p

2
qy

��
: ðF10Þ

Here, we use q ¼ ðqx; qyÞ. The one-particle energy
dispersion is written as

EðqÞ ¼ jhðqÞj: ðF11Þ

This is identical to the dispersion of Majorana fermion
excitations in a model of quantum spin liquids on a two-
dimensional triangular lattice [29].
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