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In the present work, we investigate wormhole structures and the energy conditions supporting them in
Einstein-Cartan theory. The matter content consists of a Weyssenhoff fluid along with an anisotropic matter
which together generalize the anisotropic energy momentum tensor in general relativity (GR) to include
spin effects. Assuming that the radial pressure and energy density obey a linear equation of state, we
introduce exact asymptotically flat and anti–de-Sitter spacetimes that admit traversable wormholes and
respect energy conditions. Such wormhole solutions are studied in detail for two specific forms for the
redshift function, namely a constant redshift function and the one with power law dependency.
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I. INTRODUCTION

Wormholes are theoretical passages through spacetime
that could create shortcuts between the points of two
parallel universes or two different points of the same
universe. The search for exact wormhole solutions in
GR has appeared frequently in theoretical physics within
different field of studies. Much work has been done over
the past decades in order to describe physics as pure
geometry, namely within the ancient Einstein-Rosen bridge
model of a particle [1], see also [2]. The concept of a
wormhole was invented in the late 1950s within the seminal
papers of Misner and Wheeler [3] and Wheeler [4] in order
to provide a mechanism for having “charge without
charge.” The electric charge was claimed to appear as a
manifestation of the topology of a space which basically
resembled a sheet with a handle. Such an object was given
the name “wormhole.” Despite the beauty and simplicity
of the idea, interest in the Misner-Wheeler wormhole
decreased over the years primarily owing to the rather
ambitious nature of the project which unfortunately had
little connection with the real world or support from
experiments (see, e.g., [5] and reference therein). The
study of Lorentzian wormholes in the context of GR
was stimulated by the significant paper of Morris and
Thorne in 1988 [6], where they introduced a static spheri-
cally symmetric line element and discussed the required
physical conditions for traversable wormholes. In GR
theory, the fundamental faring-out condition of throat leads
to the violation of null energy condition (NEC). The matter
distribution responsible for such a situation is the so-called
“exotic matter” [7], by virtue of which traversable worm-
hole geometries have been obtained, e.g., with the help of
phantom energy distribution [8]. This type of matter,

though exotic in the laboratory context, is of observational
interest in cosmological scenarios [9]. Phantom energy
possesses peculiar attributes, namely, a divergent cosmic
energy density in a finite time [10], prediction of the
existence of a new long-range force [11], and the appear-
ance of a negative entropy and negative temperature [12].
Beside the phantom energy models, wormholes generated
by continuous fundamental fields with exotic features have
been reported in the literature, such as wormholes in the
presence of exotic scalar fields [13]. Work along this line
has been carried out in [14], where a general class of
solutions within scalar-tensor theories has been found. The
solutions obtained by the authors describe topilogies of
the type of Wheeler handles [15] but, unlike the familiar
Schwarzchild and Reissner-Nordstrom metric, the solu-
tions are singularity free.
One of the most important challenges in wormhole

scenarios is the establishment of standard energy condi-
tions. In this regard, various methods have been proposed
in the literature that deal with the issue of energy conditions
within wormhole settings. Work along this line has been
done in dynamical wormhole geometries and the satisfac-
tion of energy conditions during a time period on a timelike
or null geodesic has been investigated [16]. Moreover,
Visser and Poisson have studied the construction of
thin-shell wormholes, where the supporting matter is
concentrated on the wormhole’s throat [17]. However,
the thin-shell wormholes do not respect the standard energy
conditions at the throat. Fortunately, in the context of
modified theories of gravity, the presence of higher-order
terms in curvature would allow for building thin-shell
wormholes supported by ordinary matter [18]. Recently,
a large amount of work has been devoted to build and study
wormhole solutions within the framework of modified
gravity theories among which we quote: wormhole sol-
utions in Brans-Dicke theory [19], fðRÞ gravity [20],
Born-Infeld theory [21] and Kaluza-Klein gravity [22].
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The Einstein-Cartan theory (ECT) is a gravitational
theory which was put forward by the desire to provide a
simple description of the spin effects on gravitational
interactions [23,24]. This can be achieved by taking as a
model of spacetime a four-dimensional differential mani-
fold endowed with a metric tensor and a linear connection
which is not necessarily symmetric. The torsion tensor
refers to the antisymmetric part of the connection which
physically can be interpreted as caused by the intrinsic
angular momentum (spin) of fermionic matter fields. Hence
in ECT, both mass and spin, which are intrinsic and
fundamental properties of matter, affect the structure of
spacetime.
While GR has been a successful theory in describing the

gravitational phenomena, this theory admits spacetime
singularities both in the cosmological and astrophysical
scenarios [25]. These are spacetime events where the
densities as well as curvatures blow up and the classical
framework of the theory breaks down. It is, therefore, well
motivated to search for alternative theories of GR whose
geometrical attributes may allow for nontrivial settings to
study the gravitational interactions. In this sense, one of the
advantages of introducing torsion is to modify the present
standard cosmology based on usual GR by means of the
spin of matter. On the other hand, the standard model of
cosmology is built upon the homogeneity and isotropy of
the Universe on large scales while being inhomogeneous on
small scales. This model can be extended to inhomo-
geneous spherically symmetric spacetimes (which merge
smoothly to the cosmological background) by assuming
that the radial pressure and energy density obey a linear
equation of state (EoS), i.e., pr ¼ wρ. An interesting
scenario is due to the fact that the expansion of the
Universe could increase the size of the static wormholes
by a factor which is proportional to the scale factor of the
Universe. Using a linear EoS, wormhole solutions have
been obtained in GR and their physical properties have
been discussed in [26]. Cosmological settings in ECT
have also been investigated where it has been shown that
torsion may remove the big bang singularity by a non-
singular state of minimum but finite radius [27]. Moreover,
torsion has been employed to study the effects of spinning
matter in the early Universe and inflationary scenarios [28].
Recently, the possibility of existence of static traversable
wormholes in the context of ECT, without resorting to an
exotic matter, has been investigated in [29]. Taking the
matter sources as two noninteracting scalar fields (one is
minimally and the other is nonminimally coupled to
gravity) with nonzero potentials, exact spacetimes admit-
ting static, spherically symmetric wormhole solutions with
flat or AdS asymptotic behavior has been obtained. These
kind of wormholes respect the NEC and weak energy
condition (WEC) and the throat radius for them is arbitrary.
More interestingly, exact wormhole solutions with sources
in the form of a nonminimally coupled nonphantom scalar

field and an electromagnetic field has been found in [30].
The solutions describe various asymptotic behavior and
symmetric properties and a minimum value for the throat
radius has been obtained subject to satisfaction of NEC
and WEC.
Motivated by the above considerations, we seek for the

exact wormhole solutions in the presence of cosmological
constant in ECT. The matter content supporting the worm-
hole geometry includes the energy momentum tensor
(EMT) of a spinning fluid together with an anisotropic
EMT for the ordinary matter distribution so that for the
latter we take the radial pressure and energy density to obey
a linear EoS. As we shall see, two classes of traversable
wormhole solutions satisfying WEC can be found for
suitable values of the EoS parameter.
This paper is organized as follows: In Sec. II, we give a

brief review on the EC theory. We begin with the action of
Einstein-Cartan theory and find the gravitational combined
field equations in subsection IIA. Introducing a spin fluid as
the source of spacetime torsion, we write the combined
field equations for an anisotropic source and present the
resulting differential equations governing the wormhole
geometry. Section III deals with wormhole solutions
satisfying standard energy conditions. Two classes of
solutions are found as wormhole solutions with zero tidal
force, presented in III B 1, and those with nonzero tidal
force that we bring them in III B 2. Our conclusion is drawn
in Sec. IV.

II. EINSTEIN-CARTAN THEORY

A. Action

In the context of GR, the gravitational field is illustrated
by the metric tensor on the spactime manifold so that the
dynamics of this tensor field is described by the Hilbert-
Einstein action. However, when the spacetime torsion is
introduced within the GR theory, there will be remarkable
freedom in constructing a dynamical setting as it is possible
to define much more invariant quantities from the space-
time torsion and curvature tensors. In the present model, we
are interested to EC theory, i.e., the simplest and most
natural generalization of GR, for which the action integral
is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−1
2κ

ð ~Rþ 2ΛÞ þ Lm

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−1
2κ

½RðfgÞ þ Cα
ρλCρλ

α

− Cα
ραCρλ

λ þ 2Λ� þ Lm

�
; ð1Þ

where κ ¼ 8πG=c4 being the gravitational coupling con-
stant, ~R is the Ricci scalar constructed from the asymmetric
connection ~Γα

μν and can be expressed in terms of the
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independent background fields, i.e., the metric field gμν and
the connection. The quantity Cμνα is the contorsion tensor
defined as

Cμ
αβ ¼ Tμ

αβ þ Tαβ
μ þ Tβα

μ: ð2Þ

with the spacetime torsion tensor Tα
μν being geometrically

defined as the antisymmetric part of the connection,

Tμ
αβ ¼

1

2
½ ~Γμ

αβ − ~Γμ
βα�: ð3Þ

The Lagrangian of the matter fields is introduced as Lm,
and ~R is the Ricci curvature scalar constructed out of the
general asymmetric connection ~Γα

βγ , i.e., the connection of
Riemann-Cartan manifold and Λ is the cosmological
constant. From the metricity condition, ~∇αgμν ¼ 0 we
arrive at the following expression for the connection as

~Γμ
αβ ¼

n μ

αβ

o
þ Cμ

αβ; ð4Þ

where the first part stands for Christoffel symbols and the
second part is the contorsion tensor. Varying action (1) with
respect to the contorsion tensor gives the Cartan field
equation as

Tα
μβ − δαβTγ

μγ þ δαμTγ
βγ ¼ −

1

2
κτμβ

α; ð5Þ

or equivalently

Tα
μβ ¼ −

κ

2

�
τμβ

α þ 1

2
δαμτβρ

ρ −
1

2
δαβτμρ

ρ

�
; ð6Þ

where τμαβ ¼ 2ðδLm=δCμαβÞ= ffiffiffiffiffiffi−gp
is defined as the spin

tensor of matter [23]. It is noteworthy that the equation
governing the torsion tensor is an algebraic equation; i.e.,
the torsion is not allowed to propagate outside the matter
distribution as a torsion wave or through any interaction of
nonvanishing range [23]. Therefore, the spacetime torsion
is only nonzero inside the material bodies. Varying action
(1) with respect to the metric gives the Einstein-Cartan field
equation [23,31]

GμβðfgÞ − Λgμν ¼ κðTμβ þ θμβÞ; ð7Þ

where

θμν ¼
1

κ

�
4Tη

μηTβ
νβ − ðTρ

μϵ þ 2TðμϵÞρÞðTϵ
νρ þ 2TðνρÞϵÞ

þ 1

2
gμνðTρσϵ þ 2TðσϵÞρÞðTϵσρ þ 2TðσρÞϵÞ

− 2gμνTρσ
ρTσ

ϵσ

�
; ð8Þ

or equivalently

θμβ ¼
1

2
κ

�
τμα

ατβγ
γ − τμ

αγτβγα− τμ
αγτβαγ

þ1

2
ταγμταγβþ

1

4
gμβð2ταγϵταϵγ −2τ γ

α γταϵϵþ ταγϵταγϵÞ
�
;

ð9Þ

where we have used expression (6) in order to substitute
for the torsion tensor and () denotes symmetrization. The
tensor θμν represents a correction to the symmetric dynami-
cal EMT represented by Tμβ ¼ 2ðδLm=δgμβÞ= ffiffiffiffiffiffi−gp

, from
the spin contributions to the geometry of spacetime. This
tensor is quadratic in spin tensor of matter (so the sign of
the spin tensor does not affect this correction) and corre-
sponds to a spin-spin contact interaction, i.e., the product
terms. In the case in which the matter fields do not depend
on spacetime torsion, then θμν ¼ 0 and the field equation (7)
reduces to the well-known Einstein’s field equation in the
presence of cosmological constant. The field equation (7)
can be also written as

~Rμν −
1

2
~Rgμν − Λgμν ¼ κΔμν; ð10Þ

where the right-hand side is known as the canonical energy
momentum tensor and is related to the dynamical energy-
momentum tensor through the Belinfante-Rosenfeld rela-
tion, given as

Δαβ ¼ Tαβ þ ð1=2Þð ~∇μ − 2Tγ
μγÞðταβμ − τ μ

β α þ τμαβÞ;
ð11Þ

where ~∇μ denotes covariant derivative with respect to the
asymmetric connection [32]. It is worth mentioning that the
Bianchi identities along with the Einstein-Cartan field
equations [Eqs. (5) and (10)] give the conservation laws
for the canonical energy momentum and spin tensors; see,
e.g., for more details [23,33–36]. A straightforward but
lengthy calculation reveals that Eq. (10) together with the
Cartan field equation (6) and the relation (11) would lead to
the so-called combined field equations as presented by (7);
see e.g., [35].
It is seen that the second term on the right-hand side of

(7) represents a correction to the dynamical EMT which
takes into account the spin contributions to the geometry of
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the spacetime. Let us now proceed to obtain exact solutions
representing wormhole geometries in the presence of a
spinning fluid. Such a fluid can be described by the
so-called Weyssenhoff fluid, which is considered as a
continuous macroscopic medium whose microscopic ele-
ments are composed of spinning particles. This model
which generalizes the EMT of ordinary matter in GR to
include nonvanishing spin was first studied byWeyssenhoff
and Raabe [37] and extended by Obukhov and Korotky in
order to build cosmological models based on the EC
theory [36].

B. Field equations with a modified source

In order to consider wormhole solutions in the context of
ECT, we employ a classical description of spin as postu-
lated by Weyssenhoff, which is given by [36,37]

τμν
α ¼ Sμνuα; Sμνuμ ¼ 0; ð12Þ

where uα is the four-velocity of the fluid element and
Sμν ¼ −Sνμ is a second-rank antisymmetric tensor which is
defined as the spin density tensor. Its spatial components
include the 3-vector ðS23; S13; S12Þ which coincides in the
rest frame with the spatial spin density of the matter
element. The left spacetime components ðS01; S02; S03Þ
are assumed to be zero in the rest frame of the fluid
element, which can be covariantly formulated as the
constraint given in the second part of (12). This constraint
on the spin density tensor is usually called the Frenkel
condition which requires the intrinsic spin of matter to be
spacelike in the rest frame of the fluid.1

From the microscopical point of view, a randomly
oriented gas of fermions is the source for the spacetime
torsion. However, we have to treat this issue at a macro-
scopic level, which means that we need to carry out suitable
spacetime averaging. In this regard, the average of the spin
density tensor vanishes, hSμνi ¼ 0 [23,39]. Despite the
vanishing of this term macroscopically, the square of spin
density tensor S2 ¼ 1

2
hSμνSμνi would have contribution to

the total EMT [39]

T total
αβ ¼ Tαβ þ θαβ

¼ fðρþ ptÞuαuβ þ ptgαβ þ ðpr − ptÞvαvβg
þ uðαSβÞμuνCρ

μνuρ þ uρCμ
ρσuσuðαSβÞμ

−
1

2
uðαTβÞμνSμν þ

1

2
TνμðαSμβÞuν; ð13Þ

which can be decomposed into the usual fluid part and an
intrinsic spin part. The quantities ρ, pr and pt are the usual
energy density, radial and tangential pressures of the fluid
respectively, and vμ is a unit spacelike vector field in radial
direction. Taking these considerations into account, the
relations (7) and (9) together with (12) and (13) give the
Einstein’s field equation with anisotropic matter distribu-
tion and spin correction terms as

Gμν − Λgμν ¼ κ

�
ρþ pt −

κ

2
S2
�
uμuν

þ κ

�
pt −

κ

4
S2
�
gμν þ ðpr − ptÞvμvν: ð14Þ

We note that though the spinning elements move along the
4-vector velocity of the fluid, the contribution due to spin
squared terms would appear (effectively as a negative
energy density) in the pressure profiles and energy density
of the anisotropic fluid2 In this respect, Hehl et al. have
used the Weyssenhoff description of spinning fluid to show
that the contribution due to spin density acts like a stiff
matter [24,39]. Such a behavior is significant in spinning
fluids at extremely high densities, even if the orientation of
spinning particles is randomly distributed. This leads to
gravitational repulsion and avoidance of curvature singu-
larities by violating the energy condition of the singularity
theorems [24]. Moreover, it has been shown that such a
repulsion effects would replace the big-bang singularity
with a nonsingular big bounce, before which the Universe
was contracting [27,40]. However, contrary to spin fluids,
the presence of a Dirac field as the source of spacetime
torsion causes a positive “effective mass” term in the
energy condition of the generalized singularity theorem.
Therefore, Dirac spinors coupled to spacetime torsion
enhance, rather than oppose, the energy condition for the
formation of spacetime singularities [41]. As we know, the
spin fluid model can be derived as the particle approxi-
mation of multiple expansion of the integrated conservation
laws in EC theory [38]. Nevertheless, the particle approxi-
mation for Dirac fields is not self-consistent [42] and such a
description for the spin fluid also violates the cosmological
principle [43]. However, recently, it has been shown that
the minimal coupling between the spacetime torsion tensor
and Dirac spinors produces a spin-spin interaction which is
considerable at extremely high densities. Such an inter-
action, though enhancing the energy condition, averts the
unphysical big-bang singularity, replacing it with a cusplike
bounce at a finite minimum value for the scale factor [44].

1The Weyssenhoff spin fluid has been also described by means
of applying the Papapetrou-Nomura-Shirafuji-Hayashi method of
multipole expansion in the Riemann-Cartan spacetime [38] to the
conservation law for the spin density (which results from the
Bianchi identities in the EC gravity [33,34]) in the point-particle
approximation.

2In the herein model, we assume the anisotropy of ordinary
matter only within the EMT of the fluid part and leave the
spinning particles to fluctuate randomly. However, the existence
of anisotropy within the spin part needs the study of a spin
polarized matter in the presence of a background magnetic field.
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Next, we proceed with employing the general static and
spherically symmetric line element which represents a
wormhole and is given by

ds2 ¼ −e2ϕðrÞdt2 þ
�
1 −

bðrÞ
r

�
−1
dr2 þ r2dΩ2; ð15Þ

where dΩ2 is the standard line element on a unit two-
sphere; ϕðrÞ and bðrÞ are redshift and shape functions
respectively. Conditions on ϕðrÞ and bðrÞ under which
wormholes are traversable were discussed completely for
the first time in [6]. bðrÞ should satisfy flaring-out con-
dition i.e. rb0 − b < 0 (Note that equality occurs only at
throat of the wormhole denoted by r0) and bðrÞ − r ≤ 0.
For the wormhole to be traversable, one must demand that
there are no horizons present. So, ϕðrÞ should be finite
everywhere so that there is no singularity and event
horizon in spacetime. The field equations with using uμ ¼
½e−ϕðrÞ; 0; 0; 0� and vμ ¼ ½0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − bðrÞ=rp
; 0; 0� lead to (we

set the units so that κ ¼ c ¼ 1)

ρðrÞ ¼ 1

4r2
½4b0ðrÞ þ r2S2ðrÞ − 4Λr2�; ð16Þ

prðrÞ¼
1

4r3
½8ϕ0ðrÞðr2− rbðrÞÞ−4bðrÞþS2ðrÞr3þ4Λr3�;

ð17Þ

ptðrÞ ¼
1

4r3
½4r2ϕ00ðr − bðrÞÞ þ 4r2ϕ02ðr − bðrÞÞ

− 2rϕ0ðrb0ðrÞ − 2rþ bðrÞÞ
þ S2ðrÞr3 − 2rb0ðrÞ þ 4Λr3 þ 2bðrÞ�; ð18Þ

where the prime denotes a derivative with respect to the
radial coordinate r. Since Eq. (18) can be obtained from the
conservation of total energy momentum tensor, i.e.,

ϕ0ðρþ prÞ þ p0
r þ

2

r
ðpr − ptÞ −

1

2

�
ϕ0S2 þ 1

2
ðS2Þ0

�
¼ 0;

ð19Þ

only two of equations (16)–(18) are independent.
Furthermore, we can take the spin part of conservation
equation to be satisfied independently which gives

ϕ0S2 þ 1

2
ðS2Þ0 ¼ 0; ð20Þ

whereby we obtain

S2ðrÞ ¼ S20 expð−2ϕðrÞÞ: ð21Þ

where S0 is a positive constant of integration. We note that
the above relation satisfies the spin part of continuity
equation (19).

III. WORMHOLE GEOMETRIES

A. Energy condition

In this work we are interested to present exact solutions
of traversable wormholes in ECT that satisfy the weak
energy condition (WEC) in all spacetime. In GR, it is well
known that static traversable wormholes violate the energy
conditions at the wormhole throat [7]. Theses violations are
derived from the fundamental flaring-out condition of the
wormhole throat. Regarding the standard point-wise energy
conditions we are interested in WEC which states that, all
observers in spacetime must measure non-negative values
for the energy density. Mathematically, for a diagonal EMT,
the WEC implies ρ ≥ 0, ρþ pr ≥ 0 and ρþ pt ≥ 0,
simultaneously. Note that the last two inequalities are
defined as the NEC. Using the field equations (16)–(18)
together with the second and third conditions we get

ρðrÞ þ prðrÞ ¼
1

2r3
½4rϕ0ðrÞðr − bðrÞÞ þ S2ðrÞr3

þ 2rb0ðrÞ − 2bðrÞ�; ð22Þ

ρðrÞþptðrÞ

¼ 1

2r3
½2r2ϕ00ðrÞðr−bðrÞÞþ 2r2ðr−bðrÞÞϕ02ðrÞ

− rϕ0ðrÞðrb0ðrÞ− 2rþbðrÞÞþS2ðrÞr3þ rb0ðrÞþbðrÞ�:
ð23Þ

One can easily show that at the throat of the wormhole
(bðr0Þ ¼ r0), the condition (22) gives

ρðrÞ þ prðrÞjr¼r0 ¼
S2ðr0Þr20 þ 2½b0ðr0Þ − 1�

2r20
; ð24Þ

which shows that for S2ðr0Þ ¼ 0 the NEC, and conse-
quently the WEC, are violated at the throat, due to the
flaring-out condition. In order to impose ρþ pr ≥ 0 in
ECT, one can choose

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb00 − 1Þp

=S0 < r0 such that the
NEC is satisfied at the throat. In the following section, we
search for exact wormhole solutions in ECT.

B. Exact solutions

Now, one may adopt several strategies to find solutions
of wormhole solutions. For instance specifying the func-
tions bðrÞ or ϕðrÞ and using a specific equation of state
p ¼ pðρÞ. Here, we consider the following linear equation
of state (EoS), pr ¼ wρ and specific redshift function.
Substituting ρ and pr in the EoS, one obtains the following
equation:
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b0ðrÞ

¼8rðr−bðrÞϕ0ðrÞ−4bðrÞþð1−wÞr3S2ðrÞþ4Λð1þwÞr3
4wr

:

ð25Þ

In what follows, we shall study exact wormhole solutions
by considering specific choices for the form of the redshift
function and obtain the properties and characteristics of
these solutions.

1. Zero-tidal-force solution

The first class of solutions deals with an interesting case
of constant redshift function, i.e., ϕ0 ¼ 0. These solutions
are called the zero-tidal-force solutions so that a stationary
observer hovering about the gravitational field of the
wormhole, will not experience any tidal force. Substituting
for ϕðrÞ ¼ const into Eq. (25), we get

bðrÞ ¼ ξr3

4ð3wþ 1Þ þ c0r
−1
w ; ð26Þ

where c0 is an integration constant and we have set
ξ ¼ 4Λð1þ wÞ − S20ðw − 1Þ. Using the condition bðr0Þ ¼
r0 at the throat we have

c0 ¼
−ξr03 þ 4r0ð3wþ 1Þ

4ð1þ 3wÞr0−1w
: ð27Þ

Now, by using Eq. (26), we find at the throat

b0ðr0Þ ¼
ξr20 − 4

4w
: ð28Þ

In this case, we set ξ ¼ 0 in Eq. (26), we find the shape
function as bðrÞ ¼ 1 − ðr0r Þ

wþ1
w . Note that when we set

Λ ¼ S0 ¼ 0, the wormhole solution discussed in [45] is
recovered. Moreover, these solutions satisfy the flare-out
condition with substituting ξ ¼ 0 in Eq. (28) which in turn
imposes the conditions w > 0 or w < −1 on the EoS (for a
matter made of phantom energy). We note that these
solutions correspond to an asymptotically flat spacetime.
Therefore, in order to study energy conditions for these
class of solutions, we check the behavior of the quantities ρ,
ρþ pr and ρþ pt at infinity and at the wormhole’s throat.

The asymptotic behavior of these quantities is found as the
following approximations

ρðrÞ≃ S20
2ðwþ 1Þ þO

�
1

rð3wþ1Þ=w

�
; ð29Þ

and

ρþ prðrÞ ¼ ρþ ptðrÞ≃ S20
2
þO

�
1

rð3wþ1Þ=w

�
: ð30Þ

It is clear that for large values of r, the quantities ρþ pr and
ρþ pt are positive but the energy density gets positive
values for w > 0 and negative values for w < −1.
Therefore, in the limit of large values of the radial
coordinate the WEC is satisfied for w > 0 and is violated
for w < −1. The energy conditions in the vicinity of the
throat read

ρðr0Þ ¼
ðS20r20 − 2Þw − 2

2wðwþ 1Þr20
; ð31Þ

ρþ ptðr0Þ ¼
wð1þ S20r

2
0Þ − 1

2wr20
; ð32Þ

whereby, we see that for w > 0 with a suitable choose
of r0, the WEC can be satisfied but for w < −1 the sign of
ρðr0Þ is opposite to ρðr0Þ þ prðr0Þ. Note that the dark
energy density is positive then the NEC is violated
(ρþ pr ¼ ð1þ wÞρ < 0). However, we show that one
can choose suitable values for w > 0 in order to have
normal matter throughout the space. These results have
been shown in Fig. 1, where we have considered w ¼ 1=3,
r0 ¼ 2 and S0 ¼ 1.41. The quantity bðrÞ=r tends to zero at
spatial infinity. For these choices, the quantities ρ, ρþ pr
and ρþ pt are positive throughout the spacetime, implying
that the WEC is satisfied in the whole spacetime.
In order to have a traversable wormhole, condition

bðrÞ < r must be fulfilled for all values of the radial
coordinate r > r0. This implies that the parameter ξ is
negative for w > 0 and positive for w < −1=3. Also,
condition b0ðr0Þ < 1 or correspondingly Eq. (28) can be
satisfied by a suitable choice for the radius of the throat.
The quantities ρ, ρþ pr and ρþ pt for this solution are
given by

ρðrÞ ¼ ½ξðr0r Þ
3wþ1
w − 4ð3wþ 1Þr2ðr0r Þ

wþ1
w �ðwþ 1Þ þ 2S02wð1þ 3wÞ þ 2ξw

4wðwþ 1Þð3wþ 1Þ ; ð33Þ

ρðrÞ þ prðrÞ ¼
ðr0r Þ1=w½r02ξ − 4ð1þ 3wÞ�ð1þ wÞr0 þ 2wr3½ξþ 2S20ð1þ 3wÞ�

4r3ð1þ 3wÞw ; ð34Þ

ρðrÞ þ ptðrÞ ¼
ðr0r Þ

1
w½4ð1þ 3wÞ − r20ξ�ðw − 1Þr0 þ ½ξþ ð1þ 3wÞS20�4wr3

8r3ð1þ 3wÞw : ð35Þ
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Note that this solution does not correspond to an asymp-
totically flat spacetime; however, using junction conditions,
one can match an interior wormhole solution to an exterior
vacuum spacetime [46].

2. Nonconstant redshift function

In this section, we solve differential equation (25) for an
asymptotically flat redshift function being given by

ϕðrÞ ¼ ϕ0

2

�
r0
r

�
m
; ð36Þ

where ϕ0 is a dimensionless constant and m is a positive
constant. This choice guarantees that the redshift function is
finite in whole space. Substituting the redshift function
presented into Eq. (25), we can solve for the shape function
as

bðrÞ ¼ exp

�
−
ϕ0ðr0=rÞm

w

�

×

�Z
r

r0

W0ðrÞdrþ r
ð1þw

w Þ
0 exp

�
ϕ0

w

��
r−

1
w; ð37Þ

where

W0ðrÞ ¼ −
r
1
w

4w
exp

�
ϕ0ðr0=rÞm

w

��
4ϕ0m

�
r0
r

�
m

− r2ðξþ ðw − 1ÞS20Þ

þ r2S20ðw − 1Þ exp
�
−ϕ0

�
r0
r

�
m
��

:

Here the constant of integration is chosen so that the
condition bðr0Þ ¼ r0 is satisfied. Now, the flaring-out
condition (b0ðr0Þ ¼ b0 < 1) takes the form

b0ðr0Þ ¼
ξr20 − 1þ r20S

2
0ð1 − wÞðexpð−ϕ0Þ − 1Þ

4w
: ð38Þ

Moreover for these solutions we have, at the throat

ρðr0Þ ¼
r20S

2
0ð1þ wÞ expð−ϕ0Þ þ ðS20ðw − 1Þ þ ξÞr20 − 4ð1þ wÞ

4wðwþ 1Þr20
; ð39Þ

and

ρðr0Þ þ ptðr0Þ ¼
S20½ð6 −mϕ0Þwþmϕ0 − 2� expð−ϕ0Þ

16w

þ w½ϕ0mðr20S20 − 4Þ þ 2r20S
2
0 þ 8� þ ðmϕ0 þ 2Þððξ − S20Þr20 − 4Þ
16r20w

: ð40Þ

FIG. 1. Left panel: The behavior of 1 − bðrÞ=r versus r=r0 for w ¼ 1=3, S0 ¼ 1.41, r0 ¼ 2 and ξ ¼ 0. Right panel: The behavior of ρ
(solid curve), ρþ pr (dotted curve) and ρþ pt (dashed curve) for the same values of the parameters chosen for the left panel.
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In what follows we study in more details, some specific
wormhole solutions and their physical properties. To this
aim, we must determine the state parameters w and m and
then solve Eq. (37) to obtain the shape function. Firstly, let
us consider a stiff matter with the EoS pr ¼ ρ which play
an important role in the early Universe [47]. Substituting
for this value of the EoS parameter together with setting
Λ ¼ 0 in Eq. (37), we can find the shape function as

bðrÞ ¼ expð−ϕ0ðr0r ÞmÞ
r

�
c2 þ ð−2Þ2−mm r20ϕ

2
m
0

�
Γ
�
m − 2

m

�

− Γ
�
m − 2

m
;−ϕ0

�
r0
r

�
m
���

; ð41Þ

where the integration constant c2 can be determined from
the boundary condition bðr0Þ ¼ r0 at the throat, and is
given by

c2 ¼ −
r0
m

�
2ðϕ0Þ2

mΓ
�
−
2

m

�

þmðϕ0Þ2
mΓ

�
m − 2

m
;−ϕ0

�
−m expðϕ0Þ

�
: ð42Þ

It can be shown that the flare-out condition b0ðr0Þ ¼ −1 is
satisfied. Furthermore, It can be shown that the ratio
bðrÞ=r → 0 as r → ∞, so this spherical spacetime is
asymptotically flat. Employing Eqs. (39) and (40), it is
seen that ρðr0Þ ≥ 0 and ρþ ptðr0Þ ≥ 0 at the throat if the

spin density satisfies, 2
expð−ϕ0=2Þr0 < S0 and

ffiffiffiffiffiffiffiffiffi
ðϕ0mÞ

p
expð−ϕ0=2Þr0 < S0,

respectively. These inequalities put a restriction on the
positive value of the spin density. Also, for large values of r,
we find ρ≃ S20=4 and ρþ pr ¼ ρþ pt ≃ S20=2. Thus, at
spatial infinity the WEC is satisfied. The spin density S20
can be chosen suitably so that ρ and ρþ pt admit no real
root and consequently make these quantities to be positive
in the whole spacetime; thus, the WEC is satisfied for all
values of r. The left panel in Fig. 1 shows the behavior of ρ,
ρþ pr, and ρþ pt, indicating the satisfaction of WEC for
w ¼ 1 and m ¼ 2 with radial throat r0 ¼ 2.
An interesting case is that of traversable wormholes

supported by the dark energy EoS (−1 < w < −1=3)
that is required for cosmic acceleration. For instance, let
us consider w ¼ −1=2 and m ¼ 2. Equation (37) then
leaves us with the following solution for the shape
function as

bðrÞ ¼ 3r exp ð− 4ϕ0ðr2−r20Þ
r2 Þ

4r0ϕ
1
2

0

�
exp

�ð4r2 − 6r02Þϕ0

r2

�
ϕ

1
2

0r
2r0S02 þ

4

3
ϕ

1
2

0r0ðΛr2 − 1Þ exp
�
4
ϕ0ðr2 − r20Þ

r2

�

− r

� ffiffiffiffiffiffi
6π

p
r20S

2
0ϕ0e4ϕ0

�
erfð

ffiffiffiffiffiffiffiffi
6ϕ0

p
Þ − erf

� ffiffiffiffiffiffiffiffi
6ϕ0

p r0
r

��
þ ϕ

1
2

0r
2
0

�
4

3
Λþ S20e

−2ϕ0

�

þ 8

3

ffiffiffi
π

p
e4ϕ0

�
Λϕ0r20 þ

1

8

��
erfð2

ffiffiffiffiffi
ϕ0

p
Þ − erf

�
2

ffiffiffiffiffi
ϕ0

p r0
r

����
: ð43Þ

FIG. 2. The behavior of ρ (solid curve), ρþ pr (dotted curve) and ρþ pt (dashed curve) versus r=r0 for w ¼ 1, Λ ¼ 0 and S0 ¼ 0.9
for the left panel and w ¼ −1=2, Λ ¼ −3S20=4 and S0 ¼ 1.4 for the right panel. We have set, m ¼ 2, ϕ0 ¼ −0.1 and r0 ¼ 2.
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This implies that the wormhole throat is located at r0. By
taking into account the condition bðrÞ−r<0 for any r > r0
and the behaviour of bðrÞ at spatial infinity, we obtain
traversable wormholes for Λ ≥ −3S20=4. Note that this
solution does not correspond to an asymptotically flat
spacetime; however, using junction conditions, one can
match an interior wormhole solution to an exterior vacuum
spacetime. In this case, in order to satisfy WEC, the
cosmological constant has to satisfy −3S20=4<Λ<−S20=2.
This constraint imposes that ρ and ρþ pt have no real
root and, therefore, are positive in the whole spacetime
region. Finally, we plot in the right panel of Fig. 2, the
behavior of ρ, ρþ pr and ρþ pt indicating the satisfaction
of WEC for w ¼ −1=2, m ¼ 2 and the radial throat chosen
as r0 ¼ 2.

IV. CONCLUDING REMARKS

In the context of standard GR, traversable static worm-
holes could exist with the help of exotic matter, as the
supporting matter for wormhole geometry. As a result, the
weak energy condition which is accounted for the physical
validity of the model is violated. The satisfaction of flaring
out condition is crucial for traversable wormholes, and in
GR, this condition leads to the violation of weak energy
condition. In the context of ECT, static traversable worm-
holes without exotic matter has been investigated in [29].
The solutions obtained satisfy WEC at the throat and are
asymptotically flat or AdS due to nonzero spacetime
torsion. In the present work, we have shown that traversable
wormhole solutions in ECTwhich satisfy WEC throughout
the entire spacetime could indeed exist. We assumed that
the radial pressure linearly depends on the energy density,
i.e., pr ¼ wρ. Within this framework, two exact solutions
have been found. The first one deals with asymptotically
flat solutions with zero tidal force which respect the weak
energy condition for w > 0. The second class deals with a
power-law form for the redshift function for which a class
of asymptotically flat wormhole solutions could be found
for the EoS parameter satisfying −1 < w < −1=3. This
range for the EoS parameter is referred to as quintessence
dark energy and is required for the accelerated expansion of
the FLRW universe; see, e.g., [48] and references therein.
The contribution due to spacetime torsion, which in turn
translates into considering a spin fluid within the wormhole
geometry, would prevent the violation of the weak energy
condition. We have examined this issue in the context of
ECT which can effectively be considered as GR with a
modified matter source, i.e., generalization of the perfect
fluid of GR to the case of nonvanishing spin. The resulting
field equations are then called combined field equations.
Such a contribution is indeed appeared as torsion squared
terms within these field equations whereby, introducing a
spin tensor as the source for torsion field, we observe that,
the geometry is altered by adding the contribution due to

the spacetime torsion, or correspondingly, the spin squared
terms are added to the curvature terms in the usual GR field
equations. We have taken such contribution along with
curvature terms in the combined field equations as an
anisotropic source for the wormhole geometry. We, there-
fore, conclude that if the contribution due to spacetime
torsion is suitably defined, through introducing intrinsic
angular momentum of fermionic particles within the field
equations of GR, traversable wormhole geometries could
be found when the modified radial pressure and density
profile mimic the EoS of quintessence matter. Various
wormhole spacetimes have also been reported in [49],
where the supporting matter is assumed to be quintom dark
energy, which is a combination of quintessence and
phantom energy in a joint model.
Finally, as we near to close this paper, there remain a few

points that beg more elucidation. Though ECT describes
physics with a very good approximation at the classical
level, it is a nonrenormalizable quantum theory [50]. In this
respect, a large amount of attempt has been devoted to set
up approaches to the gravitational interaction that may
provide a relevant arena towards our understanding of the
quantum gravity problem. A useful method has been the
theory of gravity with higher-order curvature invariants.
The action integrals of such theories, in addition to the
Einstein-Hilbert term, contain the terms which are quad-
ratic in the curvature along with considering also all
possible quadratic terms that can be constructed from
torsion. Moreover, these terms are crucial for obtaining
an effective action for quantum theory of gravity at
extremely small scales close to the Planck length, see
[51] and references therein. In the context of contemporary
approaches towards a unified theory of quantum gravity
such as supergravity [52], the first-order formalism of
gravity is utilized as the starting point, where one treats
the vielbein and connections as independent variables.
Interestingly, when we pass from the first to the second-
order formalism [53], the covariant coupling of fermions to
gravity gives rise to a four fermion interaction in these
theories [52,54]. At the classical level, the dynamics of pure
ECT is encoded within the Hilbert-Palatini action con-
structed out of the vielbein field and spin connection (e, ω)
and is of first order in the spacetime derivatives. Since the
resulting field equations yield vanishing torsion, this action
can be regarded as the counterpart of the Einstein-Hilbert
action of metric gravity. However, generic configurations
(e, ω) which contribute to the effective action have nonzero
torsion even if torsion should happen to vanish classically.
Therefore, the additional fields of ECT are generally
expected to decisively affect the renormalization process
[55]. The Hilbert-Palatini action can then be generalized to
the so-called Holst action [56] which contains an additional
term with a dimensionless constant called the Immirzi
parameter. In GR, the Holst term makes no contribution to
dynamical equations as it vanishes due to the cyclic
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symmetry of the Riemann tensor.3 The Holst action lies at
the heart of various modern approaches to the quantization
of gravity including, canonical quantum gravity with
Ashtekar’s variables [58], loop quantum gravity (LQG)
[59], spin foam models [60] and group field theory [61]. It
is noteworthy that within this framework, where fermionic
matter is present, the Immirzi parameter and/or torsion
could make effect on the gravitational dynamics, thus
providing an interesting way to study its classical and
quantum effects. In this respect, cosmological solutions (at
classical level) together with the effect of a nonzero
Immirzi parameter have been discussed for the metric-
spinor gravity with the Holst term and its is shown that
there are FRW-compatible solutions [62]. Moreover, it is
shown that the EoS of self-interacting spinor matter is
independent of the Immirzi parameter in the massless limit.
In the framework of free fermion theory and LQG, the
effect of Holst term and/or torsion on the difference
between EoS for photons and relativistic fermions has

been studied in [63] and it is shown that LQG provides a
setting to compute quantum gravity corrections for
Maxwell [64] and Dirac fields. Besides the attempts to
quantize a given classical dynamical system, there is
another strategy one can adopt in order to seek for a
quantum theory consistent with the observed classical limit,
this is the so-called asymptotic safety program [65]. In this
respect, possible evidences for the conjectured nonpertur-
bative renormalizability (asymptotic safety) of quantum
Einstein-Cartan gravity have been investigated in [66].
However, the herein model deals with the possible effects
of spin of matter on wormhole geometry at classical level
and the study of quantum gravity effects is beyond the
scope of the present work.
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