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A class of generalized Galileon cosmological models, which can be described by a pointlike Lagrangian,
is considered in order to utilize Noether’s theorem to determine conservation laws for the field equations. In
the Friedmann-Lemaître-Robertson-Walker universe, the existence of a nontrivial conservation law
indicates the integrability of the field equations. Because of the complexity of the latter, we apply the
differential invariants approach in order to construct special power-law solutions and study their stability.
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I. INTRODUCTION

The accuracy of the new cosmological observations
[1–5] leads us to the necessity of extending the general
theory of relativity. The introduction of a scalar field, which
attributes the effects of the so-called dark energy, in the
Einstein-Hilbert action is proposed in order to provide new
mechanisms in order to explain the various phases of the
Universe [6–13]. Canonical scalar fields lead to second-
order gravitational theories while at the same time, they can
describe the dynamics of higher-order theories of gravity or
higher-order terms of noncanonical fields; see [14–16] and
references therein. However, it is possible for a nonca-
nonical scalar-field Lagrangian to provide up to a second-
order system of differential equations when the Lagrangian
is that of Horndeski theories [17]. A special family of
noncanonical fields which have been proposed are the so-
called Galileons [18,19]. The cosmological theory which
includes the action integral of the Galileons is called
Galileon cosmology—various cosmological applications
of the theory can be found in [20–32]. However, while
Galileon cosmology is a second-order gravitational theory
and has been well studied in the literature, the existence of
actual solutions for the field equations is still an open
subject, and it is the reason that motivates this work.
Indeed, in Galileon cosmology, the gravitational field

equations are at most of second order while in an isotropic
and homogeneous universe, that is, in a Friedmann-
Lemaître-Robertson-Walker (FLRW) background geom-
etry, there are 2 degrees of freedom which describe the

scale factor aðtÞ and the Galileon field ϕðtÞ. The derivation
of a solution for a system of differential equations that can
be expressed in terms of elementary functions is usually
linked to the existence of a sufficient number of indepen-
dent first integrals, that is, conservation laws or, equiv-
alently, to the existence of a sufficient number of
transformations which reduce the differential equations
to a system of algebraic equations. When this is true we
say that the dynamical system is integrable. These proper-
ties are related and in a large extent equivalent to the
existence of symmetries. In this work and in order to study
the integrability of the Galileon cosmological model under
consideration, we search for conservation laws of the
action.
We find that the gravitational field equations can follow

from the variation of a pointlike Lagrangian and by
applying Noether’s first theorem we construct the con-
servation laws of the system. The class of transformations
we consider to leave invariant the action and, hence, the
field equations are the so-called point transformations. The
latter have been applied in various cosmological models
and modified theories of gravity for the determination of
new cosmological solutions; see for instance [33–42] and
references therein. It is important to mention that except for
the point transformations, other classes of mappings or
different methods for the study of integrability have been
applied in gravitational theories; some of these are pre-
sented in [43–50]. Furthermore, because the spatial field
equations are differential equations of second order bound
by a constraint, while the degrees of freedom are 2, we need
only determine the unknown functions/parameters of the
model whereby the system admits a single nontrivial
Noether symmetry, so as to yield it fully integrable.
Finally, in order to study the physical properties of the
models that we determine from the application of Noether’s
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theorem, we perform a study of the stability of power-law
solutions.
The plan of the paper is the following: In Sec. II we

present the gravitational field equations for the model that
we consider in this work. Specifically for the Galileon’s
Lagrangian, we select the functions in order to describe the
so-called cubic Galileon field. The field equations of that
model have cubic power of the first derivative of the field
ϕðtÞ, while there are two unknown functions: VðϕÞ, which
corresponds to the potential that forces the field and gðϕÞ,
which couples the higher-power terms of the field equa-
tions. However, in the limit where gðϕÞ → 0, the Galileon
field reduces to that of a scalar field minimally coupled to
gravity. The application of Noether’s theorem for the model
of our consideration is given in Sec. III, while power-law
solutions (ideal gas solutions) are presented as special
solutions for the field equations in Sec. IV. Moreover, the
stability of those special solutions is studied. Finally, we
discuss our results in Sec. V.

II. GALILEON COSMOLOGY

The cosmological models with Galileon fields belong to
the four-dimensional scalar-tensor theories in which the
spatial gravitational field equations are of second order and
consequently are free of Ostrogradski instability [51].
The Lagrangian of the generalized Galileon field is given

to be [52]

LG¼K−G3□ϕþG4RþG4;X½ð□ϕÞ2−ð∇μ∇νϕÞð∇μ∇νϕÞ�

þG5Gμνð∇μ∇νϕÞ−1

6
G5;X½ð□ϕÞ3

−3ð□ϕÞð∇μ∇νϕÞð∇μ∇νϕÞ
þ2ð∇μ∇αϕÞð∇α∇βϕÞð∇β∇μϕÞ�; ð1Þ

in which the functions K andGi (i ¼ 3, 4, 5) depend on the
scalar field ϕ and its kinetic energy X ¼ −∂μϕ∂μϕ=2, while
R is the Ricci scalar and Gμν is the Einstein tensor. The
above Lagrangian can be seen to be equivalent to that of the
Horndeski theory [53].
Among the infinite number of models which can be

derived from (1), let us assume the special case which leads
to a generalized Galileon model with a cubic derivative
interaction term, previously studied in [54] for the matter
case, and in [55] for the Galileon vacuum, where the free
functions are

K ¼ X − VðϕÞ; G3 ¼ −gðϕÞX;

G4 ¼
1

2
; G5 ¼ 0: ð2Þ

Then the gravitational action integral of Galileon cosmol-
ogy

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
∂μϕ∂μϕ − VðϕÞ

−
1

2
gðϕÞ∂μϕ∂μϕ□ϕ

�
þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm ð3Þ

can be written in the form

S ¼ SGR þ SSF þ SEGT þ Sm; ð4Þ

where Lm denotes the Lagrangian of the matter source, SGR
is the Einstein-Hilbert action integral, SSF is the action term
which corresponds to a minimally coupled scalar field, and
SEGT is the new term which is introduced by the Galileon
and includes the cubic derivative term.
Indeed, other definitions of the free functions of (1) exist

and provide us with different types of models. However, the
selection of K andG3 to be linear on X is the first extension
of scalar-field cosmology, and actually in the limit
gðϕÞ → 0, the (canonical) scalar-field cosmology is
recovered.

A. FLRW cosmology

We assume the cosmological scenario that our Universe
is described by the spatially flat FLRW spacetime metric
with line element

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð5Þ

for which the Ricci scalar is

R ¼ 6

�
ä
a
þ
�
_a
a

�
2
�
: ð6Þ

Consequently, if we assume that the isometries of (5) are
also inherited by the matter fields, then it follows that
ϕ≡ ϕðtÞ. This means that the Galileon field possesses the
symmetries of the spacetime and the gravitational field
equations are ordinary differential equations. Let us present
the gravitational field equations of the action (3).
Variation with respect to the metric tensor and the scalar

field of the action integral (3) provides the Friedmann
equation

3H2 ¼
_ϕ2

2
ð1 − 6gðϕÞH _ϕþ g0ðϕÞ _ϕ2Þ þ VðϕÞ; ð7Þ

the acceleration equation

2 _H þ _ϕ2ð1þ g0ðϕÞ _ϕ2 − 3gðϕÞH _ϕþ gðϕÞϕ̈Þ ¼ 0; ð8Þ

and the Klein-Gordon-like equation

N. DIMAKIS et al. PHYSICAL REVIEW D 95, 064031 (2017)

064031-2



ϕ̈ð2 _ϕ2g0ðϕÞ − 6HgðϕÞ _ϕþ 1Þ

þ _ϕ2

�
1

2
_ϕ2g00ðϕÞ − 3gðϕÞ _H − 9H2gðϕÞ

�

þ 3H _ϕþ V 0ðϕÞ ¼ 0 ð9Þ

where we have assumed that there is not any extra matter
source.
A substitution of (6) into (3) followed by integration by

parts derives the Lagrange function

Lða; _a;ϕ; _ϕÞ ¼ 3a _a2 −
1

2
a3 _ϕ2 þ a3VðϕÞ

þ gðϕÞa2 _a _ϕ3 −
g0ðϕÞ
6

a3 _ϕ4; ð10Þ

from which the two spatial gravitational field equations (8)
and (9) can be derived with the action of the Euler operator.
Here, it is important to remark that the first Friedmann
equation is a constraint equation and can be derived from
(10) if we reinstate the gauge invariance in (5) by
introducing an arbitrary lapse function NðtÞ. At this point,
a comment is in order. Although the gauge fixing process is
trivial at the level of the equations of motion, this is not true
when it takes place in the Lagrangian [56]. That is why, by
considering (10), we have to additionally simulate the
constraint equation of motion with a first integral which
necessarily needs to be zero. The existence of such a
conserved quantity is guaranteed due to fact that the system
is autonomous. We also have to keep in mind that the
nongauged fixed version of a system of this type admits in
general different groups of symmetries [57]. However, for
the model under consideration, it can be easily checked that
the exact same conserved quantity emerges through
Noether’s first theorem in both considerations. In that
respect, we can proceed by fixing N ¼ 1 at the
Lagrangian level.
As we did for the action before, we can write Lagrangian

(10) in the form

Lða; _a;ϕ; _ϕÞ ¼ LGR þ LSF þ LEGT ð11Þ

where

LEGT ¼ gðϕÞa2 _a _ϕ3 −
g0ðϕÞ
6

a3 _ϕ4 ð12Þ

and the rest of the terms of (11) give the Lagrangian of a
minimally coupled scalar field in a spatially flat FLRW
spacetime. Function (10) is a pointlike Lagrangian, how-
ever it differs from that of scalar-tensor theories because of
the term LEGT which introduces a cubic first-derivative
dependent force in the evolution of motion. Therefore the
momenta are calculated to be

pa ¼ 6a _aþ gðϕÞa2 _ϕ3; ð13Þ

pϕ ¼ a2 _ϕ
3

ð9gðϕÞ _a _ϕ−2ag0ðϕÞ _ϕ2 − 3aÞ: ð14Þ

We continue our analysis with the determination of the
unknown functions gðϕÞ and VðϕÞ, in which the
Lagrangian (10) admits Noether (point) symmetries and
the corresponding group of transformations under which
the action remains form invariant.

III. POINT TRANSFORMATIONS AND
NOETHER SYMMETRIES

In this work we are interested in point transformations,
and for convenience of the reader we discuss some
preliminary material important for the analysis which
follows. Consider a system of second-order ordinary
differential equations

ẍi ¼ ωiðt; xj; _xjÞ; ð15Þ

where t is the independent variable and xi denotes the
dependent variables.
A one-parameter point transformation in the space

ft; xjg, such that ft; xjg → ft̄ðt; xj; εÞ; x̄j0 ðt; xj; εÞg has
the property of mapping solutions of (15) to themselves,
satisfies in infinitesimal form the following criterion of
invariance:

X½2�ðẍi − ωiÞ ¼ 0 mod ẍi − ωi ¼ 0;

where its generator X is defined as

X ¼ ∂ t̄
∂ε

����
ε¼0

∂t þ
∂x̄i
∂ε

����
ε¼0

∂i ð16Þ

and X½N� indicates the Nth extension of X in the jet space
ft; xj; xð1Þj;…; xðNÞjg [58]. The generator of the point
transformation X is called a Lie symmetry for the system
of differential equations. Symmetries are important in any
physical system and play a significant role in every physical
theory, especially after the famous work of Emmy Noether
published in 1918 [59].
What is more, let us consider that the system (15) follows

from the variation of the action integral S ¼ R
Ldt. The

first of Noether’s theorems states that when a (finite) group
of transformations leaves the action form invariant, i.e.,
when (for the monoparametric transformation considered
here)

Sðt; xj;…Þ ¼ Sðt̄ðt; xj; εÞ; x̄jðt; xj; εÞ;…Þ; ð17Þ

then a conserved quantity exists which can be constructed
with the help of the symmetry generator. In the case of a
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Lagrangian containing up to first-order derivatives of the
xj’s like in our case, condition (17) is expressed in
infinitesimal form as

X½1�Lþ L
d
dt

�∂ t̄
∂ε jε¼0

�
¼ _f ð18Þ

and the relative integral of motion is given by

I ¼
�
_xj
∂L
∂ _xj − L

� ∂ t̄
∂ε

����
ε¼0

−
∂L
∂ _xj

∂x̄j
∂ε

����
ε¼0

þ f: ð19Þ

The generator X is called a Noether symmetry and it is
straightforward to show that it is also a Lie symmetry
of the equations of motion; however, the inverse is not
always true.
Of course conservation laws can be derived without the

use of Noether’s theorems by using other methods.
Nevertheless, the simplicity and the globalization of the
applications of Noether’s work make them unique in all
areas of science and not only in physics.
From the Lagrangian (11) of the Galileon cosmological

models, we read that the dependent variables are the scale
factor aðtÞ and the field ϕðtÞ, in which t is the independent
variable. Hence, we assume the generator of the infinitesi-
mal transformation to be

X ¼ ξðt; a;ϕÞ∂t þ ηaðt; a;ϕÞ∂a þ ηϕðt; a;ϕÞ∂ϕ: ð20Þ

Moreover, as we discussed, we have to consider the first
Friedmann equation, i.e., the constraint, as a zero valued
integral of motion ð_xj ∂L

∂ _xj − LÞ ¼ 0, that is, the general form
of the Noetherian conservation law for our problem reads

I ¼ f − ηa
∂L
∂ _a − ηϕ

∂L
∂ _ϕ : ð21Þ

We continue with the determination of the unknown
functions of the Lagrangian (11) in which the field
equations are invariant under the action of point
transformations.

A. Symmetry analysis

From the symmetry condition (18) for the Lagrangian
(11) of the minimally coupled Galileon field we derive the
condition

ðX½1� þ _ξÞðLGR þ LSFÞ þ ðX½1� þ _ξÞLEGT ¼ _f ð22Þ

from where we define a set of constraint equations in order
for the coefficient terms of the derivatives of _a and _ϕ in (22)
to vanish. The ensuing system is presented in the Appendix.
However, since LEGT has higher-polynomial derivatives
from the other two terms of the Lagrangian (11), it is
expected that the potential which is to be defined, should

assume the form of the one in which a minimally scalar
field admits an extra Noether symmetry. In the following
we assume that gðϕÞ is not constant or zero. It is important
to mention that the analysis we perform here is different
from the one that is presented in [42]. The main reason is
that in this work we see the Lagrangian as a regular system
in contrary to [42], which we saw it as a singular system.
The two different approaches are complementary; for
details see the discussion in [57,60].
As we discussed above, the field equations constitute an

autonomous system and admit the Noether symmetry ∂t for
arbitrary functions VðϕÞ and gðϕÞ. However, in the specific
case in which

VðϕÞ ¼ V0e−λϕ and gðϕÞ ¼ g0eλϕ; ð23Þ

an extra Noetherian symmetry exists, viz.

X ¼ t∂t þ
a
3
∂a þ

2

λ
∂ϕ; ð24Þ

with the corresponding conservation law

I1 ¼ −
�
2a2 _a −

2

λ
a3 _ϕ

�
þg0eλϕa3 _ϕ

3−
6

λ
g0a2eλϕ _a _ϕ

2: ð25Þ

Recall that the same conservation law exists in the limit
in which V0 ¼ 0. An important observation is that when the
Universe is dominated by the potential of the scalar field,
then gðϕÞ → 0, and the model reduces to that of a
minimally coupled scalar field.
As we can see, the linear term of the conservation law is

that of a minimally coupled scalar field while the nonlinear
terms follow from the LEGT of the gravitational
Lagrangian. Therefore, with the use of the conservation
law (25) and the constraint equation (7) the gravitational
field equations are reduced to a system of two first-order
ordinary differential equations which are autonomous.

IV. IDEAL GAS SOLUTION AS GROUP
INVARIANT SOLUTION

Above, we made it clear that a Noether symmetry is
always a Lie symmetry, where the latter means that there
exists a set of invariants in which the equations are
independent. However it is easier to construct invariant
solutions.
In this respect, for the gravitational field equations

(7)–(9) we find the following set of solutions:
the power-law solution

a1ðtÞ¼ a0tp; ϕðtÞ¼ 2

λ
lnðϕ0tÞ;

g0¼
λð2−λ2pÞ
4ð3p−1Þϕ2

0

; V0¼ϕ2
0

�
2

λ2
þpð3p−2Þ

�
ð26Þ
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and the cubic root solutions

a2;3ðtÞ ¼ a0t
1
3; ϕ2;3ðtÞ ¼ �

ffiffiffi
6

p

3
lnðϕ0tÞ;

V0 ¼ 0; λ2;3 ¼ �
ffiffiffi
6

p
: ð27Þ

The perfect fluid solution a1ðtÞ is similar to the special
solution for the exponential potential of a minimally
coupled scalar field. We mentioned that the terms LEGT
in the first Friedmann equation becomes zero in the cubic
root solutions. Indeed, the solutions exist for arbitrary
coupling (g0), but zero potential (V0 ¼ 0).
Note that these are special solutions of the full system

(they are singular solutions). However, what is important
from the solution a1ðtÞ is that power p is not related with λ,
as in the case of a minimally coupled scalar field. However,
the solution of the latter is recovered when we set g0 ¼ 0

and p ¼ 2
λ2
.

A. Stability of the ideal gas solution

Now, let us follow the approach of [61,62] to investigate
the stability of the singular solution

a1ðtÞ ¼ a0tp; ϕðtÞ ¼ 2

λ
ln ðϕ0tÞ;

g0 ¼ −
λðλ2p − 2Þ
4ð3p − 1Þϕ2

0

; V0 ¼ ϕ2
0

�
2

λ2
þ pð3p − 2Þ

�
:

Let us assume ϕ0 > 0. Introducing the new variables

ϵ ¼ λϕ

2 lnðtϕ0Þ
− 1; v ¼ t

�
λ _ϕ

2 lnðtϕ0Þ
−

λϕ

2tln2ðtϕ0Þ
�
;

tϕ0 ¼ eτ; ð28Þ

where ϕðtÞ is a general solution of (9). That is, the scaling
solution ϕsðtÞ ¼ 2

λ ln ðϕ0tÞ corresponds to the critical point
ϵ ¼ 0. Furthermore, by definition we have v ¼ ϵ0, where
now the prime denotes the derivative with respect to τ.
Using the variables (28), Eq. (9) recasts as the nonauton-
omous system

ϵ0 ¼ v; ð29aÞ

v0 ¼ −
ðτvþ ϵþ 1Þð6ð1 − 3pÞp − ðλ2p − 2Þe2τϵðτvþ ϵþ 1Þð9p2 − 3p − 2ðτvþ ϵþ 1Þ2ÞÞ

2τð−ðλ2p − 2Þe2τϵðτvþ ϵþ 1Þð3p − 2ðτvþ ϵþ 1ÞÞ − 3pþ 1Þ

−
ð3p − 1Þðλ2pð3p − 2Þ þ 2Þe4τ−2τðϵþ2Þ

2τð−ðλ2p − 2Þe2τϵðτvþ ϵþ 1Þð3p − 2ðτvþ ϵþ 1ÞÞ − 3pþ 1Þ þ
ðτ − 2Þvþ ϵþ 1

τ
ð29bÞ

which admits the exact (singular) solution ðϵ; vÞ ¼ ð0; 0Þ.
Assuming ϵ ≪ 1, v ≪ 1, we obtain the linearized

nonautonomous system

�
ϵ0

v0

�
¼

�
0 1

− ð3p−1Þð2τþ1Þ
τ −3p − 2

τ þ 1

��
ϵ

v

�
: ð30Þ

The exact solution of (30) is given by

ϵðτÞ ¼ e
1
2
ð1−3pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2−30pþ9

p
Þτϵ1ðτÞ

þ e
1
2
ð1−3p−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2−30pþ9

p
Þτϵ2ðτÞ ð31aÞ

vðτÞ ¼ e
1
2
ð1−3pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2−30pþ9

p
Þτv1ðτÞ

þ e
1
2
ð1−3p−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2−30pþ9

p
Þτv2ðτÞ; ð31bÞ

where

ϵ1ðτÞ ¼
c1
τ
; ϵ2ðτÞ ¼

c2
τ
; ð32Þ

v1ðτÞ ¼ c2

�
1 − 3pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2 − 30pþ 9

p
2τ

−
1

τ2

�
;

v2ðτÞ ¼ c1

�
1 − 3p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2 − 30pþ 9

p
2τ

−
1

τ2

�
: ð33Þ

The two modes of ϵ and v are decaying for p > 1=3, which
are exponentially depressed for p > 3 and shows damped
oscillations for 1

3
< p < 3. In both cases, the perturbations

decrease. For p < 1=3, one mode is decaying and the other
grows as τ → ∞ (the origin is a saddle), so that the
perturbation increases with time.
For large τ, the system (30) can be approximated by

�
ϵ0

v0

�
¼

� 0 1

−2ð3p − 1Þ 1 − 3p

��
ϵ

v

�
: ð34Þ
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The origin has the eigenvalues

�
1

2

	
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2 − 30pþ 9

q
− 3pþ 1



;

1

2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2 − 30pþ 9

q
− 3pþ 1


�
:

The origin of (34) is a stable node for p ≥ 3 or a stable
spiral for 1

3
< p < 3, and this result seems to be indepen-

dent on the parameter λ.
For the numerical integration we use the Poincarè

projection:

ϵ ¼ r
1 − r

sin θ; v ¼ r
1 − r

cos θ; ð35Þ

rescaling the time derivative by f0 → ð1 − 2rÞ2rf0 and
plotting the solutions in the plane ðϵr; vrÞ ¼
ðr sin θ; r cos θÞ. This projection shrinks all the trajectories
in the phase plane to the unit disk. Furthermore, the points
N ≡ ð0; 1Þ, E≡ ð−1; 0Þ, W ≡ ð1; 0Þ correspond respec-
tively to ðϵ ¼ 0; ϵ0 ¼ ∞Þ, ðϵ ¼ −∞; ϵ0 ¼ 0Þ, and ðϵ ¼ ∞;
ϵ0 ¼ 0Þ. In Fig. 1 it is presented with some orbits of (34) on
the Poincarè plane for different choices of p. In the first
case, p ¼ 1=6, the origin is a saddle and appear with four
nontrivial centers. For p ¼ 1=3, the origin is a saddle and
the centers reduce to 2 and the line vr ¼ 0 is invariant. For
p ¼ 1=2 the origin is the only stationary structure of the
phase space and it is a stable spiral. For p ¼ 2=3, p ¼ 1 the
origin is a stable spiral, but two centers appear, in addition

to two saddle points. For p ¼ 3 the centers remain, but the
origin now becomes a stable node. There appears two
saddle points at the interior of the phase space and two
nonhyperbolic points on the Poincarè circle which are
saddle points.
Since the system (34) is an approximation of (30), we

may expect that the origin of (30) could be a stable node for
p ≥ 3 or a stable spiral for 1

3
< p < 3, and the result should

be independent on the parameter λ. Indeed, this result can
be confirmed from the exact solution (29) of the linear
nonautonomous system. Then, since the system (30) is an
approximation of (29) for ϵ ≪ 1; ϵ0 ≪ 1, we might expect
analogous results for the full system, at least near the origin.
However, since the system (29) is nonautonomous and
nonlinear, this heuristic reasoning is not a complete proof,
and we have to test the validity of our results, which can be
done numerically by integrating the full system (29).
Furthermore, since the system is nonautonomous, the orbits
cross in the Poincarè representation, but not on the 3D
representation of the integral curves ðϵ; ϵ0; τÞ.
Notice that the full system (29) can be written as an

autonomous system by introducing the new variables

E ¼ e−ϵτ − 1; V ¼ ϵþ τv; ð36Þ

such that ðϵ; vÞ ¼ ð0; 0Þ is mapped onto ðE;VÞ ¼ ð0; 0Þ for
all τ. And we define the new derivative f0 ¼ eϵτ dfdτ. This
leads to the dynamical system

E0 ¼ −V; ð37aÞ

FIG. 1. In the figures are presented some orbits of (34) on the Poincarè plane for p ¼ 1=6, p ¼ 1=3, for radiation (p ¼ 1=2) and matter
(p ¼ 2=3) dominated universes, for zero acceleration solution (p ¼ 1), and for accelerated solution (p ¼ 3).
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V 0 ¼ V2ðλ2p − 2Þð2VðV þ 2Þ − 9ðp − 1ÞpÞ
2ðE þ 1Þð3λ2p2ðV þ 1Þ þ 3pðEðE þ 2Þ − 2V − 1Þ − 2λ2pðV þ 1Þ2 þ ð−E þ 2V þ 1ÞðE þ 2V þ 3ÞÞ

þ ð3p − 1ÞðVððE − 1ÞðE þ 3Þ − 3λ2p2 þ pð−3EðE þ 2Þ þ 2λ2 þ 3ÞÞ þ EðE þ 2ÞðEðE þ 2Þ − 3pþ 3ÞÞ
ðE þ 1Þð3λ2p2ðV þ 1Þ þ 3pðEðE þ 2Þ − 2V − 1Þ − 2λ2pðV þ 1Þ2 þ ð−E þ 2V þ 1ÞðE þ 2V þ 3ÞÞ

þ EðE þ 2ÞðEðE þ 2Þ þ 2Þλ2pð3p − 2Þð3p − 1Þ
2ðE þ 1Þð3λ2p2ðV þ 1Þ þ 3pðEðE þ 2Þ − 2V − 1Þ − 2λ2pðV þ 1Þ2 þ ð−E þ 2V þ 1ÞðE þ 2V þ 3ÞÞ : ð37bÞ

For the numerical integration we use the Poincarè
projection:

E ¼ r
1 − r

sin θ; V ¼ r
1 − r

cos θ; ð38Þ

and plot the solutions in the plane ðEr;VrÞ ¼
ðr sin θ; r cos θÞ. This projection shrinks all the trajectories
in the phase plane to the unit disk. Furthermore, the points
N ≡ ð0; 1Þ, E≡ ð−1; 0Þ, W ≡ ð1; 0Þ correspond, respec-
tively, to ðE ¼ 0;V ¼ ∞Þ, ðE ¼ −∞;V ¼ 0Þ, and
ðE ¼ ∞;V ¼ 0Þ.
In Fig. 2 are plotted some solutions in the plane

ðEr;VrÞ ¼ ðr sin θ; r cos θÞ for the system (37). These
numerics support the claim that the phase spaces are
topologically equivalent for different choices of λ.
Henceforth, the stability results are independent of λ.
For p ¼ 1=2 it is confirmed that the origin is a saddle
point as it is anticipated from the analysis of the linearized
nonautonomous system (and this result is valid for all
p < 1=3). For p ¼ 1=3 the line V ¼ 0 is invariant and it is
not stable. For the values p ¼ 1=2; 2=3; 1 the origin is a
stable spiral as it is anticipated from the analysis of the
linearized nonautonomous system; these results are true for
1=3 < p < 3. Finally, for p ¼ 3 (and greater values of p)
the origin is a stable node. Comparing the results of Figs. 1
and 2 we see that for the same values of p (and
independently of λ), the dynamics near the origin is
topologically equivalent. However, the global features of
the phase spaces are rather different; for example, it seems
from the diagrams that the system (37) has no center points
as the system (34).

B. Stability of the cubic root solution

For analyzing the stability of the cubic root solution (we
choose just the solution on the branch “þ”; the analysis for
a3ðtÞ is quite similar),

a2ðtÞ¼ a0t
1
3; ϕðtÞ¼

ffiffiffi
6

p

3
lnϕ0t; V0¼ 0; λ¼

ffiffiffi
6

p
;

we substitute the values of a2ðtÞ, V0, and λ in (9) for an
arbitrary ϕ to obtain

3g0e
ffiffi
6

p
ϕ _ϕ4þ ϕ̈

�
2

ffiffiffi
6

p
g0e

ffiffi
6

p
ϕ _ϕ2−

2g0e
ffiffi
6

p
ϕ _ϕ

t
þ1

�
þ

_ϕ

t
¼ 0:

Introducing the new variables

ϵ ¼
ffiffiffi
6

p
ϕ

2 lnðtϕ0Þ
− 1; v ¼ t

� ffiffiffi
6

p
_ϕ

2 lnðtϕ0Þ
−

ffiffiffi
6

p
ϕ

2tln2ðtϕ0Þ
�
;

tϕ0 ¼ eτ; ð39Þ

where ϕðtÞ is a general solution of (8) and we have assumed
ϕ0 > 0. Without losing generality we can set g0ϕ2

0 ¼ 1,
which means that g0 is given in units of ϕ−2

0 . Using the
variables (39), Eq. (8) recasts as the nonautonomous system

ϵ0 ¼ v; ð40aÞ

v0 ¼
�
1 −

2

τ

�
v

−
3ðτvþ ϵþ 1Þð2

ffiffi
2
3

q
e2τϵðτvþ ϵþ 1Þ3 þ 1Þ

τð2 ffiffiffi
6

p
e2τϵðτvþ ϵþ 1Þð2τvþ 2ϵþ 1Þ þ 3Þ

þ ϵþ 1

τ
; ð40bÞ

which admits the exact (singular) solution ðϵ; vÞ ¼ ð0; 0Þ.
The linearized equations are

ϵ0 ¼ v; v0 ¼ −
2v
τ
;

whose solution is

ϵðτÞ ¼ c2 −
c1
τ
; vðτÞ ¼ c1

τ2
:

The solutions satisfy ϵþ vτ ¼ c2, where c2 ¼ limτ→∞ϵðτÞ.
From these expressions we can have that the (0, 0) solution
is stable as τ → ∞ by choosing c2 small enough. In Fig. 3
we present some integral curves for the full system (29) and
the above feature is illustrated. Now, from the full system
(40), we can obtain an autonomous system by introducing
the new variables

E ¼ e−ϵτ − 1; V ¼ ϵþ τv; ð41Þ
and the new derivative f0 ¼ eϵτ dfdτ. This leads to the
dynamical system
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FIG. 2. Plot of the solutions in the plane ðEr;VrÞ ¼ ðr sin θ; r cos θÞ for the system (37).
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E0 ¼ −V; ð42aÞ

V 0 ¼ −
2

ffiffiffi
6

p
V2ðV þ 1Þ2

3ðE þ 1Þ3 þ 2
ffiffiffi
6

p ðE þ 1ÞðV þ 1Þð2V þ 1Þ : ð42bÞ

For the numerical integration we use the Poincarè
projection:

E ¼ r
1 − r

sin θ;

V ¼ r
1 − r

cos θ; ð43Þ

and plot the solutions in the plane ðEr;VrÞ ¼
ðr sin θ; r cos θÞ as shown in Fig. 4.

V. CONCLUSION

There are various ways to study the integrability of a
dynamical system. In this work we decided to search for
conservation laws given by the application of Noether’s
symmetries for the pointlike Lagrangian of a Galileon field.
For that field we considered a model which can be seen an
extension of the minimally coupled canonical scalar field.
Specifically the new term which is introduced from the
Galileon Lagrangian provides cubic powers of the deriv-
atives in the “Klein-Gordon” equation for the field, while a
function is introduced such that, when it goes to zero, the
canonical scalar-tensor theories are recovered.
The unknown parameters of the model are two, the

potential VðϕÞ and the function gðϕÞ which is introduced
from the higher-power derivatives in the gravitational
Lagrangian. These two functions drive the evolution of
the field equations and provide us with different cosmo-
logical models. The demand that the field equations form
an integrable system with a conservation law linear in the
momentum is sufficient to define the explicit form of these
two unknown functions. Specifically, the application of
Noether’s theorem implies that VðϕÞ and gðϕÞ are expo-
nential such that VðϕÞ ∝ ðgðϕÞÞ−1. This model is of special
interest because, when the Universe is dominated by the
scalar-field potential, then the extra terms in the field
equations which correspond to the Galileon field do not
affect the evolution of the system and the Galileon field
behaves like a canonical scalar field.
Because of the complexity of the field equations it was

not possible to extract the general solution in a closed form.
However, we proved the existence of power-law solutions
as special solutions. In order to study the evolution of the
system, we followed the method proposed by [61,62]. We
found, after linearization, that for the power-law solution
there are two modes of ϵ and v which are decaying for
p > 1=3 at an exponential rate for p > 3, and the solutions
manifest damped oscillations for 1

3
< p < 3. In both cases

FIG. 3. Some integral curves for the full system (40). It can be
shown that the (0, 0) solution is stable as τ → ∞ by choosing c2
small enough and for ϵ > 0.

FIG. 4. Poincarè projection of the system (42).
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the perturbations decrease. For p < 1=3 one mode is
decaying and the other grows as τ → ∞ (the origin is a
saddle), so that the perturbation increases with time. We
have constructed an autonomous dynamical system from
the full system. Using numerical integrations, we showed
that the stability results are independent of λ; the dynamics
near the origin is topologically equivalent of that of the
linearized system. However, the global features of the phase
spaces are rather different. For the cubic root solution we
found that the origin is stable but not asymptotically stable
by choosing proper initial conditions.
The cosmological eras of a canonical scalar field can be

recovered from the gravitation action (3) as it has been
shown in [54]. However, even in that limit there are various
differences between the two models. One of the main can
be observed from the analysis, which we performed is in
the relation of the exponent p, in the power-law solution
aðtÞ ¼ a0tp, with the rate of the exponential potential.
Specifically for the canonical scalar-field cosmology, the
exponential potential VðϕÞ ¼ V0e−λϕ admits a power-law
solution in which the power p and the constant λ are related
as follows λ2 ≃ p−1 [63]. On the contrary, this is not
necessary for our model where we have shown that p is
independent of the exponential rate of the potential; a fact
that is owed to the cubic terms in the Lagrangian.
It is true that power-law solutions describe those of an ideal

gas but since p is now arbitrary, the Galileon field can
describe also fluids with a negative equation of state param-
eter or even phantom fluids with equation of state parameter
smaller than minus one. Hence, from our analysis it follows
that the integrable model can describe the late-time accel-
eration of the Universe when the equation of state parameter
for the dark energy is different from minus one, or the early
inflationary epoch demanding that the power-law solution is
unstable so that an exit from the inflationaryperiod does exist.
That is in agreement with the various studies of Galileons; for
instance, see [64–67] and references therein. Finally, the
stability analysis of the power-law solutions differs from that
of the canonical field [61] and that is directly related with the
existence of the cubic term in the action integral.
To show what the role of the cubic term in the

cosmological history is, let us consider now that it
dominates in the Lagrangian. Then, the field equations
reduce to the following relations:

ϕ̈þ 1

2
λ _ϕ2 ≃ 0; _H − λH _ϕþ 3H2 þ 1

6
λ2 _ϕ2 ≃ 0 ð44Þ

with solution1 HðtÞ ¼ 6H0−λ _ϕ0

3ððt−t0Þð6H0−λ _ϕ0Þþ2Þ þ
λ _ϕ0

3λ _ϕ0ðt−t0Þþ6
;

ϕðtÞ ¼ ϕ0 þ 2
λ ln ð1þ λ _ϕ0

2
ðt − t0ÞÞ. Hence, for the scale

factor follows

aðtÞ ¼ a0

�
1þ 1

2
λ _ϕ0ðt − t0Þ

�1
3

×
�
1þ 1

2
ðt − t0Þð6H0 − λ _ϕ0Þ

�1
3

: ð45Þ

By taking initial conditions such that _ϕ0 ¼ 0 or
6H0 − λ _ϕ0 ¼ 0, we obtain the cubic root solution that
we derived before aðtÞ ∝ t

1
3. On the other hand, if we

choose initial conditions such that 3H0 − λ _ϕ0 ¼ 0, we
obtain that aðtÞ ∝ t

2
3, that is, it corresponds to a universe

dominated by a dust fluid/dark matter.
In order to understand better the evolution and the

dynamics of that model, an analysis of the critical points
in the dimensionless variables should be performed. With
the latter we will able to investigate the effects of the
various terms of the Lagrangian in the evolution of the
Universe and to which a eras they provided. The speciality
of our model lies in the existence of the second conserva-
tion law and it is of special interest to see how the second
conservation law fixes the evolution. On the other hand that
special case is not explicitly included in the results of [54].
This is still work in progress and will be published
elsewhere.
Of course as we have mentioned before, only a special

class of the generalized Galileon models was studied in this
work. Possible extensions by admitting more terms in the
action or more complicated coupling functions is a subject
of interest. The reason is that while some can numerically
approximate the evolution of the system, the existence
of an actual solution of the field equations is an open
subject.
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APPENDIX: THE SYMMETRY CONDITIONS

In this appendix, for the convenience of the reader, we
present the Noether symmetry conditions (18) for the
Lagrangian (10) of the Galileon model that we have
considered.

1Where we have chosen the initial conditions
Hðt0Þ ¼ H0;ϕðt0Þ ¼ ϕ0; _ϕðt0Þ ¼ _ϕ0.
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ξ;a ¼ 0; ξ;ϕ ¼ 0; ηϕ;a ¼ 0; 9gðϕÞa2ηϕ;t ¼ 0;

6aηa;t − h;a ¼ 0; a3ηϕ;t þ f;ϕ ¼ 0;

6aηa;ϕ − a3ηϕ;a ¼ 0;

3a2gηa;t − 2g;ϕa3ηϕ;t ¼ 0;

3ηaa2VðϕÞ þ ηϕa3V;ϕ þ a3Vξ;t − f;t ¼ 0;

− 3aξ;t þ 3ηa þ 6aηa;a ¼ 0;

1

2
a3ξ;t −

3

2
ηaa2 − a3ηϕ;ϕ ¼ 0;

3gðϕÞa2ηa;ϕ − 2g;ϕa3ηϕ;ϕ þ
3

2
g;ϕa3ξ;t

−
3

2
g;ϕηaa2 −

1

2
ηϕa3g;ϕϕ ¼ 0;

6ηagðϕÞaþ 3ηϕa2g;ϕ þ 3gðϕÞa2ηa;a
þ 9gðϕÞa2ηϕ;ϕ − 2a3g;ϕηϕ;a − 9gðϕÞa2ξ;t ¼ 0:

The solution of the system provides us with the symmetry vectors and the specific forms of the functions gðϕÞ and VðϕÞ
that were presented in Sec. III.
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