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In this work, inspired by the symmetron model, we analyze the evolution of spherical domain walls by
considering specific potentials that ensure symmetry breaking and the occurrence of degenerate vacua that
are necessary for the formation of domain walls. By considering a simple analytical model of spherical
domain-wall collapse in vacuum, it is shown that this model fits the more accurate numerical results very
well until full collapse, after which oscillations and scalar radiation take place. Furthermore, we explore the
effect of a central nonrelativistic matter lump on the evolution of a spherical domain wall and show that the
central lump can prevent the full collapse and annihilation of the domain-wall bubble, due to the repulsion
between the domain wall and matter overdensity within the adopted symmetron-inspired model.
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I. INTRODUCTION

Substantial observational evidence, such as the late-
time accelerated expansion of the Universe [1,2], supports
the idea of an exotic cosmic fluid denoted as dark energy
[3–5]. However, the nature of dark energy is not yet
understood, and there are two different points of view:
first that dark energy is a kind of unknown matter/energy
with highly negative pressure and, second, that General
Relativity (GR) needs to be modified. Moreover, the
requirement of the first approach consists of finding a
new type of matter with an equation of state of the form
w≡ p=ρ ≈ −1, and its detection will be a milestone for
particle physics. Nevertheless, according to the second
paradigm, it is conceivable that GR is a first-order
approximation to a more fundamental theory. Such an
idea is known as modified gravity [6]. Accordingly,
numerous theories of high-energy physics, such as string
theory and supergravity, predict light, gravitationally
coupled scalar fields [7–9]. In fact, in all of these theories,
a scalar field can play the role of dark energy [7,10]. In
addition, a fifth force emerges from this scalar field.
In fact, one of the best-motivated modifications of GR are

scalar-tensor theories [10]. These can be interpreted as a
generalized form of quintessence models, which contain a
scalar field coupled to matter. It seems natural to assume that
the order of this coupling constant is unity, and one may
interpret it as a source of the fifth force [10]. It is necessary
to emphasize that the detection of this force not only depends
on the value of the coupling constant but is also associated
with the averagematter density of the environment. This idea
can be formulated by a “screening mechanism” that leads to

the suppression of this additional force in amediumwith high
average matter density such as the solar system [7,10,11].
Recently, two screening mechanisms have been introduced,
namely, the chameleon mechanism and the symmetron
model. Briefly, they work through different mechanisms,
although they are similar in some respects [10]. While in the
chameleon mechanism [10,12–14], the effective mass of the
field depends on the local matter density, in the symmetron
model [10,15–17], the vacuum expectation value (VEV) of
the scalar field and the symmetry of the potential are
dependent on the local matter density.
In this paper, we focus on the symmetron model and

explore alternative potentials to those proposed in the
symmetron literature. As mentioned above, the symmetron
model has been formulated based on a scalar field and
matter interaction, undergoing symmetry breaking. An
interesting consequence of symmetry breaking that appears
in many different physical theories is that of domain walls
[18–26]. Topologically, domain walls can form if the field
potential has disconnected vacua [18]. Furthermore, in
cosmology and during the early Universe, it is assumed that
the cosmic medium cools as it expands, so that cosmo-
logical phase transitions could occur due to the breaking
of fundamental symmetries [27]. Formerly, cosmological
domain walls were expected to form during a symmetry
breaking in the early Universe via a second-order phase
transition, through a process known as the Kibble mecha-
nism [28–30] and it was speculated that they lead to the
formation of large-scale structures. However, since no
observational evidence has yet been found in favor of such
objects in the cosmic microwave background radiation,
such a scenario is nowadays usually discarded.
As mentioned before, scalar fields with a strong coupling

to matter can be present in the Universe while invisible to
local observations. This may be so if these fields are subject
to a screening mechanism, such as in the symmetron model.
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Note that in this model regions of high density shield the
fifth force resulting from the scalar field. In fact, in Ref. [7],
a structure formation analysis in the symmetron model via
N-body simulations confirms the suppression of the scalar
fifth force in high-density regions. Moreover, the properties
of domain walls in the symmetron model have been studied
in Ref. [11], in which numerical simulations of represen-
tative interactions between domain walls and matter over-
densities have been investigated.
In the present paper, motivated by the symmetron model,

we analyze the dynamics (collapse/expansion) of spherical
domain walls which are governed by popular scalar field
theory potentials capable of producing domain walls. We
will present several ways of doing analytical and numerical
calculations showing the collapse (or expansion) of the
spherical domain wall, with/without the gravitational inter-
action and with/without direct interaction between the
symmetron field φ and the matter. The outline of this
paper is as follows. In Sec. II, we present a short review of
the symmetron model and consider alternative potentials
that will be analyzed throughout the paper. In Sec. III, we
calculate the collapse of a spherical domain wall for each
model, followed by a simple analytical model which
closely agrees with the numerical results. In Sec. IV, we
discuss the evolution of spherical domain walls in the
presence of central matter density. Section V involves the
gravitational effects of the central mass as well as the self-
gravity of the domain wall through a collective coordinate
approximation. We present our conclusions in Sec. VI.

II. SYMMETRON MODEL AND
ALTERNATIVE POTENTIALS

A. Symmetron model: General formalism

The action of the symmetron model in the Einstein
frame is given by Refs. [7,10,11,16], with metric signature
ð−;þ;þ;þÞ,

S ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
R
2
M2

pl −
1

2
gμν∂μφ∂νφ − VðφÞ

�

þ
ffiffiffiffiffiffi
−~g

p
Lmðψ ; ~gμνÞ

�
; ð1Þ

where Mpl ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
with G as a Newton’s constant,1 ψ

is representative of the matter fields, and φ is the scalar
(symmetron) field which is coupled to the Jordan frame
metric via a conformal rescaling, given by ~gμν ≡ A2ðφÞgμν
[7,10,11,15]. The coupling function AðφÞ is usually chosen
to be an even polynomial with respect to φ, in order to be
compatible with the transformation φ → −φ, as shown
below.
As one can obtain from the action, the scalar field

equation of motion is given by [10,15]

□φ − V;φ þ A3ðφÞA;φðφÞ ~T ¼ 0; ð2Þ

where ~T ¼ ~gμν ~Tμν is the trace of the Jordan frame matter
energy-momentum tensor [10,11,15]. The latter is defined
as ~Tμν ¼ − 2ffiffiffiffi

−~g
p δLm

δ~gμν. Considering nonrelativistic matter

( ~T ≈ −~ρ) and ρ ¼ A3ðφÞ~ρ, then Eq. (2) takes the form

□φ − V;φ − A;φðφÞρ ¼ 0: ð3Þ

Furthermore, by interpreting VðφÞ þ ρAðφÞ, as an effective
potential, the field equation reduces to [7,10]

□φ ¼ Veff;φ: ð4Þ

The form of the functions AðφÞ and VðφÞ is fundamental for
the symmetron model. In general, it is assumed that these
functions are symmetric under the transformation φ → −φ
and work in such a way that they could control the VEVof
the effective potential during symmetry breaking [10,15].
The simplest symmetron models use the functions

[7,10,11,15]

AðφÞ ¼ 1þ φ2

2M2
þO

�
φ4

M4

�
; ð5Þ

where φ=M ≪ 1 is considered, and the potential

VðφÞ ¼ V0 −
1

2
μ2φ2 þ 1

4
λφ4 ð6Þ

is chosen to be of the symmetry-breaking form.
The constants μ and M have mass dimensions and λ is a

positive dimensionless coupling [7,10,11]. However, it is
more appropriate to work with physically intuitive quan-
tities such as L, χ and ρSSB, where L is the cosmological
range of the fifth force in Mpc=h [here, h ¼ H0=
ð100 km s−1 Mpc−1Þ], χ is the strength of the fifth force
relative to gravity, and ρSSB is related to the density at
which the spontaneous symmetry breaking (SSB) takes
place in the cosmological background [7,11].
In the symmetron model, SSB is governed by the

coupling between matter and the scalar field, which results
in the effective potential [7,10,11,15]

Veff ≡ 1

2

�
ρm
M2

− μ2
�
φ2 þ 1

4
λφ4 þ V0; ð7Þ

whereM is the mass scale for SSB and ρSSB ¼ μ2M2. Note
that ρm > μ2M2 corresponds to the symmetric phase, while
ρm < μ2M2 leads to SSB.
The introduction of cosmic scalar fields is severely

constrained by observations of the behavior of local
gravitational fields. Such a field—if in existence—should
be coupled to the matter field in such a way that its physical
effects (the so-called fifth force) are screened at solar1We will use units in which G ¼ 1 and Mpl ¼ 1=

ffiffiffiffiffi
8π

p
.
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system scales. The range of the symmetron field depends
on the effective mass of the field near the minimum of the
effective potential. Note that the effective mass of the scalar
field is defined as mφ ≡ ð∂2Veff=∂φ2Þ1=2jvac and, using
Eq. (7), takes the form

mφ ¼
�

ρm
ρSSB

− 1

�
μ2 þ 3λφ2

min; ð8Þ

where φmin ¼ �φ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρm=ρSSB

p
, and φ0 ≡ μ=

ffiffiffi
λ

p
is the

symmetry-breaking VEV for ρ → 0.
Therefore, the field has the longest range (l ∼ 1=mφ) in

regions with lowest matter densities and shortest range in
local concentrations of matter (inside a galaxy or within the
solar system).

B. Alternative potentials

In what follows, we replace the symmetron potential (6)
with four popular scalar field theory potentials, extensively

considered in the literature. These are the sine-Gordon
(SG), double sine-Gordon (DSG), ϕ4, and ϕ6 systems. The
corresponding potentials of these systems are given by
[25,31–34]

VSGðφÞ ¼
a
b
ð1 − cosðbφÞÞ; ð9Þ

VDSGðφÞ ¼
a
b
ð1þ ε − cosðbφÞ − ε cosð2bφÞÞ; ð10Þ

Vφ4ðφÞ ¼ β2

2α2
ðφ2 − α2Þ2; ð11Þ

Vφ6ðφÞ ¼ β2

4α2
φ2ðφ2 − α2Þ2; ð12Þ

respectively.
According to Eqs. (3) and (4), the effective potentials for

the above-mentioned systems are plotted in Figs. 1–4. The
left plots (a) of these figures depict the effective potential
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FIG. 1. The effective potential of the SG system for a ¼ b ¼ 1; (a) ρ ¼ 10 and (b) ρ ¼ 0.01. See the text for more details.
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FIG. 2. The effective potential of the DSG system for a ¼ b ¼ 1 and ε ¼ 10; (a) ρ ¼ 10 and (b) ρ ¼ 0.01. See the text for more
details.
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for large ρ (ρ ¼ 10) in which the symmetry is restored.
The right plots (b) show the effective potential for small
values of ρ (ρ ¼ 0.01) with symmetry breaking. It should
be emphasized that the minimum of these potentials can
be degenerate or nondegenerate, depending on the value of
ρ in the second case. For instance, in the SG model with
ρ ¼ 0.01, in Fig. 1, the effective potential is similar to
the DSG potential with nondegenerate vacua (Fig. 1).
However, as ρ → 0, these vacua become degenerate.

In what follows, we see that, by expanding each of these
potentials around the location of the domain wall up to
Oðφ4Þ, one may obtain a correspondence with the potential
of the symmetron model, i.e.,

VSGðφÞ ¼
2a
b
−
1

2
ab

�
φ−

π

b

�
2 þ 1

24
ab3

�
φ−

π

b

�
4 þOðφ6Þ;

ð13Þ

VDSGðφÞ ¼
1

8

að8εb2 þ 16ε2b2 þ 2b − 1Þ
εb3

þ 1

4

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ε2b2−1

ε2b2

q
ðb − 1Þ

b

�
φ −

π − arccosð 1
4εbÞ

b

�

−
1

8

að−2þ 16ε2b2 þ bÞ
εb

�
φ −

π − arccosð 1
4εbÞ

b

�
2

−
1

24
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ε2b2 − 1

ε2b2

s
bð−4þ bÞ

�
φ −

π − arccosð 1
4εbÞ

b

�
3

þ 1

96

abðb − 8þ 64ε2b2Þ
ε

�
φ −

π − arccosð 1
4εbÞ

b

�
4

þOðφ5Þ; ð14Þ
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FIG. 3. The effective potential of the φ4 system for α ¼ β ¼ 1; (a) ρ ¼ 10 and (b) ρ ¼ 0.01. See the text for more details.
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FIG. 4. The effective potential of the φ6 system for α ¼ 1 and β ¼ ffiffiffi
2

p
; (a) ρ ¼ 10 and (b) ρ ¼ 0.01. See the text for more details.
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Vφ4ðφÞ ¼ 1

2
β2α2 − β2φ2 þ 1

2

β2

α2
φ4; ð15Þ

Vφ6ðφÞ ¼ 1

27
β2α4 −

1

3
β2α2

�
φ −

ffiffiffi
3

p

3
α

�2

−
ffiffiffi
3

p

9
β2α

�
φ −

ffiffiffi
3

p

3
α

�3

þ 3

4
β2
�
φ −

ffiffiffi
3

p

3
α

�4

þOðφ5Þ; ð16Þ

respectively.
Here, we note that the appearance of odd terms in φ

indicates that these models break the Z2 symmetry around
the domain wall. Note that the sign of the second-order
term is very important, since it ensures symmetry breaking
and the occurrence of degenerate vacua necessary for the
formation of domain walls [15]. As one can see, the
negative sign appears in the second term of all of these
models, except in the DSG model. In particular, for this
special case, the sign of the second-order term depends
on ε. Moreover, the type and position of the minima in
the potential vary according to the value of ε, and as a
result, various domain walls with different values of
vacuum energy densities will appear. For instance, for
ε > 0.25, there are two kinds of vacua [local minima at
φ ¼ ð2nþ 1Þπ and global minima at φ ¼ 2nπ] which
result in the appearance of kink domain walls with two
subkinks [25,32]. On the other hand, if −0.25 < ε < 0.25,
false vacua of the potential disappear, and the system tends
to the SG system with true vacuum at zero [25,32].
However, the most important case occurs for ε < −0.25.
One can see that for each ε, the potential contains two kinds
of maxima [local at φ ¼ 2nπ and global at φ ¼ ð2nþ 1Þπ],
while the minima are all degenerate. Remarkably, the
structure of the potential in this case provides two different
pathways to connect absolute degenerate minima, which
means that we encounter two types of domain walls. The
surface energy densities of these two types of domain walls
are not the same [25].
Furthermore, based on Eqs. (13)–(16), while the SG

potential can satisfy the symmetron model conditions
for positive free parameters (a; b > 0), the φ6 potential
fulfills this model for both positive and negative parameters
(α and β). Besides, in the φ6 system, domain walls are not
located at φ ¼ 0, and as a result, its potential expansions
involve odd terms ofφ aswell as even terms. Itmeans that for
this potential the symmetric phase corresponds to complex
alpha [i.e., φ2ðφ2 þ jαj2Þ2]. Symmetry breaking occurs
when we have real alpha [i.e., φ2ðφ2 − jαj2Þ2]. Since it
seems plausible to apply these models to large-scale struc-
tures present in the late-time Universe, we interpret V0 in
Eq. (6) as a positive cosmological constant Λ which may be
responsible for the accelerated expansion of theUniverse [7].

III. FREE SPHERICAL DOMAIN WALLS

In this section, we start by investigating the evolution
of spherical domain walls of the systems (9)–(12) in the
absence of matter density. In Sec. IV, we will study the
evolution of these topological defects in the presence of an
inner matter aggregation. On the other hand, for simplicity,
in the SG, DSG, φ4, and φ6 models, we choose a ¼ b ¼ 1,
α ¼ β ¼ 1, α ¼ 1, and β ¼ ffiffiffi

2
p

, respectively.

A. Free collapse of spherical domain walls

In the absence of matter, by omitting ρ in Eq. (3), and
assuming spherical symmetry, the general forms of the
equations in natural units, for the SG, DSG, φ4, and φ6

models, reduce to the simple forms

∂2φ

∂t2 þ sinðφÞ ¼ ∂2φ

∂r2 þ
2

r
∂φ
∂r ;

∂2φ

∂t2 þ sinðφÞ þ 2ε sinð2φÞ ¼ ∂2φ

∂r2 þ
2

r
∂φ
∂r ;

∂2φ

∂t2 þ 2φ3 − 2φ ¼ ∂2φ

∂r2 þ
2

r
∂φ
∂r ;

∂2φ

∂t2 þ 3φ5 − 4φ3 þ φ ¼ ∂2φ

∂r2 þ
2

r
∂φ
∂r ; ð17Þ

respectively. The planar approximation static solutions
(large spherical walls) of these equations, as outlined in
the literature [25,31–34], for the SG, DSG, φ4, and φ6

models, are given by

φðrÞ ¼ 4 arctan½expðr − R0Þ�;

φðrÞ ¼ 2 arccos

2
64� sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4εþ 1

p ðr − R0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4εþ cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4εþ 1

p ðr − R0Þ
q

3
75;

φðrÞ ¼ tanhðr − R0Þ;
φðrÞ ¼ f1þ exp½−2ðr − R0Þ�g−1

2; ð18Þ

respectively, in which R0 is the location of the domain wall.
Note that this approximation is valid as long as the radius of
the spherical domain wall is much larger than the thickness
of the wall. The thicknesses of these domain walls
[19,28,35,36] are given by δSG ∼ 1=ð2 ffiffiffiffiffiffi

ab
p Þ ¼ 1=2 (with

a ¼ b ¼ 1), δDSG ∼ 1, δφ4 ∼ 1=β ¼ 1 (for α ¼ β ¼ 1), and

δφ6 ∼ 1=ð ffiffiffi
2

p
αβÞ ¼ 1=2 (for α ¼ 1, β ¼ ffiffiffi

2
p

),.
The thin-wall approximation breaks down when [28]

R
R0

∼
�

δ

R0

�
1=3

; ð19Þ

where R0 is the initial radius of the bubble (spherical wall)
and δ is the wall thickness. Here, R0 is chosen to be 25, for
simplicity. Thus, the quantity δ=R0 is equal to 0.02, 0.04,
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0.04, and 0.02 for the SG, DSG, φ4, and φ6 systems,
respectively. We emphasize that when this condition is not
valid the domain wall will be thick, and in this case, one can
consider R as an average radius, as outlined in Ref. [37].
We will use static solutions of Eq. (18) as the initial
conditions for the numerical investigation of the spherical
wall collapse.
Note that in 1þ 1 dimensions, the kink behaves and

moves like a massive particle. The action of a kink, by
ignoring its internal structure, can be written as
S1þ1 ¼ −M

R
dτ, where M and dτ are the mass of the kink

and the invariant line element, respectively [28]. The latterdτ
may also be written as dτ ¼ dtðgμν dxμ

dt
dxν
dt Þ1=2, where gμν is

the metric of the spacetime background and xμðtÞ is the
location of the kink at time t. By extending the 1þ 1 kink in
two more spacelike dimensions, one can construct domain
walls. Indeed, the dynamics in 3þ 1 dimensions is consid-
erably richer, where for instance, a domain wall can bend,
oscillate, and move in more complicated ways.
For instance, consider nonrelativistic domain-wall sol-

utions with a spherical symmetry ansatz, Xμðt; θ;φÞ ¼
½τ; RðτÞr̂�, where τ ¼ t, r̂ ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ,
and θ and φ are the standard spherical angular coordinates
[28]. The spacetime metric is ημν ¼ diagð1;−1;−1;−1Þ.
From the Nambu-Goto action, one can derive the equation
of motion for domain walls, i.e., S0 ¼ −σ

R
dΣ

ffiffiffiffiffiffijhjp
, where

the integral is over the wall world volume Σ, σ is the tension
of the domain wall (the energy per unit area), and

h ¼ detðhabÞ2 [28]. Note that the induced metric on the
wall is given by hab ¼ diagð1 − _R2;−R2;−R2 sin2 θÞ,
where _R ¼ v ¼ dR=dτ. The approximate equation of
motion turns out to be [28,37]

R̈ ¼ −
2

R
ð1 − _R2Þ: ð20Þ

By integrating this equation, one arrives at the following
relation for the velocity of the bubble:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
R
R0

�
4

s
: ð21Þ

This is depicted in Fig. 5 (see the details below).
In the next section, we will present a specific model for

the speed of the collapsing bubble. Note that the behavior
of the collision of kinks and antikinks in 1þ 1 dimensions
differs in integrable and nonintegrable systems. For the
integrable SG system, the kink and antikink keep their
forms after their collision and continue to move with the
same velocity, although a phase shift results [31]. For
nonintegrable systems such as the DSG, ϕ4, and ϕ6

systems, certain scattering windows appear, between which
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FIG. 5. The numerical results are shown by the dotted curve depicting the bubble collapse velocity curve in terms of the radius of
the bubble for the (a) SG (a ¼ b ¼ 1), (b) DSG (a ¼ b ¼ 1 and ε ¼ 10), (c) φ4 (α ¼ β ¼ 1), and (d) φ6 (α ¼ 1 and β ¼ ffiffiffi

2
p

) systems.
The analytical results of Eqs. (21) and (27) for n ¼ 0.3 are shown in the dashed-dotted and solid curves, respectively.

2This quantity is positive for the kink in 1þ 1 dimensions and
for the domain wall in 3þ 1 dimensions, as well [28].
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the components of the pair annihilate each other [34]. This
situation holds almost (but not exactly) the same for a
collapsing spherical domain wall [28]. Numerical simu-
lations show that a collapsing spherical SG domain wall
does not radiate scalar waves as long as the radius is larger
than the wall thickness [see Eq. (19)]. In the final stages of
the collapse, however, it emits strongly and oscillates for a
while [28,37]. In the next section, we will present a more
accurate, relativistic model for the spherical-wall collapse.

B. Simple analytical model of spherical
domain-wall collapse

The flat version of the domain wall has an energy per
unit surface σ0 ≡ Rþ∞

−∞ T0
0dx, where x is a coordinate

normal to the wall. For the SG system with the potential
V ¼ 1 − cosðφÞ (recall a ¼ b ¼ 1), we obtain σ0 ¼ 8. This
quantity is found to be about 50 (for ε ¼ 10), 4=3, and 1=4
for the DSG, φ4, and φ6 systems, respectively. Here, we
consider a specific model for the energy per unit surface
area of a spherical domain wall according to the energy per
unit surface, given by the equation3

σðRÞ ¼ σ0

�
1þ

�
R0

R

�
n
�
; ð22Þ

where the second term is related to the curvature effect
and n is to be determined by comparison with numerical
calculations. As before, R0 is the initial radius of the
bubble, and R is the (time-dependent) radius at any
arbitrary time before full collapse.
Using the conservation of the total energy, we have

γ4πR2σðRÞ ¼ γMðRÞc2 ¼ E0 ¼ const; ð23Þ
where γ ¼ ð1 − _R2=c2Þ−1=2 and M is the total rest mass of
the domain wall. Solving for γ, we obtain

γ ¼ E0

4πR2σðRÞ : ð24Þ

For R ≫ R0, so that σ ≃ σ0, we have the planar
approximation

γ ≃
�

E0

4πσ0

�
1

R2
: ð25Þ

For the case R ≪ R0, we have

γ ≃ E0

4πσ0Rn
0R

2−n ∝ Rn−2: ð26Þ

Our numerical calculations show that the bubble starts
collapsing initially, and therefore R is always less than R0.

We therefore expect the bubble velocity to approach a
constant value if n ¼ 2. For n < 2, γ tends to infinity,
meaning that in the relativistic regime the bubble
approaches the speed of light if enough time is available
before full collapse. For n > 2, we expect that the con-
tracting bubble stops at some stage and begins expanding.
Moreover, Eq. (26) can be solved for the collapse speed

of the bubble, which is given by

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4

�
R
R0

�
4

−
1

4

�
R
R0

�
4−2n

−
2

4

�
R
R0

�
4−n

s
; ð27Þ

where the resulting dynamics is shown in Fig. 5, in the solid
curve. Thus, to investigate the evolution of the collapsing
bubble, we plot the analytical results of Eqs. (21) and (27),
along with the results of the numerical calculations for the
SG, DSG, φ4, and φ6 systems, respectively, in Fig. 5. The
numerical results are also plotted in order to compare with
the simple analytical model. As is transparent from the
figure, in all cases, the bubbles start to collapse slowly. The
velocity of the bubble surface increases steadily (until full
collapse) as it shrinks to the center. The analytical and
numerical results match well for the SG, φ4, and φ6 models.
Note that for the DSG model, however, there is a slight
mismatch, which can be attributed to the existence of
subkinks in this system.

C. Numerical investigation and comparison
with the analytical models

Spherical domain walls and bubbles may have been
formed during inflation [38], and in this case, they will have
dynamical effects both on themselves and on the matter
distribution in the Universe. In some cases, the expansion
and the collapse of the spherical domain walls are due to the
difference in energy density in the interior and exterior of
the bubble [38]. The collapse of thin spherical domain walls
in an expanding background is explored in Ref. [28].
However, in this work, we consider domain-wall creation
in the symmetron-inspired model based on the above-
mentioned potentials in a flat spacetime background and
where the force which leads to the collapse of the domain
wall is solely due to the self-interaction of the bubble. As
shown in the previous section, the velocity of the collapsing
wall approaches the speed of light as the bubble approaches
the center. Likewise, the collision between the kink and
antikink pair near the center occurs at velocities of
approximately the speed of light. Moreover, the kink
and antikink scatter each other, leading to an expanding
bubble and the emission of scalar waves.
Consider, for instance, the φ4 system, where there are

several approaches to calculate the interaction energy
between a kink-antikink pair. One of them consists in
calculating the energy of the static solution based on the

3Note that this surface energy density is a function of time
implicitly through R.
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Dirac delta function [19]. Moreover, it is possible to
calculate this energy through the interaction force between
solitons on the semi-infinite interval with the rate of change
of the momentum given by [19,28]

P ¼ −
Z

b

−∞
_φφ0dx; ð28Þ

where b is the end point of the interval and lies between the
kink and antikink. Accordingly, the force is given by

F ¼ _P ¼
�
−
1

2
ð _φ2 þ φ02Þ þ VðφÞ

�
b

−∞
: ð29Þ

This equation shows that it is possible to calculate the force
based on the difference between the pressure at the end
points [19,28].
In addition to this, one can calculate the interaction force

between the kink and antikink, by considering the asymp-
totic form of the solitonic solutions in Eq. (29) [19],

F ¼ 32e−2R ¼ dEint

dR
; ð30Þ

where R ¼ 2a and a (−a) represents the position of the
kink (antikink) and −a ≪ b ≪ a [19]. Then, the interac-
tion energy is giving by [19]

Eint ¼ −16e−2R: ð31Þ

This equation is compatible with the numerical simula-
tions, and it means that, when separated, the static kink
and antikink in the pair, which are located near each
other, start to move toward each other and annihilate into
radiation [19].

Here, we present the numerical results for the spherical
collapse in the SG, DSG (for ε ¼ 10), φ4, and φ6 systems.
These evolving solutions are obtained by numerically
solving the dynamical field equations in spherical
coordinates. To this end, for each model, we use the
static approximation, namely Eqs. (18), and the corre-
sponding boundary conditions as initial conditions.
Figures 6–9 show the evolution of the energy density
for these systems. The energy density is given by the 00
component of the energy-momentum tensor in spherical
coordinates4 [27]:

T0
0 ¼

1

2
ðφ0Þ2 þ VðφÞ ¼ 1

2

�∂φ
∂r

�
2

þ VðφÞ: ð32Þ

The total energy is given by E ¼ R
T0

0dV̄, where dV̄ is
the volume element of the spherical domain wall. One can
interpret E as the rest mass of a domain wall [19].
Our results show that solutions of the four systems have

a similar general behavior but differ in some specific
details. For instance, as depicted in Fig. 6, the SG bubble
starts to collapse from t ¼ 0 and R ¼ 25 to R≃ 0 at
t ¼ 35 (dimensionless units). During this process, the
energy density of the domain wall increases steadily,
reaching a factor of 30 at t ¼ 35. The fact that the bubble
starts to collapse (instead of expanding) can be understood
in terms of the tension of the bubble surface. Of course,
when the radius of the bubble becomes comparable to
the thickness of the wall, the kink-antikink interaction
becomes important (note that the two facing sides of the
bubble behave like a kink-antikink pair). As we indicated
in the previous section, the final collapse near the center of
the bubble will occur at very high velocities, i.e., near to
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FIG. 6. Evolution of the scalar field (left plot) and the energy density (right plot) of the SG domain wall, where we have considered the
parameter values a ¼ b ¼ 1. See the text for more details.

4Note that this energy density is calculated in a coordinate
system which is comoving with the domain-wall surface.
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the speed of light. After full collapse, the bubble starts to
oscillate, while radiating scalar waves. As can be seen
from the figure, after full expansion, the bubble radius will
never reach the same initial bubble radius again. These

results are in agreement and consistent with the analysis
carried out in Refs. [28,37].
It can be seen from the plots in Figs. 7(a)–7(f) for the

DSG system that the bubble is double layered due to the

FIG. 7. Evolution of the energy density of the DSG domain wall (a ¼ b ¼ 1 and ε ¼ 10) from t ¼ 10 to t ¼ 50.

FIG. 8. Evolution of the energy density of the φ4 domain wall (α ¼ β ¼ 1) from t ¼ 10 to t ¼ 50.
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presence of subkinks. After reaching the center, the bubble
of the DSG system develops a sharp peak of energy density
which is relatively long lived. This peak results from the
strong interaction between the two subkinks (the two layers
of the bubble). For this case, it can be shown that the rate of
scalar radiation is stronger than that of the SG system,
Figs. 7(a)–7(f). Similar results for the φ4 and φ6 systems are
shown in Figs. 8 and 9. However, in these cases, more
energy is radiated away in the form of spherical waves, in
agreement with the results in the literature. Numerical
results are compared with the simple analytical models of
the previous section in Fig. 5.
It is interesting to note that the SG equation is the best

sample of the completely integrable system in 1þ 1
dimensions [28,39]. In other words, when two solitons
of this system collide with each other, they completely pass
or scatter from each other without any dissipation in energy.
However, based on the interaction force between them, this
process will happen with a time delay [19,28], which can be
interpreted as a phase shift [28]. On the other hand, there is
another option for a kink and antikink pair, which is a
breather5 [28], but it should be emphasized that the
occurrence of the above-mentioned cases critically depends
on the collision velocity [19,28]. For nonintegrable systems
like the ϕ4, the formation of a breather is predictable at low
collision velocities, and the kink-antikink scattering will
occur at high velocities, although the exact behavior is quite
complicated [19,28]. Note that in more than 1þ 1 dimen-
sions the SG system is not integrable and the dissipation
of energy is expected. These kinds of dissipation are

interpreted as propagating excitations of small amplitude,
and they will appear as radiation in the system [28].
In general, static domain walls and moving domain walls

at constant speed do not emit any radiation, while deformed
and accelerated domain walls can emit radiation. It is
interesting to note that domain walls can be accelerated
based on their own tension or due to some external force.
For curved domain walls, the radiation has been calculated
numerically [28].
The collision of solitons for the φ4 system is more

complicated in comparison with the previous cases. Since
this system is not integrable, there is no possibility for
two kinks to approach, and as a result they interact strongly
with each other [28], which implies that this model
only contains the scattering and annihilation of kinks-
antikinks. Moreover, the kink-antikink collision is com-
pletely chaotic; in other words, even at high collision
velocities, one can expect breather formations [19,28].
See the center of the bubbles in Figs. 8(f) and 9 [and
Fig. 13(a) and 14, given below]. The numerical results
obtained in this work are in agreement with these theoretical
considerations.

IV. SPHERICAL DOMAIN WALLS AROUND
MATTER OVERDENSITIES

In this section, we consider the symmetron field in the
presence of a central static matter lump, in order to
investigate the effect of matter on the dynamics of the
domain wall. In this case, due to the coupling with matter,
the energy trapped in a bubble not only depends on the
configuration of the symmetron field but also on the matter
density, ρ [11]. Moreover, for simplicity, the boundary
condition is taken as φðr → ∞Þ ¼ φ0 [15,40]. To model
this situation, we choose the matter density

ρm ¼ ρ0e
− r
r0 ; ð33Þ
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FIG. 9. Evolution of the scalar field (left plot) and the energy density (right plot) of the φ6 domain wall, for the parameter values α ¼ 1

and β ¼ ffiffiffi
2

p
. See the text for more details.

5For kink bearing nonlinear systems like the SG system, the
breather is a solution which can be visualized as a kink and
antikink bound together and oscillating about their common
center of mass [28].
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FIG. 11. Evolution of the scalar field and the energy density of the DSG domain wall with an internal matter density (ρ ¼ ρ0e−r=r0 ),
with ε ¼ −0.1, and for the parameter values a ¼ b ¼ 1. See the text for more details.
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FIG. 10. Evolution of the scalar field (left plot) and the energy density (right plot) of the SG domain wall with an internal matter
density (ρ ¼ ρ0e−r=r0 ) and for the parameter values a ¼ b ¼ 1. See the text for more details.
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FIG. 12. Evolution of the scalar field and the energy density of the DSG domain wall with an internal matter density (ρ ¼ ρ0e−r=r0 ) for
ε ¼ 10 and for the parameter values a ¼ b ¼ 1. See the text for more details.
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where ρ0 is the central density and r0 is a scale radius. Note
that the matter density decreases by increasing the radius.
In other words, the coupling between matter and the
symmetron field is weak around the center; however, it
can be perceptible around the surface [15,40].
The system is now governed by the evolution equation:

□φ − V;φ −
φ

M2
ρ0e

− r
r0 ¼ 0: ð34Þ

To solve this equation numerically, we have set the strength
of the fifth force in the symmetron model such that
ρ0=M2 ≈Oð1Þ. We investigate the bubbles of the four
above-mentioned systems around the central matter

density. As seen in Fig. 10, unlike the previous situation,
the SG bubble starts expanding until it reaches a maximum
radius and then recontracts. It should be noted that in this
process (expansion and contraction of the bubble) the peak
energy density of the bubble remains almost constant and
there is little energy loss due to radiation. Unlike the results
of the previous section, here we verify that in the presence
of matter the symmetron domain wall is stable. This result
is consistent with Ref. [11].
In general, it is interesting to note that the gravitational

field of the domain wall is completely different from a huge
heavy plate. In this regard, by writing the energy-momentum
tensor of the domain wall and considering the Newtonian
limit of Einstein’s equation for a static mass distribution, one

FIG. 13. Evolution of the energy density of the φ4 domain wall (α ¼ β ¼ 1) with an internal matter density (ρ ¼ ρ0e−r=r0 ) from t ¼ 10
to t ¼ 90.
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can show that the gravitational effect of the domain wall is
negative [35,38]. In the simulations performed here, the
gravitational effects of the wall on itself and on the matter
distribution have not been taken into account. In otherwords,
we have not used the Einstein equations nor the Poisson
equation in calculating the dynamics. So, the force between
the matter and the wall is due to the nonminimal coupling
between them, while the force which leads to the collapse of
the domain wall is solely due to the self-interaction of the
bubble as in the previous section.
To study DSG bubbles in the presence of the central

matter density, we consider two different kinds of bubbles
with ε ¼ 10 and ε ¼ −0.1. Based on our earlier discussion
in Sec. II, it is clear that these bubbles should have different
properties. While the bubble which is formed in the first
case (ε ¼ 10) is double layered, the bubble of the second
case (ε ¼ −0.1) does not have any sublayers. So, one can
expect different behaviors for these bubbles due to the
interaction between the sublayers (or subkinks). Figures 11
and 12 show the evolution of the DSG bubble with two
subkinks. Figure 11 displays the evolution of the DSG
bubble for the case ε ¼ −0.1. In this situation, the domain
wall behaves like the SG system with a central matter lump.
However, in Fig. 12, for ε ¼ 10, the bubble starts to
contract, reaches a minimum radius, and then expands.
The evolution of the bubble energy density for φ4 is

presented in Figs. 13(a)–13(i). The bubbles contract toward
the center with increasing energy density like the DSG
bubble with ε ¼ 10. However, in this case, a breather
appears in the center of the bubble where matter resides,
and it remains there for a long time. By comparing the
evolution of the φ4 bubble in this case with the previous
one, one can recognize that, despite collapsing, the change
in energy density is less and the radiation via scalar field
emission is higher. Moreover, it seems that there is an
interesting similarity between the evolution of the φ6

bubble without considering matter density and the evolu-
tion of the φ4 spherical domain wall with a matter core.
Bubbles of the φ6 system, like those of SG and DSGwith

ε ¼ −0.1, expand to a maximum radius and then start to
contract, as depicted in Fig. 14. It is worth noting that a
breather appears in the center of the bubble for a short
period of time. Our results are consistent with those of
Ref. [11], regarding domain-wall stability in the presence
of matter.

V. COLLECTIVE COORDINATE APPROACH
AND THE EFFECT OF GRAVITY

A. Newtonian approach

In the previous sections, we neglected the gravitational
effects of the spherical domain wall and the central matter.
Here, we describe a collective coordinate approach, which
enables us to include the gravitational effects in the
approximation that the wall thickness is much smaller than
its radius and the central mass is spherically symmetric. To
investigate the collapse of the bubble under the combined
influence of bubble tension, the bubble self-gravity, and the
gravitational field of the central matter, we begin with a
simplified Newtonian calculation, followed by a thin-shell
calculation in the framework of GR.
It is easy to show that for the initially stationary bubble

at r ¼ R0 with mass Mb and surface tension σ, which
surrounds central mass Mi, the total energy will be

E ¼ 4πσR2
0 −

GMbMi

R0

−
1

2

GM2
b

R0

: ð35Þ

This Newtonian calculation is rather simple, and we present
it as a first estimate of the collapse including the effect of
gravity, provided that the gravitational field is weak and
the wall velocity is much smaller than the velocity of light.
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FIG. 14. Evolution of the scalar field (left plot) and the energy density (right plot) of the φ6 domain wall with an internal matter
density, given by ρ ¼ ρ0e−r=r0, for the parameter values α ¼ 1 and β ¼ ffiffiffi
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. See the text for more details.
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The first term in the rhs of Eq. (35) comes from the tension
of the bubble, while the remaining terms are caused by
the gravitational field. The gravitational field thus affects
(accelerates) the collapse in a Newtonian description.
At any later time, we have

E ¼ 4πσR2 −
GMbMi

R
−
1

2

GM2
b

R
þ 1

2
Mb

_R2: ð36Þ

Equating (35) and (36) leads to the following ordinary
differential equation for RðtÞ:

_R2 ¼ 8πσ

Mb
ðR2

0 − R2Þ þ 2GMi

RR0

ðR0 − RÞ

þ GMb

RR0

ðR0 − RÞ: ð37Þ

Since Mb ¼ 4πR2
0σ=c

2, we get

_R2 ¼ 2c2

R2
0

ðR2
0 − R2Þ þ 2GMi

RR0

ðR0 − RÞ
�
1þ Mb

2Mi

�
; ð38Þ

by introducing aðtÞ≡ R=R0,

_a2 ¼ 2c2

R2
0

ð1 − a2Þ þ 2GMi

R3
0

�
1

a
− 1

��
1þ Mb

2Mi

�
; ð39Þ

which leads to

da
dt

¼ −
c
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − a2Þ þ 2GMi

R0c2

�
1

a
− 1

��
1þ Mb

2Mi

�s
:

ð40Þ

Note that the Newtonian gravitational force causes the
collapse velocity of the bubble to diverge as R → 0. If we
switch off the gravitational force, the collapse becomes
similar to what we had in Fig. 5. Figure 15 shows the result
for the gravitational field switched off (dashed curve) and
switched on (dotted curve), using the Newtonian result (39).
The approximate time for collapsing will be

t ¼ R0

c

Z
1

0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − a2Þ þ ϵð1a − 1Þð1þ Mb

2Mi
Þ

q ; ð41Þ

where ϵ ¼ rSchðiÞ=R0 ≪ 1. This result shows that the
bubble collapses to zero radius in a finite time, with the
bubble velocity diverging at zero radius (Fig. 15).

B. General relativistic approach

For the GR calculation, we follow the thin-shell formal-
ism described in Ref. [41]. We can also follow starting from
the metric [41]

ds2i ¼ −fiðrÞdt2i þ
1

fiðrÞ
dr2 þ r2dΩ2;

ds2o ¼ −foðrÞdt2o þ
1

foðrÞ
dr2 þ r2dΩ2; ð42Þ

for the inside and the outside of the bubble, where fiðRÞ
and foðRÞ are the metric functions for the inner and outer
regions of the bubble, respectively. The inner and outer
metrics are static, spherically symmetric vacuum solutions
of the Einstein equations and are therefore forced to be
Schwarzschild fi;o ¼ 1�2Mi;t=r due to the Birkhoff
theorem. Only the mass parameters differ: Mi for the inner
region and Mt for the outer region. Besides, the metric for
the transition region leads to [41]

ds2wall ¼ −dτ2 þ RðτÞ2dΩ2; ð43Þ

where r ¼ RðτÞ. Then, the equation of motion of the bubble
can be written as6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ fiðRÞ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ foðRÞ

q
¼ 4πσR; ð44Þ

where σ is the surface tension of the bubble. Solving for _R,
we obtain

FIG. 15. The plot depicts the result when the gravitational field
is switched off (dashed curve) and switched on (dotted curve),
using the Newtonian result (39). Note that the Newtonian
gravitational force causes the collapse velocity of the bubble
to diverge as R → 0. In the absence of the gravitational force, the
collapse becomes similar to the analysis depicted in Fig. 5.

6Here, c ¼ G ¼ 1 and ½σ� ¼ 1=½kg�.
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dR
dt

¼
ffiffiffiffiffiffiffiffiffiffiffi
−Veff

p
; ð45Þ

where the effective potential is defined as

VeffðRÞ ¼ f0ðRÞ −
ðfiðRÞ − f0ðRÞ − 16π2σ2R2Þ2

64π2σ2R2
ð46Þ

or

da
dt

¼ −
c
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2σ2 − 1þ 1

2
ð1þ ςÞ ϵ

a
þ 1

64
ðς − 1Þ2 ϵ

2

a2

s

ð47Þ

with ς≡Mt=Mi. Note that this equation is consistent with
the total mass of the domain-wall bubble, which is initially
at rest, Mb ¼ Mt −Mi ¼ 4πσR2

0, as long as Mi, Mt ≪ R0.
This equation can be cast into the dimensionless form

da
dτ

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σþ 32ð1þ ςÞ ϵ

a
þ ðς − 1Þ2 ϵ

2

a2

s
; ð48Þ

where Σ≡ 256π2σ2 − 64 and τ≡ ct=ð8R0Þ. Note that one
expects ϵ ≪ 1 (i.e., the Schwarzschild radius of the inner
mass much less than the initial bubble radius) and
ς ¼ oð1Þ. We have plotted aðτÞ for a few typical values
of Σ ¼ 100 and ς ¼ 2, in Fig. 16. For more realistic values
of Σ and ς and ϵ inspired by the symmetron model, the Σ
term in (48) is dominant, and aðtÞ is linear with negative
slope −

ffiffiffi
Σ

p
. This result is entirely consistent with our

Lagrangian approach to be described later in this section.
We now follow a collective coordinate approach, by

taking care of gravitational effects. To this end, we start
with the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
∂μφ∂μφ − VðφÞ

�
; ð49Þ

where R is the Ricci scalar. For the metric, we use

ds2 ¼ −c2fðr; tÞdt2 þ 1

fðr; tÞ dr
2 þ r2dΩ2 ð50Þ

with fðr; tÞ ¼ 1�2GMðr; tÞ=c2r.
To determine Mðr; tÞ, we note that inside the spherical

wall we only have the gravitational field of the central mass
Mi, which according to Birkhoff’s theorem gives

Mðr; tÞ ¼ Mi for r < RðtÞ: ð51Þ

Outside the spherical bubble, we have

Mðr; tÞ ¼ Mt for RðtÞ > r; ð52Þ

where Mt is the total mass of the central object and the
collapsing shell. The relations (51) and (52) can be unified
using the step function θðr − RðtÞÞ:

Mðr; tÞ ¼ MiθðRðtÞ − rÞ þMtθðr − RðtÞÞ: ð53Þ

To avoid a discontinuity and make the metric jump smooth
for the computation of the Ricci scalar and thus implement
the collective coordinate approach, we replace Eq. (53)
with the smoothed version (see Fig. 17),

θðuÞ → ~θðuÞ ¼ 1

2
½1þ tanhðβuÞ�; ð54Þ

which provides
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FIG. 16. Collapse of the domain wall, taking into account the
gravitational effects [see Eq. (48)].
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FIG. 17. Smoothing out the step function (red lines) using the
tanh function (54).
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fðuÞ ¼ 1 −
G
r
½Mið1 − tanhðβuÞÞ þMtð1þ tanhðβuÞÞ�:

ð55Þ

Now, by starting with the Einstein-Hilbert action (49),
using the metric function ansatz (55) and integrating over
spatial coordinates for a bounded shell which includes
the bubble, one arrives at a specific action involving the
Lagrangian LðR; _R; R̈Þ. More specifically, assume that
the gravitational field does not have appreciable effects on
the internal structure of the wall across it. The t and r

dependence of the scalar field is accordingly assumed to
be in the solitonic form given by Eq. (18). For example,
consider the φ4 model (including dimensional parame-
ters), i.e.,

φ ¼ α tanh½βðr − RðtÞÞ�: ð56Þ
Integration of the various terms over spatial coordinates
in the action then proceeds easily. For instance, the

potential term of the scalar field Vφ4ðφÞ¼ β2

2α2
ðφ2−α2Þ2

yields

Z ffiffiffiffiffiffi
−g

p
d4xVðφÞ ¼ α2β2

2

Z
dt4π

Z
drr2ðtanh2βðr − RðtÞÞ − 1Þ2

¼ 2πα2β2
Z

dt
Z

drr2sech4ðβðr − RðtÞÞÞ

¼ 2πα2β

Z
dt

Z �
Rþ ξ

β

�
2

sech4ξdξ

¼ 2πα2β

Z
dtRðtÞ2

Z
sech4ξdξþ 2πα2

β

Z
dt

Z
ξ2sech4ξdξþ 4πα2

Z
dtRðtÞ

Z
ξsech4ξdξ; ð57Þ

in which ξ≡ βðr − RðtÞÞ. The three integrals over ξ are 4
3
, − 2

3
þ π2

9
, and 0, respectively. We therefore have

Z ffiffiffiffiffiffi
−g

p
d4xVðφÞ ≈ 8πα2β

3

Z
½R2ðtÞ þ constant�dt: ð58Þ

The other terms in the action (49) can be evaluated in an analogous manner.
Thus, after a tedious, but straightforward, calculation, the action

S ¼
Z

LðR; _R; R̈Þdt ð59Þ

is obtained, where

LðR; _R; R̈Þ ¼ ðMt −MiÞ
2c½ðMi þMtÞG − c2RðtÞ�3

�
−2ðMt −MiÞ _R2ðtÞR3ðtÞc2Gβ − ðMt þMiÞR̈ðtÞR3ðtÞc2Gþ R̈ðtÞR4ðtÞc4

−
4

5
ð−3M3

i −M2
i Mt þMiM2

t þ 3M3
t ÞRðtÞG3β þ 4ðM2

t −M2
i ÞR2ðtÞc2G2β − 2ðMt −MiÞR3ðtÞc4Gβ

þ 4ðM3
i þM2

i Mt þMiM2
t þM3

t ÞG3 − 8ðM2
i þMiMt þM2

t ÞRðtÞc2G2 þ 6ðMt þMiÞR2ðtÞc4G − 2R3ðtÞc6
�

þ 8π

3
cR2ðtÞα2β

�
−

RðtÞ _R2ðtÞ
ðMi þMtÞG − c2RðtÞ −

ðMi þMtÞG − c2RðtÞ
c2RðtÞ − 1

�
: ð60Þ

We already know that the symmetron field within the central mass is screened, tending to its Z2 symmetric vacuum hφi ¼ 0,
except for the skin depth which is of the order of [15]

Δa ∼
M2

i

ρa
; ð61Þ

where a is the effective radius of the central mass. We are now in a position to solve the extended Euler-Lagrange
equation
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d
dt

∂L
∂ _R −

d2

dt2
∂L
∂R̈ ¼ ∂L

∂R ; ð62Þ

which now includes the gravitational effects of the bubble
and the central mass. This Lagrangian leads to the
following equation for RðtÞ:

12GR̈ðtÞðM2
i −M2

t Þ − 3RðtÞR̈ðtÞc2ðMi −MtÞ
− 8RðtÞ½7 _R2ðtÞ þ 6RðtÞR̈ðtÞ�βGc2α2πðMi þMtÞ
þ 6RðtÞR̈ðtÞβGðMi −MtÞ2 þ 32R2ðtÞβα2c6π
þ 16R2ðtÞ½ _R2ðtÞ þ RðtÞR̈ðtÞ�βc4α2π

¼ 136RðtÞβGc4α2πðMi þMtÞ: ð63Þ

To obtain this equation, we have assumed that RðtÞ is
always much larger than the Schwarzschild radii 2GMi=c2

and 2GMb=c2. Furthermore, let us assume that the bubble
mass Mb is much smaller than the central mass [i.e.,
ς≡ Mt

Mi
¼ oð1Þ]. Using these approximations, we have

numerically calculated RðtÞ for a typical value of
Mt=Mb in Fig. 18, which depicts that the collapse of the
domain-wall bubble from rest until it collides with the
central mass, in which the symmetron field is highly
screened.

VI. SUMMARY AND CONCLUSION

The four popular nonlinear scalar field systems, SG,
DSG, φ4, and φ6, extensively analyzed in the literature,
possess exact kink solutions in 1þ 1 dimensions.
Motivated by the symmetron analysis, we employed these
exact solutions to construct initial conditions for the
collapse of a large (compared to the thickness of the wall)
spherical domain wall. We first presented a simple ana-
lytical model, based on the conservation of the total energy
of the wall and a reasonable assumption for the curvature
effects. We then solved the corresponding equations
numerically and compared the results with our simple
analytical model. We showed that the analytical model fits
the more accurate numerical results very well, until the full
collapse, after which oscillations and scalar radiation
take place.
We then explored the effect of a central matter lump on

the evolution of a spherical domain wall. We reached the
conclusion that a central matter lump can prevent the full
collapse and annihilation of the domain-wall bubble, due to
the repulsion between the domain wall and matter over-
density within the symmetron model. Furthermore, we
have investigated the dynamics of the bubble with a central
mass, in the presence of gravity for the specific φ4 system.
Our results show that the collapse is almost linear aðtÞ ≈
−

ffiffiffi
Σ

p
t until the wall collapses into a black hole, if direct

interaction with the central matter is not taken into account
(Figs. 5, 16, and 18). The collapse halts as soon as the
bubble reaches the central mass, due to the screening effect
of matter, as seen from calculations which include direct
interaction of φ with matter [Figs. 12 and 13(a)–13(i)]. In
concluding, we mention that doing the calculations with the
simultaneous dynamical effects of gravitation, the scalar
field and scalar field-matter coupling proved to be too
difficult to end up with a reliable solution. Thus, we
considered them separately in this paper. An investigation
of the combined effect is left for a future work.
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