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The stability criteria for the generalized Brans-Dicke cosmology in a spatially flat, homogeneous and
isotropic cosmological model is discussed in the presence of a perfect fluid. The generalization comes
through the channel that the Brans-Dicke coupling parameter ω is allowed to be a function of the scalar
field ϕ. This generalization can lead to a host of scalar-tensor theories of gravity for various choices of
ω ¼ ωðϕÞ. A very interesting general result has been found. Excepting for the case of a radiation
distribution as the choice of the fluid, all other solutions find a natural habitat in the corresponding solutions
in general relativity in an infinite ω limit. For the radiation distribution, the dependence of stability on ω is a
bit obscure. If a scalar potential, function of the Brans-Dicke scalar field, is added to the action, the
requirement of an infinite ω for stability is relaxed for a matter distribution with a nonzero trace whereas it
becomes a possibility for a radiation distribution.
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I. INTRODUCTION

Brans-Dicke (BD) theory [1], a failed attempt to incor-
porate Mach’s principle in a relativistic theory of gravity, is
a simple scalar tensor extension of general relativity (GR)
where a dynamical scalar field is nonminimally coupled
to the curvature. This makes the Newtonian constant G
inversely proportional to the scalar field ϕ and hence a
function of the coordinates. A dimensionless parameter ω,
called the Brans-Dicke coupling parameter, determines the
deviation of the results obtained in this theory under weak
field approximation from that in general relativity under
similar approximation. The lower the value of ω, the more
different are the corresponding results. It is quite well
known that general relativity does extremely well in
explaining local astronomical tests, and the value of ω
required such that BD theory is consistent with such
observations are too high (ω > 500) making BD theory
practically indistinguishable from GR in the weak field
limit [2].
An order of magnitude estimate showed that not only in

the weak field approximation, in the limit ω → ∞, ϕ
becomes a constant and its value behaves as 1

ω which
makes the set of field equations, in its full nonlinear
generality, reduce to the corresponding GR equations
[3]. This was believed to be a great advantage of BD
theory as it gives the good old GR in some limit. This had a

jolt, when it was clearly shown that this infinite ω limit has
only a limited application and fails in the case where the
matter content has a traceless stress-energy tensor (such as
radiation, Maxwell field etc.) [4,5].
In spite of all these, BD theory enjoys a periodic

resurgence for various reasons, particularly in cosmology.
For instance, BD theory played a crucial role in suggesting
an extended inflation [6,7] which proved so useful in
eradicating the graceful exit problem of standard infla-
tionary models. In more recent years, BD theory has been
used to create a perfect ambiance for a late time accel-
eration for the universe [8]. The remarkable feature is that
BD theory, in its own right, can generate an accelerated
expansion, without any exotic field, only by a suitable
choice of value for the parameter ω [9].
In order to incorporate the various requirements for the

value of the parameter ω for different situations, a gener-
alization of BD theory, where ω is taken to be a function of
the scalar field ϕ was also proposed quite a long time back
[10–12]. It was found that many other nonminimally
coupled scalar tensor theories of gravity, suggested so as
to describe different requirements, can be written as a
special case of the generalized BD theory by a suitable
choice of ω ¼ ωðϕÞ. For example, one recovers Barker’s
scalar tensor theory [13] for 2ωþ 3 ¼ 1

ϕ−1 and Schwinger’s

theory [14] for 2ωþ 3 ¼ 1
αϕ where α is a constant. For a

brief collection of such examples and the physical moti-
vation of various choices of ω as a function of ϕ, we refer to
the work by Van den Bergh [15]. It deserves mention that
even for a varying ω, the structures of Einstein field
equations remain the same as they come from the variation
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of the relevant action with respect to the metric tensor and
not the scalar field. Thus the conclusions regarding the
infinite ω limit of the generalized theory will be the same as
that for the BD theory with a constant ω.
As BD theory has application mostly in cosmology,

various aspects of the cosmological solutions have been
fairly well-studied. The stability of such solutions for a
standard isotropic and homogeneous cosmology through a
phase space analysis has been studied extensively by
Kolitch and Eardley [16]. A very interesting result obtained
in the work is that models with nonflat spatial curvature
with a vacuum energy leading to an inflationary expansion
in the past do not approach the corresponding spatially flat
solutions in late time. Holden and Wands [17] extended
this work in the sense that their analysis takes care of all
Friedmann-Robertson-Walker solutions in Brans-Dicke
theory. The latter investigation had been worked out in
the conformally transformed version of BD theory,
where the nonminimal coupling is apparently broken by
paying the price of the validity of the equivalence principle.
A very interesting result of this work is that all the stable
solutions, lasting for an infinite future, the BD parameter ω
has values less than − 4

3
. This result is crucial, as the

requirement for an accelerating universe in BD theory,
without any exotic matter, is a negative ω with a low value
[9]. Santos and Gregory [18] used the method of dynamical
systems analysis for BD theory where the models are
endowed with a potential V ¼ VðϕÞ. This kind of extended
BD theory finds application in finding a framework for the
accelerated expansion of the universe [19].
The present work deals with a generalized version of BD

theory where the parameter ω is a function of the scalar
field in the framework given by Nordtvedt [12]. The
motivation is to see the stability of the solutions for a very
general choice of ωðϕÞ. As the matter content, a perfect
fluid with a barotropic equation of state is considered. The
work closest to the present work in the literature is the one
by Faraoni [20]. Faraoni’s work also starts with a variable ω
in the same framework, and then specializes to either BD
theory itself with a potential or a scalar tensor theory where
ω ¼ Gϕ

4ξð1−GϕÞ, where G is the Newtonian constant of gravity

and ξ is a constant.
The present work also includes a generalization in the

form of the presence of a potential V ¼ VðϕÞ. The stability
criteria is found to differ as expected. Mimoso and Nunes
had worked on such a generalization of BD theory with
either a radiation or a cosmological constant as the matter
content. They worked in a conformally transformed version
of the theory where the action looks like that of a minimally
coupled theory, and arrived at the result that GR is an
attractor of the BD theory [21]. The problem with the
conformally transformed version is that the principle of
equivalence is no longer valid as the rest mass of the test
particles becomes a function of the BD scalar field.

In Sec. II, we present the dynamical systems analysis
where no additional potential is used and an additional
potential is considered in Sec. III. The fourth section
includes a discussion of the results obtained.

II. DYNAMICAL SYSTEM WITHOUT POTENTIAL

The action of Brans-Dicke (BD) theory in Jordan frame
with a varying coupling constant is of the following form

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR−

ωðϕÞ
ϕ

gab∇aϕ∇bϕ

�
þSðmÞ; ð1Þ

where Sm ¼ R
d4x

ffiffiffiffiffiffi−gp
Lm, describes the matter content, ϕ

is Brans Dicke scalar field, which is minimally coupled to
matter Lagrangian Lm, but nonminmally coupled to Ricci
scalar and ωðϕÞ is a function of the BD scalar field.
By varying the action with respect to the metric

components, we obtain the field equations as

Rab−
1

2
gabR¼ 8π

ϕ
TðmÞ
ab þωðϕÞ

ϕ2

�
∇aϕ∇bϕ−

1

2
gab∇cϕ∇cϕ

�

þ 1

ϕ
ð∇a∇bϕ−gab□ϕÞ: ð2Þ

Variation of the action with respect to ϕ gives us the
Klein-Gordon equation for the scalar field as

□ϕ ¼ −
ϕ

2ω
R −

1

2
ð∇cϕ∇cϕÞ

�
1

ω

dω
dϕ

−
1

ϕ

�
: ð3Þ

Trace of the Eq. (2) gives the expression for Ricci Scalar
as

R ¼ −
8π

ϕ
TðmÞ þ ω

ϕ2
∇cϕ∇cϕþ 3

□ϕ

ϕ
: ð4Þ

Substituting (4) in Eq. (3) and eliminating R, one obtains

□ϕ ¼ 1

2ωþ 3

�
8πTðmÞ −

dω
dϕ

∇cϕ∇cϕ

�
: ð5Þ

We consider the universe to be described by the spatially
flat Friedmann Robertson Walker (FRW) metric

ds2 ¼ −dt2 þ aðtÞ2½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�: ð6Þ

We also consider the universe to be filled with a perfect
fluid with an equation of state p ¼ ðγ − 1Þρ, where p and ρ
denote the pressure and the density of the fluid respectively
and γ is a constant (1 ≤ γ ≤ 2). The field equations (2) then
can be written as

3H2 ¼ 8π

ϕ
ρm þ ω

2

_ϕ2

ϕ2
− 3H

_ϕ

ϕ
; ð7Þ
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_H ¼ −
ω

2

�
_ϕ

ϕ

�
2

−
8π

ϕ
ρm

�
2þ γω

3þ 2ω

�
þ 2H

_ϕ

ϕ

þ 1

2ð2ωþ 3Þϕ
dω
dϕ

_ϕ2; ð8Þ

where H is the Hubble parameter ðH ¼ _a
aÞ and an overhead

dot represents differentiation with respect to the cosmic
time t. The Klein Gordon equation for the BD scalar field
reduces to

ϕ̈þ 3H _ϕ ¼ 8π

2ωþ 3
ð4 − 3γÞρm −

_ϕ2

2ωþ 3

dω
dϕ

: ð9Þ

Equation (7) can be written in a dimensionless form

1 ¼ 8πρm
3H2ϕ

þ ω

6

_ϕ2

H2ϕ2
−

_ϕ

Hϕ
: ð10Þ

We introduce a new set of dimensionless variables,

x ¼ _ϕ
Hϕ, y ¼ 1

2ωþ3
, λ ¼ ϕ dω

dϕ and N ¼ lnð aa0Þ, where a0 is
the present value of the scale factor which subsequently
will be taken to be unity. With these variables, system of
equations reduces to the following autonomous set of
equations,

x0 ¼ 3

2

�
1 −

1

12y
x2ð1 − 3yÞ þ x

�
× ½−ð2 − γÞxþ ð2þ xÞð4 − 3γÞy�

− λx2y −
1

2
λx3y; ð11Þ

y0 ¼ −2λxy2; ð12Þ

λ0 ¼ ðΓþ λÞx: ð13Þ

Here, Γ ¼ ϕ2 d2ω
dϕ2 and a prime is the derivative with

respect to N ¼ ln a.
For the qualitative analysis of the system with any

functional form of ωðϕÞ, we classify our system into
two classes. If (i) Γþ λ ¼ 0 which leads to ωðϕÞ ¼
lnðBϕAÞ where A, B are constants and if (ii) Γþ λ ≠ 0,
ωðϕÞ is any function of ϕ except the functional form
ωðϕÞ ¼ lnðBϕAÞ. In the case (i), λ is a constant and the
problem essentially becomes two-dimensional. The second
case remains a three dimensional problem. These two
classes are again classified into two more subclasses in
the parameter space, γ ≠ 4

3
and γ ¼ 4

3
because the fixed

points are qualitatively different for these two cases. The
second kind with γ ¼ 4

3
indicates a radiation distribution

and the first kind with γ ≠ 4
3
signifies any other kind of

barotropic fluid.

A. Class I :Γþ λ= 0: a 2 dimensional problem

1. γ ≠ 4
3

In this case we have only one fixed point, namely x ¼ 0,
y → 0. From the definition of y, y → 0 implies ω → ∞.
This physically means that the system has a fixed point at a
very large value of ω. One can also choose a different
variable transformation where the variable is proportional
to ω and the fixed point at ω → ∞ can be found out
directly. The reason behind our choice of y ¼ 1

2ωþ3
is the

simple fact that zeroes are easier to handle than infinities.
This kind of transformation of a variable has previously
been utilized By Ng, Nunes and Rosati [22] in the context
of a scalar field. It deserves mention that instead of x ¼ 0,
y → 0 we can also write the fixed point as x ¼ 0, y ¼ 0

although we have 1
y in the expression for x0, it poses no real

threat as the term actually has x2
y , and if both x and y

approach zero at the same rate, the numerator goes to zero
much faster.
The choice y → 0 is made, because it simplifies stability

analysis. There is a special class of nonhyperbolic fixed
points, called a normally hyperbolic fixed point which is
basically a set of nonisolated fixed points and there is
always a zero eigenvalue associated with each point [23].
Stability of normally hyperbolic fixed points can be found
out easily from the sign of the remaining eigenvalues. If
y ¼ 0, the fixed point is an isolated fixed point whereas for
y → 0, it is a nonisolated fixed point. Throughout the whole
work we have encountered some fixed points which have
one zero eigenvalue. If we choose y → 0, these fixed points
are normally hyperbolic and the stability can be inves-
tigated without much of difficulties. The phase plot we
have drawn for these fixed points also support our
analytical finding considering y → 0.
To check the stability of the fixed point we have to find

the Jacobian matrix of the system at the fixed point. The
Jacobian matrix looks like,

J ¼
"
− 3

2
ð2 − γÞ 3ð4 − 3γÞ
0 0

#
:

The eigenvalues of the Jacobian matrix at this fixed point
are m1 ¼ − 3

2
ð2 − γÞ, m2 ¼ 0. This is a nonisolated fixed

point and it has one zero eigenvalue at each point, so the
fixed point is a normally hyperbolic fixed point. The
stability of a normally hyperbolic fixed point is determined
from the sign of the remaining eigenvalues. In this case the
fixed point is stable for γ < 2. For a fluid, the upper limit
of γ is 2. So we indeed find that the extended BD theory,
with an ideal fluid and a particular choice of ω as
ωðϕÞ ¼ lnðBϕAÞ, the stable model is for x ¼ 0 and
y → 0. The translation in terms of more physical quantities,
the stability requires ϕ → constant, ω → ∞.
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2. γ = 4
3

For γ ¼ 4
3
, the fluid corresponds to a radiation distribu-

tion. The fixed point of the system is x ¼ 0 and y is
undetermined. The Jacobian matrix of the system at this
fixed point is

J ¼
� −1 0

−2λy2 0

�
:

The eigenvalues of the system at the fixed point are
m1 ¼ −1, m2 ¼ 0. This is also a normally hyperbolic fixed
point, so the fixed point is always stable. The physical
behavior of the system at this fixed point is ϕ → constant
and ω undetermined.
The clear indication is that for a radiation distribution,

the stability of the Brans-Dicke solutions does not depend
on the value of the parameter ω whereas for other varieties
of fluid, for which the trace of the energy momentum is
nonzero, the stability requires an infinite value of ω.
Figure 1 shows the phase plots of the system for both

γ ≠ 4=3 and γ ¼ 4=3 cases. These plots strongly support
our analytical findings.

B. Class II: Γþ λ ≠ 0: A 3 dimensional problem

In this class Γþ λ ≠ 0, so λ is not a constant to start
with and the problem remains a 3 dimensional one.
Here ω is any function of ϕ excluding the functional form
ωðϕÞ ¼ lnðBϕAÞ.

1. γ ≠ 4
3

In this case we have only one fixed point x ¼ 0, y → 0, λ.
The Jacobian matrix of the fixed point is given below

J ¼

2
64
− 3

2
ð2 − γÞ 3ð4 − 3γÞ 0

0 0 0

Γþ λ 0 0

3
75:

The eigenvalues of the fixed point are [m1 ¼ − 3
2
ð2 − γÞ,

m2 ¼ 0, m3 ¼ 0]. This is a nonhyperbolic fixed point. We
cannot use linear stability analysis in this case. So we resort
to a different strategy to find the stability. We perturb the
system from the fixed point by a small amount and find the
evolution of the perturbations numerically. If the system
comes back to the fixed point following the perturbation
then the system is stable and if the perturbation grows so
that the system moves away from the fixed point, then the
system is unstable. This is basically the phase plot of the
system near this fixed point. It is very difficult to draw
conclusions from the 3D phase plot. So the projections of
the perturbations on x, y and λ axis are considered
separately. Figure 2 shows the results. Recently this
technique is used in [24]. As N → ∞ the system comes
back to x ¼ 0, y → 0 but projection of perturbations

increase monotonically along λ axis. Our fixed point is
x ¼ 0, y → 0, λ arbitrary and after perturbation the system
comes back to the same fixed point as N → ∞. Hence we
conclude that the fixed point is a stable fixed point. The
physical state of the system at this fixed point is ϕ →
constant and ω → ∞.

(a)

(b)

FIG. 1. Phase plots of the class I system.
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2. γ = 4
3

In this case the fixed point of the system is x ¼ 0,
y ¼ undetermined, λ ¼ undetermined. Eigenvalues are
m1 ¼ − 3

2
ð6 − γÞ,m2 ¼ 0,m3 ¼ 0. It is also nonhyperbolic

in nature. So we have to explore the stability numerically as
discussed before. Figure 3 shows the plots of perturbations
along x, y, λ axis. Projection of perturbation along y and λ
axis evolve to some constant values. Perturbations about x
all converges to x ¼ 0, i.e., the fixed point value. Hence we
can conclude that this fixed point is a stable fixed point.
Like the previous case where Γþ λ ¼ 0, here also the

requirement for stability is the same, an infinite ω for any
matter distribution with a nonzero trace and no particular
range of ω for radiation for which T ¼ Tμ

μ ¼ 0.
It looks all a bit surprising why the requirement of the

value of ω is so different for a radiation distribution and any
other kind of fluid for which T ≠ 0. While it does not have
any imprint on the stability for the radiation case (T ¼ 0), a
large value of ω plays a crucial role for other kinds of fluids.
The clue is there in the Klein-Gordon equation (9) itself.
One needs to have a trivial ϕ, i.e., ϕ ¼ constant so as to
generate the corresponding equations in General Relativity.
Let us pick up the example of a constant ω which
corresponds to the original Brans-Dicke theory. The
first term in the right-hand side of Eq. (9) is zero for
γ ¼ 4

3
, and the equation immediately yield a first integral as

_ϕa3 ¼ α

ð2ωþ3Þ12
. So ϕ can be a constant if the constant of

integration α is zero or ω → ∞. Thus an infinite ω is not a
unique requirement. For any other distribution of matter,
γ ≠ 4

3
, and it is easy to see from Eq. (9) that ω → ∞ is an

utmost requirement for having a constant ϕ. This is true for
any arbitrary functional dependence of ω on ϕ. Fay studied
a vacuum anisotropic model in a generalized BD theory and
found that the stable solutions find their habitat either in
string theory or in GR [25]. But this does not warrant an
infinite value of ω. For a vacuum, the energy-momentum
tensor is indeed trace less, so the results obtained by Fay is
consistent with the present analysis.

(a) (b) (c)

FIG. 2. Projection of perturbations along x, y, λ axis for Class II, without potential and γ ≠ 4
3
.

(a) (b) (c)

FIG. 3. Projection of perturbations along x, y, λ axis for Class II, without potential and γ ¼ 4
3
.

TABLE I. Fixed points and corresponding eigenvalues for the
Class I models with potential and γ ≠ 4

3
.

Fixed
points x y z Eigenvalues

a 0 y→0 0 3
2
ðγ−2Þ;0;3

2
γ,

b 0 y→0 1 −3;0;−3γ,
c 0 y→0 −1 −3;0;−3γ,
d 0 γ

6γ−8 −
ffiffiffiffiffiffiffiffiffi
4−3γ
4n−3γ

q
For n¼1 (−3;−3, 0)

For n¼2 (1
5
ð−3� ffiffiffiffiffiffiffiffi

201
p Þ;0)

e 0 γ
6γ−8

ffiffiffiffiffiffiffiffiffi
4−3γ
4n−3γ

q
For n¼1 (−3;−3, 0)

For n¼2 (1
5
ð−3� ffiffiffiffiffiffiffiffi

201
p Þ;0)
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III. ANALYSIS WITH POTENTIAL

For a more general analysis of the system we introduce a
potential V ¼ VðϕÞ in the action as,

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωðϕÞ
ϕ

gab∇aϕ∇bϕ − VðϕÞ
�

þ SðmÞ: ð14Þ

The field equations and the wave equation are written as
follows

3H2 ¼ 8π

ϕ
ρm þ ω

2

_ϕ2

ϕ2
− 3H

_ϕ

ϕ
þ V
2ϕ

; ð15Þ

_H ¼ −
ω

2

�
_ϕ

ϕ

�
2

−
8π

ϕ
ρm

�
2þ γω

3þ 2ω

�
þ 2H

_ϕ

ϕ

þ 1

2ð2ωþ 3Þϕ
�
dω
dϕ

_ϕ2 − 2V þ ϕ
dV
dϕ

�
; ð16Þ

ϕ̈þ 3H _ϕ ¼ 1

2ωþ 3

�
8πð4 − 3γÞρm − ϕ

dV
dϕ

þ 2V

�

−
_ϕ2

2ωþ 3

dω
dϕ

: ð17Þ

The new set of variables has only one additional quantity

z, x ¼ _ϕ
Hϕ, y ¼ 1

2ωþ3
, z2 ¼ V

6H2ϕ
, λ ¼ ϕ dω

dϕ.

In what follows, we consider a power-law potential
VðϕÞ ¼ M4ð ϕϕ0

Þ2n. The system is written down for a general
n, but two definite examples, namely n ¼ 1 and n ¼ 2, will
be worked out in detail. The choice is indeed motivated by
simplicity of the formulation, but power law potentials are
relevant as well. In a recent work [26], Joan Sola,
Karimkhani and Khodam-Mohammadi derived the struc-
ture of the Higgs potential from a generalized Brans- Dicke
(BD) theory containing two interacting scalar fields. For a
very brief summary of why power law potentials are useful,
we refer to a recent work [27]. With the transformation of
variables, the system of equations reduces to

(a)

(b)

(c)

FIG. 4. Evolution of the system from the fixed point (a) to the
fixed point (b) for Class I, with potential VðϕÞ ¼ M4ð ϕϕ0

Þ2n, n ¼ 1

and γ ≠ 4
3
.

TABLE II. Fixed points and corresponding eigenvalues for the
Class I models with potential and γ ¼ 4

3
.

Fixed points x y z Eigenvalues

a 0 y 0 ð−1; 0; 2Þ
b 0 y → 0 1 ð−3; 0;−4Þ
c 0 y → 0 −1 ð−3; 0;−4Þ
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x0 ¼ −
3

2

�
1þ x−

ð1− 3yÞ
12y

x2 − z2
�

× ½ð2− γÞx− ð4− 3γÞð2þ xÞy�

− λx2y−
1

2
λx3y− 3xz2 − 2ð6n− 1Þyz2 − 6ðn− 1Þxyz2;

ð18Þ
y0 ¼ −2λxy2; ð19Þ

z0 ¼ ðn − 1=2Þxz − z

�
−
3

2
ðð4 − 3γÞyþ γÞ

×

�
1þ x −

ð1 − 3yÞ
12y

x2 − z2
�

−
ð1 − 3yÞ

4y
x2 þ 2xþ 1

2
λx2y − 6ðn − 1Þyz2

�
ð20Þ

λ0 ¼ ðΓþ λÞx; ð21Þ
where N ¼ lnð aa0Þ.
Similar to the previous case, here also we classify the

system into two classes, (I) Γþ λ ¼ 0, (II) Γþ λ ≠ 0. Each
of these classes are also classified into two more subclasses
γ ≠ 4=3 and γ ¼ 4=3.

A. Class I: Γþ λ = 0

In this case λ is a constant then we have an effectively 3
dimensional system.

1. γ ≠ 4=3

The fixed points and the corresponding eigenvalues of
the system are given in Table I,
The eigenvalues of the fixed points (a),(b), and (c) are

independent of n but the eigenvalues of (d) and (e) do
depend on n. As mentioned before, we analyze the system
for n ¼ 1 and n ¼ 2. All of these fixed points are normally

(a)

(b)

(c)

FIG. 5. Evolution of the system from some arbitrary initial
values to the fixed point (b) for Class I, with potential
VðϕÞ ¼ M4ð ϕϕ0

Þ2n, n ¼ 1 and γ ¼ 4
3
.

TABLE III. Fixed points and corresponding eigenvalues for the
Class II models with potential and γ ≠ 4

3
.

Fixed
points x y z λ Eigenvalues

a 0 y→0 0 λ 3
2
ðγ−2Þ;0;3

2
γ;0

b 0 y→0 1 λ −3;0;−3γ;0
c 0 y→0 −1 λ −3;0;−3γ;0
d 0 γ

6γ−8 −
ffiffiffiffiffiffiffiffiffi
4−3γ
4n−3γ

q
λ For n¼1 (−3;−3, 0, 0)

For n¼2 (1
5
ð−3� ffiffiffiffiffiffiffiffi

201
p Þ;0;0)

e 0 γ
6γ−8

ffiffiffiffiffiffiffiffiffi
4−3γ
4n−3γ

q
λ For n¼1 (−3;−3, 0, 0)

For n¼2 (1
5
ð−3� ffiffiffiffiffiffiffiffi

201
p Þ;0;0)
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(a)

(b)

(c)

(d)

FIG. 6. Projection of perturbations along x, y, z, λ axis for Class
II, with potential VðϕÞ ¼ M4ð ϕϕ0

Þ2n, n ¼ 2 and γ ≠ 4
3
.

(a)

(b)

(c)

(d)

FIG. 7. Evolution of the system from some arbitrary initial
conditions to the fixed point(b) for Class II, with potential
VðϕÞ ¼ M4ð ϕϕ0

Þ2n, n ¼ 1 and γ ≠ 4
3
.
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hyperbolic. For γ > 0, fixed point (a) is a saddle point,
while (b) and (c) are stable fixed points. Stability of the
fixed points (d) and (e) are different for various choice of n,
stable for n ¼ 1 and unstable for n ¼ 2. To support our
analytical finding we have perturbed the system from the
saddle point (a) and allowed it to evolve. In Fig. 4 the plots
are given and one can see that the system evolve to the fixed
point (b) from (a). The plots are for n ¼ 1. Unlike n ¼ 2,
the solutions for n ¼ 1 has attractors (d) and (e) where
y → 0 is not a requirement. But n ¼ 2 can only evolve to
(b) and (c) and both of them implies ω → ∞.

2. γ = 4=3

The fixed points of the system are given in the Table II.
These fixed points are also normally hyperbolic.
The value of y in fixed point (a) is undefined and it is a

saddle point. Fixed point (b) and (c) are stable fixed points.
The evolution of the system from some arbitrary initial
values to (b) is shown in Fig. 5.
We have the plots for n ¼ 1. For n ¼ 2, the correspond-

ing qualitative behavior of Fig. 5 are the same.

IV. CLASS II: Γþ λ ≠ 0

In this case the system is a 4-dimensional one. Like the
previous scenario without a potential, here also we shall
subdivide the class into two parts, one with γ ≠ 4

3
and the

other with γ ¼ 4=3.

A. γ ≠ 4=3

The fixed points and their corresponding eigenvalues are
given in Table III.
All these fixed pints are nonhyperbolic and λ is arbitrary

for each fixed point. We cannot use linear stability analysis
for this set of fixed points. However, for 2 > γ > 0, fixed
point (a) is always a saddle point. For n ¼ 2, the fixed
points (b) and (c) have the possibility of being late time
attractors. These two fixed points are particularly interest-
ing, as these two fixed points correspond to general
relativity. We perturbed the system from the fixed points
(b) and (c) and find that the system comes back to these
fixed points so we conclude these fixed points to be stable.
Our system of equations is symmetric in z → −z and fixed
point (c) has the same eigenvalues of (b) so the perturba-
tions around (c) behave the same way as in (b). Figure 6
shows the projection of perturbations along the axes near
the fixed point (b).

(a)

(b)

(c)

(d)

FIG. 8. Projection of perturbations along x, y, z, λ axis
for Class II, with potential VðϕÞ ¼ M4ð ϕϕ0

Þ2n, n ¼ 2 and

γ ¼ 4
3
.

TABLE IV. Fixed points and corresponding eigenvalues for the
Class II models with potential and γ ¼ 4

3
.

Fixed points x y z λ Eigenvalues

a 0 y → 0 0 λ ð−1; 0; 2; 0Þ
b 0 y → 0 1 λ ð−3; 0;−4; 0Þ
c 0 y → 0 −1 λ ð−3; 0;−4; 0Þ
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For n ¼ 1 there are more options because the fixed point
(b), (c), (d), and (e) may be also late time attractor. To check
the stability of (b) and (c), we allowed the system to evolve
from some arbitrary initial values. Figure 7 confirms that
the solutions are essentially attracted towards (b), hence the
BD theory for n ¼ 1, in late time, has the possibility to be
indistinguishable from general relativity.

B. γ = 4=3

The fixed points and the eigenvalues are given in
Table IV. There are only three fixed points and all of them
are nonhyperbolic. Fixed point (a) is a saddle fixed point
but (b) and (c) may be late time attractors. Similar to
previous cases we find the stability of these fixed point (b)
and (c) numerically. Figure 8 shows the evolution of the
perturbations around the fixed point (b). The phase space
behavior of (b) and (c) are similar. Hence, we conclude (b)
and (c) are indeed stable fixed points.
The major difference in the stability in this cases, where a

potential VðϕÞ is also included in the action, is the fact that
the requirement of an infinite ω for matter distribution with
a nonzero trace is relaxed in some cases. On the other hand,
for a trace-free matter like a radiation, an infiniteω seems to
be a requirement as opposed to the purer version of the
theory, i.e., in the absence of the potential term. The reason
seems to be quite apparent. The presence of the potential
term, −ϕ dV

dϕ þ 2V, in Eq. (17) makes the ϕ dependence of
the solution for ω quite open. The potential term can
conspire with the dω

dϕ term and infringe upon the ω

dependence of the scalar field ϕ.

V. DISCUSSIONS

The present work deals with the stability of cosmological
solutions for a spatially flat homogeneous and isotropic
cosmological model with a distribution of a perfect fluid in
an extended Brans-Dicke theory. The extension actually
lies in the generalization of the parameter ω as a function of
the BD field ϕ according to the prescription by Nordtvedt
[12]. The strength of Nordtvedt’s theory lies in the fact that
this can reproduce a wide class of scalar-tensor theory of
gravity for suitable choices of ω ¼ ωðϕÞ.
For a particular choice of ω, given by ωðϕÞ ¼ lnðBϕAÞ,

the problem actually reduces to a 2-dimensional one. It is
found that for any fluid with a reasonable equation of state
other than radiation, the solution is stable only for ϕ ¼
constant and ω → ∞, for which the theory is indistinguish-
able from general relativity. However, for a radiation
distribution, the situation different, a constant ϕ is still a
requirement for the stability but ω does not need to be
infinity, it can have any value, as y, which is 1

2ωþ3
, can have

an arbitrary value so as to allow a stable situation.
Even for all other functional forms of ω, the criteria of

stability are very similar. When γ ≠ 4
3
, there is only one fixed

point. This fixed point is a nonhyperbolic fixed point, and the
stability cannot be judged analytically. A numerical pertur-
bation about the fixed point clearly indicates that ϕ ¼
constant and ω → ∞ is indeed a stable natural habitat for
the system. However, for γ ¼ 4

3
corresponding to radiation,

where again due to the nonhyperbolic nature of the fixed
point, only the stability against perturbation can be analyzed.
Any value of ω can potentially give rise to a stable situation
(seeFig. 3).However,ϕ certainly approaches a constant value
for the stable solutions (x ¼ 0). A constant ϕ indicates that
the scalar field is trivial andmakes no impact on thegeometry.
One should note that for a radiation distribution (γ ¼ 4

3
),

the trace of energy momentum tensor is zero, whereas for
other values of γ, the trace is nonzero. Now we find an
intriguing result that the stability of the generalized BD
solutions warrants an infinite value of ω for matter fields
with a nonzero trace for the energy momentum tensor,
whereas for a trace free matter distribution, an infinite ω has
nothing to do with the stability. This result recalls the fact
that an infinite ω leads BD theory to the corresponding GR
for matter with a nonzero trace and BD theory with a
traceless matter does not have this infinite ω limit to GR
[4,5]. So although nothing definite can be talked about a
radiation distribution, for any other physically relevant
fluid distribution, the natural habitat for the BD theory for a
large N, i.e., a far future, is indeed general relativity.
A further generalization of BD theory, namely the inclu-

sion of a scalar potential VðϕÞ in the Lagrangian, is also
considered in Sec. III. This generalization renders the theory
significantly different from BD theory, but it has a relevance,
particularly in connection with the building up of models for
the accelerating universe (see for example, Ref. [19]). For the
sake of simplicity, we have taken up the case for a power law
potential (VðϕÞ ¼ M4ð ϕϕ0

Þ2n) andworkout in detail forn ¼ 1

and n ¼ 2. Although specific examples do not have the same
status as a general treatment, but there are clear indications
that with the addition of a potential, the requirement of
infiniteω for a stability is relaxed in some of the cases where
the trace of the matter energy momentum tensor (T) is
nonzero. Surprisingly, this infinite ω limit becomes more
relevant where T ¼ 0. For the latter the explanation could
well be that in the presence of VðϕÞ, the matter Lagrangian
now has trace, and the stability requirement becomes similar
to T ≠ 0) case of the theory without a potential.
As a matter of clarification, we should mention what is

meant by the statement BD theory reduces to GR or not.
This is particularly important as in all the fixed points one
has x ¼ 0 meaning a constant ϕ. It is easy to see that for a
constant ϕ, the scalar field contribution to the field
equation (2) becomes trivial and it reduces practically
some equation in GR. But it might lead to some other
matter distribution than that which one starts with. When
one says that BD theory reduces to GR, it is meant that the
corresponding equation in GR with exactly the same matter
distribution [4].
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