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We present an elementary argument that one can shield linearized gravitational fields using linearized
gravitational fields. This is done by using third-order potentials for the metric, which avoids the need to
solve singular equations in shielding or gluing constructions for the linearized metric.
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I. INTRODUCTION

A fundamental property of Newtonian gravity is that the
gravitational field cannot be localized in a bounded region.
This is a simple consequence of the equation

Δϕ ¼ 4πGρ; ð1:1Þ

where ϕ is the gravitational potential, G is Newton’s
constant and ρ is the matter density; the requirement
that ρ ≥ 0 and the asymptotic behavior −M=r of ϕ, where
M is the total mass, implies that ϕ vanishes at large
distances along a curve extending to infinity if and only if
there is no matter whatsoever and ϕ≡ 0. It is therefore
extremely surprising that in general relativity, gravita-
tional fields can be shielded away by gravitational fields,
as proved recently in a remarkable paper by Carlotto and
Schoen [1].
Since Newtonian gravity is part of the weak-field limit of

general relativity (GR) (indeed, this is weak-field GR with
small velocities), one wonders if a similar screening can
occur for linearized relativity. As it turns out, the analysis of
Carlotto and Schoen can be readily generalized to linear-
ized gravitational fields on conelike sets as considered in
Ref. [1] (compare Ref. [2]). This, however, requires
sophistical mathematical machinery which imposes restric-
tions to the sets considered and, as an intermediate step,
uses solutions blowing up at the relevant boundaries, which
leads to difficulties when trying to implement the method
numerically. The object of this paper is to point out an
alternative elementary method to perform gluings, or
achieve screening of linearized gravity by linearized
gravitational fields near a Minkowski background. In
particular, we give here a very simple proof that at any
given time t and given any open set Ω ⊂ R3, every
linearized vacuum gravitational field hμν on ftg ×R3

can be deformed to a new linearized vacuum field ~hμν
so that ~hμν coincides with hμν on Ω and vanishes outside a
slightly larger set. In other words, the gravitational field has

been screened away outside of Ω, and this by using
gravitational fields only; no matter fields, whether with
positive or negative density, are needed.
We emphasize that the construction of Carlotto-Schoen

switches off the gravitational field in sets which have a
conelike structure, whether in the linearized case or in the
full treatment. In our approach, no restrictions on the
geometry of Ω occur, so that the screening can be done
near any set.
Our construction is likely to be useful for the numerical

construction of initial data sets with interesting properties,
by providing an efficient way of making gluings in the far-
away zone, where nonlinear corrections become inessen-
tial. Here, as already pointed out, both the Corvino-Schoen
and the Carlotto-Schoen gluings require solving elliptic
equations in spaces of functions which are singular at the
boundary of the gluing region (see Refs. [3,4] for a review),
while our gluings are performed by explicit elementary
integrations [see (2.31) below], multiplication by a cutoff
function, and applying derivatives, once the metric has been
put into transverse and traceless (TT)-gauge.
The above leads one naturally to ask similar questions

for electric and magnetic fields. Here, we provide a simple
proof that Maxwell fields can be shielded by Maxwell
fields. Last but not least, we show how to perform the
screening in practice, in that we prove that all solutions of
sourceless Maxwell equations in a bounded space-time
region can be realized by manipulating charges and
currents in an enclosing bounded region.

II. SHIELDING LINEARIZED GRAVITY

Consider R3þ1 with a metric which, in the natural
coordinates on R3þ1, takes the form

gμν ¼ ημν þ hμν; ð2:1Þ

where η denotes the Minkowski metric. Suppose that there
exists a small constant ϵ such that we have

jhμνj; j∂σhμνj; j∂σ∂ρhμνj ¼ OðϵÞ: ð2:2Þ

If we use the metric η to raise and lower indices, one has
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Rβδ ¼
1

2
½∂αf∂βhαδ þ ∂δhαβ − ∂αhβδg − ∂δ∂βhαα� þOðϵ2Þ:

ð2:3Þ

Coordinate transformations xμ ↦ xμ þ ζμ, with

jζμj; j∂σζμj; j∂σ∂ρζμj; j∂σ∂ρ∂νζμj ¼ OðϵÞ; ð2:4Þ

preserve (2.2) and lead to the gauge freedom

hμν ↦ hμν þ ∂μζν þ ∂νζμ: ð2:5Þ

Imposing the wave-coordinates condition up to Oðϵ2Þ
terms,

□gxα ¼ Oðϵ2Þ; ð2:6Þ

leads to

∂βhβα ¼
1

2
∂αhββ þOðϵ2Þ ð2:7Þ

as well as

Rβδ ¼ −
1

2
□ηhβδ þOðϵ2Þ: ð2:8Þ

A. Cauchy problem for linearized gravity

In what follows, we ignore all Oðϵ2Þ terms in the
equations above and consider the theory of a tensor field
hμν with the gauge freedom (2.5) and satisfying the
equations

0 ¼ ∂αf∂βhαδ þ ∂δhαβ − ∂αhβδg − ∂δ∂βhαα: ð2:9Þ

Solving the following wave equation,

□ζα ¼ −∂βhβα þ
1

2
∂αhββ;

where □≡□η is the wave operator of the Minkowski
metric, and performing (2.5) leads to a new tensor hμν, still
denoted by the same symbol, such that

∂βhβα ¼
1

2
∂αhββ; ð2:10Þ

together with the usual wave equation for h:

□hβδ ¼ 0: ð2:11Þ

Solutions of this last equation are in one-to-one correspon-
dence with their Cauchy data at t ¼ 0. However, those data
are not arbitrary, which can be seen as follows: Eqs. (2.10)–
(2.11) imply

□

�
∂βhβα −

1

2
∂αhββ

�
¼ 0: ð2:12Þ

It follows that (2.10) will hold if and only if

�
∂βhβα −

1

2
∂αhββ

�����
t¼0

¼ 0 ¼ ∂0

�
∂βhβα −

1

2
∂αhββ

�����
t¼0

:

ð2:13Þ

Equivalently, taking (2.11) into account,

∂0ðh00 þ hiiÞjt¼0 ¼ 2∂ihi0jt¼0; ð2:14Þ

∂0h0ijt¼0 ¼
�
∂jhji þ

1

2
∂iðh00 − hjjÞ

�����
t¼0

; ð2:15Þ

Δhiijt¼0 ¼ ∂i∂jhijjt¼0; ð2:16Þ

∂jð∂0hji − ∂0hkkδ
j
iÞjt¼0 ¼ ðΔh0i − ∂i∂jhj0Þjt¼0: ð2:17Þ

The last two equations are of course the linearizations of the
usual scalar and vector constraint equations.
There remains the freedom of choosing ζαjt¼0 and

∂tζαjt¼0. We choose

ð∂0hkk − 2∂khk0 − 2Δζ0Þjt¼0 ¼ 0;

ðh00 þ 2∂0ζ0Þjt¼0 ¼ 0;

ðh0i þ ∂iζ0 þ ∂0ζiÞjt¼0 ¼ 0;

Di

�
hij −

1

3
hkkδij þDiζj þDjζ

i −
2

3
Dkζkδ

i
j

�����
t¼0

¼ 0;

ð2:18Þ

where Di ≡Di ≡ ∂i in Cartesian coordinates. Indeed,
given any hμν and ∂0hμνjt¼0, the first equation can be
solved for ζ0jt¼0 under suitable natural conditions on the
data; the second defines ∂0ζ0jt¼0; the third defines ∂0ζijt¼0;
finally, the last equation is an elliptic equation for the vector
field ζijt¼0 which can be solved [5] if one assumes that
the field

∂i

�
hij −

1

3
hkkδij

�����
t¼0

ð2:19Þ

belongs to a suitable weighted Sobolev or Hölder space, the
precise requirements being irrelevant for our purposes. We
simply note that if some components of hij behave as 1=r,
then ζ will behave like ln r in general, which is likely to
introduce ln r=r terms in the gauge-transformed metric.
After performing this gauge transformation, we end up with
a tensor field hμν which satisfies
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∂0hkkjt¼0¼h00jt¼0¼h0ijt¼0¼∂i

�
hij−

1

3
hkkδij

�����
t¼0

¼0:

ð2:20Þ

Inserting this into (2.14)–(2.17), we find

∂0h00jt¼0 ¼ 0; ð2:21Þ

∂0h0ijt¼0 ¼ −
1

6
∂ihjjjt¼0; ð2:22Þ

Δhiijt¼0 ¼ 0; ð2:23Þ

∂jð∂0hji − ∂0hkkδ
j
iÞjt¼0 ¼ 0: ð2:24Þ

The further requirement that hii goes to zero as r tends to
infinity together with the maximum principle gives

hiijt¼0 ¼ 0: ð2:25Þ

We conclude (compare Ref. [6]) that at any given time
t ¼ t0, every linearized gravitational initial data set
ðhμν; ∂thμνÞjt¼t0 can be gauge transformed to the TT-gauge;
writing kij ¼ ∂0hij, we have

hkkjt¼t0 ¼ ∂ihijjt¼t0 ¼ kkk ¼ ∂ikij ¼ 0: ð2:26Þ

From what has been said and from the uniqueness of
solutions of the wave equation, we also see that in this
gauge, we will have for all t

h00 ¼ h0i ¼ hkk ¼ ∂ihij ¼ 0; ð2:27Þ

which further implies that (2.26) is preserved by evolution.
It should be pointed out that when the construction is

carried out on the complement of a ball, e.g., because
sources are present or because we perform the construction
at large distances only where the nonlinearities become
negligible, then (2.25) will not hold in general, and the trace
of hij will be nontrivial, with the usual expansion in terms
of inverse powers of r, starting with 1=r terms associated
with the total mass of the configuration. In such cases, our
construction below still applies to the transverse-traceless
part of the metric.

B. Third-order potentials

We will need the following result from Ref. [7], which
can be summarized as follows: let hij be a symmetric TT
tensor on R3,

∂ihij ¼ 0 ¼ hii: ð2:28Þ

Then, there exists a symmetric traceless “third-order
potential” uij such that

hml ¼ PðuÞml; ð2:29Þ

where (here, gij denotes the Euclidean metric, and Di

denotes the associated covariant derivative)

PðuÞml ≔
1

2
ϵm

ij∂i

�
Δujl − 2∂ðlDnujÞn þ

1

2
gjlDnDkunk

�
;

ð2:30Þ

and where u ¼ uijdxidxj can be constructed by the
following procedure: letting

σijkð~xÞ ≔
Z

1

0

ϵij
lhlkðλ~xÞλð1 − λÞ2dλ; ð2:31Þ

we set

ujl ¼ 2xmxnxðjσlÞmn þ r2xmσmðjlÞ: ð2:32Þ

(This is clearly symmetric, and tracelessness is not very
difficult to check. Other third-order potentials u are
possible, differing by an element of the kernel of P.)
One way to see how (2.30) arises is to note that PðuÞ is,
apart from a numerical factor, the linearization at the flat
metric of the Cotton-York tensor in the direction of the
trace-free tensor u. For (2.32), the formulas follow by
successively integrating thrice the 2-forms given in
Ref. [7], at each step using the Poincaré formula (3.7)
below. We sketch the construction in Appendix A.
The converse is also true: given any symmetric trace-free

tensor uij, the tensor field PðuÞ defined by (2.30) is
symmetric, transverse, and traceless (of which only the
last property and the vanishing of the divergence on the first
index are obvious).
As an example, consider hij describing a plane gravi-

tational wave in TT-gauge propagating in direction ~k,

hijð~kÞ ¼ ℜðHijei
~k·~xÞ; ∂lHij ¼ 0 ¼ Hi

i ¼ Hijkj;

ð2:33Þ

with possibly complex coefficients Hij, where ℜ denotes
the real part. Then,

σijk ¼ ℜ

�
ϵijlHl

k

Z
1

0

eiλ~k·~xðλ − 2λ2 þ λ3Þdλ
�

¼ ℜðWϵijlHl
kÞ; where ð2:34Þ

Wð~xÞ ¼ 2iei~k·~xð~k · ~xþ 3iÞ − ~k · ~xð~k · ~x − 4iÞ þ 6

ð~k · ~xÞ4
ð2:35Þ
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ðwhich tends to 1=12 when ~k · ~x tends to zeroÞ;
ujl ¼ ℜðWð2xmxixðjϵlÞmkHk

i − r2xiϵikðjHk
lÞÞÞ: ð2:36Þ

As another example, consider the family of fields

uij ¼ lnð1þ r2Þ
�
Diλj þDjλi −

2

3
Dkλkgij

�
: ð2:37Þ

Tensors of the form (2.37) with the lnð1þ r2Þ term
removed form the kernel of P for any λi
(cf. Appendix A), which easily implies that if λ ∼OðrσÞ
for large r, then hij ∼Oðrσ−4Þ, for all σ ∈ R.
We also note that if hij is compactly supported to start

with, then uij can also be chosen to be compactly
supported; compare Appendix A.

C. Shielding gravitational Cauchy data

We are ready to prove now a somewhat more general
version of our previous claim, that at any given time t and
given any region Ω ⊂ R3, every vacuum initial data set for
the gravitational field ðhij; kijÞ can be deformed to a new

vacuum initial data set ð ~hij; ~kijÞ which coincides with
ðhij; kijÞ on Ω and vanishes outside of a slightly larger set.
Indeed, consider any linearized gravitational field in the

gauge (2.27). Denote by ðhij; kijÞ the associated Cauchy
data at t, and let ðuij; vijÞ denote the corresponding
potentials discussed in Sec. II B; thus,

ðhij; kijÞ ¼ ðPðuÞij; PðvÞijÞ; ð2:38Þ

where P is the third-order differential operator of (2.30).
Let Ω be any open subset of R3, and let ~Ω be any open set
containing Ω̄. Let χΩ be any smooth function which is
identically equal to 1 on Ω and which vanishes outside of
~Ω. Then, the initial data set

ð ~hij; ~kijÞ ¼ ðPðχΩuÞij; PðχΩvÞijÞ ð2:39Þ

satisfies the vacuum constraint equations everywhere,
coincides with ðhij; kijÞ in Ω, and vanishes outside of ~Ω.
When Ω is bounded, the new fields ð ~hij; ~kijÞ can clearly

be chosen to vanish outside of a bounded set. For example,
consider a plane-wave solution as in (2.33). Multiplying the
potentials (2.36) by a cutoff function χBðR1Þ which equals 1
on BðR1Þ and vanishes outside of BðR2Þ provides com-
pactly supported gravitational data which coincide with the
plane-wave ones in BðR1Þ. [Alternatively, one can replace
~k · ~x in the first line of (2.34), or in (2.35) and (2.36), by
~k · ~xχBðR1Þ.] In the limit ~k ¼ 0, so that hij is constant and,
e.g., kij ¼ 0, one obtains data which are Minkowskian in
BðR1Þ, and outside of BðR2Þ, and describe a burst of
radiation localized in a spherical shell. Note that the

Minkowskian coordinates for the interior region are distinct
from the ones for the outside region. The closest full-
theory configuration to this would be Bartnik’s time
symmetric initial data set [8] which is flat inside a ball
of radius R1 and which can be Corvino-Schoen deformed to
be Schwarzschildean outside of the ball of radius R2; here,
R2 will be much larger than R1 in general, but can be made
as close to R1 as desired by making the free data available
in Bartnik’s construction sufficiently small.
For Ω’s which are not bounded, it is interesting to

enquire about falloff properties of the shielded field. This
will depend upon the geometry of Ω and the falloff of the
initial field.
For conelike geometries, as considered in Refs. [1,2],

and with hμν ¼ Oð1=rÞ, the gravitational field in the
screening region will fall off again as Oð1=rÞ. This is
rather surprising, as the gluing approach of Ref. [1] leads to
a loss of decay even for the linear problem. One should,
however, keep in mind that the transition to the TT-gauge
for a metric which falls off as 1=r is likely to introduce
ln r=r terms in the transformed metric, which will then
propagate to the gluing region.
As another example, consider the set Ω ¼ ða; bÞ ×R2,

which is not covered by the methods of Ref. [1]. Our
procedure in this case applies, but if hμν ¼ Oð1=rÞ and if the
cutoff function is taken to depend only upon the first variable
of the product Ω ¼ ða; bÞ ×R2, one obtains a gravitational
field ~hμν vanishing outside a slab ~Ω ¼ ðc; dÞ ×R2, with
½a; b� ⊂ ðc; dÞ, whichmight grow as r2 ln rwhen receding to
infinity within the slab.
So far, we have been concentrating on “shielding.” But

of course, the above can be used to glue a linearized field
across a gluing region, by interpolating the respective u’s to
each other in the gluing zone. Equivalently, screen each of
the fields which are glued to zero across the gluing region,
and add the resulting new fields.

III. SHIELDING MAXWELL FIELDS

Maxwell equations in Minkowski space-time share at
least two features with linearized gravity: the existence of
constraint equations and the existence of gauge trans-
formations. It might therefore be unsurprising that there
exists a version of the Carlotto-Schoen construction which
applies to the Maxwell equations; compare Refs. [4,9] for a
discussion of the Maxwell equivalent of the Corvino-
Schoen construction, which generalizes without further
ado to the Carlotto-Schoen setting. We wish to show here
how to carry out the shielding of Maxwell fields with
Maxwell fields in an elementary way.
Recall that solutions of the source-free Maxwell equa-

tions are in one-to-one correspondence with their initial
data at time t; these are simply the electric field ~E and the
magnetic field ~B at t. These fields are not arbitrary but
satisfy the constraints
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div~E ¼ div~B ¼ 0: ð3:1Þ

On R3, these imply the existence of vector potentials ~ω and
~A such that

~E ¼ curl ~ω; ~B ¼ curl ~A: ð3:2Þ

In fact, there is an explicit formula for ~ω,

ωi ¼ ϵjikxj
Z

1

0

EkðλxÞλdλ; ð3:3Þ

similarly for ~A. Using (3.2), it is straightforward to show
that at any given time t and given any regionΩ ⊂ R3, every

sourceless Maxwell field ð~E; ~BÞ can be deformed to new

sourceless Maxwell fields which coincide with ð~E; ~BÞ on Ω
and vanish outside a slightly larger set. Indeed, letting ~Ω
and χΩ be as in the paragraph following (2.38), the new
Maxwell fields at t,

~E ¼ curlðχΩ ~ωÞ and ~B ¼ curlðχΩ ~AÞ; ð3:4Þ

are divergence free, coincide with the original fields on Ω,
and vanish outside of ~Ω.
One can solve the Cauchy problem for the Maxwell

equations with the new initial data (3.4) to obtain the
associated space-time fields, if desired.
The question then arises1 if every such configuration can

be realized by an experimentalist in the lab. Here, “an
experimentalist” is defined as someone whose laboratory
equipment can produce any desired electric charges ρ and

currents ~j subject to the conservation law

∂ρ
∂t þ div~j ¼ 0: ð3:5Þ

These, in turn, will produce Maxwell fields as dictated by
the Maxwell equations written in their tensorial special-
relativistic form:

∂νFμν ¼ 4πjμ; where ðjμÞ ¼ ðρ; ~jÞ: ð3:6Þ

More specifically, let us describe the lab as the following
“world volume”:

~U ≔ ½t0; t3� × ~Ω ⊂ R4:

The region within the lab where the desired Maxwell fields
need to be produced will be the set

U ≔ ½t1; t2� ×Ω ⊂ ~U;

with t0 < t1 ≤ t2 < t3 and Ω̄ ⊂ ~Ω. Let Fμν be a source-free
solution of the Maxwell equations in U, as needed to carry
out the desired experiments.
The following prescription tells us what the charges and

currents outside of U are which will produce a Maxwell
field ~Fμν coinciding with Fμν in U, out of a vacuum
configuration at t ≤ t0: let χU be a smooth function which is
identically 1 on U and which vanishes outside of ~U. Let Aμ

be any 4-vector potential associated with Fμν, e.g.,

AμðxαÞ ¼ xν
Z

1

0

FνμðλxαÞλdλ: ð3:7Þ

Set ~Aμ ¼ χUAμ, ~Fμν ¼ ∂μ
~Aν − ∂ν

~Aμ and

jμ ≔
1

4π
∂ν

~Fμν: ð3:8Þ

Then, ~Fαβ vanishes outside of the lab world volume ~U and
coincides with the desired field Fαβ in the world volume U
of the experiment. If the experimenter can produce the
4-current (3.8) with her apparatus, she will be able to
create the desired Maxwell field in the region where the
experiment will take place.
It would be of interest to devise an analogous procedure

for the gravitational field, keeping in mind the supplemen-
tary difficulty of maintaining positivity of the energy
density.

IV. WEYL TENSOR FORMULATION

As is well known, the vacuum Einstein equations imply a
system of equations for the metric and the Weyl tensor [10],

∇μCμ
αβγ ¼ 0; ð4:1Þ

which implies a symmetrizable-hyperbolic system of
equations in dimension 1þ 3 (cf., e.g., Ref. [11]). In the
linearized case, the equations for the metric and the Weyl
tensor decouple, so that one can consider the Weyl tensor
equations linearized on Minkowski space-time on their
own. We show in Appendix C the equivalence of this
approach to the metric one, in the sense that a linearized
Weyl tensor is always accompanied by a linearized metric
(the reverse property being obvious).
In space-time dimension 4, Eq. (C1) can be rewritten in

Maxwell-like form. In this approach (compare Ref. [10]),
the evolution equations for two symmetric trace-free
tensors Eij and Bij,

∂tEij ¼ −ϵikl∂kBlj; ∂tBij ¼ ϵi
kl∂kElj; ð4:2Þ

are complemented by the constraint equations
1We are grateful to Peter Aichelburg for pointing out the issue

to us.
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DiEij ¼ 0 ¼ DiBij: ð4:3Þ

Here, Eij is the electric part, and Bij is the magnetic part of
the Weyl tensor:

Eij ¼ C0i0j; Bij ¼ ⋆C0i0j; ð4:4Þ

with

⋆Cαβγδ ¼
1

2
ϵαβ

μνCμνγδ:

The symmetry and tracelessness of Eij as well as trace-
lessness of Bij are obvious from the symmetries of theWeyl
tensor. The symmetry of Bij follows from the less-obvious
double-dual symmetry of the Weyl tensor (cf., e.g.,
Ref. [12], Proposition 4.1),

ϵαβ
μνCμνγδ ¼ ϵγδ

μνCμναβ:

We show in Appendix C how the vanishing of the
divergence of Eij relates to the linearized scalar constraint
equation and how the symmetry of Bij relates to the vector
constraint equation.
Since both Eij and Bij are transverse and traceless, each

of them comes with its own third-order potential uij as
described in Sec. II B, so that shieldings and gluings can be
performed on each of them directly, without having to
invoke the metric tensor.
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APPENDIX A: INTEGRATING 2-FORMS ON R3

In this Appendix, we address the question of asymptotic
behavior of potentials for closed 2-forms. The analysis
below has obvious generalizations to p-forms on Rn

(n > 3) with 1 < p < n.
LEMMA A.1 Let ωijðxÞ ¼ ω½ij�ðxÞ be a closed 2-form

onR3 withωij ¼ OðrσÞ, α ∈ R. Then, there exists a 1-form
ωiðxÞ with ∂ ½iωj� ¼ ωij satisfying ωiðxÞ ¼ Oðr1þσÞ if
σ ≠ −2, ωiðxÞ ¼ Oðr−1 ln rÞ otherwise.
PROOF: Consider first the case σ ≥ −2. Then,

ωiðxÞ ¼ 2xj
Z

1

0

ωjiðλxÞλdλ ¼ Oðr1þαÞ when σ > −2;

ðA1Þ

and ωiðxÞ ¼ Oðr−1 ln rÞ when σ ¼ −2. To see this, use
spherical coordinates ðr; θ;φÞ in the argument of ωij, and
substitute s=r for λ. When σ < −2, consider

μiðxÞ ¼ −2xj
Z

∞

1

ωjiðλxÞλdλ; ðA2Þ

which converges and has the right decay at infinity but
blows up at the origin. The previous expression ωi is still
defined and, in the shell Bð2; 0ÞnBð1; 0Þ, differs from μi by
a closed 1-form. Since this shell is simply connected, this
difference Δi ≔ ωi − μi satisfies Δi ¼ ∂if for some func-
tion f. Now, extend f smoothly to a function F on all of
Bð2; 0Þ. Then, the 1-form given by ωi þ ∂iF in the interior
and by μi in the exterior satisfies our requirements. □

An essentially identical argument shows that if ωij has
compact support, then ωi can also be chosen with compact
support (which also follows from standard results in
algebraic topology (Ref. [13], Corollary 4.7.1).

APPENDIX B: CONSTRUCTION
OF THE POTENTIAL u

For the convenience of the reader, we review the
construction in Ref. [7] and take this opportunity to correct
a minor mistake in the presentation there, namely the
second sentence after (3.12) there. Let us define

τijk ≔ ϵij
lhlk: ðB1Þ

Since D½iτjk�l ¼ 1
3
ϵijkDmhml ¼ 0, there exists a tensor field

Uij such that

τijk ≔ D½iUj�k: ðB2Þ

Symmetry of hij implies that all traces of τijk vanish, which
implies in turn that

D½lUi
½kδj�l� ¼ 0: ðB3Þ

Hence, there exists a tensor field Uijk, which can be chosen
to be antisymmetric in jk, so that

D½iUj�kl þU½i½kδj�l� ¼ 0: ðB4Þ

From the tracelessness of hij, one finds τ½ijk� ¼ 0, which
shows that there exists a vector field Vi such that

−
1

3
U½jk� þD½jVk� ¼ 0: ðB5Þ

Equations (B4) and (B5) together with some algebra give

D½lð2Uij�k − 3Viδj�kÞ ¼ 0; ðB6Þ

which implies the existence of a potential Vij:

2

3
U½ij�k − V ½iδj�k þD½iVj�k ¼ 0: ðB7Þ
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Setting

uij ≔ −3VðijÞ þ δijVk
k;

a lengthy calculation shows that

Uij ¼ 3DiVj þ
1

2
gijDkDlukl þ Δuij

− 2DkDðiujÞk −DiDjVd
d: ðB8Þ

Thus, neither V ½ij� nor Vi
i nor Vi contributes toD½iUj�k, and

we finally obtain (2.30). For (2.31), we have to successively
write down expressions for (i) Uij, (ii) ðUijk; ViÞ, and
(iii) Vij, at each step using formula (A.1), and take the
symmetric, trace-free part of −3Vij at the end. In going
from i to ii and ii to iii, one uses the identities

Z
1

0

Z
1

0

Fðλλ0xÞλλ02dλdλ0 ¼
Z

1

0

FðλxÞλð1 − λÞdλ ðB9Þ

and

Z
1

0

Z
1

0

Fðλλ0xÞλð1 − λÞλ03dλdλ0 ¼
Z

1

0

FðλxÞλ ð1 − λÞ2
2

dλ;

ðB10Þ

respectively. The rest is index gymnastics.
If hij ¼ OðrσÞ for large r, from what has been said here

and in Appendix A, or by analyzing (2.31) for σ ≥ −4, we
find that uij can be chosen to be of Oðrσþ3Þ when
σ∉f−4;−3;−2g and uij of Oðrσþ3 ln rÞ otherwise.
Furthermore, if hij is compactly supported, then uij can
also be chosen to be compactly supported.
We end this Appendix with an analysis of the kernel of P

on a simply connected region. For this, we follow through
the steps starting from (B2) with τijk ¼ 0, which implies
the existence of a potential Mi such that

Uij ¼ DiMj: ðB11Þ

Next, from (B4), there exists an antisymmetric tensor field
Mkl ¼ M½kl� such that

Uj
kl þM½kδjl� ¼ DjMkl: ðB12Þ

Equation (B5) implies the existence of a function ϕ such
that

Vi −
1

3
Mi ¼ Diϕ: ðB13Þ

Inserting into (B7), we find that the terms involving Mi
cancel so that

D½i

�
2

3
Mj�k þ Vj�k − ϕδj�kÞ

�
¼ 0: ðB14Þ

Consequently,

Vij ¼ −
2

3
Mij þ ϕδij þDiNj; ðB15Þ

so that

VðijÞ −
1

3
Vk

k ¼ DðiNjÞ −
1

3
DkNk: ðB16Þ

Setting λi ¼ −3Ni=2, we conclude that any tensor field
satisfying PðuÞ ¼ 0 on a simply connected region can be
written as

uij ¼ Diλj þDjλi −
2

3
Dkλkgij: ðB17Þ

APPENDIX C: POTENTIAL FOR THE
LINEARIZED RIEMANN TENSOR

In this Appendix, we show that every linearized
Riemann tensor on a star-shaped subset of Rd arises from
a linearized metric hμν, in arbitrary dimension > 2, where
hμν is defined uniquely up to the usual gauge transforma-
tions. We leave it as an exercise to the reader to obtain an
explicit formula for hμν by following the steps of our
calculation below.
Suppose, thus, that Rμνρσ is a field on Minkowski space-

time having the algebraic symmetries of the Riemann tensor
and satisfying the Bianchi identity ∂ ½μRνρ�στ ¼ 0. Then,

Rμνρσ ¼ ∂ ½μFν�ρσ ðC1Þ
with Fμνρ ¼ Fμ½νρ�. But, since R½μνρ�σ ¼ 0,

F½μν�ρ ¼ ∂ ½μHν�ρ: ðC2Þ

Inserting the identity

Fνρσ ¼ F½σν�ρ þ F½σρ�ν − F½ρν�σ ðC3Þ

into (C2) and the resulting equation into (C1), we find the
identity,

Rμνρσ ¼ 2∂ ½μhν�½ρ;σ�; ðC4Þ

where

hμν ¼ HðμνÞ:

The right-hand side of (C4) multiplied by ϵ is, up to
Oðϵ2Þ terms, the Riemann tensor of the metric ημν þ ϵhμν.
Equivalently, Rμνρσ is the linearized Riemann tensor asso-
ciated with hμν.
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The addition of a pure-trace tensor to h does not change
the trace-free part of Rμνρσ. So, for a tensor Cμνρσ with Weyl
symmetries satisfying ∂ ½μCνρ�στ ¼ 0, there exists a second-
order potential hμν as in (C4), which is trace free.
It is instructive to show the equivalence of (C1) to the

metric formulation of the theory. For this, we note that, in
space-time dimension 4, Eq. (C1) is equivalent to
(Ref. [12], Proposition 4.3)

∂ ½αCβγ�μν ¼ 0: ðC5Þ
As already pointed out, this implies the existence of a
symmetric tensor field hμν such that

Cμνρσ ¼ 2∂ ½μhν�½ρ;σ�: ðC6Þ
But the right-hand side of (C6) is the linearized Riemann
tensor associated with the linearized metric perturbation
hμν. Since the left-hand side of (C6) has vanishing traces,
we conclude that the linearized Ricci tensor associated with
hμν vanishes. Equivalently, hμν satisfies the linearized
Einstein equations.
To understand the nature of the divergence constraint

DiEij ¼ 0, let us denote by rijkl the linearized Riemann
tensor of the three-dimensional metric δij þ hij, with the
associated linearized Ricci tensor rij ¼ rkikj. We have just
seen thatCαβγδ ¼ Rαβγδ for solutions of ∂αCα

βγδ ¼ 0, which
gives for such solutions

0 ¼ Rij ¼ Rα
iαj ¼ Cα

iαj ¼ −C0i0j þ rij ¼ −Eij þ rij:

ðC7Þ
Here, we have used the fact that the three-dimensional
Riemann tensor differs from the four-dimensional one by
quadratic terms in the extrinsic curvature; hence, both
tensors coincide when linearized at Minkowski space-time.
The vanishing of the divergence of the Einstein tensor
implies

Dirij ¼
1

2
Djr;

which together with (C7) shows that the constraint equation
DiEij ¼ 0 is, for asymptotically flat solutions, equivalent to
the linearized scalar constraint r ¼ 0.
Let us show that symmetry of Bij is equivalent to the

vector constraint equation. For this, let

kij ¼
1

2
ð∂0hij − ∂ih0j − ∂jh0iÞ

denote the linearized extrinsic curvature tensor of the slices
t ¼ const. By a direct calculation, or by linearizing the
relevant embedding equations, we find

R0ijl ¼ ∂lkij − ∂jkil: ðC8Þ
Again, for solutions of ∂αCα

βγδ ¼ 0, it holds that

ϵnlmBlm ¼ 1

2
ϵnlmϵmrsC0l

rs ¼ 1

2
ϵnlmϵmrsR0l

rs

¼ 2δ½nr δ
l�
s Dsklr

¼ Dlðkln − kmmδ
n
lÞ; ðC9Þ

as claimed.
Let us finally consider the kernel of the map sending hμν

into Rμνρσ. Namely, when Rμνρσ ¼ 0, from (C4), we infer

hμ½ν;ρ� ¼ ∂μAνρ; ðC10Þ
where Aνρ ¼ A½νρ�. But, since ∂ ½μAνρ� ¼ 0,

Aμν ¼ ∂ ½μBν�: ðC11Þ
Now, defining kμν ¼ hμν þ ∂μBν, we have the result

kμ½ν;ρ� ¼ hμ½ν;ρ� þ ∂μ∂ ½ρBν� ¼ 0; ðC12Þ
so that kμν ¼ ∂μDν, whence hμν ¼ ∂μðDν − BνÞ. Finally,
using the symmetry of hμν, it follows that

hμν ¼ ∂ðμΛνÞ ðC13Þ
with Λμ ¼ Dμ − Bμ.
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