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Critical overdensity δc is a key concept in estimating the number count of halos for different redshift and
halo-mass bins, and therefore, it is a powerful tool to compare cosmological models to observations. There
are currently two different prescriptions in the literature for its calculation, namely, the differential-radius
and the constant-infinity methods. In this work we show that the latter yields precise results only if we are
careful in the definition of the so-called numerical infinities. Although the subtleties we point out are
crucial ingredients for an accurate determination of δc both in general relativity and in any other gravity
theory, we focus on fðRÞ-modified gravity models in the metric approach; in particular, we use the so-
called large (F ¼ 1=3) and small-field (F ¼ 0) limits. For both of them, we calculate the relative errors
(between our method and the others) in the critical density δc, in the comoving number density of halos per
logarithmic mass interval nlnM, and in the number of clusters at a given redshift in a given mass bin Nbin, as
functions of the redshift. We have also derived an analytical expression for the density contrast in the linear
regime as a function of the collapse redshift zc and Ωm0 for any F.
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I. INTRODUCTION

Since the discovery that the expansion of the Universe is
speeding up in 1998 [1,2], several attempts have been made
to understand the physical mechanism responsible for this
cosmic acceleration. One possibility is that an exotic new
component with negative pressure (dubbed dark energy)
would be responsible for it. The simplest dark energy
candidate is the cosmological constant (Λ). As an alter-
native to dark energy, one considers modification of general
relativity (GR). The simplest modified gravity candidate is
the so-called fðRÞ gravity in which the Lagrangian density
L ¼ Rþ fðRÞ is a nonlinear function of the Ricci scalar R.
Here, we focus on the metric approach.
There is a general belief (see, for instance, Ref. [3]) that

cosmological kinematical tests (those that depend only on
the background evolution) alone cannot distinguish between
the standard cosmological constant model (ΛCDM) and any
viable fðRÞ gravity theory. Indeed, one of the strongest
constraints comes from the growth of perturbations in the
nonlinear regime [4,5]. In the linear regime, on the other
hand, only weak constraints are obtained [6].
In GR, Birkhoff’s theorem holds, and in the spherical

collapse (SC) approximation, an initial top-hat density
profile keeps being a top hat. That straightforwardness
enables analytical results in the Einstein-de Sitter (EdS)
background (Ωm ¼ 1)—and it is therefore the standard
benchmark for all more realistic initial conditions. In
modified theories, however, the fifth force mediated by
the new scalar degree of freedom—the scalaron [7]—and the
so-called chameleon mechanism [8] play a crucial role.
Indeed, the chameleonmechanism is a key ingredient to hide

the fifth-force effects in high-density environments such as
the Solar System and at Galactic scales. Consequently, the
validity of the SC approximation itself has been the subject
of a large dispute in the current literature. Borisov et al. [9]
numerically solved the full modified gravity equations for
the model proposed by Hu and Sawicki [10] and found that
an initial top-hat profile develops shell crossing during its
evolution, and therefore, its shape changes.An improvement
of the SC numerical calculation for again the same fðRÞ
model is found in Ref. [11], using as an initial condition the
average density profile around a density peak. Using the
results for the SC found in Ref. [8], Lombriser et al. [12] and
subsequently Cataneo et al. [13] have taken into account the
chameleon suppression of modifications in high-density
regions.
Precisely in order to circumvent such problems and to

gain some insight on the role played by the chameleon
mechanism, we work in the so-called large- and small-field
limits (see Sec. II). Indeed, such an approach has been
proven effective before: In Refs. [14,15], the density
profiles and the linear bias of the cluster halos were
determined in such limits, showing good agreement with
N-body simulations.
The key quantity in the SC is the critical overdensity

δcðzcÞ at a given collapse redshift zc. It is defined as the
final value (i.e., at redshift zc) of the linear evolution of a
given spherical top-hat initial perturbation that actually
collapses at zc according to the full nonlinear equations.
Theoretically, the latter value should be infinite, but in
practice one has to deal with numerical infinities, and here,
is where lies a potential problem. As we see later on,
different numerical infinities give rise to different results for
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δcðzÞ. The main goal of this work is to discuss and carefully
quantify these differences.
This paper is structured as follows. Section II reviews the

basic equations that describe the SC model in fðRÞ
theories. In Sec. III we review the current techniques to
calculate the critical density contrast and point out the
delicate step in the constant-infinity method. In Sec. IV we
compare and discuss the results. In particular, we show the
relative errors between our method and the others, in the
case of fðRÞ theories, in both the so-called small-field limit
(F ¼ 0) and the large-field limit (F ¼ 1=3), when calcu-
lating the critical density δc, the comoving number density
of halos per logarithmic mass interval nlnM, and the number
of clusters at a given redshift in different mass bins Nbin.
Throughout this paper, we assume the background is given
by the standard ΛCDM model, since we assume there is no
observable difference between that and the actual viable
fðRÞ evolution. In the Appendix we present the evolution
of the density contrast in the linear regime for arbitraryΩm0.

II. SPHERICAL COLLAPSE IN f ðRÞ THEORIES

In fðRÞ theories the Einstein-Hilbert action is modified to

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ fðRÞ

2κ
þ Lm

�
; ð1Þ

whereLm is the Lagrangian of the ordinarymatter, κ ≡ 4πG,
and throughout this paper, we use c ¼ ℏ ¼ 1. Variation of
Eq. (1) with respect to the metric gμν yields the modified
Einstein equations:

Gμν þ fRRμν −
1

2
fgμν − ½∇μ∇ν − gμν□�fR ¼ κTμν; ð2Þ

where Gμν is the Einstein tensor and fR ≡ df
dR. Taking the

trace of Eq. (2), one gets

fRR − 2f þ 3□fR − R ¼ κT; ð3Þ

where T is the trace of the energy-momentum tensor Tμν.
From the latter equation, one can see that fR represents an
extra degree of freedom. Indeed, one can show [16] that
upon a change to Einstein’s frame, one recovers standardGR
plus an extra scalar field.
The SC model considers a homogeneous and isotropic

region (a top-hat profile) with density ρðtÞ ¼ ρ̄ðtÞ þ δρðtÞ,
where ρ̄ is the background fluid density. We suppose that
this region contains only nonrelativistic matter (both the
pressure pm and the effective sound speed c2eff are negli-
gible). Such a region can be described as a perturbation in
an otherwise homogeneous universe with density ρ̄ðtÞ,
scale factor aðtÞ, and Hubble parameter H ≡ _a=a, whose
metric is given by

ds2 ¼ −ð1þ 2ϕÞdt2 þ a2ðtÞð1þ 2ψÞδijdxidxj: ð4Þ

In GR, in the considered case (since the anisotropic stress
vanishes), the gravitational potential ϕ would be equal to
the negative of the second potential (ϕþ ψ ¼ 0). In
modified theories, however, the extra scalar field acts as
a source of the deviation between them.
The nonlinear continuity and Euler equations [17] for the

density contrast δðtÞ≡ δρ
ρ̄ and velocity-field perturbation ~v

are, respectively,

_δþ 1

a
ð1þ δÞ ~∇ · ~v ¼ 0 and ð5Þ

_~vþ 1

a
ð~v · ~∇Þ~vþH~v ¼ −

1

a
~∇ϕ; ð6Þ

in comoving spatial coordinates. Combining Eqs. (5)
and (6), one obtains a second-order differential equation
for δ:

δ̈þ 2H_δ −
4

3

_δ2

ð1þ δÞ ¼
1

a2
∇2ϕð1þ δÞ: ð7Þ

When gravity is modeled by fðRÞ theories, the potential
ϕ is modified accordingly, as follows. A perturbation in the
matter density produces a perturbation in the metric gμν,
which can be translated into a perturbation in the Ricci
scalar R. Using Eqs. (2) and (4), one gets the equation for
the modified potential ϕ:

∇2ϕ ¼ 16πG
3

a2δρm −
a2

6
δRðfRÞ; ð8Þ

where δR≡ R − R̄ and R̄ is the background Ricci scalar.
Accordingly, the function fRðR̄Þ≡ df

dR ðR̄Þ is perturbed by
δfR ≡ fRðRÞ − fRðR̄Þ. Using (3), we get

∇2δfR ¼ a2

3
½δRðfRÞ − 8πGδρm�: ð9Þ

To obtain Eqs. (8) and (9), we have considered jfRðR̄Þj≪1

and the quasi-static approximation _fRðR̄Þ ≪ j ~∇fRðR̄Þj. The
former condition indicates that the background is similar to
ΛCDM, while the latter assumes that the time scale of the
collapse is much smaller than the time scale of the expansion
of the Universe. Therefore, any time variation of the (back-
ground) scalar field fR is negligible in a typical time scale of
collapse. Such an approximation is equivalent to focus on the
evolution of the perturbations inside the Hubble radius when
the background evolution is close toΛCDM (fR ≪ 1), as has
been shown in Ref. [18]. However, in Ref. [19], it was shown
that the deviation in the global matter power spectrum
between static and nonstatic simulations is only 0.2%.
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Therefore, although in principle the static approximation is
not supposed to be accurate, the corrections are actually small.
Two opposite regimes, inherent to any fðRÞ, can be

represented by a single factor F [14]. When the curvature in
the spherical region is large, the fluctuations of the field δfR
are very small, so that the Laplacian in Eq. (9) can be
neglected, yielding δR ≈ 8πGδρm and the usual Poisson
equation is recovered; this defines the so-called small-field
limit. On the other hand, if the curvature R in the spherical
region is similar to the background curvature R̄, its
fluctuation δR is small. Thus, it can be neglected in
Eq. (8), which increases the gravitational potential by a
global 4=3 factor on the right-hand side of that equation.
This regime is the so-called large-field limit, i.e.,
jδfRj ∼ jϕj. In the former case, gravity is not modified
due to the chameleon effect; the opposite situation occurs
in the large-field limit where gravity is strengthened,
becoming more attractive.
For both the limits above, Eq. (7) can be cast as

δ̈þ 2H_δ −
4

3

_δ2

ð1þ δÞ ¼
3

2
ð1þ δÞH2ΩmðtÞð1þ FÞδ; ð10Þ

where F ¼ 0 reproduces the small-field case and F ¼ 1=3
corresponds to the large-field limit. It is convenient to write
the above equation in terms of y≡ ln a (we take the present
value of the scale factor a0 ¼ 1):

H2ðyÞ d
2δ

dy2
þ
�
2H2ðyÞ þHðyÞ dHðyÞ

dy

�
dδ
dy

−
4H2ðyÞ

3ð1þ δðyÞÞ
�
dδ
dy

�
2

¼ 3

2
ð1þ δÞH2ðyÞΩmðyÞð1þ FÞδ: ð11Þ

III. CALCULATING THE CRITICAL
DENSITY CONTRAST δc

The critical density can be calculated following two
different procedures: one directly from the time evolution
of δðyÞ given by Eq. (11) and another from the difference in
evolution between the bubble radius and the background
scale factor, as we see below. In the former, one has to deal
with numerical infinities. We start with the latter, where one
can circumvent this problem.

A. The differential-radius method

We define (following Ref. [14]) the differential radius

qðy≡ ln aÞ≡ r
ri
−

a
ai
; ð12Þ

where ri is the initial bubble radius when its scale factor is
ai. The full nonlinear evolution equation for qðyÞ obtained
from mass conservation and Eq. (11) is

q00 þH0

H
q0 ¼−

1

2

Ωm0a−3−2ΩΛ0

Ωm0a−3þΩΛ0
q

−
1

2

Ωm0a−3

Ωm0a−3þΩΛ0
ð1þFÞ

�
a
ai
þq

�
σ; ð13Þ

where

σ ≡
�

1

qai=aþ 1

�
3

ð1þ δiÞ − 1: ð14Þ

The initial conditions—usually set at a high redshift, when
matter dominates (Ωm ∼ 1)—are qðyiÞ≡ qi ¼ 0 and
q0i ¼ −δið1þ pÞ=ð3ð1þ δiÞÞ, with

p≡ pðFÞ≡ 5

4

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24

25
F

r �
: ð15Þ

One then solves Eq. (13) requiring that the collapse,
defined by qðzcÞ ¼ −ac=ai, takes place at a given redshift
zc ≡ 1=ac − 1. Such requirement constrains q0i and,
consequently, the value of δi ≡ δmðaiÞ which we para-
metrize as

δi ¼ Ca1þp
i ; ð16Þ

inspired by the linear growth of δc at such high redshifts
[see Eq. (17)].
The critical density δc is the linear evolution—

determined by Eq. (A3)—of such initial density perturba-
tion δi, given by Eq. (A11) at the collapse (a ¼ ac):

δc ¼ Ca1þp
c 2F1

�
ϵðpÞ; bðpÞ; cðpÞ;− ð1 −Ωm0Þ

Ωm0

a3c

�

for any Ωm0 and F—see Eqs. (A12) for definitions of ϵðpÞ,
bðpÞ, and cðpÞ.
The explicit dependence on Ωm0 is usually taken for

granted because the full evolution (i.e., until the collapse)
is supposed to happen while matter still dominates. In
that case there is no dependence of the hypergeometric
function on the collapse scale factor ac for any value of F,
since 2F1ðϵ; b; c; 0Þ ¼ 1 ∀ fϵ; b; cg and one recovers the
standard power-law dependence

δcðaÞ ¼ Ca1þp
c : ð17Þ

Of course, for pðF ¼ 0Þ ¼ 0 and Ωm0 ¼ 1, we recover
the standard value δc ¼ 1.68647, as expected. For F ¼ 1=3
and Ωm0 ¼ 1, our results yield a constant δc ¼ 1.70605 for
any zc, which agrees with the result given in Ref. [14]
for zc ¼ 0.
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B. The constant-infinity method and its mending

As mentioned before, the full solution of Eq. (11) should
be infinite at the collapse. However, since this equation can
be solved only numerically, it is necessary to establish the
infinite as a very large number for a given collapse redshift
zc. As we see below, this numerical infinity depends both
on the collapse redshift zc and on Ωm0.
Here, we consider an initial value for the redshift

zi ¼ 1000, where the Universe is completely dominated
by nonrelativistic matter (Ωm ¼ 1). We then have to deal
with the linear version of Eq. (11) when the background
behaves like an EdS universe:

d2δ
dy2

þ 1

2

dδ
dy

¼ 3

2
ð1þ FÞδm; ð18Þ

whose linear growing solution is given by

δlðyÞ ¼ Ceyð1þpÞ; ð19Þ

where C is again a constant which clearly depends on the
collapse redshift. The initial conditions are then given by

δi ¼ Ceyið1þpÞ; δ0i ¼ ð1þ pÞδi: ð20Þ

The constant C is obtained requiring the collapse occurs at
y ¼ yc, i.e., δðycÞ → ∞. To fix the numerical value of
infinity, we use the known values of δc for an EdS universe:

δc ¼

8>><
>>:

3

5

�
3π

2

�
2=3

; for F ¼ 0

1.70605; for F ¼ 1=3;

ð21Þ

where the latter value was obtained in the previous section.
The constant C is then given by

CðycÞ ¼

8>><
>>:

3

5

�
3π

2

�
2=3

e−yc ; for F ¼ 0

1.70605e−ycð1þpÞ; for F ¼ 1=3.

ð22Þ

Evolving Eq. (11) with the initial conditions (20)
and (22), the numerical infinity’ is defined by

InfðycÞ≡ δmðΩm0 ¼ 1; ycÞ; ð23Þ

which clearly depends on zc. Some papers [20,21] do not
take this dependence into account and assume a constant
value ~Inf ≡ Infðyc ¼ 0Þ ¼ 105 or 108. While both ~Inf and
Inf have roughly the same order of magnitude (∼105) at
zc ¼ 0, InfðzcÞ decreases monotonically with zc and can be
as low as 104 at z ∼ 3 (for both F ¼ 0 and F ¼ 1=3). Later
on (see Figs. 2, 3, and 6), we point out the numerical
differences in the final outcome from this approximation.

Once the so-called infinity InfðycÞ is established, we
then use Eq. (11) for different values of collapse redshifts zc
and for different values of Ωm0 in order to calculate the
constants Cj ≡ Cðyc;Ωm0Þ that satisfy the condition for the
collapse δmðΩm0; ycÞ ¼ InfðycÞ. The corresponding value
of δc is given by Eq. (A11). If F ¼ 0, we get

δcðΩm0; ycÞ ¼ Cjeyc2F1

�
1

3
; 1;

11

6
;−

ð1 − Ωm0Þ
Ωm0

e3yc
�
:

ð24Þ

If F ¼ 1=3, we get

δcðΩm0; ycÞ ¼ Cje
1
4
ð−1þ ffiffiffiffi

33
p Þyc

2F1

�
7þ ffiffiffiffiffi

33
p

12
;
−1þ ffiffiffiffiffi

33
p

12
;

6þ ffiffiffiffiffi
33

p

6
;−

ð1 −Ωm0Þ
Ωm0

e3yc
�
: ð25Þ

IV. COMPARING THE RESULTS FROM
DIFFERENT APPROACHES

In this section we plot the relative errors between our
method and the previously mentioned ones, for both values
F ¼ 0 and F ¼ 1=3, when one calculates the critical
density δc (as a function of the collapse redshift), the
comoving number density of halos per logarithmic mass
interval nlnM [see Eq. (27) for the definition], and the
number of clusters at a given redshift in mass binsNbin, as a
function of either the redshift or the mass interval.
If the value of zc is fixed, our method describes the

evolution of δc in terms of Ωm0 (Fig. 1, left panel). On the
other hand, when we fix the value of Ωm0, the method
describes the evolution of δc as function of redshift zc
(Fig. 1, right panel).
In the following figures we compare the results of our

method with the differential-radius equation and with the
method where the numerical infinity assumes large con-
stant values (we pick ~Inf ¼ 105 and 108 for the sake of
comparison with previous results in the literature [20,21])
for both values F ¼ 0 and F ¼ 1=3. We define the ratio
between other method and our as

Δi ≡ δic
δpwc

; ð26Þ

where the superscript i stands for the different methods in
the literature, specified in the figures, and pw stands for the
approach introduced in the present work. For the figures,
we always assume Ωm0 ¼ 0.3.
In Fig. 2 we show 1 − Δi as a function of the collapse

redshift zc. Note that the differential-radius method and
ours are equivalent. On the other hand, the relative
differences between our method (or the differential-
radius method) and the constant-infinity one increase (in
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magnitude) with the collapse redshift because the critical
density contrast calculated with our method stabilizes at the
EdS value for large zc (as it is supposed to), while it grows
unbounded in the latter approaches.
Next, we calculate and compare the mass function using

the results for δc obtained by our method and by the method
where the infinite is fixed (we pick 105 and 108 again). We
use the Sheth-Tormen mass function [22], which analyti-
cally determines the distribution of these objects as a
function of their virial masses and redshifts. The virial
mass M is defined such that the average density inside the
virial radius rv is Δv times the critical density. We should
mention that in order to relate SC to virialized halos, the
virial theorem has to be modified in fðRÞ theories. See, for
instance, Ref. [4] for more on this topic. In this formalism,
the comoving number density of halos per logarithmic
interval (in the virial mass M) is

nlnM ¼ dn
d lnM

ðM; zÞ ¼ ρm0

M
fðνÞ dν

d lnM
; ð27Þ

where ρm0 is the present matter density of the Universe, the
peak threshold ν ¼ δcðzÞ=σðM; zÞ,

fðνÞ ¼ A

ffiffiffiffiffiffiffiffiffi
2

π
aν

r
½1þ ðaν2Þ−q� exp½−aν2=2Þ�; ð28Þ

and σ is the variance of the linear contrast density field in
spheres of a comoving radius r containing the mass M.
Also, A is a normalization constant such that

R
fðνÞdν ¼ 1.

Here, we use the following approximation [23] for σ:

σðM; zÞ ¼ σ80DðzÞ
�
M
M8

�
−γðMÞ=3

; ð29Þ

where

γðMÞ ¼ ð0.3Γþ 0.2Þ
�
2.92þ 1

3
log

�
M
M8

��
; ð30Þ

and shape parameter Γ is given by [23]

FIG. 2. Relative errors for δc (see text for definition) between our method and (a) the differential-radius one (dotted black line), the
constant-infinity one, with (b) ~Inf ¼ 105 (dashed red line) and (c) ~Inf ¼ 108 (solid blue line) for F ¼ 0 (left panel) and F ¼ 1=3 (right
panel). For all models, we assumed Ωm0 ¼ 0.3.

FIG. 1. (a, left panel) Critical density contrast δc as a function of Ωm0 for F ¼ 0 (solid blue line) and F ¼ 1=3 (dotted red line) when
the collapse occurs at redshift zc ¼ 0, following our approach. (b, right panel) Critical density contrast δc as function of redshift collapse
zc for F ¼ 0 (solid blue line) and F ¼ 1=3 (dotted red line) with Ωm0 ¼ 0.3, following our approach.
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Γ ¼ Ωm0h exp

�
−Ωb −

Ωb

Ωm0

�
: ð31Þ

Above,M8 ¼ 5.95 × 1014 Ωm0h−1 M⊙ is the mass inside a
sphere of radius 8h−1 Mpc, h is the current Hubble constant
in units of 100 km s−1 Mpc−1, Ωb ¼ 0.02230=h2 is the

baryonic density parameter, and DðzÞ is the growing
solution of Eq. (A1) normalized in z ¼ 0. We assume that
σ80 ¼ 0.8159 [24], q ¼ 0.3, and a ¼ 0.707 [22]. We have
checked that if, instead of the fit given by Eq. (29)—that is
numerically simpler to deal with—we had used a more
accurate approach, our results would not change
significantly.

FIG. 3. Relative errors for nlnM (see text for definition) between our method and the constant-infinity one, with (a) ~Inf ¼ 108 (solid
blue line) and (b) ~Inf ¼ 105 (dashed red line) for redshift z ¼ 0 in the cases F ¼ 0 (left panel) and F ¼ 1=3 (right panel). For all models,
we assumed Ωm0 ¼ 0.3 and h ¼ 0.6774.

FIG. 4. Relative errors for nlnM (see text for definition) between our method and the constant-infinity one, with (a) ~Inf ¼ 108 (solid
blue line) and (b) ~Inf ¼ 105 (dashed red line) as a function of redshift for F ¼ 0, F ¼ 1=3 and virial mass of 1013h−1 M⊙ (upper panels).
The same plots, are shown for 1015h−1 M⊙ (lower panels). For all models, we assumed Ωm0 ¼ 0.3 and h ¼ 0.6774.
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In Fig. 3, we show the relative error

1 − Δi
n ≡ ½npwlnM − nilnM�=npwlnM ð32Þ

for z ¼ 0 between our method and the others when
Ωm0 ¼ 0.3 for both values F ¼ 0 and F ¼ 1=3.
In Fig. 4 we show relative errors as a function of the

redshift when the virial mass takes the value 1013h−1 M⊙
(upper panels) and 1015h−1 M⊙ (lower panels). From these
figures, it is clear that the relative errors are more significant
for larger virial masses and higher redshift.
The observed quantity, however, is the number of

clusters at a given redshift and in a given mass bin. It is
defined as

Nbin ≡
Z
4π
dΩ

Z
Msup

Minf

dnlnM
dV

dV
dzdΩ

dM; ð33Þ

where dV is the comoving volume at redshift z, dV
dzdΩ ¼ r2

HðzÞ,
and the comoving distance rðzÞ is given by

rðzÞ ¼
Z

z

0

H−1ðz0Þdz0: ð34Þ

Figure 5, obtained with our method, shows Nbin for F ¼ 0

and virial masses in the ranges 1013–1014 h−1M⊙ (left
panel) and 1014–1015 h−1 M⊙ (right panel). Similar results
are obtained by using F ¼ 1=3. Note that for higher-mass
bins, the peak in the Nbin is lower and located at a smaller z.
From this piece of information and from our results
above—both Δi and Δi

n increase with z—we expect the
bin 1013–1014 h−1M⊙ to be the most sensitive one to the
small differences in δc and nlnM we have been pointing out.
We then define one last relative error, namely,

1 − Δi
Nbin

≡ ½Npw
bin − Ni

bin�=Npw
bin; ð35Þ

and plot it, for virial masses between 1013 and
1014 h−1M⊙, in Fig. 6 for F ¼ 0 (left panel) and F ¼
1=3 (right panel). Notice that, in the redshift range of
interest, it is at most of the order of 0.01.

FIG. 5. Nbin (see text for definition) as a function of redshift for F ¼ 0 and virial masses between 1013 and 1014h−1 M⊙ (left panel)
and 1014 and 1015h−1 M⊙ (right panel). As always, we assumed Ωm0 ¼ 0.3 and h ¼ 0.6774.

FIG. 6. Relative errors for Nbin (see text for definition) between our method and the constant-infinity one, with (a) ~Inf ¼ 105 (dashed
red line) and (b) ~Inf ¼ 108 (solid blue line) as a function of redshift for virial masses between 1013 and 1014h−1 M⊙ and F ¼ 0 (left
panel) and F ¼ 1=3 (right panel). For all models, we assumed Ωm0 ¼ 0.3 and h ¼ 0.6774.
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V. CONCLUSIONS

In summary, we have shown that our approachmatches the
results from the differential-radius method and pointed out
that the so-called constant-infinity method does need correc-
tions in the calculation of a key quantity, namely, the critical
density δc. We have also derived an analytical expression for
the critical density δc as a function of Ωm0, zc, and F.
In spite of being more rigorous and more accurate than

the constant-infinity method used in the literature, we
should mention that, for the current stage of the observa-
tions, the procedure presented here does not yield observ-
able differences in the cluster number countNbin. The small
discrepancies pointed out (less than 1%) may be of use in
the future, when more precise data become available.
We remark that our results are based on the validity of the

SC approximation and of the Sheth and Tormen prescrip-
tion. It would be interesting to compare the differences we
found, due to distinct ways of calculating δc, using a
semianalytic approach, with those from N-body simula-
tions. Besides, as shown in Ref. [25], departures from
spherical symmetry affect chameleon screening and a
detailed comparison of semianalytical methods and simu-
lations are required to determine the correct functional form
of the mass function. This is an important task to have in
mind in the upcoming large-scale surveys.
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APPENDIX: SOLUTION OF THE DIFFERENTIAL
EQUATION FOR THE DENSITY CONTRAST IN

THE LINEAR REGIME

Consider the linear equation for the perturbations

δ̈þ 2H _δ −
3

2
ð1þ FÞΩmðtÞH2ðtÞδ ¼ 0; ðA1Þ

where · ≡ d=dt. Considering the change of variable
t → aðtÞ and using the equation for the background in
the standard ΛCDM scenarium (neglecting radiation),
namely,

H2 ¼ H2
0ðΩm0a−3 þ ð1 − Ωm0ÞÞ; ðA2Þ

then Eq. (A1) is written as

a2δ00 þ
�
3 −

3=2Ωm0

Ωm0 þ ð1 −Ωm0a3Þ
�
aδ0

−
3

2
ð1þ FÞΩmðaÞδ ¼ 0; ðA3Þ

where 0 ≡ d=da. In an EdS universe, the above expression
becomes

a2δ00 þ
�
3

2

�
aδ0 −

3

2
ð1þ FÞδ ¼ 0: ðA4Þ

Suppose a solution to (A4) of the form

δ ¼ Ca1þp; ðA5Þ
where C is a constant. Replacing this solution in Eq. (A4)
yields

apþ1

�
pð1þ pÞ þ 3

2
ð1þ pÞ − 3

2
ð1þ FÞ

�
¼ 0; ðA6Þ

whose nontrivial solution is given by

p ¼ −
5

4
� 5

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24

25
F

r
: ðA7Þ

Now consider a solution to Eq. (A3) of the form

δm ∝ a1þpGðaÞ: ðA8Þ
Substituting this solution in Eq. (A3), we get

a2G00 þ
�
5þ 2p −

3

2
ΩmðaÞ

�
aG0

þ ð1þ pÞ
�
ðpþ 3Þ − 3

2
ΩmðaÞ

�
1þ 1þ F

1þ p

��
G ¼ 0:

ðA9Þ
Making the change of variable

uðaÞ≡ −
ð1 − Ωm0Þ

Ωm0

a3; ðA10Þ

one can recognize Eq. (A9) as an hypergeometric differ-
ential equation. Thus, the growing solution of Eq. (A3) is

δm ∝ a1þp
2F1ðϵ; b; c; uÞ; ðA11Þ

where 2F1ðϵ; b; c; uÞ is the hypergeometric function, and

ϵ≡ ϵðpÞ≡ 1

3
½ð2þ pÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ pÞ2 − ðpþ 3Þðpþ 1Þ

q
�;

b≡ bðpÞ≡ ðpþ 3Þð1þ pÞ
3½ð2þ pÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ pÞ2 − ðpþ 3Þðpþ 1Þ

p
� ;

c≡ cðpÞ≡ 1

3

�
7þ 2p −

3

2

�
: ðA12Þ

For F ¼ 0, one obtains the solution [26]

δm ∝ a2F1

�
1;
1

3
;
11

6
;−

ð1 −Ωm0Þ
Ωm0

a3
�
; ðA13Þ

and for F ¼ 1=3, we get

δm ∝ að−1þ
ffiffiffiffi
33

p Þ=4

× 2F1

�
7þ ffiffiffiffiffi

33
p

12
;

ffiffiffiffiffi
33

p
− 1

12
;
6þ ffiffiffiffiffi

33
p

6
;−

ð1−Ωm0Þ
Ωm0

a3
�
:

ðA14Þ
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