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We reconsider the long-range effects of the scattering of massless scalars and photons from a massive
scalar object in quantum gravity. At the one-loop level, the relevant quantum mechanical corrections could
be sorted into the graviton double-cut contributions, massless-scalar double-cut contributions and photon
double-cut contributions. In Reference [N. E. J. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, L. Planté,
and P. Vanhove, Phys. Rev. Lett. 114, 061301 (2015), J. High Energy Phys. 11 (2016) 117] N. E. J.
Bjerrum-Bohr et al. have considered explicitly the implications of the graviton double-cut contributions on
the gravitational bending of light and some classical formulations of the equivalence principle, using the
modern double-copy constructions and on-shell unitarity techniques. In this article, instead we consider all
three contributions and redo the analysis using the traditional Feynman diagrammatic approach. Our results
on the graviton double-cut contributions agree with the aforementioned references, acting as a nontrivial
check of previous computations. Furthermore, it turns out that the massless-scalar double-cut contributions
and the photon double-cut contributions do leave nonvanishing quantum effects on the scattering
amplitudes and the gravitational bending of light. Yet, we find that the general structure of the gravitational
amplitudes and the quantum discrepancy of the equivalence principle suggested in the aforementioned
references remain intact.

DOI: 10.1103/PhysRevD.95.064045

I. INTRODUCTION

The reconciliation of quantum mechanics and general
relativity has been a long-standing open question in
theoretical physics since the beginning of the last century,
and different proposals have been put forward. For in-
stance, recently a possible unification framework based on
spin and scaling gauge invariance has been proposed in
Refs. [1,2]. At present, there is no general consensus on the
ultimate solution yet. But still, the long-range effects of the
underlying quantum gravity can now be calculated reliably
by treating general relativity as a low-energy effective field
theory [3,4] (see also Refs. [5–20] for later developments),
even though general relativity is nonrenormalizable and
requires an infinite number of counterterms to absorb all the
ultraviolet divergences. For a recent review, we recommend
Ref. [21]. It is shown in Refs. [10,15,22] that the spin-
independent part of the quantum Newtonian potential
between a small mass and a large mass is

VðrÞ ¼ −
GMm
r

�
1þ 3GðM þmÞ

r
þ 41Gℏ

10r2

�
; ð1:1Þ

whereM is a large scalar object, say, the Sun;m is the small
test mass whose spin could be 0, 1=2 or 1; and r is the

relative distance between these two objects.G and ℏ denote
Newton’s constant and the Planck constant, respectively.
It is of physical interest to study other long-range effects

of quantum gravity, among which, the leading quantum
corrections to the gravitational bending of light1 around the
Sun are a perfect target. In order to handle this problem in
the framework of quantum field theory, the Sun is mimicked
by a heavy scalar field. As shown later, this approximation
gives the correct classical bending angles. With this in mind,
one could consider the Einstein-Hilbert action coupled to
photons and two neutral scalars, one massless and the other
massive,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
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κ2
R −
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4
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2
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1

2
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2
M2Φ2

�
: ð1:2Þ

Here,Aμ is the photon field, andφ andΦ are themassless and
massive scalar fields, respectively. In this article, we adopt
the mostly minus metric signature ðþ;−;−;−Þ and
κ2 ¼ 32πG. Note that ∇μ is the usual covariant derivative
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1In this article, by “the gravitational bending of light,” what we
really mean is the gravitational bending of massless particles,
including not only the photon but also the hypothetical massless
scalar particle, etc.
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with∇μAν ¼ ∂μAν þ Γν
μλAλ. These fields are denoted in the

rest of this article as follows: graviton h, photon γ, massless
scalarφ, massive scalarΦ, and graviton Faddeev-Popov (FP)
ghost c (not shown explicitly in the above action). Although
theremight not be amassless scalar particle in the real nature,
the massless scalar φ is introduced for the sake of studying
the impact of quantum corrections on some classical for-
mulations of the equivalence principle (see Sec. IV).
To calculate the leading quantum corrections to the

bending angles of the massless scalar φ and photon γ
in the gravitational field of the massive field Φ, one
needs to first calculate the relevant scattering amplitudes
up to one loop. As microscopically it is the scattering
process φðγÞΦ → φðγÞΦ that is under consideration,
there are only t-channel contributions. The s-channel
and u-channel Feynman diagrams simply do not exist.
Generally, for the scattering of a test particle in the
gravitational field of a large mass, a typical scattering
amplitude up to one loop is

M ∼ Aþ Bq2 þ � � � þ ακ4
1

q2
þ β1κ

4 lnð−q2Þ

þ β2κ
4

1ffiffiffiffiffiffiffiffi
−q2

p þ γκ4 ln

�
1þ q2

m2

�
þ � � � ; ð1:3Þ

where q is the momentum transfer. Among these terms,
only the gapless nonanalytic contributions, whose
branch cuts extend to the origin of the complex plane,
would lead to long-range effects after Fourier trans-
formations. The analytic and gapped nonanalytic cor-
rections will yield short-range δ3ðrÞ and expð−mrÞ
effects in the potential. Therefore, in order to work
out the long-range effects of the one-loop quantum
corrections, one only needs to consider diagrams with
t-channel massless double cuts [9,10,22–24].
For scattering processes between φðγÞ and Φ, the

relevant Feynman diagrams with t-channel massless
double cuts could be sorted into three classes: the
graviton double-cut contributions, the massless-scalar
double-cut contributions, and the photon double-cut
contributions, whose meanings will be clear later. In
Refs. [23,24], the graviton double-cut contributions have
been calculated using the modern on-shell unitarity
techniques and the double-copy constructions (see also
Refs. [25–27] for relevant discussions). In this article,
we consider the implications of all three contributions.
Compared to Refs. [23,24], instead we adopt the tradi-
tional Feynman diagrammatic approach. As shown in
later sections, our Feynman diagrammatic calculations
of the graviton double-cut diagrams match the results of
Refs. [23,24] exactly, which could be viewed as a
nontrivial check of previous calculations. On the other
hand, our results on the net effects of all three
contributions are new and could be useful for further
studies in this direction.

This article is organized as follows: In Sec. II, we
present the tree-level amplitudes for the massless scalar
and photon and provide a concise description of how to
extract the Newtonian potential from scattering ampli-
tudes. In Sec. III, we calculate the relevant one-loop
amplitudes using Feynman diagrams. The main results
are presented in terms of a set of parameters inspired by
the modern one-loop calculation techniques. Then, we
derive the low-energy limit of the one-loop amplitudes
obtained. In Sec. IV, we calculate the bending of light in
quantum gravity and comment on the validity of quantum
violation of some classical formulations of the equiv-
alence principle. In Sec. V, we make brief remarks on
possible further directions. In particular, we find it
physically interesting to calculate quantum corrections
to other classical observables of general relativity, such as
the Shapiro time delay effect, the so-called fourth test of
general relativity. We also attach two appendixes at the
end of this article to provide extra details of our
computations. The MATHEMATICA codes for the one-loop
quantum gravity calculations carried out in this article
can be found in Ref. [28].

II. TREE-LEVEL AMPLITUDES

In this section, we extract the Newtonian potential from
the tree-level scattering amplitudes. The model under
investigation is given by Eq. (1.2). To do the perturbative
calculations, one could write the metric as ημν þ κhμν and
expand all terms in hμν. After quantization, hμν gives rise to
the massless spin-2 graviton.
With the above action, the tree-level scattering ampli-

tudes of the massless scalar φ and the photon γ in the
gravitational field of the massive scalar Φ could be
worked out straightforwardly, and they are presented
as follows:

(i) Massless scalar φ:

Mð0Þðϕðp1ÞΦðp2Þϕðp3ÞΦðp4ÞÞ

¼ κ2

4

ðs −M2Þðu −M2Þ
t

: ð2:1Þ

(ii) Photon γ:

Mð0Þðγðpþ
1 ÞΦðp2Þγðpþ

3 ÞΦðp4ÞÞ ¼ 0;

Mð0Þðγðp−
1 ÞΦðp2Þγðp−

3 ÞΦðp4ÞÞ ¼ 0; ð2:2Þ

Mð0Þðγðpþ
1 ÞΦðp2Þγðp−

3 ÞΦðp4ÞÞ ¼
κ2

4

hp3jp2jp1�2
t

;

ð2:3Þ

Mð0Þðγðp−
1 ÞΦðp2Þγðpþ

3 ÞΦðp4ÞÞ ¼
κ2

4

hp1jp2jp3�2
t

:

ð2:4Þ
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In the above, we have adopted the in-in formalism
with all momenta defined as incoming, as well as the
spinor-helicity variables. The Mandelstam variables s, t,
and u are given by s ¼ ðp1 þ p2Þ2, t ¼ ðp1 þ p3Þ2, and
u ¼ ðp1 þ p4Þ2, respectively, and they satisfy the iden-
tity sþ tþ u ¼ 2M2.
There are various definitions of the quantum gravity

potential in the literature, depending on the physical
situations to be handled, the Feynman diagrams involved,
etc. A physical plausible definition should certainly be
gauge independent [8]. In this article, we take the
definition of the (quantum) Newtonian potential given
by Eqs. (A15)–(A17), which is used by various authors
[6,9–11,23,24]. Such construction relates the potential
directly to the full scattering amplitudes and therefore
enjoys an explicit gauge independence. In the low-energy
limit, t → −q2, s → M2 þ 2Mω, we have the following:

(i) Massless scalar φ:

Mð0Þðϕðp1ÞΦðp2Þϕðp3ÞΦðp4ÞÞ

¼ 32πGM2ω2

q2
⇒ ~Vð0Þ

φ ðqÞ

¼ −
8πGMω

q2
: ð2:5Þ

When Fourier transformed back to the coordinate
space, we get the Newtonian potential

Vð0Þ
φ ðrÞ ¼

Z
d3q
ð2πÞ3 expðiq · rÞ ~Vð0Þ

φ ðqÞ ¼ −
2GMω

r
:

ð2:6Þ

(ii) Photon γ: The tree-level amplitudes for the photon
shown above, especially the spinor chains, are
displayed in terms of the in-in formalism. When
translated into the standard in-out formalism (with
p3 → −p3), one has

Mð0Þðγðpþ
1 ÞΦðp2Þγðp−

3 ÞΦðp4ÞÞ ¼−
κ2

4

hp3jp2jp1�2
t

;

ð2:7Þ

Mð0Þðγðp−
1 ÞΦðp2Þγðpþ

3 ÞΦðp4ÞÞ¼−
κ2

4

hp1jp2jp3�2
t

;

ð2:8Þ

and the Mandelstam variable t ¼ ðp1 − p3Þ2. In the
low-energy limit, besides t → −q2, s→M2þ2Mω,
one has hp3jp2jp1�2ðhp1jp2jp3�2Þ→ 4M2ω2. As a
result, the low-energy limits of the relevant scatter-
ing amplitudes are given by

Mð0Þðγðpþ
1 ÞΦðp2Þγðp−

3 ÞΦðp4ÞÞ ¼
32πGM2ω2

q2
;

ð2:9Þ

Mð0Þðγðp−
1 ÞΦðp2Þγðpþ

3 ÞΦðp4ÞÞ ¼
32πGM2ω2

q2
;

ð2:10Þ

⇒ ~Vð0Þ
γ ðqÞ ¼ −

8πGMω

q2
: ð2:11Þ

The Newtonian potential in coordinate space is then

given by Vð0Þ
γ ðrÞ ¼ −2GMω=r, which is symboli-

cally the same as that of the massless scalar φ. This is
nothing but a direct manifestation of the classical
equivalence principle.

III. ONE-LOOP AMPLITUDES

In this section, we calculate the relevant one-loop
amplitudes. As mentioned in the Introduction, the one-
loop scatterings of φ and γ in the gravitational field of
the massive object Φ could be sorted into three classes:
the graviton double-cut diagrams, the massless-scalar
double-cut diagrams, and the photon double-cut dia-
grams. Let us take the photon as an example to show
our classifications. The relevant Feynman diagrams
could be found in Figs. 1 and 2. Figure 1 is charac-
terized by the feature that one could find a horizontal
cut for every diagram such that two graviton propa-
gators are cut down. Here we have also included the
graviton FP ghost c in the graviton double-cut diagrams.
As a result, we call diagrams in Fig. 1 the graviton
double-cut diagrams. Similarly, diagrams in Fig. 2 are
named the photon double-cut diagrams, as for these
diagrams one could find a horizontal cut such that two
photon propagators are cut down. Here we have
omitted the massless-scalar double-cut diagrams for
the photon scattering, i.e., the Feynman diagram with
the massless scalar φ running in the vacuum polarization
loop. This is because, unlike the photon, the massless
scalar φ is an “optional” ingredient for our real world.
Similarly, for the massless-scalar scattering, we omit the
Feynman diagram with the photon γ in the vacuum
polarization loop and consider only the graviton double-
cut diagrams and the massless-scalar double-cut dia-
grams (Fig. 3).2

Unlike Refs. [23,24] the one-loop calculations are done
using the traditional Feynman diagrammatic approach
rather than the modern on-shell unitarity techniques.

2We would like to thank Professor N. E. J. Bjerrum-Bohr,
Professor John F. Donoghue, Professor Barry R. Holstein,
Dr. Ludovic Planté, and Professor Pierre Vanhove for this
suggestion.
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There are several reasons for this choice. First, this allows
us to carry out independent calculations of bending of
light in quantum gravity and could be viewed as a useful
complement to the existing literature. Second, there are
various well-developed public MATHEMATICA codes, such
as FeynRules [29], FeynArts [30], FormCalc [31], etc.,
which semi-automatize the one-loop Feynman diagram-
matic calculations.
Concerning the representation of our results, we utilize

the fact that a generic one-loop integral could be
represented as M ¼ P

iciIi, where ci are rational func-
tions of various kinematic invariants and Ii are some
known scalar integral functions representing simple one-
loop diagrammatic contributions such as box, triangle,
and bubble diagrams. This result goes back to Passarino
and Veltman [32]. As a result, for the problem of the
gravitational bending of light, the gapless nonanalytic
parts of the one-loop amplitudes, the only parts that

contribute to the long-range quantum gravity effects,
could be parametrized in the following way:

Mð1Þ
η ðp1; p2; p3; p4Þjnonanalytic
∼ Boη × I4ðt; sÞ þ Bo0η × I4ðt; uÞ þ Tη × I3ðt; 0Þ
þ T0η × I3ðt;M2Þ þ Buη × I2ðt; 0Þ: ð3:1Þ

Note that I4ðt; sÞðI4ðt; uÞÞ, I3ðt; 0Þ, I3ðt;M2Þ, and I2ðt; 0Þ
are the standard scalar integrals, whose explicit expres-
sions are found in Appendix B. The Boη, Tη, T0η, and
Buη parameters are meromorphic functions of kinematic
invariants, such as the Mandelstam variables s, t, and u.
For the massless scalar φ, the one-loop coefficients are

given by the following:
(i) The box coefficients:

Boφ ¼ κ4

256π2
ðM2 − sÞ4; ð3:2Þ

Bo0φ ¼ κ4

256π2
ð−M2 þ sþ tÞ4: ð3:3Þ

(ii) The triangle coefficients:

Tφ ¼ κ4

256π2
tð−2M2 þ 2sþ tÞ2; ð3:4Þ

FIG. 1. Graviton double-cut diagrams for the one-loop scattering between the photon γ and the massive scalarΦ. Unlike Refs. [23,24],
in this article we take the time direction to be horizontal. In the last diagram, we have the graviton FP ghost running in the loop.

FIG. 2. Photon double-cut diagrams for the one-loop scattering
between the photon γ and the massive scalar Φ.
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T0φ ¼ κ4

256π2ð−4M2 þ tÞ2
× ½−60M10 þ 2M8ð60sþ 73tÞ
þ t3ð3s2 þ 3stþ t2Þ
− 20M6ð3s2 þ 12stþ 7t2Þ
−M2t2ð30s2 þ 36stþ 13t2Þ
þ 3M4tð30s2 þ 50stþ 21t2Þ�: ð3:5Þ

(iii) The bubble coefficient:

Buφ ¼ κ4

15360π2ð−4M2 þ tÞ2
× ½2968M8 − 424M6ð14sþ 9tÞ
þ t2ð103s2 þ 103stþ 23t2Þ
−M2tð1064s2 þ 1270stþ 341t2Þ
þM4ð2968s2 þ 5096stþ 1787t2Þ�: ð3:6Þ

The one-loop coefficients for the photon γ with the ð−þÞ
helicity are given by the following:

(i) The box coefficients:

Boγ ¼ κ4hp1jp2jp3�2
512π2ðM4 − 2M2sþ sðsþ tÞÞ2
× ðM2 − sÞ2½2M8 − 8M6s − 4M2s2ð2sþ tÞ
þ 2M4sð6sþ tÞ þ s2ð2s2 þ 2stþ t2Þ�;

ð3:7Þ

Bo0γ ¼ κ4hp1jp2jp3�2
512π2ðM4 − 2M2sþ sðsþ tÞÞ2
× ð−M2 þ sþ tÞ2½t2ð−2M2 þ sþ tÞ2
þ2ð−M2 þ sþ tÞ2
× ðM4 − 2M2sþsðsþ tÞÞ�: ð3:8Þ

FIG. 3. The one-loop Feynman diagrams for the scattering of the massless scalar φ from the massive scalar Φ. The first eleven
diagrams constitute the graviton double-cut contributions, while the last two diagrams constitute the massless-scalar double-cut
contributions.
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(ii) The triangle coefficients:

Tγ ¼ κ4hp1jp2jp3�2
512π2ðM4 − 2M2sþ sðsþ tÞÞ2 t½8M

8 þ 8s4 þ 16s3tþ 13s2t2 þ 5st3 þ t4 − 2M6ð16sþ 5tÞ

þ 2M4ð24s2 þ 18stþ 5t2Þ −M2ð32s3 þ 42s2tþ 20st2 þ 5t3Þ�; ð3:9Þ

T0γ ¼ −
κ4hp1jp2jp3�2

512π2ð−4M2 þ tÞ2ðM4 − 2M2sþ sðsþ tÞÞ2
× ½120M14 − 20M12ð24sþ 17tÞ þ 4M10ð180s2 þ 320stþ 131t2Þ
− 8M8ð60s3 þ 215s2tþ 195st2 þ 62t3Þ − t3ð6s4 þ 12s3tþ 11s2t2 þ 5st3 þ t4Þ
þM2t2ð60s4 þ 144s3tþ 144s2t2 þ 70st3 þ 15t4Þ
− 2M4tð90s4 þ 300s3tþ 353s2t2 þ 191st3 þ 45t4Þ
þ 4M6ð30s4 þ 240s3tþ 400s2t2 þ 261st3 þ 70t4Þ�: ð3:10Þ

(iii) The bubble coefficient:

Buγ ¼ κ4hp1jp2jp3�2
7680π2ð−4M2 þ tÞ2ðM4 − 2M2sþ sðsþ tÞÞ
× ½452M8 þM6ð−904sþ 944tÞ þM4ð452s2 þ 484st − 973t2Þ
− t2ð13s2 þ 13stþ 30t2Þ þ 2M2tð−8s2 þ 5stþ 150t2Þ�: ð3:11Þ

For the photon case, the one-loop coefficients for the ðþ−Þ
helicity configuration could be obtained simply by replacing
hp1jp2jp3�2 with hp3jp2jp1�2. What is potentially confusing
in the above results is that while the photon helicity
configurations [e.g., the helicity configuration ð−þÞ,
ðþ−Þ, etc.] are written in terms of the in-in formalism,
which means that all momenta flow in and it is much more
common in the modern scattering amplitude community, we
have adopted the standard in-out formalism to present the
explicit expressions of various one-loop coefficients, in
which we have two particles incoming and two particles
outgoing. This choice introduces an extra minus sign in
various places involving the spinor chain hp1jp2jp3�2,
when compared to expressions of the in-in formalism.3

This hybrid convention would be helpful when comparing
our results with those in previous literature.
When compared with the results of Refs. [23,24], one

could find that the inclusion of the massless-scalar double-
cut diagrams and photon double-cut diagrams changes both
the triangle coefficient Tη and the bubble coefficient Buη. It
is also interesting to note that the Bern-Carrasco-Johansson
(BCJ)-inspired relation

Boη

M2 − s
þ Bo0η

M2 − u
¼ Tη; for η ¼ φ; γ; ð3:12Þ

proposed in Refs. [23,24] no longer holds. But we have
checked explicitly that the above relation still holds if
only the graviton double-cut diagrams are taken into
consideration.

A. Low-energy limit

In the previous part of Sec. III, we have provided all the
relevant one-loop coefficients of gravitational scattering of
the massless scalar and photon from a massive scalar. To
figure out the long-range effects of scattering processes of
quantum gravity, we need to first compute the low-energy
limit of the scattering amplitude, in which we have s →
M2 þ 2Mω and t → −q2 for the kinematic invariants, and
hp1jp2jp3�2ðhp3jp2jp1�2Þ → 4M2ω2 for the spinor chains.
The low-energy limits of various one-loop coefficients are
given as follows:

3One way to see this extra minus sign is through the explicit
realization of the dotted and undotted Weyl spinors. Following
Ref. [33], we have

λα ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þ p3

p
�

p0 þ p3

p1 þ ip2

�
;

~λ _α ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þ p3

p
�

p0 þ p3

p1 − ip2

�
;

withp0,p1,p2, andp3 the four components of the four-momentum
pμ.When reverting the direction of themomentum flow bymaking
the replacement pμ → −pμ, it is straightforward to see that

λα → iλα; ~λ _α → i~λ _α:

The extra minus sign in various spinor chains squared then follows
straightforwardly.
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Boφ ¼ Bo0φ ¼ Boγ ¼ Bo0γ ¼ κ4

16π2
M4ω4;

Tφ ¼ Tγ ¼ −
κ4

16π2
M2ω2q2;

T0φ ¼ T0γ ¼ −
15κ4

256π2
M4ω2;

Buφ ¼ 371κ4

7680π2
M2ω2;

Buγ ¼ 113κ4

7680π2
M2ω2: ð3:13Þ

It is straightforward to show that the above results for the
photon one-loop coefficients hold regardless of whether the
photon helicity configuration is chosen to be ð−þÞ
or ðþ−Þ.
On the other hand, the low-energy limits of the scalar

integrals are found to be (see Appendix B for more details)

I4ðt; sÞ þ I4ðt; uÞ ¼ −i
1

q2

2π

Mω
log

�
q2

M2

�
; ð3:14Þ

I3ðt; 0Þ ¼
1

2q2
log2

�
q2

μ2

�
; ð3:15Þ

I3ðt;M2Þ ¼ −
1

2M2

�
log

�
q2

M2

�
þ π2M

jqj
�
; ð3:16Þ

I2ðt; 0Þ ¼ 2 − log

�
q2

μ2

�
: ð3:17Þ

Here μ2 is the mass scale used in dimensional regulariza-
tion. It is worthwhile to note that the dimensional regu-
larization is adopted to handle not only ultraviolet
divergences but also infrared divergences. Temporarily,
we label μ2 resulting from ultraviolet divergences and
infrared divergences as μ2UV and μ2IR, respectively. Certainly,
physical observables should not depend on μ2UV, but they
can depend on μ2IR. For instance, in the calculation of
inclusive cross sections including massless particles, μIR is
the detector threshold, representing the resolution of the
measurement. We have not done an explicit calculation by
taking the detector resolution into consideration at this
stage. It was pointed out by Refs. [23,24] that a full analysis
of the impact of detector resolution is complicated. In the
absence of such calculations, we simply replace all μ’s in
the logarithms by an infrared scale 1=r0, which is also the
option taken by Refs. [23,24].
Provided with the above results, the total gravitational

scattering amplitude

Mη ¼ Mð0Þ
η þMð1Þ

η ð3:18Þ

then has the low-energy expansion

Mη ¼ κ2
M2ω2

q2
þ κ4

15M3ω2

512jqj þ κ4
15M2ω2

512π2
log

�
q2

M2

�

− κ4
M2ω2

32π2
log2

�
q2

μ2

�
− κ4

buη

ð8πÞ2M
2ω2 log

�
q2

μ2

�

− κ4
M3ω3

8π

i
q2

log

�
q2

M2

�
; ð3:19Þ

where buη is related to Buη by

buη ¼ ð8πÞ2
κ4M2ω2

Buη: ð3:20Þ

For the massless scalar φ and the photon γ, buη’s are given
explicitly by

buφ ¼ 371

120
; buγ ¼ 113

120
: ð3:21Þ

As mentioned before, the mass scale μ2 is introduced by
dimensional regularization. In the following discussions of
quantum corrections to the Newtonian potential in the
coordinate space and bending of light, we simply replace
the scale μ by the infrared scale 1=r0.
Before moving on, we would like to remark on the

logarithm-squared part log2 ðq2=μ2Þ. It comes from the
massless triangle integral I3ðt; 0Þ and is related to infra-
red divergences. It is noteworthy that it is not canceled
by the extra contributions from the massless-scalar and
photon double-cut diagrams. In fact, the general structure
of the one-loop amplitudes suggested in Refs. [23,24]
remains intact even with the extra massless-scalar
and photon double-cut contributions. None of them is
canceled.

IV. BENDING OF LIGHT

Now, we are ready to calculate quantum corrections to
gravitational bending of light, which is perhaps the most
famous experimental verification of Einstein’s general
relativity. To relate the microscopic scattering amplitude
data to the macroscopic bending angle, one could use either
the eikonal approximation or the semiclassical potential
method. We recommend Ref. [24] for a recent discussion
on this issue. In this article, we simply use the semiclassical
potential method.
Let us first calculate the quantum Newtonian potential

VηðrÞ. The classical Newtonian potential Vð0Þ
η ðrÞ is given in

Sec. II, while the quantum corrections Vð1Þ
η ðrÞ could be

induced easily from Sec. III A. The total quantum

Newtonian potential VðrÞ ¼ Vð0Þ
η ðrÞ þ Vð1Þ

η ðrÞ is then
given by
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~VηðqÞ ¼ −
κ2

4

Mω

q2
− κ4

15M2ω

2048jqj − κ4
15Mω

2048π2
log

�
q2

M2

�

þ κ4
Mω

128π2
log2

�
q2

μ2

�
þ κ4

buη

256π2
Mω log

�
q2

μ2

�
;

ð4:1Þ

⟹VηðrÞ ¼
Z

d3q
ð2πÞ3 expðiq · rÞ ~VηðqÞ

¼ −
2GMω

r
−
15

4

G2M2ω

r2

þ −8buη þ 15þ 64 logðr=r0Þ
4π

ℏG2Mω

r3
;

ð4:2Þ

where r0 is an undetermined infrared mass scale.
Provided with the above semiclassical potential, the

bending angles of the massless scalar and the photon could
be derived as follows:

θη ¼
b
ω

Z
∞

−∞
du

V 0
ηðb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

¼ 4GM
b

þ 15

4

G2M2π

b2

þ 8buη − 47þ 64 logð2r0=bÞ
π

G2ℏM
b3

: ð4:3Þ

The above result is expressed in terms of the gauge-
invariant impact parameter b. See Ref. [34] for a nice
discussion on the gauge-invariant parametrization of the
gravitational bending angle. The first two terms give the
correct classical bending angle, including the first post-
Newtonian correction, while the last term gives the quan-
tum gravity effect. The difference between bending angles
of the photon and the massless scalar is then given by

θγ − θφ ¼ 8ðbuγ − buφÞ
π

G2ℏM
b3

; ð4:4Þ

with the buγ − buφ coefficient given by

buγ − buφ ¼ −
43

20
: ð4:5Þ

As a result, the quantum violation of some classical
formulations of the equivalence principle suggested in
Refs. [23,24] remains valid after including the massless-
scalar and photon double-cut contributions.
Last but not least, it is noted in Refs. [23,24] that their

calculations could reproduce the classical first post-
Newtonian correction exactly. It is interesting to see how
this comes about even without including the massless-
scalar and photon double-cut contributions. Given the

general structure of the gravitational scattering amplitudes
and the explicit expressions of the standard scalar integrals,
it is straightforward to see that only the massive triangle
integral I3ðt;M2Þ contributes to the post-Newtonian cor-
rection. As the massless-scalar and photon double-cut
contributions do not contain any contribution from
I3ðt;M2Þ, they do not contribute to the post-Newtonian
correction.

V. FURTHER DIRECTIONS

In this article, we have derived the one-loop amplitudes
for the massless scalar and the photon scattering gravita-
tionally from a massive scalar object, and we have extracted
the corresponding gravitational bending angles. We con-
sider not only the graviton double-cut contributions, which
have been studied in Refs. [23,24], but also the extra
contributions from the massless-scalar and photon double-
cut diagrams. The final results for the gravitational bending
angles are given by

θη ¼
4GM
b

þ 15

4

G2M2π

b2

þ 8buη − 47þ 64 logð2r0=bÞ
π

G2ℏM
b3

; ð5:1Þ

with

buφ ¼ 371

120
; buγ ¼ 113

120
; ð5:2Þ

for the massless scalar φ and photon γ, respectively. In spite
of the quantitative differences in various one-loop coef-
ficients, quantum Newtonian potentials, and gravitational
bending angles, we find that the general structures of
one-loop amplitudes suggested in Refs. [23,24] remain
the same, as does the quantum discrepancy of some
classical formulations of the equivalence principle.
There are several directions to extend our analysis:
(1) It is interesting to compute quantum corrections to

other general relativity observables, such as the
gravitational redshift, the Shapiro time delay, etc.
In particular, it was shown recently that the Shapiro
time delay puts extra constraints on the graviton
three-point couplings [35] and the popular de Rham-
Gabadadze-Tolley massive gravity [36]. It is theo-
retically interesting to study its possible quantum
corrections.

(2) It is interesting to compute the one-loop gravita-
tional amplitudes for massless spin-1=2, spin-3=2,
and spin-2 particles. There has been some progress
in this direction. For instance, the graviton double-
cut contributions of the massless spin-1=2 particle
have been derived in Ref. [24] using the on-shell
unitarity method.
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(3) It is recognized that the first post-Newtonian
correction appears in the one-loop calculations. A
natural guess is that the post-Newtonian corrections
of higher orders should correspond to the multiloop
amplitudes. The second post-Newtonian correction
could be calculated using the method of Ref. [34]
from the general-relativity side. To validate the
above conjecture, one then has to carry out a two-
loop calculation from the quantum-field-theory side.
Hopefully, we will return to these issues in future
publications.
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APPENDIX A: NOTATIONS AND
CONVENTIONS

This appendix gives a comprehensive description of the
notations and conventions used in this paper, and we hope
that it helps the readers reproduce our results by them-
selves. The following notations and conventions could also
be easily implemented in various MATHEMATICA packages
like xAct [37], FeynRules [29], FeynArts [30], FormCalc
[31], and S@M [38], which (semi-)automatize the sym-
bolic calculations.

(i) Units:

ℏ ¼ c ¼ 1: ðA1Þ

(ii) Metric signature:

gμν ¼ diagðþ;−;−;−Þ: ðA2Þ

In other words, we adopt the mostly minus metric
signature, which is commonly used in perturbative
calculations of particle physics.

(iii) Levi-Civita tensor:

ϵμνρσ ¼
8<
:

1 if fμ; ν; ρ; σgis an even permutation of f0; 1; 2; 3g;
−1 if fμ; ν; ρ; σgis an odd permutation of f0; 1; 2; 3g;
0 others:

ðA3Þ

(iv) Fourier transformations: In four dimensions, the
Fourier transformations are defined as

fðxÞ ¼
Z

d4k
ð2πÞ4 expð−ik · xÞ

~fðkÞ; ðA4Þ

~fðkÞ ¼
Z

d4x expðik · xÞfðxÞ: ðA5Þ

In three dimensions, the Fourier transformations are
defined as

fðxÞ ¼
Z

d3k
ð2πÞ3 expðik · xÞ ~fðkÞ; ðA6Þ

~fðkÞ ¼
Z

d3k expð−ik · xÞfðxÞ: ðA7Þ

In this article, the following relations are useful in
deriving the classical and quantum Newtonian
potentials in coordinate space:

Z
d3q
ð2πÞ3 expðiq · rÞ 1

q2
¼ 1

4πr
; ðA8Þ

Z
d3q
ð2πÞ3 expðiq · rÞ 1

jqj ¼
1

2π2r2
; ðA9Þ

Z
d3q
ð2πÞ3 expðiq · rÞ logðq2Þ ¼ −

1

2πr3
; ðA10Þ

Z
d3q
ð2πÞ3 expðiq · rÞlog2

�
q2

μ2

�
¼

2 log r
r0

πr3
;

with r0 ¼ e1−γEμ−1: ðA11Þ

Here γE is the Euler constant. When deriving the
above three-dimensional Fourier transformation re-
lations, it is convenient to first do the calculations in
the generalD dimensions using, say, MATHEMATICA,
and then Taylor expand the obtained results around
d ¼ 3. This is how the Euler constant γE comes
about in Eq. (A11).
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(v) Christoffel symbols:

Γμ
αβ ¼

1

2
gμνð∂αgνβ þ ∂βgνα − ∂νgαβÞ: ðA12Þ

(vi) Riemann tensor:

Rδγβ
α ¼ ∂γΓα

βδ − ∂δΓα
βγ þ Γα

μγΓ
μ
βδ − Γα

μδΓ
μ
βγ: ðA13Þ

This is the convention adopted by Wald’s textbook
[39] and the MATHEMATICA package xAct [37].

(vii) Einstein-Hilbert action:

SEH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

2

κ2
R

�
; ðA14Þ

with κ2 ¼ 32πG, where G is Newton’s constant.
The Einstein-Hilbert action here is different from
that in Wald’s textbook by a minus sign. This is
due to the fact that we adopt the mostly minus
metric signature, rather than the mostly plus metric
signature employed by Wald. More explicitly,
R ¼ gμνRμν ¼ gμνRμαν

α. Given the above definitions
of Christoffel symbols and the Riemann tensor, one
only needs to replace gμν with −gμν in order to
convert expressions in the mostly plus metric sig-
nature to those in the mostly minus metric signature.
That gives the minus sign in our Einstein-Hilbert
action.

(viii) S matrix:

S ¼ 1þ iT;

× hk1k2 � � � jiTjp1p2i � � �

≡ ð2πÞ4δð4Þ
�X

pi −
X

kf

�

· iMðp1p2 � � � → k1k2 � � �Þ:

Here the four-momentum is denoted by normal
letters, while the three-momentum is denoted by
boldface letters. For the nonrelativistic scattering in
the external field of a massive object, the semi-
classical potential function VðrÞ is given by

hpfjiTjpii≡ ð2πÞ4δð4Þðpi − pfÞ · iMðqÞ
¼ −ð2πÞδðEi − EfÞ · i ~VðqÞ; ðA15Þ

withpi andpf being the incoming and outgoing four-
momentum, and q ¼ pf − pi. One could further see
that

~VðqÞ ¼ −
1

2M
1

2ω
M; ðA16Þ

whereω is the energy of themassless particle (e.g., the
photon γ) and M is the mass of the massive object
(e.g., the massive scalar Φ). As a result,

VðrÞ ¼ −
1

2M
1

2ω

Z
d3q
ð2πÞ3 expðiq · rÞM: ðA17Þ

(ix) Spinor-helicity formalism:We follow the convention
of Henn and Plefka’s textbook [33].

(x) Feynman propagators: In this article, we quantize
gravity using the background-field method follow-
ing ’t Hooft and Veltman [40]. In the background-
field method, fields are expanded with respect to
arbitrary classical background fields, with only the
quantized fields treated as dynamical. The gauge
invariances of the quantized fields are then broken
by a choice of quantum gauge in such a way that the
resulting action is still invariant under background
gauge transformations. Explicitly, we adopt the
standard de Donder gauge and Feynman gauge to
fix the quantum gauge invariances of the graviton
and photon, respectively. For a detailed description
of the quantization of the Einstein-Maxwell system,
we recommend Ref. [41]. The relevant propagators
in the Minkowski spacetime could then be found as
follows:

- Scalar propagator
i

q2 −m2 þ iϵ
; ðA18Þ

- Photon propagator
−iημν
q2 þ iϵ

; ðA19Þ

- Graviton propagator
1

2

× ½ημ1μ2ην1ν2 þ ημ1ν2ην1μ2 − ημ1ν1ημ2ν2 �
i

q2 þ iϵ
;

ðA20Þ

- Graviton-ghost propagator
−iημν
q2 þ iϵ

: ðA21Þ

See Ref. [28] for a FeynArts model file containing
all the above propagators as well as interacting
vertices up to four points. This acts as the starting
point for our automatic calculation routines for the
one-loop scattering amplitudes.

APPENDIX B: USEFUL INTEGRALS

In this appendix, we summarize the explicit expressions
of various scalar integrals that appear in our calculations.
We adopt the notations of Ref. [42]:
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ID2 ðp2
1;m

2
1; m

2
2Þ ¼

μ4−D

iπ
D
2rΓ

Z
dDl

1

ðl2 −m2
1 þ iϵÞððlþ q1Þ2 −m2

2 þ iϵÞ ; ðB1Þ

ID3 ðp2
1; p

2
2; p

2
3;m

2
1; m

2
2; m

2
3Þ ¼

μ4−D

iπ
D
2rΓ

Z
dDl

1

ðl2 −m2
1 þ iϵÞððlþ q1Þ2 −m2

2 þ iϵÞððlþ q2Þ2 −m2
3 þ iϵÞ ; ðB2Þ

ID4 ðp2
1; p

2
2; p

2
3; p

2
4; s12; s23;m

2
1; m

2
2; m

2
3; m

2
4Þ

¼ μ4−D

iπ
D
2rΓ

Z
dDl

1

ðl2 −m2
1 þ iϵÞððlþ q1Þ2 −m2

2 þ iϵÞððlþ q2Þ2 −m2
3 þ iϵÞððlþ q3Þ2 −m4

4 þ iϵÞ ; ðB3Þ

where rΓ ¼ Γð1 − ϵÞ2Γð1þ ϵÞ=Γð1 − 2ϵÞ, qn ¼
P

n
i¼1 pi, q0 ¼ 0, and sij ¼ ðpi þ pjÞ2.

The scalar integrals I4ðt; sÞ, I4ðt; uÞ, I3ðt; 0Þ, I3ðt;M2Þ, and I2ðt; 0Þ in this article are then given as follows:

I4ðt; sÞ ¼ ID4 ðt; 0; s;M2; 0;M2; 0; 0; 0;M2Þ

¼ −
1

tðM2 − sÞ
�
μ2

M2

�
ϵ
�
2

ϵ2
−
1

ϵ

�
2 log

M2 − s
M2

þ log
−t
M2

�

þ 2 log
M2 − s
M2

log
−t
M2

−
π2

2
þOðϵÞ

�
; ðB4Þ

I3ðt; 0Þ ¼ ID3 ðt; 0; 0; 0; 0; 0Þ ¼ −
1

tϵ2
−
logð−t=μ2Þ

tϵ
−
log2ð−t=μ2Þ

2t
þOðϵÞ; ðB5Þ

I3ðt;M2Þ ¼ ID3 ðt;M2;M2; 0; 0;M2Þ

¼ 1

tβ

�
2π2

3
þ 2Li2

�
β − 1

β þ 1
þ 1

2
log2

�
β − 1

β þ 1

���
; with β2 ¼ 1 −

4M2

t
; ðB6Þ

I2ðt; 0Þ ¼ ID2 ðt; 0; 0Þ ¼
1

ϵ
þ 2 − log

�
−t
μ2

�
þOðϵÞ: ðB7Þ

The scalar integral I4ðt; uÞ could be obtained by replacing s with u in Eq. (B4).
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