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Conjectures play a central role in theoretical physics, especially those that assert an upper bound to some
dimensionless ratio of physical quantities. In this paper we introduce a new such conjecture bounding the
ratio of the magnetic moment to angular momentum in nature. We also discuss the current status of some
old bounds on dimensionless and dimensional quantities in arbitrary spatial dimension. Our new conjecture
is that the dimensionless Schuster-Wilson-Blackett number, cμ=JG

1
2, where μ is the magnetic moment and

J is the angular momentum, is bounded above by a number of order unity. We verify that such a bound
holds for charged rotating black holes in those theories for which exact solutions are available, including
the Einstein-Maxwell theory, Kaluza-Klein theory, the Kerr-Sen black hole, and the so-called STU family
of charged rotating supergravity black holes. We also discuss the current status of the maximum tension
conjecture, the Dyson luminosity bound, and Thorne’s hoop conjecture.
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I. INTRODUCTION

Regardless of what one thinks of the debate concerning
the relative merits of the traditional Baconian or induction-
ist versus Bayesian or Popperian viewpoints about the
nature of science, few would disagree that making precisely
stated conjectures or exhibiting counterexamples has an
important place in theoretical physics. In making such
conjectures it is important to bare in mind that although it is
frequently convenient to adopt units well suited to practical
aspects of the subject being discussed, any physically
meaningful statement must be independent of an arbitrary
choice of units. In fact, adopting an appropriate set of
“natural units” can afford insights which may be otherwise
obscured. In this paper we are led in Sec. II, by our
consideration of natural units for physical quantities which
are independent of Planck’s constant, to conjecture new
fundamental bounds on dimensionless quantities in
classical gravitation, in particular that there is an upper
bound on the magnetic moment to angular momentum
ratio. In Sec. III, we verify that such a bound holds for
charged rotating black holes in those theories for which
exact solutions are available, including the Einstein-
Maxwell theory, Kaluza-Klein theory, the Kerr-Sen black
hole, and the so-called STU family of charged rotating
supergravity black holes. We discuss the current status of
the maximum tension conjecture in Sec. IV, the Dyson
luminosity bound in Sec. V, and new approaches to
Thorne’s hoop conjecture in Sec. VI.

II. UNITS AND DIMENSIONAL ANALYSES

Natural units were first introduced into physics and
metrology by George Johnstone Stoney at the British

Association Meeting in 1874, in an attempt to cut through
the proliferation of parochial units of measurement
spawned by the industrial revolution and the expansion
of Victorian engineering and commerce [1,2]. He sought to
devise units that, unlike feet and horsepower, avoided any
anthropomorphic benchmark, and made no use of changing
parochial standards, like days or standard weights. A
similar universal approach had also been advocated by
Maxwell in 1870, who suggested that constants be founded
on atomic or optical standards [2,3]. He also saw a new
opportunity to promote his prediction of a new elementary
particle, which he first dubbed the “electrolion” in 1881 and
then renamed the “electron” in 1894, carrying a basic unit
of electric charge, e, whose numerical value he predicted
using Faraday’s law and Avogadro’s number. The electron
was subsequently discovered by Thomson in 1897, and
Stoney remains the only person to have successfully
predicted the numerical value of a new fundamental
constant of physics.

A. Stoney units

In response to a challenge from the British Association to
reduce or organize the plethora of special units that had
sprung up to service the industrial revolution and Britain’s
trading empire, in 1874 Johnstone Stoney first introduced a
system of “natural units” of mass, length and time using the
speed of light c, the Newtonian gravitational constant G,
and his proposed electron charge e [4–6]. Stoney’s natural
units were

MS¼
�
e2

G

�
1=2

; LS¼
�
Ge2

c4

�
1=2

; TS¼
�
Ge2

c6

�
1=2

: ð1Þ
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These were the first natural units. However, we should note
that in those days before the theory of special relativity, the
speed of light, c, did not possess the absolute status that it
would later assume and e was still just a hobby horse of
Stoney’s (for some context see the history in Ref. [7]).

B. Planck units

In 1899, a similar idea was introduced by Planck [8] to
create another set of natural units based on c, G, and h, the
quantum constant of action that bears his name. They differ
from Stoney’s units by a factor 1

2π ðe
2

ℏcÞ1=2, the square root of
the fine structure constant divided by 2π. These units are
now commonplace in physics and cosmology and they
define units of mass, length and time that combine
relativistic, gravitational and quantum aspects of physics:

MPl¼
�
hc
G

�
1=2

; LPl¼
�
Gh
c3

�
1=2

; TPl¼
�
Gh
c5

�
1=2

: ð2Þ

However, innumerable related Planck units may be
constructed for other physical quantities in any number
of space dimensions by dimensional analysis. Those
involving thermal physics can be included by adding the
Boltzmann constant, kB, to G, c and h. Some of the Planck
units are especially interesting for classical physics if they
do not contain Planck’s constant. This signals that they are
purely classical in origin and may highlight a limiting
physical principle. This is trivially so for the Planck unit of
velocity, VPl ¼ c, but less obvious for the Planck units of
force FPl ¼ c4=G and power PPl ¼ c5=G which are
strongly suspected to be maximal quantities in classical
physics. It has been conjectured1 [10–14] that in general
relativity (with and without a cosmological constant) there
should be a maximum value to any physically attainable
force (or tension) given by

Fmax ¼
c4

4G
; ð3Þ

where c is the velocity of light and G is the Newtonian
gravitational constant. For possible relations to the holo-
graphic principle and to quantum clocks, see [15–17].

C. De Sitter units

If one believes that the observed acceleration of the scale
factor of the Universe [18] is due to a classical cosmo-
logical constant Λ rather than some form of slowly
evolving “dark energy,” with time-dependent density, then
a set of absolute de Sitter units of mass, length, and time
can be introduced:

MdS¼c2G−1Λ−1
2; Lds¼Λ−1

2; Tds¼c−1Λ−1
2: ð4Þ

In these units c4=G is still the unit of force and the upper
bound (3) still appears to hold [13].

D. Fundamental principles and dimensions

We referred above to “limiting principles,” or what are
sometimes called “impotence principles.” In [14] the phrase
“maximum tension principle” was used in the usual sense
of “fundamental principles,” that is, general statements
expected to be true of all viable theories and which may
follow as valid consequences of a precisely formulated
mathematical statement within any well-defined math-
ematical theory. Such principles may have heuristic value
in motivating and formulating a theory, but cannot be used
in themselves to define a theory. For example Heisenberg’s
uncertainty principle is an elementary theorem in wave
mechanics but is insufficient in itself to define wave
mechanics. Moreover, it not only rests heavily on trans-
lation invariance, but may not hold in more general
quantum mechanical theories, such as relativistic quantum
field theory, in which the notion of a position observable is
problematic. Other examples in general relativity include
Mach’s principle,2 equivalence principles, and Thorne’s
hoop conjecture (to which we return below). Other prin-
ciples, like the cosmological principle, may be simplifying
symmetry assumptions, or approximations, that cannot be
precisely true in reality; straightforward methodological
principles, like the weak anthropic principle; or various
variational principles.
The maximum force conjecture gives rise to the closely

related conjecture [20] that there is a maximum power
defined by

Pmax ¼ cFmax ¼
c5

4G
; ð5Þ

the so-called Dyson luminosity [21], or some multiple of it
[to account for geometrical factors that are Oð1Þ]. This will
be treated in detail in Sec. IV.
We note that some of the nonquantum Planck units,

like the velocity, VPl ¼ c, are independent of the dimension
of space but others, like FPl, are not, because in N-
dimensional space the dimensions of G are M−1LNT−2.
Thus, in N dimensions the nonquantum Planck unit is
mass × ðaccelerationÞN−2, which is only a force when
N ¼ 3, as shown in Ref. [13].
In this paper, we display another physically interesting

nonquantum Planck unit formed by the ratio of the
magnetic moment of a body, μ, to its total angular
momentum, J, and conjecture that classically all bodies
satisfy an inequality

1For an earlier anticipation of this idea but based on a different
physical motivation see [9].

2For an incisive account of the many inequivalent formulations
this can be given see [19].
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μ

J
< β

G1=2

c
; ð6Þ

where β is a numerical factor Oð1Þ, and we explore the
evidence for this maximum bound. Unlike the Planck units
of force and power, the Planck unit for the ratio μ=J is
independent of spatial dimension.
To show this, if we use unrationalized units the dimen-

sions ½:� of magnetic Q and electric charge Q̄ are the same
and are given by the inverse-square laws discovered by
Michell and Priestley [22,23], respectively, with

½Q� ¼ ½Q̄� ¼ M
1
2L

3
2T−1: ð7Þ

The dimensions of a magnetic moment μ are therefore

½μ� ¼ M
1
2L

5
2T−1: ð8Þ

Thus, the ratio of magnetic moment to angular momen-
tum J has dimensions

�
μ

J

�
¼

�
G

1
2

c

�
¼

�
Q
Mc

�
; ð9Þ

which is independent of Planck’s constant ℏ. This property
continues to hold in N-dimensional space because there
we have ½Q� ¼ M1=2LN=2T−1, ½μ� ¼ M1=2L1þN=2T−1 and
½J� ¼ ML2T−1.
The ratio

Z≡ Q2

GM2
ð10Þ

may be regarded as the separation-independent ratio of
the electrostatic repulsion to the gravitational attraction
between two identical bodies of mass M and charge Q. It
has been claimed [24] that Zöllner was the first person to
recognize its significance and so one might call it the
Zöllner number. A famous, but now discredited, theory of
Dirac’s predicting the time variation of the gravitation
“constant” G ∝ 1=t, with the age of the Universe t [25],
was partly motivated by the very small value of Z when the
mass M ¼ me and charge Q ¼ e of the electron (or even
the proton mass mpr) are substituted. This gives

N ¼ e2

Gm2
e
≈ 3 × 1042; ð11Þ

which suggested to Dirac its possible equality (in some
yet-to-be-found theory) with the square root of the total
number of protons or electrons in the visible universe,
c3t=Gme ∼ 1083, up to a factorOð1Þ. In fact, the value of N
and its numerical proximity to the ratio of the classical
electron radius to the Hubble radius was first noticed by
Weyl in 1919 [5,26] and the numerical “coincidence” is

anthropic because it is equivalent to the statement that the
present age of the Universe is of order the main sequence
lifetime of a star [5,27].
Classically, we have the Larmor relation

μ

J
¼ Q

2Mc
ð12Þ

where M is the mass of a system with charge Q. More
generally, we have

μ

J
¼ g

Q
2Mc

ð13Þ

where g is the gyromagnetic ratio. Famously, Dirac showed
that for electrons g ¼ 2, at least at lowest order in the fine
structure constant e2=ℏc [28], and this value has some
significance in supersymmetric theories [29].
After earlier suggestions made by Schuster [30] and

Wilson [31], Blackett [32] conjectured that all rotating
bodies should acquire a magnetic moment given by

μ

J
¼ β

G
1
2

c
; ð14Þ

where the dimensionless Schuster-Wilson-Blackett number
has β ≈Oð1Þ, and was once regarded as a possible
universal constant. Although β is found to be of order
unity for a variety of rotating astronomical bodies ranging
from the Earth to the Sun and to a variety of stars, as a
general statement for macroscopic bodies, the Schuster-
Wilson-Blackett conjecture has fallen foul of astronomical
data. Yet it remains of interest to inquire whether it provides
a natural upper bound for bodies with significant gravita-
tional self-energy.
Since, for electrons

β ¼ N
1
2; ð15Þ

no interesting bound holds for the elementary particles.
However, it is of interest to ask what is known about β in
Einstein-Maxwell and supergravity theories, since for black
holes there is typically an upper bound to jQj=G1

2M of order
unity. For Planck mass particles with charges of order e, we
find β is not far from unity. Such objects can arise in string
theory, whose low-energy limit is supergravity theory, so
this further motivates the investigation that follows.

III. THE SCHUSTER-WILSON-BLACKETT
NUMBER FOR ELECTRICALLY CHARGED

ROTATING BLACK HOLES

Carter first discovered [33] that Kerr-Newman black
holes in Einstein-Maxwell theory have a gyromagnetic
ratio equal to 2:
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μ

J
¼ Q

Mc
: ð16Þ

Now, to avoid naked singularities, we require (if we
assume the black hole has no magnetic charge)

GM2 ≥ Q2 þ J2

M2
: ð17Þ

Thus,

1 ≤
c2μ2

GJ2
þ J2

GM4
; ð18Þ

and so we have the required bound,

���� μJ
���� ≤ G

1
2

c
: ð19Þ

Hence, we have β < 1 for Kerr-Newman black holes. The
literature on extensions of Carter’s result is quite large. A
notable example [34] is a detailed analysis of a current loop
surrounding a static black hole. As the loop moves towards
the horizon the gyromagnetic ratio smoothly interpolates
between the classical value g ¼ 1 and the Carter-Dirac
value g ¼ 2.
It was shown by Reina and Treves [35] that any

asymptotically flat solution of the Einstein-Maxwell equa-
tions obtained by performing a Harrison transformation on
a neutral solution must also have g ¼ 2. Furthermore, it has
been shown [36,37] that, provided any sources obey the
constraint that G times the energy density bounds the
charge density, then all asymptotically flat solutions of
the Einstein Maxwell equations, possibly with sources of
the kind specified which are regular outside a regular event
horizon, obey the following Bogomol’nyi bound on the
Zöllner number:

Z ¼ Q2

GM2
≤ 1: ð20Þ

Combining this with Reina and Treves’s result implies

β < 1: ð21Þ

A. Kerr-Newman AdS black holes

Using the notation of [38], and temporarily setting
G ¼ c ¼ 1, we must distinguish the parameters M, Q, J
in the spacetime metric from the physical quantities. The
latter are denoted by primes. From [39], we introduce

M0 ≡ M
Ξ2

; J0 ≡ aM
Ξ2

ð22Þ

where Ξ≡ 1 − a2

l2 .

Aliev gives the physical charge as

Q0 ¼ Q
Ξ
: ð23Þ

He finds

μ0 ¼ Qa
Ξ

; ð24Þ

so we have

jμ0j
jJ0j ¼

jQj
M

�
1 −

a2

l2

�
: ð25Þ

Now, for a horizon to exist, we require

Δr ¼
�
1þ a2

l2

��
r2 −

2Mr

1þ a2

l2
þQ2 þ a2

1þ a2

l2

�
þ r4

a2
ð26Þ

to have at least one real root. A necessary condition for this
is that the quadratic in the first term be negative. This
requires

jQj
M

<
1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

l2

q : ð27Þ

Thus, we also require

jμ0j
jJ0j <

1 − a2

l2ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

l2

q : ð28Þ

Now,

ð1 − xÞð1þ xÞ ¼ 1 − x2 ≤ 1;

⇒
1 − xffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ≤
1

ð1þ xÞ32 ≤ 1; ð29Þ

so

jμ0j
jJ0j < 1: ð30Þ

Therefore, we have shown that β < 1 for Kerr-Newman-
AdS black holes.3

3Note that since Harrison transformations are not available
when the cosmological constant is nonvanishing, there is no
analogue of the Reina-Treves result with which to combine the
Bogomol’nyi bound of [40] in this case.

JOHN D. BARROW and G.W. GIBBONS PHYSICAL REVIEW D 95, 064040 (2017)

064040-4



B. Einstein-Maxwell-Dilaton black holes

These have only been discussed for a general dilaton-
photon coupling constant α for the case of slow rotation
[41,42]. One has a uniqueness theorem for general α,
angular momentum, electric and magnetic charges [43]
provided that α2 ≤ 3.
In the general slow-rotation case one finds that [41]

J ¼ a
2

�
rþ þ 3 − α2

3ð1þ α2Þ r−
�
; μ ¼ aQ: ð31Þ

If a is small, then the massM and charge Q are given by

M ¼ 1

2

�
rþ þ 1 − α2

1þ α2
r−

�
; jQj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−
1þ α2

r
: ð32Þ

Since rþ ≥ r− ≥ 0, we have

jQj
M

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
; ð33Þ

so that in accordance with the Bogomol’nyi bound of [44],
this gives

M ≥
jQjffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p : ð34Þ

We have

jJj
jμj ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p � ffiffiffiffiffi
rþ
r−

r
þ 3 − α2

3ð1þ α2

ffiffiffiffiffi
r−
rþ

r �
; ð35Þ

so, provided α2 ≤ 3, this gives

jμj
jJj ≤

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
≤ 1: ð36Þ

As pointed out in [41], we can then obtain a gyromag-
netic ratio:

g ¼ 2 −
4α2r−

ð3 − α2Þr− þ 3ð1þ α2Þrþ
: ð37Þ

C. Kerr-Kaluza-Klein black holes

The observational and theoretical failures of the old
Schuster-Blackett conjecture (14) led some to resort to
Kaluza-Klein theory (see [45]). Rotating charged black
holes in this theory may be obtained by boosting the neutral
Kerr solution (sometimes referred to in this context as a
rotating “black string”) along the fifth dimension. If v is the
velocity parametrizing the boost, and a and Ms the
parameters of the original Kerr solution, then in units in
which G ¼ c ¼ 1 [46,47], we have

M ¼ Ms

�
1þ 1

2

v2

1 − v2

�
; J ¼ Msaffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

Q ¼ Ms
v

1 − v2
; μ ¼ Msavffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ð38Þ

and the gyromagnetic ratio is g ¼ 2 − v2. Restoring units,
we have

jμj
jJj ¼

G
1
2

c
v; ð39Þ

and, remarkably, we see that β ¼ v=c ≤ 1.
We may also regard Kaluza-Klein black holes as

Einstein-Maxwell-dilaton black holes with α ¼ ffiffiffi
3

p
. For

the gyromagnetic ratios of elementary particles in Kaluza-
Klein theory and their comparison with black holes, the
reader may consult [45,46,48].

D. Kerr-Sen electrically charged black holes

These black holes satisfy the low-energy equations of
motion of heterotic string theory [49] and may be regarded
as an Einstein-Maxwell-dilaton black hole with coupling
constant α ¼ 1. According to [49], the mass M, charge Q,
angular momentum J and magnetic dipole moment μ are
given by

M ¼ m
2
ð1þ cosh θÞ; J ¼ Ma

Q ¼ mffiffiffi
2

p sinh θ; μ ¼ Qa; ð40Þ

where m, a, θ are parameters.4 Thus, we find

β ¼ jμj
jJj ¼

ffiffiffi
2

p sinh θ
1þ cosh θ

¼
ffiffiffi
2

p
tanh

θ

2
≤

ffiffiffi
2

p
ð41Þ

and

g ¼ 2: ð42Þ

We also find a Bogomol’nyi inequality (34) where
α2 ¼ 1 is satisfied, that is,

jQj
M

≤
ffiffiffi
2

p
: ð43Þ

E. STU electrically charged black holes

The electromagnetic properties of a more general family
of 4-charged black holes, which are solutions of the so-
called STU supergravity theory (characterized by S, T, and
U dualities) are reviewed in [50]. These solutions depend
upon four boost parameters, δi. If ci ¼ cosh δi, si ¼ sinh δi,

4Our θ is Sen’s α.
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Πc ¼ c1c2c3c4, Πs ¼ s1s2s3s4, Π1
c ¼ c2c3c4 etc., Π1

s ¼
s2s3s4 etc., then according to [50]

M ¼ m
4

X
i

ðc2i þ s2i Þ; J ¼ maðΠc − ΠsÞ ð44Þ

Qi ¼ 2msici; μi ¼ 2maðsiΠi
c − ciΠi

sÞ: ð45Þ

Evidently

4M ≥
X
i

jQij: ð46Þ

We also have

1

2

μi
J
¼ siΠi

c − ciΠi
s

Πc − Πs
: ð47Þ

If we assume that si > 0, ∀ i, then

1

2

μi
J
≤
siðΠi

c − Πi
sÞ

ciðΠi
c − Πi

sÞ
≤ tanh δi ≤ 1: ð48Þ

There are some special cases which coincide with
solutions of the Einstein-Maxwell-dilaton theory.

(i) Einstein-Maxwell black holes: δ1 ¼ δ2 ¼ δ3 ¼ δ4,
Qi ¼ Q, μ1 ¼ μ.
Thus, from (45), we have

M ¼ m cosh 2δ; J ¼ ma cosh 2δ; ð49Þ

Qi ¼ m sinh 2δ; μi ¼ ma sinh 2δ; ð50Þ

and if we set Q ¼ Qi and μ ¼ μi so that

Q2 ¼ 1

4
ðQ2

1 þQ2
2 þQ2

3 þQ2
4Þ; ð51Þ

then we find that g ¼ 2 and

jμj
jJj ¼ tanh 2δ ¼ jQj

M
≤ 1: ð52Þ

Evidently both the charge inequality (46) and the
dipole inequality (48) are satisfied, the latter by a
comfortable margin since for x > 0,

tanh 2x ≤ 2 tanh x: ð53Þ
(ii) Kerr-Kaluza-Klein electrically charged black holes:

δ2 ¼ δ3 ¼ δ4 ¼ 0, δ1 ¼ δ.

M ¼ m
4
ð3þ cosh 2δÞ; J ¼ ma cosh δ ð54Þ

Q1 ¼ m sinh 2δ; μ1 ¼ 2ma sinh δ: ð55Þ

Now, if v ¼ tanh δ then from (40) we have

M ¼ Ms

4
ð3þ cosh 2δÞ; J ¼ Msa cosh δ

Q ¼ Ms

2
sinh 2δ; μ ¼ Msa sinh δ: ð56Þ

Thus,Ms ¼ m,Q ¼ 1
2
Q1 and μ ¼ 1

2
μ1, so that we

have

Q2 ¼ 1

4
Q2

1; ð57Þ

and we find that

β ¼ jμj
jJj ¼ tanh δ ≤ 1: ð58Þ

We also have

M ≥
1

2
jQj; ð59Þ

which is consistent with (34) provided that α2 ¼ 3.
(iii) String theory: δ1 ¼ δ2 ¼ δ, δ3 ¼ δ4 ¼ 0.

Now, we have

M ¼ 1

2
mð1þ cosh 2δÞ;

J ¼ 1

2
mað1þ cosh 2δÞ; ð60Þ

Q1 ¼ Q2 ¼ m sinh 2δ;

μ1 ¼ μ2 ¼ 2ma sinh δ cosh δ; ð61Þ

and if we setQ1 ¼ Q2 ¼
ffiffiffi
2

p
Q and μ1 ¼ μ2 ¼

ffiffiffi
2

p
μ,

so that

Q2 ¼ 1

4
ðQ2

1 þQ2
2Þ; ð62Þ

we obtain

jμj
jJj ¼

ffiffiffi
2

p
tanh δ ð63Þ

and

jQj
M

¼
ffiffiffi
2

p
tanh δ ≤

ffiffiffi
2

p
: ð64Þ

We also find that g ¼ 2 and obtain consistency with
(34) and agreement with (41) provided θ ¼ 2δ.

Note that for all these special cases, the conversion from
the conventions of [50] and standard (Gaussian) units is

Q2 ¼ 1

4

X
i

Q2
i : ð65Þ
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IV. THE DYSON BOUND

The importance of some multiple of c5=G in studies of
gravitational radiation appears to have first been noticed in
a paper of Dyson [21]. He observed, by a scaling argument,
that the luminosity in gravitational radiation of an orbiting
binary star system according to Einstein’s linearized theory
of gravitational radiation must be a dimensionless multiple
of c5=G (see below for a more precise statement).
Subsequently, Thorne [51] introduced it into modern
studies of possible sources of gravitational radiation, linear
or nonlinear, detectable on Earth using current technology.
Thorne’s paper seems to have introduced the idea of a
Dyson bound [52,53]: a maximum possible luminosity in
gravitational waves.5

Six years after [21], Dyson wrote a short note [54] posing
a question, the answer to which was supplied by Hawking’s
famous area theorem [55]. It seems reasonable therefore to
suggest (see footnote 9 of [56]) that c5=G, or some multiple
of it, be called “one Dyson.” If one accepts this, the
maximum luminosity of GW150914 (or the orbital merger
of any equal-mass nonspinning black hole) is about 1
milli-Dyson.

V. THE MAXIMUM TENSION PRINCIPLE

Independent of these considerations, in an article written
for the Festschrift celebrating the 60th birthday of the late
Jacob Bekenstein [14], it was conjectured that c4=4G was
the maximum possible tension or force in classical general
relativity. Dimensionally, this makes sense. The Einstein
equations read

Rμν −
1

2
gμνgαβRαβ ¼

8πG
c4

Tμν: ð66Þ

The Ricci tensor Rμν has dimensions L−2 and every
component of the energy-momentum tensor, Tμν, has
dimensions force per unit area and the Einstein constant
8πG=c4 has units of an inverse force.
Some heuristic arguments in favor of this maximum

tension conjecture were given in [14] and the factor of 1
4

justified by reference to conical singularities and the
requirement that the deficit angles of cosmic strings do
not exceed 2π radians. In fact, the deficit angle is subject to
a so-called Bogomol’nyi bound [57] in this case. The
extensions in the presence of a cosmological constant were
given in [13] but as yet there exists no formal proof, or
indeed precise mathematical formulation. Further work on
the maximum tension (or force) principle may be found in
[10–12,58]. Earlier suggestions regarding a maximum
force then came to light. In [9], the authors claimed that
c4=4G is the maximal force allowed in general relativity
and in [20] made the obvious maximal power hypothesis
that c5=4G is the maximum power allowed in nature.
Neither paper makes any reference to [21] or [51]. There
are also earlier (unseen) papers on this subject [59,60],
whose titles clearly indicate that the author had the same
order of magnitude for the maximal force and maximal
power in mind [61].

VI. THORNE’S HOOP CONJECTURE

The proposed Dyson bound and the maximum tension
principle resemble another, as yet unresolved but possibly
related issue: how does one formulate in a precise way
Thorne’s hoop conjecture [62]? Recently, there has been
some progress in this direction.
In [63], a precise candidate was proposed for the hoop

radius of an apparent horizon in terms of its Birkhoff
invariant βb. The conjecture was that every apparent
horizon should satisfy

βb ≤ 4πGMADM=c2; ð67Þ

whereMADM is the Arnowitt-Deser-Misner (ADM) mass of
the system. In [64], considerable support was marshalled
for (67) using known exact solutions of supergravity
theories. However, more recently, a counterexample was
constructed using time-symmetric vacuum initial data in
Ref. [65]. Following suggestions in [66,67], one may then
reformulate the hoop conjecture as

βb ≤ 2πGMBY=c2; ð68Þ

where MBY is the Brown-York quasilocal mass [68,69] of
the apparent horizon. Note that the Brown-York quasilocal
mass is only defined for time-symmetric data. Using a
result of Paiva [70],6 one may check that (68) holds for all
initial data sets constructed in Ref. [65]. For a proof in
Robinson-Trautmann metrics, see Ref. [72].
The Brown-York quasilocal mass [68,69] of the apparent

horizon, which is assumed to have positive Gaussian

5In reply to an inquiry by Christoph Schiller, Dyson replied, “It
is not true that I proposed the formula c5=G as a luminosity limit
for anything. I make no such claim. Perhaps this notion arose from
a paper that I wrote in 1962 with the title, ‘Gravitational
Machines,’ published as Chapter 12 in the book, ‘Interstellar
Communication’ edited by Alastair Cameron, [New York,
Benjamin, 1963]. Equation (11) in that paper is the well-known
formula 128V10=5Gc5 for the power in gravitational waves
emitted by a binary star with two equal masses moving in a
circular orbit with velocity V. As V approaches its upper limit c,
this gravitational power approaches the upper limit 128c5=5G.
The remarkable thing about this upper limit is that it is indepen-
dent of the masses of the stars. It may be of some relevance to the
theory of gamma-ray bursts.”

6There is an earlier and weaker result due to Croke [71] which
may possibly prove to be of use in the present context.
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curvature, therefore admits a unique (up to rigid motions)
isometric embedding into Euclidean space as a convex
body. The definition of the Brown-York mass inside any
2-surface, S, lying in a Cauchy surface fΣ; ĝg is

MBY ¼ 1

8π

Z
S
ðk0 − kÞdAðS; ĝjSÞ; ð69Þ

where k is the trace of the fundamental form of S
considered as embedded in fΣ; ĝg and k0 is the trace of
the fundamental form of fS; gg when isometrically
embedded in Euclidean space fE3; δijg, for which we have
simply dAðS; ĝjSÞ ¼ dAðS; δijSÞ ¼ dA. From a spacetime
point of view, the Brown-York mass depends on both how
the spacelike surface S sits in spacetime fM; gμνg (it has
two fundamental forms) and also the spacelike hypersur-
face Σ passing through it (which picks out a linear
combination of its two second fundamental forms). The
Brown-York mass is believed to be a “quasilocal” measure
of the amount of “energy” on Σ inside S [73]. The York-
Brown mass suffers from a number of shortcomings but in
the present context has been shown that it is positive [74].
Among the shortcomings of the Brown-York mass is that

it requires that the surface S admit an isometric embedding
into three-dimensional Euclidean space. This is not pos-
sible for the horizon of all Kerr black holes. Embeddings
into four-dimensional Euclidean space are known but are
believed not to be unique. There exists a unique isometric
embedding into hyperbolic three-space [75] and hence a
(presumably not unique) embedding into four-dimensional
Minkowski spacetime.
The converse of the hoop conjecture remains to be

considered; that is, the question that if some surface S
satisfies

βb ≤
2πGMBY

c2
; ð70Þ

then must S be, or lie inside, an apparent horizon? The
various papers of Shi and Tam [74,76–82] contain some
relevant results here.

A. Relation to work of Tod

Tod [83] has looked at the hoop conjecture from the
point of view of a collapsing shell construction for which an
isometric embedding is possible, and seeks to define the
hoop radius in terms of a maximum shadow circumference
Cm. This is defined as the supremum of the circumference
of all orthogonal projections of the surface. He finds that

π

2
C ≤

1

2

Z
k0dA ≤ 2Cm; ð71Þ

where the upper bound is attained for any surface of
constant breadth.

Thus, in the context of the time-symmetric initial value
problem, rather than the collapsing shell calculation,7an
apparent horizon must satisfy

Cm

8
≤
GMBY

c2
≤
Cm

2π
: ð73Þ

Since

βb ≤ Cm; ð74Þ

the lower bound yields

βb
8
≤
GMBY

c2
ð75Þ

which, since 8 > 2π, is a weaker statement than (68).

VII. CONCLUSIONS

We have explored the nature of a number of upper
bounds on fundamental quantities in nature. Some of this
involves further elaboration and generalization to higher
dimensions of earlier upper bounds on forces and power in
general relativity, but our discussion has focused on a
detailed analysis of our conjecture that the ratio of the
magnetic moment to angular momentum is bounded above
in nature. Suspicion falls on this combination for a
maximum principle because it has a natural Stoney-
Planck unit that is independent of the quantum of action,
h, and so it is entirely classical. We find evidence for our
conjecture that the ratio cμ=JG

1
2 is bounded by a quantity of

order unity by investigating a wide range of testing
theoretical situations. In particular, we verified that such
a conjecture holds for charged rotating black holes in
those theories for which exact solutions are available,
including the Einstein-Maxwell and dilaton theories,
Kaluza-Klein theory, the Kerr-Sen black hole, and the
so-called STU family of charged rotating supergravity
black holes. We also discussed the current status of the
maximum tension conjecture, the Dyson luminosity bound,
and Thorne’s hoop conjecture and saw the possible points
of contact between them and our conjecture bounding μ=J.
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7For which if the apparent horizon lies in a spacelike hyper-
plane, one does have [63]

βb
4π

≤
GMADM

c2
: ð72Þ
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