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Using numerical and perturbative methods, we construct the first examples of black hole solutions in
Einsteinian cubic gravity and study their thermodynamics. Focusing first on four-dimensional solutions, we
show that these black holes have a novel equation of state in which the pressure is a quadratic function of
the temperature. Despite this, they undergo a first order phase transition with associated van der Waals
behavior. We then construct perturbative solutions for general D ≥ 5 and study the properties of these
solutions for D ¼ 5 and D ¼ 6 in particular. We note that for D > 4 the solutions are described by two
independent metric functions. We find novel examples of super-entropic behavior over a large portion of
the parameter space. We analyze the specific heat, determining that the black holes are thermodynamically
stable over large regions of parameter space.
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I. INTRODUCTION

In recent years, there has been considerable interest in
the subject of higher-curvature gravity, much of which has
been motivated through attempts to provide a quantum
description of the gravitational field. For example, it was
known as early as 1977 that supplementing the Einstein-
Hilbert action with higher-curvature interactions can lead to
a renormalizable theory of gravity [1]. It is generally
expected that such corrections should appear in the low-
energy limit of the ultraviolet completion of gravity. In the
case of string theory, this manifests through the appearance
of the Gauss-Bonnet term in corrections to the low-energy
effective action [2]. More recently, higher-curvature gravity
has been of interest in holography, where corrections to the
Einstein-Hilbert action allow for the study of a broader
universality class of CFTs [3–7].
However, for all of the interest in higher-curvature

gravity, relatively few models have actually been explored.
Generically, these theories are difficult to study due to
higher-derivative equations of motion and are often plagued
with pathological properties. For example, it is often the
case that the linearized equations of motion describing the
propagation of gravitons will reveal that these metric
perturbations describe negative kinetic energy excitations,
i.e. ghosts, signaling a breakdown of unitarity in the
quantum theory [8]. For these reasons, the primary focus
of attention has been on Lovelock gravity [9], with some
attention also devoted to quasi-topological gravity [3,4,10]
and certain fðLovelockÞ models [11] where these issues
can be controlled.
In addition to these models, some effort has also been

devoted to constructing theories of gravity that are
explicitly free of ghosts [12–14]. Recently a new theory

of cubic curvature gravity has been presented which, when
supplemented with quadratic and cubic Lovelock terms, is
the unique cubic theory of gravity that shares its graviton
spectrum with Einstein gravity [15] and has dimension-
independent coupling constants. The Lagrangian density
of this theory—appropriately called “Einsteinian cubic
gravity”—is given by

L ¼ 1

2κ
½−2Λþ R� þ β1χ4 þ κ½β2χ6 þ λP�; ð1:1Þ

where

P ¼ 12Rμ
ρ
ν
σRρ

γ
σ
δRγ

μ
δ
ν þ Rρσ

μνR
γδ
ρσR

μν
γδ − 12RμνρλRμρRνσ

þ 8Rν
μR

ρ
νR

μ
ρ ð1:2Þ

and χ4 and χ6 are the four- and six-dimensional Euler
densities, respectively, and correspond to the usual
Lovelock terms. Interestingly, the new P contribution
which is present in this model is neither trivial nor
topological in four dimensions allowing for the study
of the effects of cubic curvature terms in four dimensions.
In this paper, we construct vacuum topological black hole
solutions of this theory and study their thermodynamics,
concentrating on the case where β1 ¼ β2 ¼ 0 to study the
effects of the new term alone. The field equations of the
theory are complicated fourth-order differential equations,
and we have not been able to solve them analytically, but
have resorted to perturbative methods to obtain solutions.
Notwithstanding the instabilities that higher-order field
equations could lead to (a problem which remains for
future work), the fact that this is the unique theory with
linearized equations matching Einstein gravity make it
worthy of study since, at the very least, it should provide a
useful holographic toy model.
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Our thermodynamic analysis is performed within the
context of black hole chemistry [16]. In this framework
the cosmological constant is promoted to a thermodynamic
parameter [17–20] in the first law of black hole mechanics, a
result which is supported by geometric arguments [21,22].
The thermodynamic interpretation of the cosmological
constant is that of a pressure, and its conjugate quantity is
termed the thermodynamic volume. Studies employing this
formalismhave shown thermodynamic phenomena for black
holes analogous to that observed in everyday systems, for
example van der Waals behavior [23], triple points [24],
(multiple) reentrant phase transitions [25,26], isolated critical
points [27,28], and most recently a superfluid phase tran-
sition [29]. Similar results have been found in a large number
of subsequent investigations; for example see [26–28,30–50]
for investigations focusing on higher-curvature gravity,
[51–53] for entropy inequalities, [54–58] for extensions to
gauge/gravity duality, and [59] for a general review.
Our paper is organized as follows. In the next section, we

study in detail black hole solutions to the four-dimensional
theory considering the solution both asymptotically and
near a black hole horizon. We then study the thermody-
namics of the four-dimensional black holes, finding that
their equation of state is a quadratic function of temper-
ature, in contrast to all other black holes with spherical
symmetry. We find nevertheless that they still exhibit van
der Waals behavior and a reentrant phase transition. We
then move on to consider solutions in higher, arbitrary
dimensions. We study the higher-dimensional black hole
solutions, finding that for D > 4 two independent metric
functions, fðrÞ and NðrÞ, are required to satisfy the field
equations. We emphasize that, while considering the
solution as a small coupling limit is possible, it is not
valid for black holes of arbitrary horizon radius and we
clarify when such a limit is sensible. We finish by
investigating the higher-dimensional thermodynamics,
focusing on entropy, the reverse isoperimetric inequality,
and critical behavior, providing details for five and six
dimensions in particular. Here we find that the higher-
dimensional black holes are thermodynamically stable
over a large portion of parameter space and can be
super-entropic [52]. The latter is the first such example
for higher-curvature black holes asymptotic to AdS space.
However, we find no interesting critical behavior forD ¼ 5
and D ¼ 6 perturbatively in the coupling.

II. SOLUTIONS IN FOUR DIMENSIONS

In four dimensions, the action of pure Einsteinian cubic
gravity takes the form

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
½−2Λþ R� þ κλP

�
: ð2:1Þ

The vacuum Einstein equations which follow from the
action can be conveniently written in the form

Gab ¼ PacdeRb
cde −

1

2
gabL − 2∇c∇dPacdb ¼ 0; ð2:2Þ

where

Pabcd ¼
∂L

∂Rabcd ;

¼ 1

2κ
ga½cgb�d þ 6κλ

�
RadRbc − RacRbd þ gbdRa

eRce

− gadRb
eRce − gbcRa

eRde

þ gacRb
eRde − gbdRefRaecf þ gbcRefRaedf

þ gadRefRbecf − 3Ra
e
d
fRbecf

− gacRefRbedf þ 3Ra
e
c
fRbedf þ

1

2
Rab

efRcdef

�
:

ð2:3Þ
As discussed in [15], remarkably, the linearized equations

of this theorymatch those of Einstein gravity up to an overall
constant. Explicitly, if hab is a perturbation away from any
maximally symmetric spacetime ḡab (i.e. gab ¼ ḡab þ hab),
then the linearized equations for hab take the form

GL
ab ¼ −

1

4κ

�
1 −

96ðD − 3ÞðD − 6Þκ2λΛ2
eff

½ðD − 1ÞðD − 2Þ�2
�

×

�
4Λeffhab
D − 2

−
2Λeff ḡabhcc

D − 2
þ∇b∇ahcc

−∇c∇ahbc −∇c∇bhac þ∇c∇chab

þ ḡab∇d∇chcd − ḡab∇d∇dhcc

�
¼ 1

2
Tab; ð2:4Þ

where Λeff satisfies the equation
1

−
32ðD − 3ÞðD − 6Þ
½ðD − 1ÞðD − 2Þ�2 κ

2λΛ3
eff þ Λeff − Λ ¼ 0: ð2:5Þ

It is now easy to ensure that the theory is free from ghosts by
enforcing that the overall constant has the same sign as in the
case of Einstein gravity, namely,

1 −
96ðD − 3ÞðD − 6Þκ2λΛ2

eff

½ðD − 1ÞðD − 2Þ�2 > 0; ð2:6Þ

which can be thought of as a constraint on λ. We will come
back to the issue of ghosts in the following subsection.

1Note that our equation superficially differs from Eq. (25) of
[15], where the curvature of the maximally symmetric back-
ground is defined as Rabcd ¼ 2Λga½cgd�b. We instead have defined
it to be Rabcd ¼ 4Λeff

ðD−1ÞðD−2Þ ga½cgd�b. The advantage of our method
is that, when λ ¼ 0, our Λeff reduces to the standard cosmological
constant, whereas the expression from [15] coincides with what
would more conventionally be termed �1=l2.

ROBIE A. HENNIGAR and ROBERT B. MANN PHYSICAL REVIEW D 95, 064055 (2017)

064055-2



We now move on to consider black hole metrics in four
dimensions. Substituting a static, spherically symmetric
metric of the form2

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
�
dθ2 þ sin2ð ffiffiffi

k
p

θÞ
k

dϕ2

�
;

ð2:7Þ
(where k ¼ −1, 0, 1 corresponds to hyperbolic, planar, or
spherical geometry for the ðt; rÞ ¼ const sector) leads to
the following equation of motion:

Gr
r ¼ 1

2κ

�
rf0 þ f − kþ Λr2

r2

�

þ λκ

�
6ff000

r3
ðrf0 − 2f þ 2kÞ þ 6ff002

r2

þ 24ff00

r4
ðf − k − rf0Þ þ 6f02

r4
ð4f − kÞ

−
24ff0

r5
ðf − kÞ

�
¼ 0. ð2:8Þ

The remaining components of the (generalized) Einstein
tensor are either zero, equivalent to this expression, or
equivalent to derivatives of this expression. In the following
three subsections, we will consider perturbative solutions to
this equation.

A. Asymptotic behavior and ghosts

We first examine the behavior of the solution at large r.
To this end, we series expand the metric function in inverse
powers of r,

fr→∞ðrÞ ¼ k −
Λeff

3
r2 þ

X
n

bn
rn

; ð2:9Þ

and substitute this series expansion into Eq. (2.8).
Requiring the field equations to be satisfied results in
the following series coefficients (with b1 a free parameter):

fr→∞ðrÞ¼k−
Λeff

3
r2þb1

r
−

168Λeffλκ
2

ð16Λ2
effκ

2λþ3Þ
b21
r4

þ 324λκ2k
ð16Λ2

effκ
2λþ3Þ

b21
r6
þ12λκ2ð20192Λ2

effκ
2λþ69Þ

ð16Λ2
effκ

2λþ3Þ2

×
b31
r7
−
1353024λ2κ4Λeffk
ð16Λ2

effκ
2λþ3Þ2

b31
r9

−
288λ2κ4Λeffð2881024Λ2

effκ
2λþ14457Þ

ð16Λ2
effκ

2λþ3Þ3
b41
r10

:

ð2:10Þ

Let us consider now the various possible asymptotics for
these solutions. In four dimensions, Eqs. (2.5) and (2.6)
become

Λ − Λeff −
16

9
λκ2Λ3

eff ¼ 0; 1þ 16

3
λΛ2

effκ
2 > 0: ð2:11Þ

Taking the discriminant of the first equation we find that

Δ ¼ −
64λ

9κ2
ð1þ 12Λ2κ2λÞ: ð2:12Þ

The discriminant can be either positive, zero, or negative
depending on the value of λ:

Δ > 0 if −
1

12Λ2κ2
< λ < 0;

Δ ¼ 0 if λ ¼ 0 or λ ¼ −
1

12Λ2κ2
;

Δ < 0 otherwise: ð2:13Þ
In the case Δ > 0, the theory will have three real branches
(i.e. three possible values for Λeff ), while it will have only

FIG. 1. Ghost-free condition: This plot highlights the solutions
for the effective cosmological constant vs the cubic couplingwhere
we havemade use of the dimensionless parameters x ¼ Λeff=Λ and
α ¼ λΛ2κ2. The dashed black lines indicate that the ghost-free
condition is violated for these parameters. We see that there is only
ever a single ghost-free branch that limits to the Einstein casewhen
λ → 0. The fact that the ghost-free branch has x > 0 indicates that
the effective cosmological constant is of the same sign as the
ordinary cosmological constant, Λ. Here, the green and red curves
highlight that the branch that limits to Einstein gravity differs
depending on whether λ is positive or negative.

2A more general ansatz would include a lapse function.
However the field equations force the lapse to be a constant,
which can then be absorbed into the definition of t. Thus, there is
no loss of generality in restricting to a metric of this form.
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one when Δ < 0. In the case Δ ¼ 0, the ghost condition is
either trivial (λ ¼ 0) or fails. In general, we find that for any
given Λ and λ, there will only be a single branch that is
ghost free, as shown in Fig. 1. It is interesting to note that
the ghost-free branch has a smooth limit to the Einstein case
as λ → 0; in other words, the Einstein branch is ghost free.
Furthermore, the ghost-free branch has the property that
sgnðΛÞ ¼ sgnðΛeffÞ, meaning, for example, if Λ < 0 then
the ghost-free branch will possess AdS asymptotics.

B. Solution as a small λ expansion

We next consider treating the curvature cubed terms as a
small correction to Einstein gravity. Thus, we expand the

metric function in terms of the dimensionless parameter
λΛ2, which we treat as small,

fðrÞ ¼ k −
c0
r
−
Λr2

3
þ
X
n¼1

ðλΛ2ÞnhnðrÞ: ð2:14Þ

Substituting this expression into the field equation yields a
first-order differential equation for hnðrÞ at each order in λ.
These can be easily integrated to give the solution to
arbitrary order in λ. For example, solving for h1ðrÞ and
h2ðrÞ gives

h1ðrÞ ¼
κ2

Λ2

�
16r2Λ3

27
þ c1

r
−
56Λc20
r4

þ 108kc20
r6

−
92c30
r7

�
;

h2ðrÞ ¼
κ4

Λ4

�
−
256r2Λ5

81
þ c2

r
þ
�
3584Λ3c20

9
þ 112Λc0c1

�
1

r4
þ −576Λ2kc20 − 216kc0c1

r6

þ
�
−
77824Λ2c30

3
þ 276c20c1

�
1

r7
þ 150336Λkc30

r9
−
154208Λc40

r10
−
217728k2c30

r11

þ 443232kc40
r12

−
224112c50

r13

�
: ð2:15Þ

The higher-order hnðrÞ terms can be obtained easily, but
they are increasingly cumbersome and, therefore, not
particularly illuminating.
From this expansion (and the two representative terms

shown above) we can see a few interesting properties. First,
since at each order the differential equation for hnðrÞ is first
order, we have a single undetermined parameter cn at each
order. This parameter always appears as cn=r in the expan-
sion, and therefore accounts for perturbative corrections to
the mass parameter, c0. These contributions require suitable
boundary conditions to fix: for example, one could demand
that the horizon radius remains fixed and determine cn for
n > 0 in terms of the horizon radius. Furthermore, at each
order there is a correction to the cosmological constant. This
is expected, sincewe know from the previous discussion that
the higher-curvature terms modify the asymptotics, effec-
tively altering the cosmological constant. Here what we are
seeing is a perturbative expansion of the new, effective
cosmological constant.

C. Near horizon solution

To study black hole solutions of this theory, it is useful to
consider the metric function expanded near the horizon;
this reads

fr→rþðrÞ ¼
X
n¼1

anðr − rþÞn ð2:16Þ

where the sum starts at n ¼ 1 since the metric function
must vanish linearly for a non-extremal black hole.
Substituting this ansatz into the field equations produces
a series of relationships that the coefficients an must satisfy;
for example the first two expressions are given by:

0 ¼ Λr4þ þ r3þa1 − kr2þ − 12kκ2λa21;

0 ¼ ð5Λþ 2a2Þr4þ þ ð72κ2λa21a3 þ ð5þ 48κ2λa22Þa1Þr3þ
þ ð144kκ2λa1a3 − 96κ2λa21a2 − 3kÞr2þ
− 48λa1κ2ð3ka2 − a21Þrþ þ 36kκ2λa21: ð2:17Þ

These two relationships suffice to highlight the general trend.
Notice that the first expression determines a1, as we would
expect. There are in fact two solutions fora1, onewhich has a
smooth λ → 0 limit, and another which does not. In the
second expression both a2 and a3 appear, and this general
trend continues: at order ðr − rþÞn, coefficients up to anþ1

can occur. The reason for this is the appearance of particular
terms in the field equations involving third derivatives, e.g.

r2fðrÞf000ðrÞ: ð2:18Þ
From here, there are two courses of action one can

follow. First, we can treat a2 as a free parameter, isolating
the second relationship, i.e. contributions at Oððr − rþÞ2Þ,
for a3 in terms of a2, and continuing this recursive
procedure to higher orders. This method produces two
possible solutions due to the two initial choices of a1.
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However, regardless of which choice is made for a1 neither
of these solutions has a smooth λ → 0 limit, that is, neither
is the Einstein branch. This is true irrespective of the choice
of a2; that is, while a2 may be selected to cancel a
divergence3 in some particular an, this choice of a2 will
not cure the divergences in all of the coefficients. Thus this
procedure allows us to study the two non-Einsteinian cubic
branches of the theory. However, as discussed earlier, these
branches both suffer from the ghost instability.
To obtain information about the Einstein branch, we

have found it necessary to follow a second approach, which
we shall now describe. Specifically, we consider the small λ
limit and work perturbatively, expanding each of the an
series coefficients above in powers of λ:

an ¼
Xjmax

j¼0

bn;jλj: ð2:19Þ

Using this expression in the field equations, we find that to
obtain a series that is accurate to OðλnÞ at Oððr − rþÞmÞ it
is necessary to work to Oðλn−1Þ at Oððr − rþÞmþ1Þ and so
on until Oðλ0Þ at Oððr − rþÞmþnÞ. As expected, the bn;0
terms reproduce the series expansion of the ordinary
Einstein equation about an event horizon,

b1;0 ¼
k − Λr2þ

rþ
; b2;0 ¼ −

k
r2þ

; b3;0 ¼
3k − Λr2þ

3r3þ
;

bn;0 ¼ ð−1Þnþ1
b3;0
rn−3þ

: ð2:20Þ

The first- and higher-order terms in λ do not follow a nice
pattern, and so we present here only some sample coef-
ficients. Explicitly, taking jmax ¼ 2 and requiring Oðλ2Þ
accuracy atOððr − rþÞ3Þwe find the following coefficients:

b1;1 ¼
12kκ2ðΛr2þ − kÞ2

r5þ
; b1;2 ¼ −

288k2κ4ðΛr2þ − kÞ3
r9þ

;

b2;1 ¼
36κ2ðΛr2þ − kÞðΛr2þ − 3kÞ2

r6þ
;

b2;2 ¼
144ðΛr2þ − 3kÞκ4ðΛr2þ − kÞ

r10þ
× ð53Λ3r6þ − 392Λ2r4þkþ 879Λr2þk2 − 564k3Þ;

b3;1 ¼ −
4κ2ð41Λ3r6þ − 294Λ2r4þkþ 653Λr2þk2 − 424k3Þ

r7þ
;

b3;2 ¼ −
48

r11þ
½κ4ð1801Λ5r10þ −20526Λ4r8þkþ89460Λ3r6þk2

− 184398Λ2r4þk3 þ 177787Λr2þk4 − 64220k5Þ�:
ð2:21Þ

Working to higher order, we can show that

a1 ¼
X∞
j¼0

b1;jλj ¼
rþ

24λkκ2

h
r2þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48kκ2ðΛr2þ − kÞλþ r4þ

q i
;

ð2:22Þ

which is the Einsteinian root for a1 from Eq. (2.17). We
have not been able to find corresponding closed-form
expressions for a2 and a3 by summing the series. As we
shall see later, this expression for a1 is all that is needed to
characterize the black hole thermodynamics of the Einstein
branch.

D. Thermodynamics

We now move on to thermodynamic considerations for
these black hole solutions given by (2.10) and (2.16). Their
temperature can be computed by requiring regularity of
the Euclidean sector, giving

T ¼ f0ðrþÞ
4π

¼ a1
4π

; ð2:23Þ

where a1 solves the equation

Λr4þ þ r3þa1 − kr2þ − 12kκ2λa21 ¼ 0: ð2:24Þ

The entropy can be calculated using Wald’s prescription
[60,61],

S ¼ −2π
I

d2x
ffiffiffi
σ

p
Pabcdϵ̂abϵ̂cd; ð2:25Þ

with σ the determinant of the induced metric on the horizon
and ϵ̂ab the binormal to the horizon, ϵ̂abϵ̂ab ¼ −2. Using
Pabcd as defined above, we find that the Wald entropy is
given by

S ¼ 2πA
κ

�
1þ 12λκ2a1

r3þ
ðrþa1 þ 4kÞ

�
; ð2:26Þ

which, remarkably, depends only on a1. Finally, as is
standard in black hole chemistry, we take the pressure to be
given by

P ¼ −
Λ
κ

ð2:27Þ

for AdS black holes. We shall return to the full thermo-
dynamics after some relevant discussion of the series
coefficient a1.
The equation determining a1 (Eq. (2.24) is quadratic in

a1, with the two solutions (assuming k ¼ �1) being
3Here we mean a divergence in the small λ limit: as λ → 0,

an → ∞.
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a�1 ¼ rþ
24λkκ2

h
r2þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48kκ2ðΛr2þ − kÞλþ r4þ

q i
: ð2:28Þ

Note that a−1 has a smooth λ → 0 limit, while aþ1 does not.
However, there are some consistency conditions and addi-
tional restrictions we must consider if we wish to take the
small λ limit. The considerations will be important for the
higher-dimensional cases we consider in the next section and
aremost easily understood here in the four-dimensional case.
For convenience, we employ the dimensionless

parameters

α ¼ κ2Λ2λ; ~rþ ¼
ffiffiffiffiffiffiffiffi
−
3

Λ

r
rþ; ð2:29Þ

in terms of which, a�1 takes the form,

a�1 ¼ ~r2þ

ffiffiffiffiffiffiffi
−Λ
3

r

×

�
1

8αk~rþ

h
3~r2þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9~r4þ − αð48k2 þ 144k~r2þÞ

q i�
.

ð2:30Þ

First, note that the term under the square root could become
negative. To prevent this, we must demand that

9~r4þ − αð48k2 þ 144k~r2þÞ > 0: ð2:31Þ

This equation is trivially positive in the case k ¼ 0, and so
we restrict our attention to the cases k ¼ �1. For k ¼ þ1,
we find that if α > 0, then the minimum horizon radius is
given by

~rk¼þ1
þ;min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8αþ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αð12αþ 1Þ

pr
; ð2:32Þ

and for α < 0 any horizon radius is permitted. If k ¼ −1,
the situation is slightly more complicated. If α > 0, then for
fixed α, there is a minimum horizon size given by

~rk¼−1
þ;min ¼

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αð12αþ 1Þ

p
− 18α

q
for α > 0: ð2:33Þ

When −1=12 < α < 0; there are no restrictions on the
horizon radius; (2.31) is always satisfied. However for
α < − 1

12
there are no black holes for rþ satisfying

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αð12αþ 1Þ

p
− 18α

q

< rþ <
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αð12αþ 1Þ

p
− 18α

q
for α < −

1

12
:

ð2:34Þ

We get further constraints upon considering the small
coupling limit. If we wish to expand a−1 as λ → 0

(i.e. α → 0), we are performing a Taylor expansion of
the square root and therefore must, in addition to the above
constraints, have,

				 αð48k
2 þ 144k~r2þÞ
9~r4þ

				 < 1: ð2:35Þ

These conditions taken together imply a minimum black
hole size in the small coupling limit, and we can solve for
this exactly. We can express the value for α which yields
rþ;min for the minimum horizon size concisely as

jαj ¼ 3

16

~r4þ;min

kðkþ 3~r2þ;minÞ
; ð2:36Þ

where it is understood that only positive values of ~rþ;min are
permissible; the absolute value bars indicate that ~rþ;min is
the same, regardless of the overall sign of α. Note that for
k ¼ −1, the above has a pole for ~rþ;min ¼

ffiffiffiffiffiffiffiffiffiffiffi
−k=3

p
. This

corresponds to the value of ~rþ that causes the coefficient of
α under the square root in the expression for a1 to vanish.
For this special value of rþ, the α (and therefore λ)
dependence drops out of the square root, and no small
coupling limit exists for a1.

1. Thermodynamics of Einstein branch

We shall now study in more detail the thermodynamics
of black hole solutions of the Einstein branch. As discussed
earlier, this is the only branch that is free from the ghost
instability, i.e. the only branch with a well defined ground
state. For the Einstein branch,

a1 ¼
rþ

24λkκ2

h
r2þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48kκ2ðΛr2þ − kÞλþ r4þ

q i
: ð2:37Þ

The first law and Smarr formula,

dM ¼ TdSþ VdPþ Ψλdλ;

M ¼ 2ðTS − VPÞ þ 4Ψλλ; ð2:38Þ

are satisfied by the thermodynamic potentials defined in the
previous section along with the following identifications
for the mass, volume and conjugate to λ:

M ¼ πr3þ
216k3κ5λ2

½r6þ − r4þðY − 36kκ2λΛÞ − 12kκ2λΛr2þY

þ 24k2κ2λð24kκ2λΛ − YÞ�;
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48kκ2ðΛr2þ − kÞλþ r4þ

q
;

V ¼ 4

3
πr3þ;

Ψλ ¼
1

4λ
½M − 2ðTS − VPÞ�: ð2:39Þ
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In the limit of small λ, the mass takes the form

Mλ→0 ¼ −
4πrþ
3κ

ðr2þΛ − 3kÞ

þ 16πκðk − r2þΛÞ2ð4k − r2þΛÞ
r3þ

λþOðλ2Þ; ð2:40Þ

where we see that the leading-order term is the standard
Schwarzschild-(A)dS mass. From the second term of the
expansion, one might be tempted to think that the mass of
the black hole tends to infinity as rþ → 0. However, this is
not the case: as discussed earlier, for a given fixed λ, there is
a minimum value for rþ. Hence rþ cannot be taken directly
to zero in this expansion, but only to the minimum value
specified by Eq. (2.36).
We can study P − v criticality by constructing the

equation of state. Rearranging the definition of temperature
and setting κ ¼ 8π, we obtain for the pressure

P ¼ T
2rþ

−
k

8πr2þ
−
24πkð8πÞ2λT2

r4þ
: ð2:41Þ

It is easy to see that in the Einstein limit (λ → 0), the last term
drops out and the resulting equation of state possesses no
inflection points. This is a qualitatively different equation of
state than has appeared in Einstein, Lovelock, and quasi-
topological theories of gravity for spherically symmetric
black holes as it is quadratic (and not just linear) in T. As a
result of the cubic curvature corrections, this equation of
state admits a single critical point provided k ¼ 1 and λ < 0
with critical values

Pc ¼
ffiffiffi
2

p

256πð8πÞ ffiffiffiffiffiffi
−λ

p ; Tc ¼
21=4

12π
ffiffiffiffiffiffi
8π

p ð−λÞ1=4 ;

rc ¼ 27=4
ffiffiffiffiffiffi
8π

p
ð−λÞ1=4: ð2:42Þ

The ratio of these critical values exactly matches that of the
van der Waals fluid,

Pcvc
Tc

¼ Pcð2rcÞ
Tc

¼ 3

8
; ð2:43Þ

which is independent of the parameters of this black hole
solution, and is therefore a universal quantity for black holes
of this theory. The only other time this same ratio has been
seen is for the Reissner Nordstrom black hole [23]. The
reason is that both solutions have the same falloff behavior
in rþ, namely 1=r4þ. The additional factor of T2 doesn’t
make any difference because one computes derivatives with
respect to rþ.
To better understand the critical behavior of these black

holes we introduce the following dimensionless parameters,

p ¼
ffiffiffiffiffiffi
−λ

p
P; v ¼ 2ð−λÞ−1=4rþ; t ¼ ð−λÞ1=4T;

ð2:44Þ

which allow us to study the thermodynamic behavior for
λ < 0. In terms of these quantities, the equation of state reads

pλ<0 ¼
t
v
−

k
2πv2

þ 384πkð8πÞ2t2
v4

; ð2:45Þ

which, it must be kept in mind, applies only for λ < 0.
In terms of these dimensionless quantities, the critical point
occurs at the values

pc ¼
ffiffiffi
2

p

2048π2
; vc ¼ 217=4

ffiffiffi
π

p
; tc ¼

21=4

12π
ffiffiffiffiffiffi
8π

p :

ð2:46Þ

Expanding the equation of state about the critical point in
terms of the following parameters,

ρ ¼ p
pc

− 1; ω ¼ v
vc

− 1; τ ¼ t
tc
− 1; ð2:47Þ

we find that it takes the form,

ρ ¼ 10

3
τ −

4

3
τω −

4

3
ω3 þOðτω2;ω4Þ: ð2:48Þ

From this expansion, it is straightforward to show (see, e.g.
[62]) that the critical exponents are given by the mean field
theory values:

α ¼ 0; β ¼ 1

2
; γ ¼ 1; δ ¼ 3: ð2:49Þ

These four parameters characterize the specific heat at
constant volume, order parameter, isothermal compressibil-
ity, behavior of pressure along the critical isotherm, respec-
tively, as the critical point is approached. Interestingly, we
have obtained the results suggested by [63,64] despite having
a different form for the equation of state,with terms quadratic
in the temperature.
To determine if there are any phase transitions, we study

the Gibbs free energy of these black holes,

G ¼ M − TS; ð2:50Þ

which can be converted to dimensionless form via the
dimensionless parameters defined above and the rescaling

g ¼ ð−λÞ1=4G: ð2:51Þ

The state of the physical system is taken to be that which
minimizes the Gibbs free energy at constant temperature
and pressure. Exploring first the behavior near the critical
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point, we find that these black holes display van der Waals
type behavior, with the liquid/gas phase transition replaced
by a small/large black hole phase transition. Representative
plots are shown in Fig. 2, where we see the standard van der
Waals-type oscillation in the p–v plane, swallowtail
behavior in the Gibbs free energy, and in the p–t plane
a coexistence line of a first-order phase transition termi-
nating at the critical point. We note from the plots of the
Gibbs free energy that the two physical branches of the
Gibbs free energy both possess positive specific heat,
therefore ensuring that any black hole which is a local
minimum of the Gibbs free energy is also (locally)
thermodynamically stable.
Since we are considering higher-curvature gravity, care

must be taken when dealing with the black hole entropy—
in the case of λ < 0 and k ¼ 1, we can see from Eq. (2.26)

that it is possible for the entropy to be negative. Assuming
that theWald entropy correctly identifies the true entropy of
the black hole, and furthermore that this entropy is related
to the underlying microscopic degrees of freedom, neg-
ativity of the entropy should be regarded as unphysical.
However the negative entropy solutions of the theory do not
seem to be affected by any other pathology. Thus one could
argue that these black holes are in fact physical and perhaps
the Wald entropy should be supplemented by the addition
of some positive, arbitrary constant.
Due to this inherent ambiguity, we have considered both

points of view. Noting that the plots in Fig. 2 do not impose
any constraints on the entropy, we plot in Fig. 3 the relevant
thermodynamic quantities imposing the positive entropy
constraint. Here we see that the van derWaals type behavior
has been modified via the addition of a “no black hole”

FIG. 3. Criticality for λ < 0: k ¼ 1, κ ¼ 8π: These plots of the Gibbs free energy vs temperature (left) and p vs t (right) illustrate how
the plots from Fig. 2 are altered if one demands positivity of entropy as a physical constraint. The van der Waals type behavior is
replaced by a large/small/large black hole reentrant phase transition over a very small window of pressures. A “no black hole” region is
introduced where, for parameters in this region, the theory does not have positive entropy black hole solutions. The plot of the Gibbs free
energy is for p ¼ 0.0000688.

FIG. 2. Criticality for λ < 0: k ¼ 1, κ ¼ 8π: Left: A p − v plot showing van der Waals behavior for t ¼ 0.9tc, tc, 1.1tc (bottom to top).
Center: A plot of the Gibbs free energy vs temperature showing swallowtail behavior for p < pc. The curves correspond to p ¼ 0.9pc,
pc, 1.1pc from bottom to top. Right: The critical behavior in the p–t plane. Here we see typical van der Waals behavior: the black
coexistence line separates small/large black hole phases until it terminates at the critical point, illustrated in this plot by a red dot.
Note that no constraints have been enforced on the entropy in the construction of these plots.
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region, which corresponds to parameter values for which
there are no positive entropy black holes of the theory. We
also see the appearance of a zeroth-order phase transition
connecting the first-order coexistence line and the no black
hole region. This gives rise to a large/small/large reentrant
phase transition for a very small window of pressures. The
first-order coexistence line terminates at the critical point.
This concludes the discussion of the thermodynamics in

the case of λ < 0 and k ¼ 1. Although there are clearly
three more combinations of these parameters that could can
be studied, for each the Gibbs free energy takes the form of
a cusp, as shown in Fig. 4. Hence, we do not find any
instances of critical behavior in these cases.

III. SOLUTIONS IN HIGHER DIMENSIONS

We now move on to considering solutions in higher
dimensions. It is advantageous to work with dimensionless
coordinates; we therefore take as the metric ansatz the
following:

ds2 ¼ l2

�
−~r2N2ð~rÞfð~rÞd~t2 þ d~r2

~r2fð~rÞ þ ~r2dΣ2
ðkÞD−2

�
;

ð3:1Þ

where dΣ2
ðkÞD−2 is the line element on a (D − 2)-

dimensional surface of constant scalar curvature kðD − 2Þ×
ðD − 3Þ and k ¼ þ1, 0, −1 describes spherical, flat and
hyperbolic geometries, respectively as before; in the latter
cases the space can be made compact via appropriate
identifications [65]. In the above, we have identified the
cosmological constant as

Λ ¼ −
ðD − 1ÞðD − 2Þ

2l2
; ð3:2Þ

and ~t ¼ t=l and ~r ¼ r=l to be dimensionless quantities;
we have also pulled a factor of ~r2 out of fð~rÞ so that
asymptotically fð~rÞ → 1.
We proceed to construct the solution as a small λ series,

expanding the metric functions as

fð~rÞ ¼ 1þ k
~r2
−

c0
~rD−1 þ

Ximax

i¼1

αihðDÞ
i ð~rÞ;

Nð~rÞ ¼ 1þ
Ximax

i

αiNðDÞ
i ðrÞ; ð3:3Þ

where α ≔ λκ2Λ2 is a dimensionless parameter. Evaluating
the field equations,

Gab ¼ PacdeRb
cde −

1

2
gabL − 2∇c∇dPacdb ¼ 0; ð3:4Þ

[Pacde is the same as given in Eq. (2.3)] on this ansatz
produces

hðDÞ
1 ð~rÞ ¼ 48ðD − 3ÞðD3 − 4D2 þ 7D − 14Þ

ðD − 2Þ2ðD − 1Þ2
c20

~r2ðD−1Þ

þ 48kðD − 3Þ2
ðD − 2Þ2

c20
~r2D

−
4ðD − 3Þð7D3 − 30D2 þ 47D − 64Þ

ðD − 1Þ2ðD − 2Þ2

×
c30

~r3ðD−1Þ þ
c1
~rD−1 þ

32ðD − 3ÞðD − 6Þ
ðD − 1Þ2ðD − 2Þ2 ;

NðDÞ
1 ð~rÞ ¼ −

12ðD − 3ÞðD − 4Þ
ðD − 2Þ2

c20
~r2ðD−1Þ þ n1; ð3:5Þ

as the leading-order correction. One obvious difference
between this case and the four-dimensional case is that the
lapse can no longer be simply set equal to unity: in all
dimensions greater than four, the solutions are character-
ized by two functions, fð~rÞ and Nð~rÞ.
We have verified that these results hold explicitly up to

D ¼ 12. In each case, the constant c1 can be regarded as an
order-α correction to the mass of the black hole. These
constants can be fixed via appropriate boundary conditions,
e.g. requiring the location of the black hole horizon to be
fixed. The constant n1 is an integration constant coming
from the differential equations determining the lapse.
Higher- order corrections are computed quite easily for a
given dimension, but determining the general form is a

nontrivial process. We note that both hðDÞ
1 ð~rÞ and NðDÞ

1 ð~rÞ
vanish identically in D ¼ 3 and furthermore that the
perturbative correction to the cosmological constant,

FIG. 4. Plot of Gibbs free energy: λ > 0, k ¼ 1, κ ¼ 8π, and
p ¼ 0.00006. This plot shows a representative example of the
form of the Gibbs free energy when (k < 0, λ > 0), (k > 0,
λ > 0), (k < 0, λ > 0), where it generally takes the form of a
cusp, and no critical behavior is observed.
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32ðD − 3ÞðD − 6Þ
ðD − 1Þ2ðD − 2Þ2 α; ð3:6Þ

vanishes in D ¼ 3 and D ¼ 6. In the latter case, this is
because the contribution to the equations of motion of
all six-dimensional cubic gravities vanish identically for
an Einstein space (cf. footnote 41 in [15]). That is, when
c0 ¼ 0 in D ¼ 6, the cubic curvature terms cannot

contribute to the equations of motion. Furthermore, we

point out that NðDÞ
1 ð~rÞ vanishes in four dimensions, con-

sistent with the fact that the lapse can be set to unity in four
dimensions (amounting to the choice n1 ¼ 0). In Fig. 5 we

display hðDÞ
1 ð~rÞ, NðDÞ

1 ð~rÞ, and fð~rÞ to OðαÞ for a variety of
dimensions. In the appendix we write explicitly some of
the higher-order corrections.

FIG. 5. First-order corrections in higher dimensions: Top row: Plots of the first order corrections, hðDÞ
1 ð~rÞ for spherical, flat and

hyperbolic geometries (left, center, right) for a variety of dimensions.Middle row: Plots of the lapse function, Nð~rÞ with corrections up
toOðαÞ. We have set n1 ¼ 0 in these plots. Bottom row: Plots of the metric function, fð~rÞ with the inclusion of the first order corrections
shown in the top row for α ¼ 0.001. In all cases, c0 and c1 were chosen so that the horizon is at ~rþ ¼ 10. In each plot, the solid, dashed,
dotted and dash-dotted lines correspond to D ¼ 4, 6, 9, 11, respectively. Note that, for small enough ~r within the horizon, the first order
correction terms become comparable to the zeroth order terms, and the termination of the series at first order breaks down.
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We can go further and analyze the asymptotics of the
solutions, incorporating the restrictions placed on the theory
by requiring the absence of ghosts. Considering Eqs. (2.5)
and (2.6) for the cases ofD ≥ 5 (but notD ¼ 6) we find that
only theEinstein branch is free fromghosts.Wehighlight this
graphically inFig. 6. In theD ¼ 6 case,P does not contribute
to the equations of motion for an Einstein metric and the
spectrum agrees exactly with Einstein gravity.
It is useful for thermodynamic analysis to compute the

near horizon solution. As in the case of four dimensions, we
write the near horizon metric functions as

fð~rÞ ¼
Ximax

i¼1

Aið~r − ~rþÞi; Nð~rÞ ¼
Ximax

i¼0

Nið~r − ~rþÞi; ð3:7Þ

where the Ai’s and Ni’s are dimensionless coefficients and
we require the metric function to vanish linearly as ~r → ~rþ.
Note that we include a term N0 at this point. Substituting
these expressions into the field equations produces a series
of complicated relationships which must be satisfied by the
Ai’s and Ni’s. For example, at order (~r − ~rþ), the following
relationship must hold:

0 ¼ ðD − 1Þ3ðD − 2Þ2
432

−
ðD − 1Þ2ðD − 2Þ2A1 ~rþ

432

þ ðD − 1Þ2ðD − 2Þ2ðD − 3Þk
432~r2þ

þ ðD − 3ÞαkA2
1

9
þ ðD − 3ÞðD − 4Þα~r3þA3

1

54

−
2ðD − 3ÞðD − 4ÞðD − 5Þαk3

27~r6þ

þ 2ðD − 3Þα~rþA2
1ð2kþ ~r3þA1Þ
9

N1

N0

; ð3:8Þ

where, once again, this expression has been explicitly
checked up to D ¼ 12. Similar expressions can be written
at higher orders, but they rapidly become unwieldy and for
this reason we do not present them here, but rather discuss
the general character. The parameter N0 is not fixed at any
order, and we therefore take it equal to unity for conven-
ience. The above expression is linear in N1 but cubic in
A1: at second order, the equivalent expression is linear in
both A2 and N2. At higher orders in (~r − ~rþ), say at order
n, anþ1 and Nnþ1 will occur and can be determined in
terms of two free parameters, which can be taken to be any
one of fA1; N1g plus one of fA2; N2g. Thus, the black
holes of this theory are in general characterized by two
free parameters in D > 4.
In general, we see that Eq. (3.8) is cubic in A1, which can

be seen as determining the three separate branches of the
solution. However, as we saw earlier, it is only the Einstein
branch of this theory which is free from ghosts. Thus it
is natural to investigate what happens when α is small.
To explore this, we write

A1 ¼
X
i¼0

αiAðiÞ
1 ;

A2 ¼
X
i¼0

αiAðiÞ
2 ;

N1 ¼
X
i¼0

αiNðiÞ
1 ;

N2 ¼
X
i¼0

αiNðiÞ
2 ; ð3:9Þ

and so on. Substituting these expressions into the field
equations it is found that the free parameters are fixed order
by order in α. To illustrate this, we shall write a few of the
more useful expressions:

FIG. 6. Ghost-free condition in higher dimensions: Plots of x ¼ Λeff=Λ vs α ¼ κ2Λ2λ for five dimensions (left) and seven dimensions
(right). Here the black, dashed lines indicate that for these branches the graviton is a ghost, while for the branch indicated by a solid red
line is ghost free. Note the plots forD > 7 are qualitatively identical to theD ¼ 7 case: the only ghost-free branch is the Einstein branch.
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N1 ¼
24αðD − 1ÞðD − 3ÞðD − 4Þð~r2þ þ kÞ2

ðD − 2Þ2 ~r5þ
þOðα2Þ;

N2 ¼ −
12αðD − 1ÞðD − 3ÞðD − 4Þð2D − 1Þð~r2þ þ kÞ2

ðD − 2Þ2 ~r6þ
þOðα2Þ;

A1 ¼
ðD − 1Þ~r2þ þ ðD − 3Þk

~r3þ
þ αðD − 3Þ

ðD − 2Þ2
�
8ðD − 1ÞðD − 4Þ

~rþ
þ 24kðD2 − 7Dþ 14Þ

~r3þ

þ 24k2ðD − 3ÞðD2 − 7dþ 16Þ
ðD − 1Þ~r5þ

þ 8k3ðD3 − 12D2 þ 53D − 82Þ
ðD − 1Þ~r7þ

�

þ α2ðD − 3Þ2
ðD − 2Þ4

�
192ðD − 1ÞðD − 4Þð13D − 16Þ

~rþ
þ 192kðD − 4Þð65D2 − 203Dþ 178Þ

~r3þ

þ 384k2ð65D4 − 586D3 þ 1885D2 − 2744Dþ 1692Þ
ðD − 1Þ~r5þ

þ 384k3ð65D5 − 709D4 þ 3003D3 − 6481D2 þ 7694D − 4292Þ
ðD − 1Þ2 ~r7þ

þ 192k4ð65D6 − 832D5 þ 4342D4 − 12284D3 þ 21097D2 − 21980Dþ 10792Þ
ðD − 1Þ3 ~r9þ

þ 192k5ðD − 3Þð13D5 − 139D4 þ 585D3 − 1341D2 þ 1938D − 1456Þ
ðD − 1Þ3 ~r11þ

�
þOðα3Þ;

A2 ¼
6k − ð~r2þ þ kÞDðD − 1Þ

2~r4þ
−

αðD − 3Þ
ðD − 2Þ2 ~r8þ

�
4~r6þðD − 1Þð10D2 − 37Dþ 24Þ

þ 12k~r4þð10D3 − 57D2 þ 111D − 80Þ þ 12k2 ~r2þð10D4 − 77D3 þ 232D2 − 321Dþ 136Þ
ðD − 1Þ

þ 4k3ð10D4 − 87D3 þ 296D2 − 451Dþ 192Þ
ðD − 1Þ

�
þOðα2Þ: ð3:10Þ

These expressions can be evaluated to higher order in α,
but the conclusion remains the same: the freedom to choose
two parameters is lost when one requires that the solution
has a smooth α → 0 limit. The reason for this can be
easily seen by performing small α series expansions of
the equations. For example, rearranging Eq. (3.8) for N1

and expanding near α ¼ 0, while setting A1 to be that
given in Eq. (3.9) one finds that (ignoring proportionality
constants) it goes like

N1 ∼
~r3þA

ð0Þ
1 þ 3kþ ~r2þ −Dð~r2þ þ kÞ

α
þOðα0Þ: ð3:11Þ

Thus, avoiding a divergence as α → 0 in this term requires

fixing Að0Þ
1 to be that given in Eq. (3.10). Similar problems

occur at all orders and completely use up the free
parameters. This is not unlike the four-dimensional case,
where we saw a similar result in Sec. II C. Since we wish to
study the ghost-free (i.e. Einstein) branch, we will then
work with the expansions given above in Eq. (3.10) in what
follows.

To begin our consideration of the thermodynamics, we
compute the Iyer-Wald entropy [61]. We find that for the
metric Eq. (3.1), the entropy takes the form

S ¼ 2πA
κ

�
1þ 24ðD − 3ÞA1α

ðD − 2ÞðD − 1Þ2 ~rþ
ð4kþ ~r3þA1Þ

�
; ð3:12Þ

where, in the above expression, the area is given by

A ¼ jN0jωðkÞD−2ðl~rþÞD−2 ¼ ωðkÞD−2rD−2þ ; ð3:13Þ

where ωðkÞd−2 is the area of the surface defined by dΣ2
ðkÞd−2

and we have chosen to set N0 ¼ 1. The temperature can be
computed by requiring the absence of conical singularities
in the Euclidean sector:

T ¼ ~r2þjNð~rþÞjf0ð~rþÞ
4πl

¼ ~r2þA1

4πl
: ð3:14Þ

Remarkably, the higher-curvature corrections to the
entropy are completely characterized in terms of A1.
However, unfortunately, we do not have access to an exact
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expression for A1 as we did in the four-dimensional case.
Therefore, we can only explore the thermodynamics here at
a perturbative level. However, it must be kept in mind that
in order for the perturbative results to be valid, the higher-
order terms must die off rather than grow. Essentially the
effect of this is to introduce a relationship between α and
~rþ which means that the perturbative results will not be
valid for all combinations of ~rþ and α—similar to what
was discussed for the four-dimensional case in Sec. II D.
We furthermore require that A1 > 0, so that it describes a
black hole rather than a (possibly) singular cosmological
solution. In going forward with the analysis, we will work
toOðα2Þ and numerically enforce bounds on the maximum
relative error of theOðα3Þ term, as we highlight in Fig. 7 for
D ¼ 5. We will focus our attention to the cases of five and
six dimensions.
Our first thermodynamic consideration is under what

circumstances the entropy is positive. In both five and six
dimensions, and for both k ¼ þ1 and k ¼ −1, the entropy
is positive essentially for the entire viable parameter space:
plotting this parameter space results in plots visually akin
to Fig. 7. However, the entropy can be negative for very
small portions of the viable parameter space when k ¼ −1
forD ¼ 5, an example is shown in Fig. 8. In the case where
D ¼ 6 and k ¼ −1, the regions of negative entropy
correspond to A1 < 0 and we therefore exclude them on
other grounds.
The natural next step is to investigate the first law of

thermodynamics for these black holes. To obtain an
expression for the thermodynamic mass we can integrate

the first law of thermodynamics. In doing so we must
remain aware that we are working with perturbative
solutions, and therefore they are not valid for arbitrary
combinations of α and ~rþ (see Fig. 7). We begin by
constructing the first law of thermodynamics in D ¼ 5
and D ¼ 6. Since we are working in dimensionless units,
the standard extended first law,

dM ¼ TdSþ VdPþ Ψdλ; ð3:15Þ

is modified according to

λ ¼ α

κ4P2
⇒ dλ ¼ dα

κ4P2
−
2αdP
κ4P3

; ð3:16Þ

giving

dM ¼ TdSþ
�
V −

2α

κ4P3

�
dPþ Ψ

κ4P2
dα; ð3:17Þ

where, as before, we have identified

P ¼ −
Λ
κ
: ð3:18Þ

Working first in D ¼ 5, and to Oðα2Þ, we find that the
following expressions for the mass and volume satisfy the
first law and Smarr formula:

MD¼5 ¼
ωðkÞ3l2

κ

�
3

2
~r2þðkþ ~r2þÞ þ

2α

3~r2þ
ð40~r6þ þ 48k2 ~r2þ lnð~rþÞ þ 108k~r4þ þ 5k3Þ

þ 32α2

27~r6þ
ð696~r10þ þ 15096k2 ~r6þ lnð~rþÞ þ 5256k~r8þ − 5214k3 ~r4þ − 873k4 ~r2þ − 76k5Þ

�
;
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FIG. 7. Error profile for D ¼ 5: Here the left plot corresponds
to k ¼ þ1 and the right plot to k ¼ −1. In each case, for
parameters within the blue shaded region we have A1 > 0 and

εjα2Að2Þ
1 j > jα3Að3Þ

1 jwith ε chosen as 1=10, justifying terminating
the series at order α2.
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FIG. 8. Region of negative entropy: This plot shows the D ¼ 5
case with k ¼ −1. The blue shaded region corresponds to
negative entropy. In the D ¼ 6 case, the negative entropy region
corresponds to A1 < 0 and we therefore exclude it.
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VD¼5 ¼ ωðkÞ3l4

�
~r4þ
4
þ 8α

3
ð~r4þ þ 2k2 lnð~rþÞ þ 3k~r2þ − k2Þ

þ 16α2

27~r4þ
ð1000~r8þ þ 15096k2 ~r4þ lnð~rþÞ þ 6432k~r6þ þ 1820k2 ~r4þ − 3820k3 ~r2þ − 351k4Þ

�
;

ΨD¼5 ¼
ωðkÞ3κ
l2 ~r2þ

�
24ð−8~r6þ þ 48k2 ~r2þ lnð~rþÞ − 12k~r4þ − 84k2 ~r2þ − 13k3Þ

þ 128α

3~r4þ
ð1152~r10þ þ 30192k2 ~r6þ lnð~rþÞ þ 9408k~r8þ − 1824k2 ~r6þ

−11808k3 ~r4þ − 2235k4 ~r2þ − 218k5Þ

−
512α2

9~r8þ
ð2~r2þ þ kÞ3ð1208~r8þ þ 5492k~r6þ þ 9234k2 ~r4þ þ 6799k3 ~r2þ þ 1846k4Þ

�
: ð3:19Þ

and in D ¼ 6:

MD¼6 ¼
ωðkÞ4l3

κ

�
2~r3þðkþ ~r2þÞ þ

6α

~rþ
ð7~r6þ þ 20~r4þkþ 27~r2þk2 − 2k3Þ

þ 18α2

25~r5þ
ð2775~r10þ þ 18250k~r8þ þ 85320k2 ~r6þ − 65670k3 ~r4þ − 8335k4 ~r2þ − 756k5Þ

�
;

VD¼6 ¼ ωðkÞ4l5

�
~r5þ
5
þ 6α~rþ

5
ð3~r4þ þ 8k~r2þ þ 9k2Þ þ 36α2

25~r3þ
ð600~r8þ þ 3350k~r6þ þ 12447k2 ~r4þ − 6744k3 ~r2þ − 449k4Þ

�
;

ΨD¼6 ¼
ωðkÞ4κ
l~rþ

�
−12ð25~r6þ − 25k~r4þ − 585k2 ~r2þ þ 289k3Þ

þ 36α

~r4þ
ð9225~r10þ þ 65350k~r8þ þ 329130k2 ~r6þ − 272016k3 ~r4þ − 36787k4 ~r2þ − 3510k5Þ

−
324α2

5~r8þ
ð~r2þ þ kÞ3ð60625~r8þ þ 192625k~r6þ þ 215175k2 ~r4þ þ 102475k3 ~r2þ þ 17788k4Þ

�
: ð3:20Þ

where the mass has been obtained by integrating the first
law of thermodynamics. Note that the logarithms appearing
in the five-dimensional quantities are an artefact of the
expansion, which cannot be trusted all the way to ~rþ ¼ 0. It
is straightforward to compute these quantities to arbitrary
order in any dimension. However, the resulting expressions
are not insightful.
It is interesting to note that the thermodynamic volume is

not simply the naive geometric volume, but possesses
corrections perturbative in α, in contrast to the four-
dimensional case discussed in the first part of this paper.
This has the effect that, for some parameters, these black
holes are super-entropic [52]. That is, their thermodynamic
volume does not satisfy the following condition,

R ¼
�ðD − 1ÞV

ωðkÞD−2

� 1
D−1

�
ωðkÞD−2

A

� 1
D−2

≥ 1; ð3:21Þ

which was conjectured for Einstein gravity first in [51] and
then later revised to exclude noncompact horizons in [52].
Examples of black holes in higher-curvature theories of
gravity that violate the reverse isoperimetric inequality

were first found in [66] in the study of asymptotically
Lifshitz spacetimes, but this is the first example of higher-
curvature black holes asymptotic to AdS space that violate
the inequality. Note that in the Einstein gravity limit α → 0,
the inequality is an equality, consistent with the conjecture.
Figure 9 shows the regions of parameter space for which the
reverse isoperimetric inequality holds when the error in the
series expansions used are less than 10%. We notice that,
provided α > 0, the inequality is obeyed in bothD ¼ 5 and
D ¼ 6when the volume is positive, inD ¼ 5 the inequality
can be violated for both positive and negative α.
With an expansion for the mass it is also possible to

examine the black hole solutions for thermodynamic
stability. Specifically, we can examine the specific heat,

C ¼ ∂M
∂T ; ð3:22Þ

of the black holes and note when it is positive. Examining
this to Oðα2Þ, we illustrate in Fig. 10 the results of this
investigation for D ¼ 5 and D ¼ 6 where the error in the
series is less than 10%. In the regions where the heat
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capacity is negative (red shaded regions), these black holes
are thermodynamically unstable. We note that in the case of
k ¼ −1, the black holes are thermodynamically stable with
positive specific heat in the range where a second-order
expansion is valid.
We close this section by studying the black hole equation

of state for phase transitions in D ¼ 5 and D ¼ 6. This can
be obtained from Eq. (3.8), substituting for the temperature
and pressure, i.e. by returning to dimensionful units. This is
easily accomplished by defining

a1 ≔
A1r2þ
l3

; n1 ≔
N1

l
; ð3:23Þ

after which Eq. (3.8) reduces to the higher-dimensional
equivalent of Eq. (2.24). Identifying the pressure as

P ¼ −
Λ
κ
¼ ðD − 1ÞðD − 2Þ

2κl2
; ð3:24Þ

the equation of state then reads

P ¼ 2πðD − 2ÞT
κrþ

−
96π2κðD − 2ÞðD − 3Þkð4rþn1 þ 1ÞλT2

r4þ

−
64ðD − 2ÞðD − 3Þ½12rþn1 þ ðD − 4Þ�κπ3λT3

r3þ

þ ðD − 2ÞðD − 3Þk
2κr6þ

½8κ2k2ðD − 4ÞðD − 5Þλ − r4þ�;

ð3:25Þ

where n1 is in general a free parameter, but is fixed for the
Einstein branch as per Eq. (3.10) in a way which is
dependent on P. Explicitly, to first order in λ,

n1¼
6ðD−1ÞðD−3ÞðD−4Þκ2λð2κPr2þþðD−1ÞðD−2ÞkÞ2

ðD−2Þ2r5þ
:

ð3:26Þ

Since this correction contains terms quadratic in P it
seriously complicates the study of the thermodynamics
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FIG. 9. Reverse isoperimetric inequality: Plots showing regions of parameter space where the reverse isoperimetric inequality (3.21) is
and is not obeyed. The plots are for D ¼ 5 with k ¼ þ1 and k ¼ −1 (top left and right, respectively) and D ¼ 6 with k ¼ þ1 and
k ¼ −1 (bottom left and right, respectively). In each case, the reverse isoperimetric inequality is obeyed in the blue shaded regions and

is violated in the red shaded regions. In the production of these plots we have enforced A1 > 0 and εjα2Að2Þ
1 j > jα3Að3Þ

1 j with ε chosen as
1=10.
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at order λ2 and higher. We can make progress by sub-
stituting for P in the expression for n1 above the full
equation of state Eq. (3.25) and keep terms only to order λ2.
We can then study the resulting effective equation of state
for critical points, verifying whether or not the results are
valid within the approximation.
Considering first the case of D ¼ 5, we find that that

there are no critical points when k ¼ þ1 working to
second order in λ. Naively, a calculation which is valid to
first order suggests that there is a single critical point;
however, this critical point occurs for parameters at
which the series approximation breaks down. For
k ¼ −1 and λ < 0, there are two possible critical points
occurring for the (dimensionless) combinations:
ðα; ~rþ; A1Þ ≈ ð−0.05666; 0.91702; 5.608Þ and ðα; ~rþ; A1Þ≈
ð−0.33412; 0.78780; 3.8581Þ. A quick calculation
reveals that for the first case, while a series approximation
is valid for the choice of α and ~rþ, the value of A1

corresponds to a non-Einstein branch. In the second case,

the series approximation is not valid at the critical point.
With k ¼ −1 and λ > 0, there is one possibility occurring
at the dimensionless point ðα; ~rþ; A1Þ ≈ ð0.04595;
0.97383; 5.4786Þ; however, once more the series approxi-
mation is not valid at this critical point.
The situation is not much better for D ¼ 6. For k ¼ þ1,

working at Oðα2Þ there are no options for critical points.
For k ¼ −1, there are two possibilities corresponding to
ðα; ~rþ; A1Þ ≈ ð0.59427; 0.55692; 0.36703Þ and ðα; ~rþ;A1Þ≈
ð0.04387;0.88529;:36703Þ. In the first case, the series
approximation is not valid at the critical point. In the
second case, while the series approximation is valid for the
values of ~rþ and α, the value of A1 indicates does not match
that coming from the Einstein branch. For k ¼ −1 and
λ < 0, there is one possible critical point which occurs for
ðα; ~rþ; A1Þ ≈ ð−0.05510; 0.90570; 6.3931Þ which does not
correspond to the Einstein branch. Thus, in five and six
dimensions, there is no interesting critical behavior that can
be captured perturbatively.
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FIG. 10. Heat capacity: Plots showing regions of parameter space where the heat capacity is and is not positive. The plots are for
D ¼ 5 with k ¼ þ1 and k ¼ −1 (top left and right, respectively) and D ¼ 6 with k ¼ þ1 and k ¼ −1 (bottom left and right,
respectively). In each case, the heat capacity is positive in the blue shaded regions and is negative in the red shaded regions. In the

production of these plots we have enforced A1 > 0 and εjα2Að2Þ
1 j > jα3Að3Þ

1 j with ε chosen as 1=10.
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IV. CONCLUSION

We have found new static and spherically symmetric
vacuum black hole solutions of all topologies to Einsteinian
cubic gravity using a combination of analytic, perturbative,
and numerical methods. There is only ever a single ghost-
free branch that limits to the Einstein case when λ → 0, and
we find asymptotic AdS solutions in a broad region of
parameter space. We have found solutions in D ¼ 4 and
D > 4. The four-dimensional solutions are described by a
single function, fðrÞ, while the higher-dimensional solu-
tions require two independent functions.
While these black holes have features and thermody-

namic behavior similar to their counterparts in Einstein and
Lovelock gravity, they do exhibit some novel properties.
One is the existence of black holes of minimal radius,
depending on the value coupling parameter α. Another is
their equation of state, which is quadratic or cubic (and not
linear) in the temperature. In four dimensions, their ratio of
critical parameters is identical to that of a van der Waals
fluid, the only such instance ever seen apart from the
Reissner-Nordstrom black hole.
Turning to the higher-dimensional cases, an interesting

feature of the higher-dimensional solutions is their viola-
tion (again in certain regions of parameter space) of the
reverse isoperimetric inequality (3.21), the first time this
has been observed for higher-curvature black holes asymp-
totic to AdS space. And finally we note the existence of
negative entropy solutions, whose physical status remains
unclear, in significant regions of parameter space.
There remains a great deal of future work to be carried

out for Einsteinian cubic gravity. Within the theme of black
hole thermodynamics, it would be interesting to see how
the addition of the Gauss-Bonnet and cubic Lovelock terms
affect the thermodynamics. Furthermore, inclusion of
matter sources, e.g. a Maxwell field, would add further

structure to the thermodynamic behavior, especially in
higher dimensions. More generally, it would be of interest
to study holographic implications of the new cubic curva-
ture term. Of course, there remain more fundamental
questions to be addressed as well, such as determining if
the fourth-order nature of the field equations leads to any
pathological behavior beyond linear order.
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APPENDIX: Oðα2Þ CORRECTIONS
IN HIGHER DIMENSIONS

Here we present the Oðα2Þ terms for the corrections to
the metric functions for a selection of dimensions D > 4.
In particular, the metric function to Oðα2Þ reads

fð~rÞ ¼ 1þ k
~r2
−

c0
~rd−1

þ αhðDÞ
1 ð~rÞ þ α2hðDÞ

2 ð~rÞ;

Nð~rÞ ¼ 1þ αNðDÞ
1 ð~rÞ þ α2NðDÞ

2 ð~rÞ; ðA1Þ

where hðDÞ
1 ð~rÞ and NðDÞ

1 ð~rÞ are given by Eq. (3.5) and

hðDÞ
2 ð~rÞ and NðDÞ

2 ð~rÞ in five, six and seven dimensions are
given by

hðD¼5Þ
2 ð~rÞ ¼ 16

27
þ c2

~r4
−
1472c20
27~r8

−
184c0c1
3~r8

−
256kc20
9~r10

−
128kc0c1

3~r10
−
167696c30
27~r12

þ 148c1c20
3~r12

− 11776
kc30
~r14

−
51200k2c30

9~r16
þ 12080

c40
~r16

þ 81664kc40
7~r18

−
160064c50
27~r20

; ðA2Þ

NðD¼5Þ
2 ð~rÞ ¼ −

8c20n1
3~r8

þ 32c20
9~r8

þ 16c0c1
3~r8

þ 17792c30
27~r12

þ 51200kc30
63~r14

−
9200c40
9~r16

þ n2; ðA3Þ

hðD¼6Þ
2 ð~rÞ ¼ 264222kc40

17~r22
þ 117c1c20

2~r15
− 15552

kc30
~r17

−
37908k2c30

5~r19
− 72

c0c1
~r10

− 54
kc0c1
~r12

þ 15903
c40
~r20

−
63207c50
8~r25

− 8100
c30
~r15

þ c2
~r5
; ðA4Þ

NðD¼6Þ
2 ð~rÞ ¼ −

9c20n1
2~r10

þ 9
c0c1
~r10

þ 1242
c30
~r15

þ 123444kc30
85~r17

−
14985c40
8~r20

þ n2; ðA5Þ
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hðD¼7Þ
2 ð~rÞ ¼ 1024

16875
þ c2

~r6
þ 372736c20

16875~r12
−
5824c0c1
75~r12

þ 8192kc20
625~r14

−
1536kc0c1

25~r14

−
155762176c30
16875~r18

þ 4784c1c20
75~r18

−
11206656kc30

625~r20
−
5505024k2c30

625~r22

þ 309192704c40
16875~r24

þ 56426496kc40
3125~r26

−
155042944c50
16875~r30

; ðA6Þ

NðD¼7Þ
2 ð~rÞ ¼ −

144c20n1
25~r12

−
1536c20
625~r12

þ 288c0c1
25~r12

þ 1042432c30
625~r18

þ 5935104kc30
3125~r20

−
311424c40
125~r24

þ n2: ðA7Þ
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