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Gravitational wave searches to date have largely focused on nonprecessing systems. Including precession
effects greatly increases the number of templates to be searched over. This leads to a corresponding increase
in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there
might be astrophysical systems that are entirely missed by nonprecessing searches. In this paper we consider
the problem of constructing a template bank using stochastic methods for neutron star–black hole binaries
allowing for precession, toward butwith the restrictions that the orientation of the total angularmomentum of
the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black
hole. We quantify the number of templates required for the search, and we explicitly construct the template
bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the
problem. We quantify the parameter space region over which the nonprecessing search might miss signals.
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I. INTRODUCTION

Binary systems consisting of neutron stars and black holes
are key targets for the present generation of gravitational
wave detectors such as Advanced LIGO [1] and Advanced
Virgo [2]. TheLIGOdetectors have to date observed two such
events with high significance, labeled GW150914 [3] and
GW151226 [4], and a third, LVT151012, with lower sig-
nificance [5]. All three of these are binary black hole
coalescence events. The searches for these events a priori
cover a wide range of masses and spins magnitudes, but use
onlywaveforms forwhich the spins of the individual compact
objects are assumed to be completely aligned or completely
anti-aligned with the orbital angular momentum [6].
Misalignments between the spin and orbital angular momen-
tum generally cause precession of the orbital plane and
additional modulations of the gravitational waveforms [7].
While follow-up studies for accurate parameter estimation do
include precession [8], including thesewaveforms directly in
the initial search pipelines is challenging; the dimensionality
of the parameter space to be searched is increased, implying a
significant increase in the total number of templates. This is
challenging not only for computational reasons, but also
because a larger number of independent templates leads to a
larger probability for false alarms. Nevertheless, if a signifi-
cant number of neutron-star–black-hole (NSBH) systems in
our universe display precessional modulations that cannot be
accurately recovered by spin-aligned templates, the search
pipeline could potentially detect more events if precession
effects were to be included [9].

For searches based on matched filtering with modeled
waveforms, the traditional method of constructing a tem-
plate bank was to use the parameter space metric [10,11]
for determining the spacing between adjacent templates.
This method has been successfully used to search for
nonspinning systems [12] and has also been applied to
aligned- spin systems [13,14]. For precessing waveforms,
however, the parameter space metric is not yet sufficiently
well understood for it to be directly used to place templates.
The main issue is that to place a lattice of templates, one
needs a coordinate system on the parameter space where the
metric is explicitly flat. It is not clear whether such a
coordinate system exists (even in any approximate sense)
for the space of precessing waveforms. In situations where
such geometric template placement methods are not avail-
able, stochastic methods are commonly employed [15,16].
This also includes the most recent searches over the first
Advanced LIGO observing run [5,6].
The basic idea of stochastic methods is to place tem-

plates at random points in the parameter space and to
remove templates which happen to lie very close to other
templates. These stochastic methods are generally appli-
cable but they are typically less efficient than the geometric
methods; i.e. they require more templates than a geometric
bank to achieve the same coverage over the same parameter
space (however, stochastic methods become more efficient
in higher dimensions and can be competitive with geo-
metric methods [17]). Moreover, the stochastic template
placement procedure can be computationally demanding
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for large parameter spaces, which is in fact the case for
precessing waveforms.
In this paper we shall meet this computational challenge

and show how stochastic methods can be applied to cover
the space of precessing waveforms. The main computa-
tional problem we face is that for every proposed template,
one typically compares it with all previously accepted
templates to decide whether or not it should be accepted.
We shall see that with an appropriate choice of coordinates,
it is possible to break up the parameter space into smaller
regions, and treat each region independently. This paper
presents the largest template bank constructed thus far with
stochastic methods for binary coalescence searches.
Specifically, we shall focus on NSBH systems, but we

expect that our method would apply to other source systems
as well. We shall consider NSBH binaries with a black hole
of mass M1 and a neutron star mass of M2 such that
2 M⊙ < M1 < 16 M⊙ and 1 M⊙ < M2 < 3 M⊙. Since
neutron star spins are expected to be small we shall ignore
them, but the black hole spin will be allowed to take any
magnitude which is meaningful in the Kerr metric and any
direction [18]. We shall use the frequency domain wave-
form model presented in [19]. This waveform model does
not, so far, contain the merger and ringdown portions. For
the parameter space above, and for the expected sensitive
frequency range of the Advanced LIGO and Virgo detec-
tors, the inspiral portion of the waveform will have the
largest contribution to the signal-to-noise ratio. Thus, the
merger and ringdown phases will not be important for our
purposes. However, the methods used in our study should
be useful also for higher mass systems where merger effects
are more important.
The most effectual implementation of a stochastic NSBH

template bank constructed to date [20] required approx-
imately 1.6 million, assuming the detector to be in the
“early Advanced LIGO” configuration [21]. This construc-
tion used a new detection statistic based on maximizing
the signal-to-noise ratio (SNR) over source locations in
the sky and required a minimal match criteria of 90%
when comparing each proposed template with previously
accepted ones, as opposed to the more conventional 97%.
Using the conventional 97% value would lead to a much
larger number of templates. Moreover, as the detector
improves its low frequency sensitivity over the next few
years, the number of templates increases further. The
method used in this paper could be used to deal with both
of the above issues. We shall use the conventional 97%
minimal match value and, for simplicity, we use the
conventional SNR rather than the detection statistic intro-
duced in [20], but we expect that our method can be
adapted to that detection statistic as well.
The plan for the rest of the paper is as follows. Section II

briefly sets up notation and the parameters describing a
precessing binary system and the gravitational waveform,
and outlines the stochastic template placement algorithm.

Section III describes the stochastic template bank.
Section IV compares this precessing template bank with
the aligned spin bank and studies how well it recovers
injected signals.

II. BACKGROUND

A. Precessing binaries

Consider an NSBH system consisting of a black hole
with mass M1, spin S, and a neutron star of mass M2 and
zero spin. Let N̂ðθ;ϕÞ be the unit vector along the line of
sight from the detector to the binary system, and let L be
the orbital angular momentum of the binary. Define the
dimensionless spin of the black hole as χ ¼ jSj=M2

1. The
component of S alongL will be determined by the quantity
κ ¼ Ŝ · L̂, and the component of S orthogonal to L is

S⊥ ¼ S − ðS · L̂ÞL̂: ð1Þ

It can be shown that the direction of the total angular
momentum J ¼ Lþ S is approximately conserved [7],
and that L̂ and Ŝ precess around J. The magnitude of L
decreases steadily because of the emission of gravitational
radiation but the magnitude of S remains constant as does
the angle between L and S. The opening angle β of the
precession cone is given by

cos β ¼ Ĵ · L̂: ð2Þ

As the magnitude ofL decreases, β should increase in order
to maintain the direction of J and the angle between L and
S [7]. However, the precession time scale is smaller than
the radiation reaction time scale (which determines the rate
at which L decreases). It can be shown [22] that for the
advanced LIGO and Virgo detectors, to a reasonable
approximation, L and S precess steadily around J with
a constant opening angle β. The rare case of transitional
precession occurs when J ∼ 0 at some point during the
evolution of the binary system. Finally, α0 is an azimuthal
angle that expresses the orientation of L̂ relative to Ĵ in the
inertial detector frame, and we shall define the angle θJ
as cos θJ ¼ Ĵ · N̂.
For a plane gravitational wave traveling in a direction ẑ,

and a frame ðx̂; ŷÞ in the plane orthogonal to ẑ, we define
the tensors

eþab ¼ x̂ax̂b − ŷaŷb; e×ab ¼ x̂aŷb þ ŷax̂b: ð3Þ

The gravitational wave can be written as a sum of two
transverse polarizations

habðtÞ ¼ hþðtÞeþab þ h×ðtÞe×ab: ð4Þ

It is always possible to find a frame ðx̂; ŷÞ such that
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hþðtÞ ¼ AþðtÞ cos 2ΦðtÞ; h×ðtÞ ¼ A×ðtÞ sin 2ΦðtÞ;
ð5Þ

where Aþ;× are slowly varying amplitudes and ΦðtÞ is a
rapidly varying phase. For the case of a binary system, the
wave frame ðx̂; ŷÞ is tied to the direction of the orbital
angular momentum, and x̂ is taken to be �N̂ × L̂. The
direction of x in the detector frame defines a polarization
angle ψ and, following [7], we choose the convention

ψðtÞ ¼ tan−1
�
L̂ðtÞ · ẑ − ðL̂ðtÞ · N̂Þðẑ · N̂Þ

N̂ · ðL̂ðtÞ × ẑÞ

�
: ð6Þ

Note that because of precession, the direction of L changes
in time and thus ψ also changes with time. With these
conventions, the expressions for hþ;× are

hþðtÞ ¼ −
2πM
rD

½1þ ðL̂ðtÞ · N̂Þ2� cos 2ΦðtÞ; ð7Þ

h×ðtÞ ¼ −
2πM
rD

½−2L̂ðtÞ · N̂� sin 2ΦðtÞ; ð8Þ

whereD is the distance to the binary system, r is the binary
orbital diameter, and M ¼ M1 þM2 is the total mass.
Throughout the paper we shall also use the chirp mass,

MC ¼ η
3
5M; ð9Þ

and the following quantities related to the mass ratio of the
components:

ν ¼ M1

M
; η ¼ M1M2

M2
; q ¼ M1

M2

: ð10Þ

It is also convenient to express the black hole spin via the
dimensionless vector χ ≔ S=M2

1 and decompose it into
components parallel and perpendicular to L̂, χ‖ and χ⊥,
respectively. The total dimensionless spin magnitude is
thus χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðχ‖Þ2 þ ðχ⊥Þ2

p
.

The detector response functions to these polarizations
are denoted by FþðN;ψÞ and F×ðN;ψÞ. If the signal is
parallel to one of these configurations, it is said to be
linearly polarized. In contrast, a signal that can be decom-
posed into an equal linear combination of these two
principal directions is circularly polarized. In general,
the signal seen by the detector hðtÞ will be a linear
combination of the two polarizations,

hðtÞ ¼ hþðtÞFþðN̂;ψðtÞÞ þ h×ðtÞF×ðN̂;ψðtÞÞ
¼ AðtÞ cos½2ΦðtÞ þ φðtÞ�; ð11Þ

where

AðtÞ ¼ 2πM
rD

ð½1þ ðL̂ðtÞ · N̂Þ2�2F2þðθ;ϕ;ψðtÞÞ
þ 4½L̂ðtÞ · N̂�2F2

×ðθ;ϕ;ψðtÞÞÞ1=2; ð12Þ

and

φðtÞ ¼ tan−1
�

2ðL̂ðtÞ · N̂ÞF×ðθ;ϕ;ψðtÞÞ
½1þ ðL̂ðtÞ · N̂Þ�2Fþðθ;ϕ;ψðtÞÞ

�
: ð13Þ

In summary, gravitational wave signals from an NSBH
precessing binary system can be expressed in terms of the
following parameters: the component masses ðM1;M2Þ, the
black hole spin vector S, the overall constant amplitude A,
the polar angles of total angular momentum vector ðθJ;ψJÞ,
the location of the source ðθ;ϕÞ, the time of arrival of the
signal t0, and the initial phase ϕ0. For the purposes of this
paper we have chosen to focus on “face on” systems; i.e. we
assume that J is either aligned or anti-aligned withN so that
θJ ¼ 0° or 180°. For such cases, ψJ will disappear from the
waveform expression. These systems will be, on the
average, more luminous than edge-on systems and thus
more likely to be detected [9].
For our purposes, the post-Newtonian (PN) formalism

provides a reasonable approximation to the observed
gravitational waveform. There are a variety of PN approx-
imants available which differ in how one deals with the
energy, flux, and balance equations (see e.g. [23] for a
recent review). Our goal in this paper is not to study the
differences between various approximants but is rather to
understand how precession affects the size of the template
bank. For this purpose, most approximants should give
similar results and our main consideration is computational
efficiency. For this purpose, since most of our computations
are in the frequency domain, it turns out to be very useful to
work directly with the Fourier transform of hðtÞ. We shall
use the frequency domain model introduced in [19]. An
implementation of this waveform model is publicly avail-
able in [24], where it is called the “SpinTaylorF2” model.

B. Matched filtering

Matched filtering is a methodology used to determine if
data from a gravitational wave detector xðtÞ contain some
signal of known form, hðtÞ, or only Gaussian noise nðtÞ.
Thus, in the absence of a signal,

xðtÞ ¼ nðtÞ; ð14Þ

and in the presence of a signal

xðtÞ ¼ hðtÞ þ nðtÞ: ð15Þ

If the noise is stationary, we can characterize it by
the single-sided power spectral density (PSD) SnðfÞ
according to
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h ~n⋆ðfÞ ~nðf0Þi ¼ 1

2
SnðfÞδðf − f0Þ: ð16Þ

Here the brackets h·i denote an average over many
realizations of the noise, and ~nðfÞ denotes the Fourier
transform of nðtÞ.
The PSD is used to define the inner product between two

time series xðtÞ and yðtÞ,

ðxjyÞ ≔ 4Re
Z

∞

0

~x⋆ðfÞ~yðfÞ
SnðfÞ

df: ð17Þ

This inner product is used to define the norm of a time
series xðtÞ and a normalized time series x̂ in the usual way:

‖x‖ ≔ ðxjxÞ1=2; x̂ ¼ x=‖x‖: ð18Þ

The likelihood function Λ can be shown to be [25,26]

logΛ ¼ ðxjhÞ − 1

2
ðhjhÞ: ð19Þ

The idealized procedure to search for a signal with
unknown parameters is to compute logΛ for all points
(suitably discretized) in a given parameter space and to find
the point where logΛ is maximum. The likelihood can be
analytically maximized for certain parameters (such as the
initial phase ϕ0 and an overall constant amplitude) or by a
fast Fourier transform (such as the time of arrival t0)
(see e.g. [27]), while other parameters (the so-called
intrinsic parameters) must be explicitly maximized over.
These intrinsic parameters we denote as λi. (We shall
consider only binary systems with circular orbits, and we
shall also not consider any parameters associated with the
internal structure of the neutron star.)
A template bank is a collection of waveforms fhIg

labeled by the index I. Given a template bank, we would
like to know how effective it is in recovering a given signal
h. This is quantified in terms of a number, namely the fitting
factor (FF) defined as

FFðh; fhIgÞ ¼ max
I
μðh; hIÞ; ð20Þ

where

μðh; hIÞ ¼ max
t0;ϕ0

ðĥjĥIðt0;ϕ0ÞÞ ð21Þ

is the match between h and hI . μðh; hIÞ represents the
fraction of the optimal SNR of signal h captured by the
template hI. The fitting factor depends on a particular
template bank and a particular target waveform h. Since
we will compute this for a fixed template bank, we usually
drop its dependence on fhIg and write FFðhÞ.
The loss in SNR can be quantified by the match between

a signal and the nearest template and can be formulated

geometrically [10,28]. The match between nearby points in
parameter space can be approximated as

μðĥðλÞ; ĥðλþ dλÞÞ ¼ 1 − gijdλidλj þ � � � ð22Þ

with the metric

gij ¼ −
1

2

∂2μðĥðλÞ; ĥðλ0ÞÞ
∂λ0i∂λ0j

����
λ0¼λ

: ð23Þ

This metric1 is useful in quantifying the density of
templates. The higher the metric determinant, the higher
the required template density for a fixed given allowed
SNR loss (which corresponds to a given minimal match).
For aligned waveforms, there is an analytic expression for

the metric [13,14]. However, for the NSBH precessing
parameter space, we do not have an analytic way to calculate
this metric [29]. We can approximate the precessing metric
by calculating the numerical derivative for small perturba-
tions in the waveform parameters (δλ → 0). The numeric
metric is useful because it provides an independent vali-
dation of the stochastic bank. For validation, we can
qualitatively compare the distribution of the determinant
of the metric and the distribution of templates in the
stochastic bank. As we shall see later, the density of
templates placed in the face-on bank will correlate with
the regions of the NSBH parameter space where the
invariant volume element, i.e. the square root of the
determinant of gij, is high.

C. Stochastic placement

The points in our stochastic template bank are populated
using the following steps. The starting point for these could
be either an empty template bank or an existing “seed”
template bank [15,16]:
(1) Propose a physically viable point in parameter space

p following some probability distribution (we call
this distribution the proposal distribution). If we are
starting with an empty bank, then the first proposed
point will always be accepted.

(2) Calculate the match of the waveform at pwith all the
waveforms previously accepted into the bank.

(3) Append the candidate to the bank if all the matches
are below some threshold, known as the minimal
match. We shall take the minimal match to be 97%.

(4) Repeat the previous steps until a convergence con-
dition is achieved. We shall take the convergence
criteria to be the following: continue the process
until, in the previous 1000 trials, only 30 or fewer
points have been accepted.

1For Gaussian stationary noise, one can show that the metric
gij is equivalent to constructing the scalar product 1

2
ð∂ĥ∂λi j ∂ĥ∂λjÞ and

projecting out the parameters t0 and ϕ0.
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The resulting template bank will, of course, depend on
the proposal distribution that we start with. If we had
sufficiently reliable astrophysical information on spin
orientation, mass distributions, etc., we could tailor the
template bank appropriately. In the absence of any such
prior information, we need to apply some other criteria for
the proposal distribution. A well motivated choice is to
choose the distribution according to the value of the
determinant of the metric gij (this is the choice made in
e.g. [17]); indeed a geometric placement algorithm would
satisfy this condition. However, this is not the only
possibility, and we shall discuss our choice below.

D. Proposal distribution

We shall start with the assumption that the binary system
is face-on; i.e. J is pointing either directly toward or directly
away from the detector, and we shall fix the sky location to
be directly overhead the detector. With these assumptions,
we are left with a five-dimensional problem: the two
masses M1 and M2, and the three components of the black
hole spin S.
Even with these assumptions, the full problem is a

significant computational challenge. An important issue
is that the stochastic placement algorithm is not easy to
parallelize. Imagine trying to divide the full parameter
space into smaller subregions and applying the procedure
outlined above to each of these subregions. Note that in the
second step of the procedure outlined in the previous
section, we need to check the match of a new waveform
with all of the previously accepted waveforms in the
template bank. Thus, in principle, each subregion needs
to be aware of the points that have been accepted in the
other subregions. Dealing with each subregion independ-
ently could lead to a significant overcoverage, i.e. accepting
many more points than necessary.
If we could find subregions which are uncorrelated from

each other (by a suitable choice of coordinates) and if the
subregions were sufficiently large, then the parallelization
would be close to optimal. While we do not have the optimal
coordinates for this purpose, it turns out that the so-called
chirp times (τ0, τ3) [30,31] are a good approximation,

τ0 ¼ MC
−5=3; ð24Þ

τ3 ¼ MC
−2=3ðνð1 − νÞÞ−3=5ð4π − βCÞ; ð25Þ

where

βC ¼ 1

12
ð38ν2 þ 75νÞχ‖: ð26Þ

The chirp time was first introduced in [32] as the time taken
for the Gravitational Wave (GW) signal to reach coalescence
starting from some initial frequency. Chirp times are also
the coordinates typically used in geometric methods for

template placement [12] and is also the coordinate where the
parameter space metric for binary inspiral systems is most
easily understood (see e.g. [33]).
We wish to cover the ðτ0; τ3Þ space uniformly. In

particular, while constructing the template bank for a
particular rectangular region, we would like to ensure that
we generate templates only for that rectangular region. If
we were to pick values ofM1;M2;S directly, this would not
be guaranteed. We therefore follow the following steps:
(1) Generate values of τ0 and τ3 randomly within the

rectangular region under consideration following a
uniform distribution.

(2) The value of τ0 determines the chirp mass MC, but
τ3 depends on both ν and χ‖. Our strategy is to then
pick a value of q which, along with the chosen value
of τ3, determines χ‖. The value of ν is chosen
randomly assuming that M1 and M2 are uniformly
distributed in their allowed ranges. In practice, we
draw random values of M1 and M2 from uniform
distributions, which determines ν. Given q and τ3,
we solve Eq. (25) for χ‖.

(3) To fix the component of S perpendicular to L̂, we
note that the total spin magnitude χ is bounded
below by χ‖. We pick a value of χ⊥, such that ‖χ‖ is
uniformly distributed between χ‖ and 1.

(4) Finally, we choose α0 uniformly between 0 and 2π.
This procedure ensures that the proposal distribution covers
all possible precessing binary configurations. Lower values
of τ3 get mapped to the more aligned systems, i.e. larger
values of χ‖, while lower values of τ0 are mapped to
systems with higher total mass, M. While the resulting
distribution of points in the physical parameters ðM1;M2;
χ‖; χ⊥; α0Þ will not be completely physical, our final results
are not very sensitive to this choice of distribution.

III. THE PRECESSING FACE-ON
TEMPLATE BANK

The total range of chirp times corresponding to our
parameter space is broken up into 938 smaller “chirp time
boxes.” A stochastic template bank is constructed for each
box independently, and the 938 template banks are then
concatenated. Parallelizing the stochastic placement is
computationally advantageous, because the stochastic
placement algorithm’s efficiency scales with the square
of the number of templates placed [13,14]. By splitting up
these regions, we limit the number of comparisons needed
for each stochastic template bank candidate to decide
whether it should be accepted. However, speeding up the
algorithm comes at the cost of overcoverage between
neighboring boxes which we shall discuss toward the
end of this section.
The parameter space metric discussed earlier also plays a

role in reducing the computational cost, and in particular we
use the metric for the space of aligned-spin waveforms [14].
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The goal is to minimize the number of times that we need
to calculate the match. For a proposed parameter space
point, we consider only those waveforms which have a
match of better than 70% with the proposed waveform as
computed by the aligned spin metric. The full match is
computed only for the waveforms in the template bank
which cross this threshold. The 70% threshold was found
by trial and error and is low enough that we do not miss
any templates close to the proposed waveform. Figure 1
shows the convergence of the match for three particular
boxes in ðτ0; τ3Þ space.
Before presenting the result of the above procedure and

discussing some properties of the precessing face-on tem-
plate bank (FOB), we briefly describe an aligned-spin bank
(ASB) which we shall use as a reference for comparison.
Such a bank covers the same space of masses and aligned
spin components, but ignores precession. It is constructed
via stochastic placement using nonprecessing, inspiral-only
post-Newtonian templates (namely the “TaylorF2” model
in LALSimulation [24]) and contains 130,646 templates. The
template density is shown in Fig. 2 in chirp time coordinates
ðτ0; τ3Þ and in such coordinates it is approximately constant.
The ability of a similar bank at detecting aligned-spin and
precessing NSBH systems has been characterized in pre-
vious studies [9,31]. In contrast, the template bank for
precessing face-on systems is shown in Fig. 3. It contains
6,908,681 templates—a dramatic increase compared to the
ASB. The densest parts are in the highmass ratio and highly
anti-aligned spin (κ < −0.5) region of the bank. More than
half of the total number of templates are placed in this region.
Figure 4 shows the distribution of the mass ratio in the FOB
and ASB, thereby demonstrating that the vast majority of
points in the FOB consist of asymmetric systems (with mass
ratio q > 4) in contrast to the ASB which is dominated by
more symmetric systems.

Figures 5, 6, 7, and 8 display the precessing template bank
in different slices of the parameter space. Figure 6 shows the
template bank density in the ðq; χ‖Þ plane. Figure 7 shows
the distribution of templates in the ðχ⊥; χ‖Þ plane. Finally
Fig. 8 gives the template bankdistribution in the ðq; βÞplane.
In Fig. 7, we note that higher template densities occur in the
higher values of spin-orbit misalignment, which in turn
indicates higher precession.
As a result of breaking up the parameter space into

independent boxes, it is to be expected that the algorithm
will place more templates than necessary at the borders
between adjacent boxes. This creates so-called “gridlines”

FIG. 1. Convergence curves of three different boxes used to
construct the FOB.

FIG. 3. The FOB in chirp time coordinates. Each hexbin has
dimensions fΔτ0 ¼ 0.014;Δτ3 ¼ 1.0g.

FIG. 2. The aligned spin bank in chirp time coordinates. The
color bar density scale is the same as in Fig. 3 for ease of
comparison. Each hexbin has dimensions fΔτ0 ¼ 0.014;
Δτ3 ¼ 1.0g.

NATHANIEL INDIK et al. PHYSICAL REVIEW D 95, 064056 (2017)

064056-6



in the bank which are clearly visible in Fig. 3. These are an
artifact of splitting up the parameter space into independent
regions. It results in having a larger number of templates
than necessary. However, we shall see that this is not a large
effect for the chirp time boxes that we have chosen.
The gridlines were most pronounced at the edges of the

boxes along the vertical direction, which implies that there
is a degeneracy along the τ3 direction. The gridlines along
the τ0 direction are much less pronounced. This is not
surprising since τ0 is determined entirely by the chirp mass
MC, and it is well known that MC is the parameter best
determined from the inspiral phase [34].
This suggests also that it should be possible to replace

τ3 by a better coordinate leading to fewer correlations.
Regardless, we shall now quantify the correlations between

adjacent boxes in the τ3 direction. Also, in order to optimize
the size of the chirp time boxes, it was crucial to estimate
how far these gridlines overlapped into adjacent boxes.
To study this issue, we looked at two adjacent boxes in τ3.

FIG. 5. The FOB in solar mass (M1, M2) coordinates. As
before, the color bar is scaled with respect to the density of
templates per bin fΔM1 ¼ 0.28;ΔM2 ¼ 0.02g.

FIG. 4. Normalized distribution of the mass ratio q for the
face-on precessing template and ASB.

FIG. 6. The FOB in (q; χ‖) coordinates. As before, the color bar
is scaled with respect to the density of templates per hexbin
fΔq ¼ 0.3;Δχ‖ ¼ 0.04g.

FIG. 7. The spin distribution of the FOB. The y axis is the
component of spin parallel to the orbital angular momentum L,
and the x axis is the component of the spin perpendicular to L.
Each hexbin has dimensions fΔχ‖ ¼ 0.04;Δχ⊥ ¼ 0.02g.
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By taking points in the lower box and calculating the
overlap with every point in the above box, we determined
the extent of the overcoverage. Figure 9 displays the
templates in adjacent boxes which have an overlap greater
than 95% with templates in the adjacent box. The extent of
these templates extends to about 25% of the box in the τ3
direction. However, the number of such templates is only
about 7% of the total number of templates in the upper box,
and 1% for the lower box.
To conclude this section, we validate the distributions

obtained above by a numerical calculation of the Fisher
matrix. If one were able to carry out a geometric template
placement procedure, the density of templates would be
proportional to the invariant volume element, i.e. to the
square root of the determinant of gij. The same is generally

true for probabilistic methods of template placement. We
compute gij and its determinant directly by numerically
computing the overlap between the derivatives of neighbor-
ing waveforms and compare this with the actual distribution
of templates obtained in the template bank. Figure 10 shows
the contour plot of log

ffiffiffiffiffiffijgjp
for the f15 M⊙; 1.4 M⊙g case.

Also shown are the points in the template bank whose
masses are within 1% of these mass values demonstrating
qualitative agreement between the two entirely different
calculations. Similar results are obtained for other values
of the masses and other slices of the parameter space. This
agreement between the two independent calculations pro-
vides a sanity check and indicates that the great increase in
the number of templates is a real feature of the space of
precessing waveforms. Using a different detection statistic
as in [20] helps ameliorate the problem somewhat, but does
not eliminate it.

IV. EFFECTUALNESS OF THE TEMPLATE BANK

In this section we estimate the effectualness of the FOB
for different populations of NSBH systems and compare it

FIG. 8. The β and mass ratio, q, distribution of the FOB. Each
hexbin has dimensions fΔq ¼ 0.3;Δβ ¼ 4°g.

FIG. 9. Plot of the templates in the box ðτ0; τ3Þ ¼
ð0.14 − 0.15; 40 − 44Þ that had an overlap greater than 95% with
templates placed in the box, ðτ0; τ3Þ ¼ ð0.14 − 0.15; 36 − 40Þ.

FIG. 10. Comparison of the stochastic bank and the metric
approximant χ distributions for fixed masses f15 M⊙; 1.4 M⊙g.
The color map represents log

ffiffiffiffiffijgjp
, and the scattered points

denote the templates in the stochastic bank with masses within
1% of f15 M⊙; 1.4 M⊙g. Each hexbin has dimensions fΔχ‖ ¼
0.04;Δχ⊥ ¼ 0.02g.
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with the ASB. When calculating matches, all simulations
use a lower frequency cutoff of 30 Hz and an upper cutoff
of 4400=ðM1 þM2Þ Hz, which is the frequency corre-
sponding to the innermost stable circular orbit of a
Schwarzschild black hole with mass equal to M1 þM2.
First, we want to consider the waveforms which were

used to construct the FOB, namely the SpinTaylorF2
waveforms, and we want to compare the ASB with the
FOB for precessing waveforms. In order for a bank to
recover signals effectively, it must be able to recover NSBH
systems over a range of mass and spin values and
orientations of Ĵ. We consider two cases: (i) by constraining
the injections to be face-on NSBH systems, we look at how
well the FOB and ASB could recover SpinTaylorF2
injections from the same proposal distribution used to
construct the FOB, and (ii) for arbitrary orientations of the
total angular momentum (i.e. 0° < θJ < 180°). In both
cases, we considered injections over the same fM1;M2g
parameter space as before, i.e. 2 M⊙ < M1 < 16 M⊙ and
1 M⊙ < M2 < 3 M⊙. Figures 11 and 12 show the recov-
ered fitting factors for the ASB and FOB banks for these
two cases. Figure 11 shows the case when the injections are
face-on. This is what the FOB was built for, and indeed, the
plot shows that the FOB greatly outperforms the ASB. The
fitting factors are worse than 97% for no more than 1% of
the injections. Figure 12 shows the corresponding result
when the injections are not constrained to be face-on. The
recovered matches are reduced, but the FOB still outper-
forms the ASB over the full mass range.
To further investigate the differences between the FOB

and ASB template banks, we now calculate the difference
between the fitting factor obtained for the FOB and the
ASB (we compute FFFOB − FFASB) and plot the result over
different slices of the parameter space. These plots break up

the relative performance of the two banks over different
portions of the parameter space. Figures 13 and 14 plot
the difference in the fitting factors over ðτ0; τ3Þ space.
Figures 15 and 16 show the difference in the fitting factor
in q; χ‖ coordinates for face-on and arbitrary injections,
respectively. Here, in Fig. 15, as expected, we see that the
FOB always performs better. Further, in the regions where
the metric has highest density (see Fig. 6), the FOB shows
the most improvement. Finally, in what is possibly more
illuminating, Fig. 17 shows the fitting factors for the FOB
in the space of θJ and the precession cone opening angle β.

FIG. 11. Cumulative histogram showing the recovered fitting
factor of the face-on precessing and aligned spin template banks
for face-on SpinTaylorF2 injections.

FIG. 12. Cumulative histogram showing the recovered fitting
factor of the face-on precessing and aligned spin template banks
for SpinTaylorF2 injections with the component masses distrib-
uted uniformly within their respective ranges, spins distributed
uniformly in κ, and Ĵ distributed uniformly over the sphere.

FIG. 13. A plot of the difference in the recovered fitting factor
between the precessing and aligned template banks over the
fτ0; τ3g parameter space for face-on SpinTaylorF2 injections.
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We quote the value of β at a reference frequency of 100 Hz.
While in principle β evolves in time and thus has a
frequency dependence, it was shown in [22] that it is
roughly constant over the inspiral regime for the frequency
range of interest for ground based detectors. Figure 17
shows a clear correlation between the spin orientation and
the opening angle. To a good approximation, the figure
shows a circle in the θJ; β plane, i.e. cone around the
β ¼ 90° direction. This relation was found analytically in
[22], and we refer the reader to this paper for further
discussion.

To quantify the improvement that a precessing face-on
bank would bring to a Compact Binary Coalescence (CBC)
search, we calculated the relative improvement in detection
volume [31] of the FOB and ASB banks. In the absence of
any prior astrophysical likelihood distribution of NSBH
systems, the detection volume, V, is proportional to the
sum of the cube of the product of the optimal SNR of the
injections, ρi, with the fitting factor, mi, obtained from
attempting to recover a set of injected NSBH signals into
the bank,

FIG. 14. A plot of the difference in the recovered fitting factor
between the precessing and aligned template banks over the
fτ0; τ3g parameter space for SpinTaylorF2 injections that are
distributed uniformly in chirp time, fτ0; τ3g, with Ĵ distributed
uniformly over the sphere.

FIG. 15. A plot of the difference in the recovered fitting factor
between the precessing and aligned template banks over the
fq; χ‖g parameter space for face-on SpinTaylorF2 injections.

FIG. 16. A plot of the difference in the recovered fitting factor
between the precessing and aligned template banks over the
fq; χ‖g parameter space for SpinTaylorF2 injections that are
distributed uniformly in chirp time, fτ0; τ3g, with Ĵ distributed
uniformly over the sphere.

FIG. 17. Recovered fitting factor of the precessing template
bank over the fθJ; βg parameter space with SpinTaylorF2
injections that are distributed uniformly in chirp time, fτ0; τ3g,
with Ĵ distributed uniformly over the sphere.
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V ∝
X
i

ðmiρiÞ3: ð27Þ

By taking the ratio of the detection volumes of the FOB
and ASB, VFOB vs VASB, we get a measure of the relative
improvement the FOB could bring to the search. Results are
shown in Table I.

V. CONCLUSIONS

In this paper we have presented a template bank for
gravitational wave searches for precessing NSBH systems.
The template bank assumes that the total angularmomentum
vector is pointing directly toward or away from the detectors.
It covers the mass ranges 2 M⊙ < M1 < 16 M⊙,
1 M⊙ < M2 < 3 M⊙, and the black hole spin vector can
have arbitrary orientation. The template bank ends up having
6,908,681 templates assuming the early Advanced LIGO
noise curve. We have shown that the sensitive volume for
systems with large spin misalignments (i.e. large precession
cone angles) for this template bank is roughly twice as large
as for the aligned spin bank (see third row of Table I).
We use the frequency domain, inspiral-only,

SpinTaylorF2 waveform for our study. The aligned spin
template bank over the same mass range has only 130,646
templates, and this great increase in the number of
templates is validated by an independent numerical
evaluation of the determinant of the parameter space
metric. Despite this large increase in the number of
templates, we show that stochastic methods can still be
implemented. It requires us to break up the parameter
space into smaller, approximately independent regions,
and we found that the chirp times provide a suitable
coordinate choice with which to do this. The template

bank could be pruned by removing templates near the
boundaries of the chirp time boxes, but this would only
reduce the number of templates by about 5%–10%. Using
a different detection statistic as in [20] should further help
in decreasing the number of templates somewhat, but it is
still an open issue whether the 97% minimal match
condition should be kept as gravitational wave detectors
improve their low frequency sensitivity. In either case,
working in chirp time coordinates should allow us to deal
with the computational problem.
A large fraction of the templates of our bank are in the

anti-aligned part of parameter space (with κ < −0.5). If one
believes that such systems are disfavored astrophysically, it
is straightforward to construct a precessing template bank
for restricted values of κ. Depending on how restricted we
would like the black hole spin orientation to be, this might
provide a useful compromise between computational cost
and astrophysical priors. It would also be desirable to be
able to apply traditional geometric methods and to place a
lattice of templates, but this requires us to find suitable
coordinates for the space of precessing signals.
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TABLE I. The improvement in the relative detection volumes calculated from each injection set. The values in the
third row represent injections with the component masses distributed uniformly within their respective ranges, spins
distributed uniformly in κ, and Ĵ distributed uniformly over the sphere. Results are grouped into three different
regions fAll; HP;Highβg. All is the entire NSBH parameter space spanned by the injection set. Highβ is defined as
the region of parameter space that contains recovered injections with β ∈ f60°; 120°g. HP is the “high precession”
region of parameter space examined by [9] that contains recovered injections with ‖χ‖ > 0.7 and 45° < θJ < 135°.

Injected waveform θJ Mass range M⊙
VAll
FOB

VAll
ASB

− 1
VHP
FOB

VHP
ASB

− 1
VHighβ
FOB

VHighβ
ASB

− 1

SpinTaylorF2 0° f2 − 16; 1 − 3g 3.26% 3.41% 14.2%
SpinTaylorF2 0° {15, 1.4} 6.42% 4.66% 23.9%
SpinTaylorF2 0–180° f2 − 16; 1 − 3g 23.7% 9.88% 134%
SpinTaylorF2 0–180° {15, 1.4} 11.3% 3.22% 14.4%
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