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Exploring the characterization of singular black hole spacetimes, we study the relation between energy
density, curvature invariants, and geodesic completeness using a quadratic fðRÞ gravity theory coupled to
an anisotropic fluid. Working in a metric-affine approach, our models and solutions represent minimal
extensions of general relativity (GR) in the sense that they rapidly recover the usual Reissner-Nordström
solution from near the inner horizon outwards. The anisotropic fluid helps modify only the innermost
geometry. Depending on the values and signs of two parameters on the gravitational and matter sectors, a
breakdown of the correlations between the finiteness/divergence of the energy density, the behavior of
curvature invariants, and the (in)completeness of geodesics is obtained. We find a variety of configurations
with and without wormholes, a case with a de Sitter interior, solutions that mimic nonlinear models of
electrodynamics coupled to GR, and configurations with up to four horizons. Our results raise questions
regarding what infinities, if any, a quantum version of these theories should regularize.
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I. INTRODUCTION

One of the most serious drawbacks associated to
Einstein’s theory of general relativity (GR) is the unavoid-
able existence, under reasonable physical assumptions, of
spacetime singularities deep inside black holes, as well as in
the early Universe [1]. This is due to the fact that at such
singularities the predictability of physical laws comes
to an end because measurements are no longer possible.
The underlying reason is that the existence of incomplete
geodesics implies the destruction/creation of observers and/
or information (light signals) as some limiting boundaries
are approached. As a way out of this problem, Penrose
introduced [2] the cosmic censorship conjecture, by which
singularities emerging out of gravitational collapse are
assumed to be hidden behind an event horizon, so they
cannot causally affect physical processes taking place in the
portion of the Universe accessible to far away observers.
Since sweeping the problem under the carpet does not solve
it, finding a consistent description of the interaction between
gravity and matter, where the resolution of spacetime
singularities may be naturally achieved, has become a major
goal from different perspectives (classical and quantum,
fundamental and phenomenological).

It is typically argued that spacetime singularities should
be resolved by a quantum theory of gravity. This is
supported by the idea that the quantum degrees of freedom
of the gravitational field are expected to be non-negligible
in regions of very high curvature. This view, inherited from
the effective field theory approach to quantum theory, is
very appealing but should be taken with care in gravita-
tional scenarios, where the notion of singularity is not
necessarily tied to the divergence of some quantities in
some regions [3–5]. For geometric theories of gravity
(classical theories), the very existence of observers is more
fundamental than the possibility of obtaining absurd results
in a measurement, as the latter is not possible without the
former. It is for this reason that the existence of incomplete
geodesics, for which the affine parameter is not defined
over the whole real line, appears as the key element in the
singularity theorems.
In the context of GR, the incompleteness of geodesics

usually occurs simultaneously with the divergence of scalar
quantities, such as the energy density of the matter sources
or certain curvature invariants. These divergences appear as
a reason for the incompleteness of the geodesics, leading to
a rule of thumb for the identification of singular spacetimes
[6] (see Ref. [7] for a critical viewpoint on this issue).
Indeed this has shaped many approaches to the singularity
problem based on the idea that such quantities should
remain bounded (see e.g. Ref. [8] for a review).
One of such approaches is given by classical nonlinear

models of the electromagnetic field. This is supported on
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the success of the Born-Infeld theory of electrodynamics,
where a square-root modification of the Maxwell action
gets rid of the divergence of the self-energy of Coulomb’s
field by imposing a maximum bound on the electric field at
the center [9]. It is natural to wonder whether a similar
mechanism for the removal of singularities could occur
in the context of gravitation. In this sense Born-Infeld
electrodynamics, though successful in making the energy
density of the electromagnetic field finite, fails to keep at
bay divergences on the curvature scalars when coupled to
gravity, which comes alongside with the incompleteness of
(some) geodesics [10]. In this regard, similar attempts using
other well-defined nonlinear electrodynamics models have
failed as well [11]. Nonetheless, it is worth mentioning that
some examples of nonlinear electrodynamics do regularize
curvature divergences [12], but such models are con-
structed in an ad hoc way and yield unphysical features,
as shown by Bronnikov [13] (see also Ref. [14]). This
strategy has been extended to the case of gravitational
actions going beyond the Einstein-Hilbert Lagrangian of
GR, such as Gauss-Bonnet and, more generally, Lovelock
theories [15], where similar disappointing results have been
obtained (see e.g. Ref. [16] for some attempts in this
context). Consequently, it is fair to say that such models
have been unable to find a fully consistent way out of the
singularity problem in GR.
In this work we shall examine in detail the relation

between energy density, curvature invariants, and geodesic
completeness in some theories of gravity beyond GR. This
will allow us to see if the correlations observed in GR
among those quantities still persist in other gravitational
theories (see Ref. [17] for related ideas explored in this
context). In other words, can matter/curvature infinities be
seen as the reason for the incompleteness of geodesics?
This study is relevant in order to understand what problems,
if any, a quantum version1 of those theories of gravity
should solve.
In our approach, we interpret gravitation as a geometric

phenomenon, but geometry as something more than just
curvature. In the metric-affine (or Palatini) formulation
of classical gravitation, geometric properties such as non-
metricity and torsion, besides curvature, are allowed by
construction. The lack of these freedoms in the usual
Riemannian approach could be an excessive constraint with
a potentially non-negligible impact on the problems that
gravity theories typically exhibit at high energy. It should be
noted that nonmetricity and torsion are necessary to dealwith
different kinds of geometric defects in continuum systems
with a microstructure, such as Bravais crystals or graphene
[18]. For this reason, metric-affine geometry is commonly
used in the study of condensed matter physics [19].
Nonetheless, for operational convenience, in this work we

shall neglect torsion (see, however, Ref. [20] for a discussion
on the role of torsion in metric-affine theories) and focus on
nonmetricity only [21]. Indeed, the question of whether
gravity as a manifestation of the curvature2 of spacetime is
purely a matter of metrics or if the affine structure of
spacetime is on equal footing as the metric one has been
at debate since soon after the establishment of GR (see e.g.
Ref. [24] for a pedagogical discussion). Certainly, when
GR is formulated à la Palatini, the variation of the action
with respect to the independent connection yields a set of
equations that simply express the metric-connection com-
patibility condition. The fact that this approach yields the
same dynamics as that of considering the metric as the only
independent degree of freedom (metric approach) has fre-
quently led to regarding the Palatini variation as merely an
alternative way to derive the field equations of GR. For other
theories of gravity, however, the compatibility between
metric and connection is broken and the peculiarities of
the metric-affine approach become manifest.
The scenario considered here corresponds to a simple

quadratic fðRÞ gravity extension of GR (for which many
applications have been investigated in the literature; see
e.g. Ref. [25]), formulated in a metric-affine framework. It
should be pointed out that with the advent of gravitational-
wave astronomy following the discovery of GW150914
by LIGO [26], both gravitational extensions of GR and
exotic compact objects in such models can be put to
experimental test [27]. As the matter sector, in our setup
we consider an anisotropic fluid (constrained to satisfy
standard energy conditions), which has been recently
investigated in some detail in a number of astrophysi-
cal/cosmological scenarios [28]. Such fluids include a
number of particularly interesting cases, such as that of
nonlinear electrodynamics. The resulting spacetimes are
split into four different cases, depending on the combi-
nations of the signs of the coupling constant of the
quadratic gravity contribution and of a constant associated
to the matter sector. A noteworthy feature of many of the
solutions obtained is the emergence of a finite-size
wormhole structure (see Ref. [29] for a detailed account
of wormhole physics) replacing the point-like singularity
typically found at the center of GR black holes. It is worth
pointing out that wormholes have been suggested as
solutions to spacetime singularities in approaches to
quantum gravity such as loop quantum gravity [30] and
shape dynamics [31] (see also Ref. [32] and references
therein, where wormholes were linked to regularization
mechanisms).

1Note that we are assuming that any classical theory of gravity
should admit a quantum version.

2As a matter of fact, gravity could be interpreted as a
manifestation of torsion in a flat background, such as in the
teleparallel formulation of general relativity (see e.g. Ref. [22]),
but also it could belong to a more general picture where
curvature and torsion are both required to properly describe
the gravitational interaction as in the case of Einstein-Cartan
theories [23].
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The main aim of the present work is to determine when
the typically assumed correlation between divergence of
curvature scalars and geodesic incompleteness is broken. In
this sense, we note that the concept underlying the
formulation of the singularity theorems [4] is that of
geodesic completeness, namely, whether a geodesic curve
can be extended to arbitrarily large values of its affine
parameter or not. This is a logically independent and more
primitive concept than that of curvature divergences (see
Ref. [6] for a nice discussion on this issue), with the latter
playing no role in such theorems. As already mentioned,
the widespread identification between them in the literature
is explained as due to the fact that in many cases of interest
(particularly in GR) those spacetimes having (some)
incomplete geodesics, also yield (some) divergent curva-
ture scalars [8]. In some of the spacetimes found here we
explicitly show that the presence of wormholes yields
geodesically complete spacetimes, though curvature scalars
may blow up at the wormhole throat. In other cases without
wormholes, we meet the incompleteness of geodesics
despite the finiteness of curvature scalars. The relation
of these magnitudes with the (boundedness of the) energy
density of the matter fields is also discussed.
The paper is organized as follows. In Sec. II we introduce

the action and main equations of fðRÞ gravity formulated à
la Palatini. In Sec. III we specify the matter sector of our
theory under the form of an anisotropic fluid and introduce
a number of constraints on it. Next, in Sec. IV, we focus our
discussion upon a quadratic fðRÞ model and solve the field
equations for the metric. Section V contains the main
results of this work, where we study the four different
classes of spacetimes, and discuss in detail the relation
between energy density, curvature scalars, and geodesic
completeness. We conclude in Sec. VI with a summary and
some perspectives.

II. ACTION AND MAIN EQUATIONS

The action of fðRÞ gravity can be written as

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Smðgμν;ψmÞ; ð1Þ

with the following definitions and conventions: κ2 is
Newton’s constant in suitable units (in GR, κ2 ¼
8πG=c4), g is the determinant of the spacetime metric
gμν, and fðRÞ is a given function of the curvature scalar,
R≡ gμνRμν, where the Ricci tensor, Rμν ≡ RμνðΓÞ, which
follows from the Riemann tensor as Rμν ≡ Rα

μαν, is entirely
built out of the affine connection, Γ≡ Γλ

μν, which is a priori
independent of the metric (metric-affine or Palatini
approach). Finally, Sm is the matter action, which is
assumed to depend only on the matter fields, collectively
denoted as ψm, and on the metric gμν.

Performing independent variations of the action (1) with
respect to the metric and connection one gets two systems
of equations

fRRμν −
f
2
gμν ¼ κ2Tμν; ð2Þ

∇Γ
λ ð

ffiffiffiffiffiffi
−g

p
fRgμνÞ ¼ 0; ð3Þ

where fR ≡ df=dR and Tμν ¼ − 2ffiffiffiffi−gp δSm
δgμν is the stress-

energy tensor of the matter. It is worth mentioning that
Eq. (3) simply states that the independent connection fails
to be metric or, in other words, that a nonmetricity tensor
Qλμν ≡∇Γ

λ gμν ≠ 0 is present. In the GR case, fR ¼ 1 and
Eq. (3) becomes ∇Γ

λ ð
ffiffiffiffiffiffi−gp

gμνÞ ¼ 0, which is fully equiv-
alent to ∇Γ

λ gμν ¼ 0 and thus Γλ
μν becomes the Levi-Civita

connection of the metric gμν, while the field equations (2)
boil down to those of GR with possibly a cosmological
constant term. This is the underlying reason for the
equivalence between the Palatini and metric formulations
of GR. For more general fðRÞ Lagrangians, however,
nonmetricity becomes an inherent feature of the field
equations.
It is also important to understand the intimate relation

existing between matter and gravity in Palatini theories of
gravity. Tracing with gμν in Eq. (2) yields the result

RfR − 2f ¼ κ2T; ð4Þ

where T is the trace of the stress-energy tensor. This is not a
differential equation, but instead it just establishes an
algebraic, nonlinear relation between curvature and matter.
Given an fðRÞ theory, solving Eq. (4) yields a solution
R ¼ RðTÞ, which generalizes the GR relation, R ¼ −κ2T.
This algebraic relation explains the absence of extra dynami-
cal degrees of freedom in our theory as compared to the usual
metric approach, where the scalar curvature satisfies a
second-order differential equation, thus implying the pres-
ence of propagating scalar degrees of freedom. In the Palatini
case, the additional curvature terms are just nonlinear
functions of T and can be collected as extra pieces in an
effective stress-energy tensor. This way, the Palatini field
equations for the metric (2) can be simply written as

Gμν ¼ κ2τμν; ð5Þ

where the effective stress-energy tensor is written as

τμν ¼
κ2

fR
Tμν −

RfR − f
2fR

gμν

−
3

2f2R

�
∂μfR∂νfR −

1

2
gμνð∂fRÞ2

�

þ 1

fR
½∇μ∇νfR − gμν□fR�: ð6Þ
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However, from a practical point of view, in many cases of
interest it is easier to solve the field equations by noting that
the result R ¼ RðTÞ allows us to introduce in Eq. (3) a rank-
two tensor hμν satisfying

∇Γ
λ ð

ffiffiffiffiffiffi
−h

p
hμνÞ ¼ 0; ð7Þ

such that the independent connectionΓλ
μν can be expressed as

the Christoffel symbols of the metric hμν, i.e.,

Γλ
μν ¼

hλρ

2
½∂μhρν þ ∂νhρμ − ∂ρhμν�: ð8Þ

Comparing this with Eq. (3), it is immediately seen that the
physical metric gμν can be obtained out of hμν according to
the conformal transformations

hμν ¼ fRgμν; hμν ¼ f−1R gμν; ð9Þ

where, recall, fR is a function of the matter, fR ≡ fRðTÞ.
An alternative representation of the field equations is

now possible in terms of hμν by contracting Eq. (2) with hαμ

and using the relations (9) to obtain

Rμ
νðhÞ ¼

1

f2R

�
f
2
δμν þ κ2Tμ

ν

�
; ð10Þ

where RμνðhÞ≡ RμνðΓÞ is the Ricci tensor constructed with
the Christoffel symbols of the metric hμν; see Eq. (8). Note
that due to the fact that f ≡ fðRðTÞÞ all the objects on the
right-hand side of Eq. (10) are just functions of the matter.
ThusEq. (10) represents a set of second-order field equations
for hμν and, since the conformal transformations (9) depend
only on the matter sources, the field equations for gμν will be
second order aswell. In vacuum,Tμ

ν ¼ 0, one has gμν ¼ hμν
(up to a trivial rescaling of units) and the field equations (10)
reduce to those of GR with a cosmological constant term,
which confirms the absence of ghost-like propagating
degrees of freedom in these theories.

III. ANISOTROPIC FLUIDS

In this work we are interested in obtaining black hole
solutions in Palatini fðRÞ theories, and comparing their
structure with that of electrically charged black holes of
GR. However, due to the fact that the nonlinear corrections
appearing on the right-hand side of the new gravitational
field equations [either in Eq. (5) or Eq. (10)] depend just on
the trace of the matter, fðRÞ≡ fðRðTÞÞ, the new dynamics
encoded in Palatini fðRÞ theories can only be excited when
nontraceless stress-energy tensors are considered. This
implies that considering a classical Maxwell electromag-
netic field, whose trace is zero, would yield electrovacuum
solutions identical to those of GR with a cosmological
constant (Reissner-Nordström–anti de Sitter black holes).

Thus, in order to explore new physics in these scenarios, we
must consider stress-energy tensors with a nonvanishing
trace. One can then assume that a trace anomaly or other
types of corrections are generated by quantum effects and
propose a stress-energy tensor of the following form:

Tμ
ν ¼ diagð−ρ; Pr; Pθ; PφÞ: ð11Þ

This corresponds to an anisotropic fluid, where ρ is the
energy density and fPr; Pθ; Pφg are the (different, in
principle) pressures. This class of fluids has been recently
considered in Refs. [33–35] where, working in slightly
different scenarios, it was found that wormhole solutions
can be constructed3 in Eddington-inspired Born-Infeld
theories of gravity without violation of the energy con-
ditions. In contrast to that approach, as we shall show
below, in the Palatini fðRÞ scenario considered here,
wormholes can be obtained directly as solutions of the
field equations without an a priori designer approach.

A. Fluid model

To simplify the analysis and obtain analytically acces-
sible scenarios, let us constrain the functions defining our
model. First we restrict the fluid to satisfy Pr ¼ −ρ and
Pθ ¼ Pφ ¼ KðρÞ, where KðρÞ is a free input function
whose form will be specified later. Thus, the stress-energy
tensor for this fluid reads

Tμ
ν ¼ diag½−ρ;−ρ; KðρÞ; KðρÞ�: ð12Þ

A motivation for considering these constraints is the fact
that the form of the stress-energy tensor (12) exactly
matches that of some nonlinear theories of electrodynam-
ics. Indeed, in such a case, defining the matter model as a
given function φðX; YÞ of the two field invariants X ¼
−ð1=2ÞFμνFμν and Y ¼ −ð1=2ÞFμνF�μν, that can be built
out of the field strength tensor Fμν ¼ ∂μAν − ∂νAμ and its
dual Fμν� ¼ 1

2
ϵμναβFαβ, the corresponding stress-energy

tensor is written as

Tμ
ν ¼ 1

8π
diag½φ − 2ðXφX þ YφYÞ;

φ − 2ðXφX þ YφYÞ;φ;φ�; ð13Þ

where φX ≡ dφ=dX and φY ≡ dφ=dY. Identifying −8πρ ¼
φ − 2ðXφX þ YφYÞ and 8πKðρÞ ¼ φ, it is clear that speci-
fying a function KðρÞ allows to solve these equations to
determine the function φðX; YÞ, at least in implicit form,
associated to the anisotropic fluid under consideration.

3Here the word “constructed” means that the wormhole
geometry is given first, and then the gravitational field equations
are driven back in order to find the matter sources threading the
geometry. This is a widely used strategy in the context of
wormhole physics [29].
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To obtain additional information on the fluid described
by the stress-energy tensor (12), using the fact that the
independent connection Γλ

μν does not couple to the matter in
the action (1), one finds that the standard conservation
equation, ∇μTμ

ν ¼ 0, holds in these theories. Now, con-
sidering static spherically symmetric spacetimes, we can
write a line element for the spacetime metric gμν as

ds2 ¼ −CðxÞdt2 þ B−1ðxÞdx2 þ r2ðxÞðdθ2 þ sin2θdφ2Þ;
ð14Þ

where the functionsCðxÞ,BðxÞ and rðxÞ are to be determined
by integration of the gravitational field equations.
With this line element, the conservation equation above

just reads ρx þ 2½ρþ KðρÞ�rx=r ¼ 0, where ρx ≡ dρ=dx
and rx ≡ dr=dx, which can be integrated to give a relation
between rðxÞ and ρðxÞ as

r2ðxÞ ¼ r20 exp

�
−
Z

ρ d~ρ
~ρþ Kð~ρÞ

�
; ð15Þ

where r0 is an integration constant with dimensions of
length and ~ρ is the energy density without dimensions. To
proceed further and integrate explicitly this equation, we
need to specify a function KðρÞ. Let us take the choice

KðρÞ ¼ αρþ βρ2; ð16Þ

where, for dimensional consistency, α is a dimensionless
constant and β has dimensions of inverse density. This
choice covers a number of interesting cases and allows us to
obtain analytical solutions. Indeed, in this case, from the
expression (16), the relation between ρðxÞ and rðxÞ in
Eq. (15) is explicitly written as

ρðrÞ ¼ ð1þ αÞρ0
ð rr0Þ2ð1þαÞ − βρ0

; ð17Þ

where ρ0 is a reference energy density that arises as an
integration constant and can be fixed from the asymptotic
behavior of the fluid. In particular, forα ¼ 1, the fluid density
and themetric far from the center tend to those generated by a

Maxwell field, namely, ρr4 ¼ q2

8π, which allows to relate ρ0r
4
0

with the electric charge, q. Moreover, if β ¼ 0, the stress-
energy tensor of the fluid exactly becomes that of a Maxwell
field with a vanishing trace and, as already mentioned, this
yields the same dynamics as that of GR. However, nontrivial
combinations of α and β provide modified field equations
and generate new solutions.
The analysis now requires to be split into the cases β < 0

and β > 0, since their properties are very different. For β >
0 there is a critical radius r⋆ ¼ ðjβjρ0Þ1=½2ð1þαÞ�r0 at which
the energy density blows up. Thus the location of the
standard divergence in the density of the fluid (Maxwell

case) shifts from r ¼ 0 to the finite radius r⋆. On the other
hand, for the case β < 0 the energy density is finite
everywhere, having a maximum value

ρm ¼ ð1þ αÞ
jβj ; ð18Þ

at the center. This is quite a similar result as that found in
certain models of nonlinear electrodynamics, such as the
one of Born and Infeld [9], where the electric field attains a
maximum value at the center and regularizes the energy
density. In Sec. V wewill study the implications and impact
of the finiteness (or not) of the energy density, via the
bound (18), on the regularity of the corresponding space-
times. Note in this sense that the particular case with β ¼ 0
and 0 < α < 1 was studied in detail in Ref. [36].
To simplify the analysis and the notation let us fix α ¼ 1

from now on and define ~β ¼ sβjβjρ0, with sβ ¼ �1

denoting the sign of β, and introduce the dimensionless
variable z ¼ r=r⋆, where r⋆ is the critical radius defined
above. Then, we get z4 ¼ sβr4= ~βr40 so that the energy
density of the fluid simply reads

ρ ¼ ρm
z4 − sβ

: ð19Þ

To conclude this section, we emphasize that we are only
considering matter sources satisfying the energy condi-
tions. For instance, the weak energy condition (WEC)
states that the following conditions have to be fulfilled [29]:
ρ > 0 and ρþ pi > 0 (i ¼ r; θ;φ) in Eq. (11). For the
particular ansatz (12) with the choice (16) and the expres-
sions for the energy density (17) and (18), it follows that the
WEC will be satisfied whenever α > 0, which is consistent
with the choice α ¼ 1 above.

IV. GRAVITYMODEL AND FORMAL SOLUTIONS

To work with the simplest possible scenario, let us
consider the quadratic fðRÞ model

fðRÞ ¼ R − σR2; ð20Þ

where σ is a constant with dimensions of length squared.
This model is particularly amenable for calculations
because the trace equation (4) yields R ¼ −κ2T, which
is the same linear relation as in GR, this result being just an
accident related to the functional form of the quadratic
model in four dimensions. With this choice, we find that the
quantity fR, which will play a key role in the characteri-
zation of the solutions, takes the simple form4

4If in the gravity Lagrangian we allow σ to take positive and
negative values, then γ in Eq. (21) should be parametrized as
sγjγj. This leads to four types of models depending on the
different combinations of sβ and sγ .

WHAT IS A SINGULAR BLACK HOLE BEYOND GENERAL … PHYSICAL REVIEW D 95, 064043 (2017)

064043-5



fR ¼ 1þ sβsσ
γ

ðz4 − sβÞ2
; ð21Þ

where γ ≡ ρm=ρσ [and we have introduced ρσ ≡ 1=ð8κ2jσjÞ
to denote the energy scale associated to the gravitational
coupling constant σ ¼ sσjσj] represents the relative
strength between the matter and gravitational sectors, such
that the GR limit is recovered when γ → 0. Note that the
parametrization of σ with sσ and of β with sβ leads to four
different configurations, which will be studied separately
in Sec. V.

A. The metric

To solve the field equations (10) we introduce a static,
spherically symmetric line element for the auxiliary metric
hμν as

ds2h ¼ −e2ΦðxÞAðxÞdt2 þ 1

AðxÞ dx
2 þ x2ðdθ2 þ sin2 θdφ2Þ;

ð22Þ

where ΦðxÞ and AðxÞ are two functions to be determined
using the field equations (10). From the symmetry Tt

t ¼
Tx

x one finds that Rt
t − Rx

x ¼ 0, which implies that
ΦðxÞ ¼ constant, which can be put to zero by a redefinition
of the time coordinate without loss of generality. The
remaining field equation follows from the component

Rθ
θðhÞ ¼

1

x2
ð1 − A − xAxÞ; ð23Þ

which can be simplified by introducing the mass ansatz

AðxÞ ¼ 1 −
2MðxÞ

x
; ð24Þ

leading to the first-order equation

2
Mx

x2
¼ 1

f2R

�
f
2
þ κ2Tθ

θ

�
; ð25Þ

whereMx ≡ dM=dx. To handle the integration of the mass
function MðxÞ it is useful to take a parametrization

MðxÞ ¼ M0ð1þ δ1GðxÞÞ; ð26Þ

with 2M0 ≡ rS representing the Schwarzschild radius and
δ1 a dimensionless constant defined as

δ1 ≡ κ2ρmðr0j ~βj14Þ3
rS

: ð27Þ

This puts forward that MðxÞ is made out of a constant
contribution, M0, plus a term generated by the fluid
and represented by the function GðxÞ [see Eq. (32) below].

The resulting solution allows to construct the physical
metric gμν by means of the conformal relations (9). This
way, the physical line element can be written as

ds2 ¼ −
AðxÞ
fR

dt2 þ dx2

AðxÞfR
þ r2ðxÞðdθ2 þ sin2θdφ2Þ:

ð28Þ

Now, taking into account that such conformal transforma-
tions also imply that

x2 ¼ fRðrÞr2; ð29Þ

whose dimensionless version using z and ~x≡ x=r⋆ is

~x2 ¼ fRðzÞz2; ð30Þ

we then obtain the relation

dz
d~x

¼ 1

f1=2R ½1þ 1
2
zfR;z
fR

�
; ð31Þ

which allows us to express Eq. (25), by means of Eq. (26),
as a differential equation involving only the variable z:

Gz ¼
z2

ðz4 − sβÞf3=2R

�
1 −

sσγ
ðz4 − sβÞ3

�

×
�
1 −

sσγð1þ 3sβz4Þ
ðz4 − sβÞ3

�
; ð32Þ

with Gz ≡ dG=dz. Therefore, by formally integrating Gz,
the metric component gtt in Eq. (28) is obtained in terms of
the radial function z as

gtt ¼ −
1

fR

�
1 −

rSð1þ δ1GðzÞÞ
zr⋆f1=2R

�
: ð33Þ

B. Geodesic completeness

The nontrivial modified dynamics induced by the gravi-
tational R2 corrections necessarily modifies the geodesic
structure of the corresponding geometry as compared to the
GR solution. This is a question of utmost interest, given the
fact that geodesic completeness, namely, whether any (null
and timelike) geodesic can be extended to arbitrarily large
values of the affine parameter, is the most fundamental and
generally accepted criterion to determine whether a space-
time is singular or not [4]. Since timelike geodesics are
associated to physical observers and null geodesics to the
propagation of information, this criterion captures the
intuitive idea that in a physically well-behaved spacetime
nothing can suddenly cease to exist and that nothing can
emerge out of nowhere. Nonetheless, as discussed in the
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Introduction, there is frequently a misunderstanding in the
literature, taking curvature divergences as an equivalent
concept to that of geodesic completeness in order to detect
the presence of spacetime singularities. As we shall show in
Sec. V, such an identification explicitly breaks in many of
the geometries considered in this work. Thus we are mainly
interested in studying the geodesic structure in those cases
where the GR geodesics are incomplete and consequently
yield a singularity, regardless of the presence or not of
curvature divergences. To this end, in this section we shall
specify the geodesic equation for Palatini fðRÞ theories and
solutions of the form studied here.
In a coordinate system, a geodesic curve γμ ¼ xμðλÞ

associated to a given connection Γμ
αβ is defined by the

equation [4]

d2xμ

dλ2
þ Γμ

αβ

dxα

dλ
dxβ

dλ
¼ 0; ð34Þ

where λ is the affine parameter. Since in the action (1)
defining our model, the matter part couples to the metric but
not to the connection, we will focus on the geodesics
associated to the physical metric gμν, which are the ones
that the matter fields follow according to the Einstein
equivalence principle (see Ref. [37] for an extended
discussion on geodesics in metric-affine spaces).
The analysis can be largely simplified by writing the

geodesic equation using the tangent vector uμ ¼ dxμ=dλ,
which satisfies uμuμ ¼ k, with k ¼ 1; 0;−1 corresponding
to spacelike, null, and timelike geodesics, respectively.
Taking advantage of spherical symmetry, without loss of
generality we can rotate the angular plane in such a way
that it coincides with θ ¼ π=2, which further simplifies the
problem. From the line element (28) we can, in addition,
identify two conserved quantities of motion, E ¼
ðAðxÞ=fRÞdt=dλ and L ¼ r2ðxÞdφ=dλ. For timelike geo-
desics, these quantities carry the meaning of the total
energy per unit mass and angular momentum per unit
mass, respectively. For null geodesics E and L lack a proper
meaning by themselves, but the quantity L=E can be
identified as an apparent impact parameter as seen from
the asymptotically flat infinity [38].
Under these conditions, the geodesic equation (34) for

the above geometries simply reads

1

f2R

�
dx
dλ

�
2

¼ E2 −
AðxÞ
fR

�
L2

r2ðxÞ − k

�
: ð35Þ

By using the relation of coordinates (30) [and also the
associated Eq. (31)], we rewrite the geodesic equation (35)
as

dλ
dz

¼ �
f1=2R ð1þ zfR;z

2fR
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2f2R − AðzÞfRð L2

r2⋆z2
− kÞ

q ; ð36Þ

where λ is measured in units of r⋆, and the sign �
corresponds to outgoing/ingoing geodesics, with

AðzÞ ¼ 1 −
rS
r⋆

�
1þ δ1GðzÞ

zf1=2R

�
; ð37Þ

as one can deduce by following the steps of Sec. IVA.
Equivalently, the geodesic equation can be written in the
more convenient form

dλ
dz

¼ �
ð1þ zfR;z

2fR
Þ

f1=2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ gttð L2

r2⋆z2
− kÞ

q : ð38Þ

In the next section we shall study in detail the properties
of the four different cases of configurations, corresponding
to the combinations of the signs of σ and β, and their
respective features regarding the behavior of the energy
density, the curvature scalars, and geodesic completeness.

V. ANALYSIS OF THE SOLUTIONS

A. Case I: σ > 0, β < 0

Let us now particularize the above equations to the case
in which sσ ¼ 1 and sβ ¼ −1, for which we obtain

ρ ¼ ρm
z4 þ 1

; ð39Þ

fR ¼ 1 −
γ

ðz4 þ 1Þ2 ; ð40Þ

Gz ¼
z2ð1 − γð1−3z4Þ

ðz4þ1Þ3 Þð1 − γ
ðz4þ1Þ3Þ

ðz4 þ 1Þð1 − γ
ðz4þ1Þ2Þ3=2

: ð41Þ

The function GðzÞ determined by Eq. (41) can be easily
solved using power series expansions, and the resulting
solutions can be classified in terms of the values of the
parameter γ defined in Eq. (21). Depending on whether γ
is greater or smaller than unity, one finds different families
of solutions. In this sense, the behavior of the function
z ¼ zð~xÞ, which arises from the resolution of Eq. (30),
contains valuable information. Note that according to
Eq. (40) the function fR vanishes at

zc ¼ ðγ1=2 − 1Þ1=4; ð42Þ

which sets a critical value for γ ¼ 1. When γ ≥ 1, the radial
function zðxÞ has a minimum at zc where, according to
Eq. (30), ~x ¼ 0. (From now on, we drop the tilde from ~x to
lighten the notation.) Though a compact expression for
z ¼ zðxÞ is not easy to find in general, a series expansion
around z ¼ zc yields the result
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jxj ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8z5c

1þ z4c

s
ðz − zcÞ1=2 þO½ðz − zcÞ3=2�: ð43Þ

From this expression one finds that z ≈ zc þ x2ð1þ z4cÞ=
ð8z5cÞ, which shows that for x > 0 the area of the two-
spheres decreases with decreasing x, but for x < 0
increases with decreasing x, with a minimum at x ¼ 0
(z ¼ zc). This behavior is clearly seen in Fig. 1 where
Eq. (30) has been inverted numerically for several values of
γ > 1. The interpretation of this minimal area in the two-
spheres is well known in the literature: it represents a
wormhole [29], a topologically nontrivial bridge connect-
ing two asymptotically flat spacetime regions, where zc
(x ¼ 0) sets the location of the throat. As it has been found
in other cases of Palatini fðRÞ theories coupled to various
matter sources [36,39], the emergence of this structure is
directly related to the existence of zeros in the function fR.
To study in more detail the geometry around zc, it is

useful to consider the following expansions:

fR ≈
8z3c

1þ z4c
ðz − zcÞ þO½ðz − zcÞ2�; ð44Þ

Gz ≈
C

ðz − zcÞ3=2
þO½ðz − zcÞ−1=2�; ð45Þ

where C ¼ 1ffiffiffiffi
32

p z7c
½zcð1þz4cÞ�3=2 is a constant. Upon integration,

one finds that

GðzÞ ≈ −2Cffiffiffiffiffiffiffiffiffiffiffiffi
z − zc

p þO½ðz − zcÞ1=2�; ð46Þ

which diverges at z ¼ zc. The gtt component of the physical
metric appearing in Eq. (33) can thus be approximated as

gtt ≈ −
rS
r⋆

δ1
64ðz − zcÞ2

þO½ðz − zcÞ−3=2�: ð47Þ

Due to the divergence in this metric component, curvature
scalars generically diverge near z ¼ zc. Obviously, this
behavior is shared by all those models in which the function
fR has a single pole at z ¼ zc. It should be noted, however,
that curvature divergences are not synonymous with
spacetime singularities, as mentioned in the Introduction
(see Sec. IV B below).
Now, let us analyze the case 0 < γ < 1 for which zc in

Eq. (42) has no real solutions. In this case, z belongs to the
range ð0;þ∞Þ and no wormhole geometries are found.
Near the center, z ¼ 0, the relation (30) can be expanded as

x ≈
ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
zþOðz5Þ; ð48Þ

while fR becomes there

fR ≈
z→0

1 − γ þOðz4Þ; ð49Þ

and the function Gz is finite

Gz ≈
z→0

ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
z2 þOðz6Þ: ð50Þ

In this case, near the origin GðzÞ can be approximated as

GðzÞ ≈
z→0

−
1

δðγÞc

þ
ffiffiffiffiffiffiffiffiffiffi
1 − γ

p z3

3
þOðz7Þ; ð51Þ

where δðγÞc is a constant (different for each value of γ) whose
value guarantees that the Reissner-Nordström solution of
GR is recovered in the far limit, z ≫ 1. The expansion of
the metric component gtt around the center is

gtt ≈
z→0

−
1

ð1 − γÞ þ
rS
r⋆

ð1 − δ1=δ
ðγÞ
c Þ

ð1 − γÞ3=2
1

z
þOðz2Þ: ð52Þ

Note that for the choice δ1 ¼ δðγÞc , the metric is finite

everywhere. On the other hand, for δ1 > δðγÞc the metric at

the center is divergent and timelike, while for δ1 < δðγÞc it
becomes spacelike. Nonetheless, no matter the behavior of
the metric at the center, in all cases curvature invariants
such as K ≡ Rα

βμνRα
βμν do always have divergences at

z ¼ 0. The behavior of the metric at the center also
determines the number (and type) of the horizons, mim-
icking the basic description of some models of nonlinear
electrodynamics [10,11,40]: two, one (degenerate) or no

horizons for δ1 > δðγÞc , a single nondegenerate horizon if

δ1 < δðγÞc , and no horizons if δ1 ¼ δðγÞc .
Finally, the critical case γ ¼ 1must be treated separately,

leading to

FIG. 1. Representation of zðxÞ as a function of the radial
coordinate x (in units of r⋆ ¼ ~β1=4r0), for γ ¼ 1.1 (solid, red),
γ ¼ 1.5 (dashed, orange) and γ ¼ 2 (dotted, green). Note that far
from the bouncing region (z ¼ zc, x ¼ 0), where the wormhole
throat is located, we have z2 ≃ x2, which restores the GR
behavior there.
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fR ≈ 2z4 − 3z8 þOðz12Þ; ð53Þ

Gz ≈
9ffiffiffi
2

p z4 −
117

4
ffiffiffi
2

p z8 þOðz12Þ; ð54Þ

GðzÞ ≈ −
1

δð1Þc

þ 9

5
ffiffiffi
2

p z5 −
13

4
ffiffiffi
2

p z9 þOðz12Þ; ð55Þ

gtt ≈ −
rS
r⋆

ðδ1 − δð1Þc Þ
2

ffiffiffi
2

p
δð1Þc z7

−
1

2z4
þOðz−3Þ: ð56Þ

Thus the metric diverges at z ¼ 0, which induces the
presence of curvature divergences there. Whether a worm-
hole exists in this case or not is a matter of taste, as its throat
would have vanishing area:

x ≈
ffiffiffi
2

p
z3 −

3ffiffiffi
8

p z7 þOðz11Þ: ð57Þ

To summarize the results obtained so far, we can say that
when the matter density scale ρm is larger than the gravity
scale ρσ , i.e., γ ¼ ρm=ρσ > 1, the theory yields wormhole
solutions. Whether this wormhole is hidden behind an event
horizon or not depends on the combination of parameters
γ; δ1; rS characterizing the solutions. However, a detailed
analysis of the horizon structure of these solutions is beyond
the purpose of the present work. We just mention that the
geometry is almost identical to the Reissner-Nordström
solution of GR everywhere except in the region within the
inner horizon,5 where some departures arise and modify the
structure of horizons. When the matter density scale ρm is
lower than the gravity scale ρσ, the wormhole throat closes
(γ ¼ 1) and no wormhole solution exists anymore (γ < 1).

1. Geodesic structure

Let us begin by noting that regardless of the value of γ,
far from the center (z → þ∞), fR ≈ 1 and Gz ≈ 1=z2.
This means that in that region the GR solution is recovered
and the geodesics are essentially coincident with those of
GR there. One can verify numerically that this approxi-
mation is valid (almost exact!) for all configurations with
rS=r⋆ ≥ 10 and arbitrary δ1.
Let us focus first on the wormhole configurations, γ > 1,

for which our main concern is to study the deviations in the
behavior of geodesics near the throat, located at z ¼ zc.
Consider first radial null geodesics (k ¼ L ¼ 0). Near the
wormhole throat z → zc the geodesic equation (38)
becomes

dλ
dz

≈� Ĉ

ðz − zcÞ3=2
; ð58Þ

where Ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z4c

p
=ð4E ffiffiffiffiffiffiffi

2zc
p Þ. By direct integration, we

find

λðzÞ≈ ∓ 2Ĉ

ðz − zcÞ1=2
: ð59Þ

From this expression it follows that as z → zc one has
λ → �∞. Stated in words, this means that ingoing light
rays, emitted from z → þ∞ when λ → −∞, approach the
wormhole at z → zc as λ → þ∞, while outgoing light rays,
which propagate to z → þ∞ as λ → þ∞, set off from the
wormhole at z → zc and λ → −∞. A complete representa-
tion of the radial null geodesics is shown in Fig. 2. From
this plot one verifies that the far limit recovers the GR
behavior while near the throat the affine parameter
diverges, guaranteeing in this way the completeness of
these geodesics, in agreement with the analysis of the
asymptotic behaviors provided above.
Let us now consider nonradial geodesics (L ≠ 0) and/or

timelike geodesics (k ¼ −1). Since the left-hand side of
Eq. (35) is positive by construction, physical trajectories
must preserve the positivity of the right-hand side. From the
expansions (44) and (46) it follows that

AðzÞ ≈ rS
r⋆

�
z3c

8ð1þ z4cÞ
�

δ1
z − zc

þO½ðz − zcÞ−1=2�; ð60Þ

which diverges toþ∞ as z → zc. As a result, the right-hand
side must vanish at some z > zc, forcing in this way the

FIG. 2. Affine parameter λðzÞ (measured in units of r⋆) for
radial null geodesics (with E ¼ 1), in the GR case (γ ¼ 0,
dashed) and three γ > 1 cases (¼ 1.1, 1.5, 3, solid), for in-
going/outgoing trajectories. Far from z ¼ zcðγÞ (where the
wormhole throat is located) all curves converge to the GR
solution λðzÞ ¼ z, while for z ¼ zcðγÞ, the curves λðzÞ (for
γ > 1) diverge to �∞ which means that they are complete, as
opposed to the GR case.

5Note, in this sense, that in the asymptotic limit z ≫ 1, and for
arbitrary γ, we have fR ≃ 1, so that z2 ≈ ~x2 (we explicitly
reintroduce the tilde here) and the role of z as the radial
coordinate in GR is restored, while the function GðzÞ in
Eq. (32) quickly converges to the GR solution, Gz ≈ 1=z2, thus
recovering the Reissner-Nordström geometry of GR.

WHAT IS A SINGULAR BLACK HOLE BEYOND GENERAL … PHYSICAL REVIEW D 95, 064043 (2017)

064043-9



bounce of these curves and preventing them from reaching
the wormhole throat. This is analogous to the behavior
observed in the Reissner-Nordström solution of GR, where
all such geodesics meet an infinite potential barrier gen-
erated by the central object [38] and never reach the central
singularity. We thus conclude that all null and timelike
geodesics are complete in this wormhole spacetime.6

Let us recall that at the wormhole throat, z ¼ zc,
curvature divergences arise. However, due to the fact that
radial null geodesics take an infinite affine time to reach the
throat, this implies that they lie at the boundary of the
spacetime and do not belong to the physically accessible
region. This way such divergences have no influence upon
physical observers and there is no need to invoke any
cosmic censorship conjecture or similar arguments to hide
such configurations behind an event horizon. Since the
wormhole throat cannot be causally reached in finite affine
time, these results put forward the existence of explicit
examples where the presence of curvature divergences do
not unavoidably entail singular solutions.
Let us now consider those cases with 0 < γ < 1 for

which no wormhole structure was found. From Eqs. (49)
and (51), we obtain for z → 0 that

AðzÞ ≈ −
rS
r⋆

�
1 − δ1=δ

ðγÞ
cffiffiffiffiffiffiffiffiffiffi

1 − γ
p

�
1

z
þ 1þOðz2Þ: ð61Þ

The full discussion of the geodesic structure would proceed
now in much the same way as in the case of certain
models of nonlinear electrodynamics coupled to GR, where
the nature of the central region (spacelike or timelike),

which depends on the ratio δ1=δ
ðγÞ
c , will determine the type

of geodesic able to approach the innermost region.
Nonetheless, it is enough to consider radial null geodesics,
for which the geodesic equation (36) reads

dλ
dz

≈� 1

Eð1 − γÞ1=2 : ð62Þ

This equation can be readily integrated, λðzÞ ¼
λ0 � z

Eð1−γÞ1=2, implying that the origin can be reached in

a finite affine time, without possibility of further extension.
This result is identical to that found in the GR case, which is
regarded as singular, but is in sharp contrast with the
previous results for the wormhole case.
Finally, for the transition case γ ¼ 1 (with zc ¼ 0), the

expansion of the metric as z → 0 yields

AðzÞ ≈ −
rS
r⋆

�
1 − δ1=δ

ð1Þ
cffiffiffi

2
p

�
1

z3
þ 1þOðzÞ: ð63Þ

Radial null geodesics satisfy the equation

dλ
dz

≈� r⋆ffiffiffi
2

p
Ez2

; ð64Þ

and one can easily find that λðzÞ≈ ∓ r⋆
E

1ffiffi
2

p
z
þ λ0, which puts

forward that these geodesics are complete, as they take an
infinite affine time to reach the center. However, this model
hides an unusual complexity (see Fig. 3). Indeed, if one
considers nonradial and/or timelike geodesics, configura-

tions with δ1 ≥ δð1Þc lead to a bounce at some z > 0, while

for those with δ1 < δð1Þc geodesics take a finite affine time to
reach the origin. Thus, despite the completeness of radial

null geodesics and of those with δ1 ≥ δð1Þc , the case γ ¼ 1
may lead to geodesically incomplete configurations,
depending on the values of the parameters.

B. Case II: σ > 0, β > 0

Let us now shift our attention to the case in which both sσ
and sβ are positive. Then we find

ρ ¼ ρm
z4 − 1

; ð65Þ

fR ¼ 1þ γ

ðz4 − 1Þ2 ; ð66Þ

Gz ¼
z2ð1 − γð3z4þ1Þ

ðz4−1Þ3 Þð1 − γ
ðz4−1Þ3Þ

ðz4 − 1Þð γ
ðz4−1Þ2 þ 1Þ3=2 : ð67Þ

An important difference as compared to the previous case
is that, regardless of the value of γ, fR and Gz diverge as

FIG. 3. Representation of the affine parameter λðzÞ as a
function of the radial coordinate z (in units of r⋆ ¼ ~β1=4r0),
for γ ¼ 1. The dashed curves represent radial null geodesics in
GR, while the solid ones are those of our gravity model. The
upper/lower curve is the ingoing/outgoing light ray. Radial

timelike geodesics with δ1 < δð1Þc (black dotted curves) lie within
the light cone and hit the origin in a finite affine time.

6One can check that spacelike geodesics are also complete in
these wormhole spacetimes. Some of them never reach the
wormhole but others can go through it. The latter correspond
to E ¼ 0 ¼ L.
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z → 1, where the energy density ρ becomes infinite.
Whether these divergences imply that the spacetime is
singular or not is something nontrivial which must be
determined after a careful scrutiny of the geometry and its
geodesic structure. But before getting into that, one should
note that the relation between the coordinates x and z,
determined by x2 ¼ z2fR, now is not monotonic, having a
minimum as shown in Fig. 4. Unlike in the β < 0 case, now
the minimum is in the function x ¼ xðzÞ rather than in zðxÞ.
This puts forward that now it is the auxiliary geometry
which is of the wormhole type. This minimum represents
the throat of the wormhole and its location is given by
xmin ¼ 2z3min=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3z4min

p
, where zmin is related to γ via

γ ¼ ðz4min − 1Þ3=ð1þ 3z4minÞ. It should be noted that this
wormhole is not symmetric, having an asymptotically
Minkowskian region as x ≈ z → ∞ and a nonflat region
as x → ∞ when z → 1. In fact, as z → 1 in the internal
region, Gz ≈ γ

1
2=64ðz − 1Þ4 and fR ≈ γ=16ðz − 1Þ2 imply

that GðzÞ ≈ −γ1
2=½192ðz − 1Þ3�, which leads to

AðzÞ ≈ rS
48r⋆

δ1
ðz − 1Þ2 : ð68Þ

Using this relation and noting that as z → 1 we have
x2 ≈ γ=16ðz − 1Þ2 → ∞, one gets

htt ≈ −
rS
r⋆

x2

4γ
; ð69Þ

which is timelike and divergent as x → ∞ (z → 1).
The physical metric, on the other hand, has a completely
different behavior. Given that gtt ¼ htt=fR, and that
grrdr2 ¼ gxxdx2, expanding about z → 1 yields

gtt ≈ −
rSδ1
r⋆3γ

−
2rSðz − 1Þ

r⋆3γ
þOðz − 1Þ2; ð70Þ

grr ≈
48r⋆
rSδ1

þOðz − 1Þ2; ð71Þ

which are always finite at z ¼ 1 where, recall, the energy
density diverges. In Fig. 5 the behavior of the gtt compo-
nent is shown for a configuration which exhibits up to four
horizons in the z > 1 interval.
By proceeding in the same way as in the previous case,

we now perform the analysis of the geodesic structure. In
this sense, Fig. 6 puts forward that a region of infinite
energy density is reached by null and timelike radial
geodesics in a finite affine time. If the divergence in the
matter sector is interpreted as defining a limiting boundary
of the physical spacetime, where the equations no longer
make sense, then the fact that geodesics can reach it in a
finite affine time would imply that this geometry is singular.
From the numerical results shown in Figs. 5 and 6 and,

from the above analytical approximations, it is evident that
nothing special happens to the physical metric at the points
z ¼ 1 or z ¼ zmin. This can be further emphasized by
looking at the whole line element in the z → 1 region,
whose form is

ds2 ≈ −
rSδ1
r⋆3γ

dt2 þ 48r⋆
rSδ1

dr2 þ r2⋆dΩ2: ð72Þ

FIG. 4. Representation of xðzÞ as a function of the radial
coordinate z (in units of r⋆ ¼ ~β1=4r0), for γ ¼ 1 (solid, red). The
curve x ¼ z (dashed) is shown for comparison. We identify two
regions where xðzÞ is monotonic: one which tends to the GR
solution x ¼ z and has a minimum, and another one close to the
origin representing a nonasymptotically flat solution which may
be disconnected from the exterior one.

FIG. 5. Representation of gtt in the fσ > 0; β > 0g case, as a
function of the radial coordinate z, for rS=r⋆ ¼ 10, δ1 ¼
1.3ðrS=4r⋆Þ and zmin ¼ 2 (solid curve). The dotted line represents
the GR solution with the same parameters. Note that gtt cuts the z
axis four times, which implies four horizons. The two external
horizons are almost coincident with the GR prediction. The other
two are a result of the modified dynamics. The vertical grey line
represents the location where xðzÞ reaches its minimum, which is
(close but) unrelated to the minima of gtt. Note that the horizontal
axis begins at z ¼ 1.
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Using this line element, one readily verifies that all
curvature invariants are finite at z ¼ 1 despite the energy
density being divergent at that point. Though this diver-
gence in the matter sector must be seen as a breakdown in
the description of the fluid model considered, it serves to
illustrate that divergences in the matter sector do not
necessarily imply divergent curvature invariants. At the
same time, the finiteness of curvature invariants is unrelated
to the completeness of geodesics.

1. Analytical extension to z < 1

The fact that the energy density diverges at z ¼ 1 and
that it changes sign in the z < 1 region somehow suggests
that the physical region should be restricted to the open
interval z > 1. Given that both null and timelike radial
geodesics reach the z ¼ 1 surface in a finite affine time, if
one wants to have a nonsingular spacetime, an artificial
wormhole extension attached at z ¼ 1 should be considered
to complete the geodesics. This construction, though
mathematically admissible, seems a bit unnatural as com-
pared to the wormhole solutions found in the fσ>0;β<0g
case, where the energy density is always finite.
Nonetheless, let us note that the numerical integration of

the equations that define the geometry is well defined
everywhere except at the point z → 0. Moreover, the fact
that fR and Gz develop divergences at z ¼ 1 is not an
obstacle to extending the integration across the z ¼ 1
surface, as a simple change of variables avoids the
numerical difficulties associated to the parametrization in

terms of GðzÞ. In fact, since gtt is well defined even at
z ¼ 1, one can write a smooth differential equation for that
function. The point is that the divergence in Gz is somehow
compensated by the divergence in fR. Considering the
ansatz (33) to isolate the functionGðzÞ, one can compute its
derivative and express it in terms of gtt and its first
derivative. The resulting equation can be multiplied by
ðz4 − 1Þ4 on both sides to get rid of all the divergent terms.
This new equation can be numerically integrated from the
region where it coincides with GR down to z ¼ 0. The
result is shown in Fig. 7 and is in complete agreement with
Fig. 5 in the overlapping region z ≥ 1. The corresponding
extension of the geodesics appears in Fig. 8. Obviously, this
region with z < 1 does not make any physical sense, as it
implies a negative energy density that changes fromþ∞ on
z≳ 1 to −∞ on z≲ 1 and remains negative until z → 0.

FIG. 6. Representation of the affine parameter λðzÞ in the
fσ > 0; β > 0g case, corresponding to radially (L ¼ 0) infalling
geodesics with E ¼ 1.1 in the geometry of Fig. 5 (solid curves) as
compared to their GR counterparts (dashed curves). The upper
pair represents null geodesics while the lower one is timelike.
Deviations from GR (dashed curve) only arise near zmin. In GR
timelike observers bounce before reaching the center, while light
rays get there in a finite affine time. In the quadratic fðRÞ theory,
both null and timelike geodesics reach the surface z ¼ 1 in a finite
affine time. The vertical grid line represents the location where
xðzÞ reaches its minimum, which sets a saddle point for λðzÞ.
Note that the horizontal axis begins at z ¼ 1.

FIG. 7. Representation of gtt extended into the z < 1 region for
the same parameters as in Fig. 5. The geometry now exhibits up to
five horizons. The metric diverges as 1=z as z → 0 (Schwarzs-
child like). Note that the energy density in the region z < 1 is
always negative, with a divergence at z ¼ 1. In our view, only the
region z > 1 should be regarded as physical.

FIG. 8. Extension of the geodesics shown in Fig. 6 down to
z ¼ 0. Both timelike and radial null geodesics take a finite affine
time to reach the origin. Since the metric in this (unphysical)
region diverges as gtt ∼ 1=z, the behavior is analogous to that
found in the Schwarzschild black hole.
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Nonetheless, the numerical problem is well defined all over
the z > 0 domain.

C. Case III: σ < 0, β < 0

When sσ ¼ −1 and sβ ¼ −1, the model is characteri-
zed by

ρ ¼ ρm
z4 þ 1

; ð73Þ

fR ¼ 1þ γ

ðz4 þ 1Þ2 ; ð74Þ

Gz ¼
z2ð1þ γð1−3z4Þ

ðz4þ1Þ3 Þð1þ γ
ðz4þ1Þ3Þ

ðz4 þ 1Þð1þ γ
ðz4þ1Þ2Þ3=2

: ð75Þ

As follows from these expressions, the energy density and
the functions fR and Gz are everywhere smooth and finite.
One can verify that for γ > 4 the function xðzÞ has a

minimum at z > 1 given by γ ¼ ð1þz4minÞ3
3z4min−1

. For this critical

value of γ, the function Gz has a zero at zmin, while for
γ > 4 it has two. The former occurs at zmin, while the latter
appears at 0 < zmax ≤ 1 ≤ zmin and represents a local
maximum (see Fig. 9).
Unlike in the case of Sec. V B, the minimum in xðzÞ

cannot be regarded as representing a wormhole in the
auxiliary metric because it is not an absolute minimum in
the sense that x does not bounce back to infinity after
crossing zmin. In the current case, below zmin (see Fig. 9)
xðzÞ grows just until it reaches a new local extremum, now
a maximum, after which it goes monotonically towards
x → 0 as z → 0. The interpretation of this structure in the
auxiliary geometry is unclear and will not be explored
further in this paper. Since the existence of an internal
wormhole or other structures in the auxiliary geometry does
not impose any restriction on the radial function z that
defines the area of the two-spheres in the physical

spacetime, we will assume that z is naturally defined over
the whole region z ≥ 0.
An expansion of the metric in the z → 0 region leads to

gtt ≈ −rS
ðδ1=δðγÞc − 1Þ
ð1þ γÞ32

1

z
−

1

1þ γ

�
1 −

rS
r⋆

δðγÞc

3
z2
�
; ð76Þ

grr ≈
ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p r⋆
rS

�
z

ðδ1=δðγÞc − 1Þ
−
r⋆
rS

z2

ðδ1=δðγÞc − 1Þ2
�
; ð77Þ

which shows that gtt diverges at the center if δ1 ≠ δðγÞc .

When δ1 ¼ δðγÞc , the above expansion is not valid and must
be reevaluated, leading to

gtt ≈
1

1þ γ

�
−1þ 1

3

rS
r⋆

δðγÞc z2
�
; ð78Þ

grr ≈ 1þ 1

3

rS
r⋆

δðγÞc z2; ð79Þ

which is completely regular at z ¼ 0. In this particular case,
one verifies that the geometry at z ¼ 0 becomes of de Sitter

type, with Rμν ¼ δðγÞc
δ2
gμν and finite curvature scalars. It is

also worth noting that by a simple rescaling of the time
coordinate, t →

ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p
~t, the metric gμν becomes

Minkowskian at the center, showing that these coordinates
locally represent free-falling observers.
Inspecting the geodesic equation (38) shows that if δ1 >

δðγÞc then nonradial and timelike geodesics bounce before
reaching the center (like in the usual Reissner-Nordström

black hole of GR). However, if δ1 < δðγÞc (Schwarzschild-
like configuration) nothing prevents those geodesics from
getting there in a finite affine time. Radial null geodesics
also reach the center regardless of the value of δ1. It should
be noted that curvature divergences exist at z ¼ 0 as long as

δ1 ≠ δðγÞc . But note that these divergences arise despite the
fact that the energy density is finite everywhere, as in Case I
of Sec. VA.
On the other hand, when δ1 ¼ δðγÞc , we have seen above

that the geometry near the center is of de Sitter type and,
therefore, the geodesics reaching there should not experi-
ence any pathological effect, being able to cross the center

and continue their path.7 Configurations with δ1 ¼ δðγÞc

should thus be regarded as nonsingular. In this sense, the
fact that radial null geodesics are insensitive to the value of
δ1 suggests that they should always be able to go through
the apparently pathological region z ¼ 0 even when

δ1 ≠ δðγÞc . This view is further reinforced by the lack of

FIG. 9. Representation of xðzÞ for different values of γ in the
model with sσ ¼ −1 ¼ sβ.

7Note in this sense that replacing the point-like singularity by a
de Sitter core is a standard strategy in looking for regular
solutions in the context of GR; see e.g. Ref. [8,41].
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correlation between the behavior of curvature scalars,

divergent for δ1 ≠ δðγÞc , and the energy density, which is
always finite. In view of all this, it is unclear whether one
should regard any of these solutions as singular, as is
typically assumed in the case of GR. Therefore, further
analysis on the impact of curvature divergences on the
transit of physical observers and on the scattering of waves
in these spacetimes to get deeper into their singular/non-
singular character seems necessary and will be carried out
elsewhere.

D. Case IV: σ < 0, β > 0

We now consider the last case, sσ ¼ −1 and sβ ¼ 1,
which is characterized by

ρ ¼ ρm
z4 − 1

; ð80Þ

fR ¼ 1 −
γ

ðz4 − 1Þ2 ; ð81Þ

Gz ¼
z2ð1þ γð1þ3z4Þ

ðz4þ1Þ3 Þð1þ γ
ðz4−1Þ3Þ

ðz4 − 1Þð1 − γ
ðz4−1Þ2Þ3=2

: ð82Þ

In this model the energy density diverges at z ¼ 1 but,
fortunately, this surface lies beyond the physically acces-
sible region. Therefore, it can be considered finite beyond
z > 1. Indeed, a glance at the function fR above puts
forward that zðxÞ has a minimum of magnitude zc ¼
ð1þ γ1=2Þ1=4 at x ¼ 0, confirming in this way that this
model describes wormholes (see Fig. 10) and that z > 1
always.
A series expansion of the metric about z ¼ zc leads to

gtt ≈ −
rS
r⋆

δ1
64

1

ðz − zcÞ2
þOðz − zcÞ−3=2; ð83Þ

which is always negative and divergent at the throat,
implying the existence of curvature divergences on that
surface. With this behavior near the throat, a glance at the
geodesic equation (38) indicates that all timelike and
nonradial geodesics (L ≠ 0) bounce before reaching the
wormhole, just like in the Reissner-Nordström black holes
of GR. For radial null geodesics, however, one finds

E
dλ
dz

≈�
ffiffiffiffiffiffiffi
z4c−1
zc

q
4

ffiffiffi
2

p ðz − zcÞ3=2
; ð84Þ

which implies that

Eλ≈ ∓
ffiffiffiffiffiffiffi
z4c−1
zc

q
2

ffiffiffi
2

p ðz − zcÞ1=2
; ð85Þ

diverges as z → zc, confirming that such geodesics take an
infinite affine time to reach (or come out from) the
wormhole throat, similarly as in the case fσ > 0; β < 0g
of Sec. VA. This model, therefore, always yields geo-
desically complete, nonsingular spacetimes. Note also
that, though the geometry has curvature divergences at
z ¼ zc, the energy density is finite there, taking the value
ρðzcÞ ¼ ffiffiffiffiffiffiffiffiffiffi

ρmρσ
p

.

VI. CONCLUSIONS

A. Overview of results

In this work we have considered the problem of classical,
nonrotating black holes in a quadratic Palatini fðRÞ
extension of GR. As matter fields we have taken an
anisotropic fluid whose stress-energy tensor, besides sat-
isfying the energy conditions, covers a number of interest-
ing cases, in particular, that of nonlinear models of
electrodynamics. The latter have been frequently employed
in the context of GR in order to take care of the singularity
problem, but the strategy applied has been unsatisfactory so
far. In contrast, the nontrivial interaction between gravity
and matter in our case, which is encoded in the (gravity and
matter) parameters σ and β, yields a number of novelties on
the corresponding spacetimes. These geometries quickly
recover the Reissner-Nordström solution of GR far from
the center, but drastically modify the innermost structure.
The corresponding analysis was split into four different
cases, according to the signs of σ and β.
(1) In the case fσ > 0; β < 0g two classes of configu-

rations are found, according to a certain critical
scale, parametrized by γ ¼ 1. If 0 < γ < 1, the
nature of the central point-like singularity (timelike,
spacelike or null), is qualitatively similar to that
found in certain families of models of nonlinear
electrodynamics, and the same applies to the struc-
ture of horizons [40]. In such a case one finds both
divergence of curvature scalars and incompleteness

FIG. 10. Representation of zðxÞ for γ ¼ 1 (solid green curve)
and γ ¼ 50 (dashed blue curve) as compared to the GR behavior
z2 ¼ x2 (dashed red line) in the model with sσ ¼ −1 and sβ ¼ 1.
This shows that the physical metric describes a wormhole
structure. Far from the central region the GR behavior is
recovered z2ðxÞ ≈ x2.
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of geodesics; hence these spacetimes are regarded as
singular. But when γ > 1 the point-like singularity is
shifted to a spherical surface of radius zcðγÞ > 0,
which corresponds to the minimum of the radial
function zðxÞ and represents the throat of a worm-
hole. Despite curvature scalars being divergent on
this surface, we have explicitly shown that this does
not prevent the completeness of geodesics for null
and timelike observers, in such a way that the
wormhole always lies on the future (or past) boun-
dary of the manifold and cannot be reached in finite
affine time by geodesic observers. The limiting case
γ ¼ 1 has a number of peculiar features, such as
complete radial null geodesics but incomplete non-
radial and timelike geodesics for certain configura-

tions (with δ1 < δð1Þc ). This allows us to conclude
that the cases with γ ≤ 1 represent singular space-
times, while those with γ > 1 are nonsingular and
possess a wormhole structure. Nonetheless, note that
in all these cases (both nonsingular and singular) the
energy density of the fluid is everywhere finite.

(2) For the case fσ > 0; β > 0g one finds that it is the
auxiliary metric which has a wormhole at z ¼ 1,
while the physical metric becomes finite there,
exhibiting up to four horizons. The z ¼ 1 surface
is a region of divergent energy density of the fluid,
which is reached in finite affine time by null and
timelike geodesics, but nonetheless the curvature
scalars are finite there. The metric itself admits an
analytical extension to the region z < 1, but the
spacetime would still be geodesically incomplete
and, besides, the breakdown of the fluid model at
z ¼ 1 seems to indicate the unphysical character of
such an extension.

(3) In the case fσ < 0; β < 0g no wormhole solution is
found and the metric is naturally extended down to
z ¼ 0. An expansion of the physical metric there

reveals that curvature divergences are present as long

as δ1 ≠ δðγÞc , but do disappear for the choice δ1 ¼ δðγÞc ,
for which the metric at the center has a de Sitter
behavior. Nonetheless, in both cases the energy
density is everywhere finite. In the finite curvature

cases, δ1 ¼ δðγÞc , radial null geodesics reaching the
z ¼ 0 region can clearly continue their path. Given
that these geodesics are insensitive to the value of δ1,
one is tempted to interpret all such radial geodesics as

complete, including the cases with δ1 ≠ δðγÞc . This
interpretation is appealing but risky, as it would
logically lead to the conclusion that the Reissner-
Nordström black hole of GR is nonsingular (as far as
geodesic motion is concerned). To investigate this
question further, an analysis on the impact of curva-
ture divergences on congruences of observers and on
the propagation of waves would be necessary along
the lines of Refs. [42] and [43].

(4) For the case fσ < 0; β > 0g, it always yields worm-
hole structures that naturally provide geodesically
complete spacetimes, much in the same way as in the
fσ > 0; β < 0g case for γ > 1. Note that this is so
despite the fact that curvature divergences are always
present at z ¼ zc, but the energy density is finite there.

In Table I we display the most relevant features of the
four classes of configurations classified according to the
combinations of signs of σ and β. Such features are i)
the existence or not of wormhole configurations and the
behavior at the wormhole throat (or at the center when no
such wormhole exists) of the following objects: ii) the
metric components, iii) the energy density, iv) the curva-
ture scalars, and v) the completeness (or not) of all null
and timelike geodesics on such spacetimes. From this
table we can clearly see the breakdown of the correlations
between the behavior of energy density, curvature scalars
and the completeness of geodesics in different ways.

TABLE I. Summary of the features of the four families of configurations studied in Sec. V [the case fσ > 0; β < 0g with γ ¼ 1 hides
some peculiarities (see Sec. VA) so it is not contained in this table]. The metric components, energy density and curvature scalars refer to
the behavior at the wormhole throat (when it exists) or otherwise at the innermost region of the solutions. Incomplete geodesics refer to
the existence of (at least) a single incomplete null or timelike geodesic curve. The breakdown of the correlations among these three
concepts is clear.

Wormhole
Metric

components
Energy
density

Curvature
scalars Geodesics

Case I (σ > 0; β < 0)
YES if γ > 1

Divergent Finite Divergent
Complete if γ > 1

NO if γ < 1 Incomplete if γ < 1
Case II (σ > 0; β > 0) NO Finite Divergent Finite Incomplete

Case III (σ < 0, β < 0) NO

Divergent if

δ1 ≠ δðγÞc

Finite

Incomplete? if δ1 > δðγÞc

Divergent if

δ1 ≠ δðγÞc

Complete if δ1 ¼ δðγÞc

Finite if

δ1 ¼ δðγÞc

Finite if

δ1 ¼ δðγÞc

(de Sitter core)

Incomplete if δ1 < δðγÞc

Case IV (σ < 0; β > 0) YES Divergent Finite Divergent Complete
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B. Final comments

The research presented in this work is added to the
growing set of results within metric-affine geometries
supported by fðRÞ gravity [36,39], quadratic fðR;RμνRμνÞ
and Eddington-inspired Born-Infeld gravities [42,44], where
the point-like singularity of GR is replaced by a wormhole
structure, which allows geodesics to be complete. The results
obtained so far seem to point out two different mechanisms
for the resolution of spacetime singularities in this context.
i): For fðRÞ theories thewormhole lies on the future (or past)
boundary of the spacetime, but the fact that geodesics can be
indefinitely extended means that these spacetimes are non-
singular according to the criteria employed in the singularity
theorems [1]. ii): For the cases of quadratic and Born-Infeld
gravity (which admit extensions to higher [45] and lower [46]
dimensions with similar results), the wormhole may be
reached in a finite affine time by some geodesics, but they
are naturally extended through it. It should be stressed that in
the latter case one may wonder about the physical impact of
curvature divergences on physical (extended) bodies cross-
ing the wormhole throat, since the presence of large tidal
forces could rip them apart. In this sense, in four-dimensional
Born-Infeld gravity a separate analysis using a congruence of
geodesics to model such extended bodies has revealed that
curvature divergences occurring at the wormhole throat do
not pose any destructive threat, as the transit is smooth and
weakly affected by the large tidal forces at the throat [43]. The
problem of scalar wave scattering off this wormhole also
turns out to be well posed [42].
To conclude, the results obtained in this paper provide a

wealth of examples in which the (typically assumed)
correlations among curvature divergences, energy density,
and geodesic (in)completeness are explicitly broken.
The emergence of structures such as wormholes appears
as a key element for the extendibility of geodesics (note
that we also found a de Sitter interior which guarantees the
extendibility of geodesics in a particular example). These
nonperturbative features should be taken into account in
the interpretation of the existence of divergences in
curvature scalars or in the matter fields. Those infinities
are significant in perturbative frameworks, where they

signal the end of validity of a certain approximation, but in
a nonperturbative scenario their interpretation is unclear.
It is worth noting, in this sense, that in systems such as
graphene, wormholes have been constructed in the dis-
crete description through a careful design of the lattice,
adding a series of heptagonal rings that help join two flat
sheets with a carbon nanotube [47]. In the continuized
description, the wormhole exhibits a curvature divergence
at the throat which does not prevent the study of fermion
propagation in the resulting effective geometry. This
example is, in our view, very representative of what
may correspond to a quantum version of the models
presented here: geodesic completeness is guaranteed by
nonperturbative aspects (the wormhole), though infinities
(in curvature and energy density) may arise because of the
lack of control of the underlying microstructure in a
certain limit [48]. An analysis of the behavior of classical
and quantum fields in these backgrounds is currently
underway.
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