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We perform three-dimensional numerical relativity simulations of homogeneous and inhomogeneous
expanding spacetimes, with a view toward quantifying nonlinear effects from cosmological inhomoge-
neities. We demonstrate fourth-order convergence with errors less than one part in 106 in evolving a flat,
dust Friedmann-Lemaître-Roberston-Walker spacetime using the Einstein Toolkit within the Cactus
framework. We also demonstrate agreement to within one part in 103 between the numerical relativity
solution and the linear solution for density, velocity and metric perturbations in the Hubble flow over a
factor of ∼350 change in scale factor (redshift). We simulate the growth of linear perturbations into the
nonlinear regime, where effects such as gravitational slip and tensor perturbations appear. We therefore
show that numerical relativity is a viable tool for investigating nonlinear effects in cosmology.
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I. INTRODUCTION

Modern cosmology relies on the cosmological principle—
that the Universe is sufficiently homogeneous and isotropic
on large scales to be described by a Friedmann-Lemaître-
Robertson-Walker (FLRW) model. Cosmological N-body
simulations, e.g. Refs. [1–3], encode these assumptions by
prescribing the expansion to be that of the FLRW model,
governed by the Friedmann equations, while employing a
Newtonian approximation for gravity.
The transition to cosmic homogeneity begins on scales

∼80h−1 Mpc, e.g. Refs. [4,5], but is inhomogeneous and
anisotropic on smaller scales. Upcoming cosmological
surveys utilizing Euclid, the Square Kilometre Array and
the Large Synoptic Survey Telescope [6–8] will reach a
precision at which nonlinear general relativistic effects
from these inhomogeneities could be important. A more
extreme hypothesis [9–20] is that such inhomogeneities
may provide an alternative explanation for the accelerating
expansion of the Universe, via backreaction (see
Refs. [21,22] for a review), replacing the role assigned
to dark energy in the standard ΛCDM model [23–26].
Quantifying the general relativistic effects associated

with nonlinear structures ultimately requires solving
Einstein’s equations. Post-Newtonian approximations are
a worthwhile approach [27–36]; however, the validity of
these must be checked against a more precise solution since
the density perturbations themselves are highly nonlinear.
An alternative approach is to use numerical relativity,

which has enjoyed tremendous success over the past
decade [37–39]. Cosmological modeling with numerical
relativity began with evolutions of planar and spherically
symmetric spacetimes using the Arnowitt-Deser-Misner
(ADM) formalism [40], including Kasner and matter-filled

spacetimes [41], the propagation and collision of gravita-
tional wave perturbations [42,43] and linearized perturba-
tions to a homogeneous spacetime [44,45]. More recent
work has continued to include symmetries to simplify the
numerical calculations, e.g. Refs. [46,47].
Simulations free of these symmetries have only emerged

within the last year. Giblin et al. [48] studied the evolution
of small perturbations to an FLRW spacetime, exploring
observational implications in Ref. [49]. Bentivegna and
Bruni [50] showed differential expansion in an inhomo-
geneous universe and quantified the backreaction param-
eter from Ref. [51] for a single mode perturbation. These
works all indicate that the effects of nonlinear inhomoge-
neities may be significant.
In this work, we perform a feasibility study of numerical

solutions to the full Einstein equations for inhomogeneous
cosmologies by simulating the growth of structure in a
model three-dimensional universe and comparing to known
analytic solutions. Our approach is similar to Refs. [48–50],
with differences in the generation of initial conditions and
numerical methods. We use the freely available Einstein
Toolkit, based on the Cactus infrastructure [52,53]. We
benchmark our three-dimensional numerical implementa-
tion on two analytic solutions of Einstein’s equations
relevant to cosmology: FLRW spacetime and the growth
of linear perturbations. We also present the growth of
perturbations in the nonlinear regime and analyze the
resulting gravitational slip [54,55] and tensor perturbations.
In Sec. II, we describe our numerical methods, including

gauge choices (Sec. II A) and an overview of the deriva-
tions of the linearly perturbed Einstein equations used for
our initial conditions (Sec. II B). In Sec. III, we describe the
setup (Sec. III A) and results (Sec. III B) of our evolutions
of a flat, dust FLRW universe. The derivation of initial
conditions for linear perturbations to the FLRW model are
described in Sec. IVA, with results presented in Sec. IV B.*hayley.macpherson@monash.edu
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The growth of the perturbations to the nonlinear amplitude
is presented in Sec. V, with analysis of results and higher-
order effects in Secs. VA and V B, respectively. We adopt
geometric units with G ¼ c ¼ 1; greek indices run from 0
to 3, while Latin indices run from 1 to 3, with repeated
indices implying summation.

II. NUMERICAL METHOD

We integrate Einstein’s equations with the Einstein
Toolkit, a free, open-source code for numerical relativity
[52]. This utilizes the Cactus infrastructure, consisting
of a central core, or “flesh,” with application modules
called “thorns” that communicate with this flesh [56]. The
Einstein Toolkit is a collection of thorns for computational
relativity, used extensively for simulations of binary neu-
tron star and black hole mergers (e.g. Refs. [57–59]).
Numerical cosmology with the Einstein Toolkit is a
new field [50]. We use the McLachlan code [60] to
evolve spacetime using the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formalism [61,62] and the GRHydro
code to evolve the hydrodynamical system [59,63,64], a
new setup for cosmology with the Einstein Toolkit.
We use the fourth-order Runge-Kutta method, adopt the

Marquina Riemann solver and use the piecewise parabolic
method for reconstruction on cell interfaces. GRHydro is
globally second order in space due to the coupling of
hydrodynamics to the spacetime [64,65]. We therefore
expect fourth-order convergence of our numerical solutions
for the spatially homogeneous FLRW model. Once per-
turbations are introduced into this model, we expect our
solutions to be second-order accurate.
We have developed a new thorn, FLRWSolver, to

initialize an FLRW cosmological setup with optional linear
perturbations. We evolve our simulations in a cubic domain
on a uniform grid with periodic boundary conditions with
xi in ½−240; 240�. Our domain sizes are 203, 403 and 803,
respectively, using 70 (8 cores), 380 (8 cores) and 790 (16
cores) CPU hours.

A. Gauge

The gauge choice corresponds to a choice of the lapse
function, α, and shift vector, βi. The metric written in the
(3þ 1) formalism is

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ
where γij is the spatial metric. Previous cosmological
simulations with numerical relativity adopt the synchro-
nous gauge, corresponding to α ¼ 1; βi ¼ 0 [48,50]. We
instead utilize the general spacetime foliation of Ref. [66],

∂tα ¼ −α2fðαÞK; ð2Þ
where fðαÞ > 0 is an arbitrary function and K ¼ γijKij.
We set the shift vector βi ¼ 0. Harmonic slicing uses

f ¼ const, while f ¼ 1=α corresponds to the “1þ log”
slicing common in black hole binary simulations. We
choose harmonic slicing with f ¼ 0.25 to maintain the
stability of our evolutions, as in Ref. [47]. Harmonic slicing
also allows for longer evolutions for the same computa-
tional time, compared to 1þ log slicing, due to the
increased rate of change of the lapse. We adopt this gauge
for numerical convenience and acknowledge possible
alternative methods include using synchronous gauge with
adaptive time stepping. We use (2) for evolution only. We
scale to the gauge described in the next section for analysis.

B. Perturbative initial conditions

Bardeen’s formalism of cosmological perturbations [67]
was developed with the intention of connecting metric
perturbations to physical perturbations in the Universe.
This connection is made clear by defining the perturbations
as gauge-invariant quantities in the longitudinal gauge. The
general line element of a perturbed, flat FLRW universe,
including scalar (Φ, Ψ), vector (Bi) and tensor (hij)
perturbations takes the form

ds2 ¼ a2ðηÞ½−ð1þ 2ΨÞdη2 − 2Bidxidη

þ ð1 − 2ΦÞδijdxidxj þ hijdxidxj�; ð3Þ

where η is conformal time, aðηÞ is the FLRW scale factor
and δij is the identity matrix. We derive initial conditions
from the linearly perturbed Einstein equations, implying
negligible vector and tensor perturbations [31]. This is valid
as long as our simulations begin at sufficiently high enough
redshift that the Universe may be approximated by an
FLRW model with small perturbations. Considering only
scalar perturbations, the metric becomes

ds2 ¼ a2ðηÞ½−ð1þ 2ΨÞdη2 þ ð1 − 2ΦÞδijdxidxj�; ð4Þ

where Φ and Ψ are Bardeen’s gauge-invariant scalar
potentials [67]. Here, we see that Ψ, the Newtonian
potential, will largely influence the motion of nonrelativ-
istic particles, where the time-time component of the metric
dominates the motion. The Newtonian potential plays the
dominant role in galaxy clustering. Relativistic particles
will also be affected by the curvature potential Φ, and so
both potentials influence effects such as gravitational
lensing [67,68].
The metric perturbations are coupled to perturbations in

the matter distribution via the stress-energy tensor. We
approximate the homogeneous and isotropic background as
a perfect fluid in thermodynamic equilibrium, giving

Tμν ¼ ðρþ PÞuμuν þ Pgμν; ð5Þ

where ρ is the total energy density, P is the pressure and uμ

is the 4-velocity of the fluid.
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We assume a dust universe, implying negligible pressure
(P ≪ ρ), and we solve the perturbed Einstein equations,

δGμν ¼ 8πδTμν; ð6Þ

using linear perturbation theory. From the time-time, time-
space, trace and trace free components of (6), we obtain the
following system of equations [31,69]:

∇2Φ − 3Hð _ΦþHΨÞ ¼ 4πρ̄δa2; ð7aÞ

H∂iΨþ ∂i
_Φ ¼ −4πρ̄a2δijδvj; ð7bÞ

Φ̈þHð _Ψþ 2 _ΦÞ ¼ 1

2
∇2ðΦ −ΨÞ; ð7cÞ

∂hi∂jiðΦ −ΨÞ ¼ 0: ð7dÞ

Here, H ≡ _a=a is the Hubble parameter, ∂i ≡ ∂=∂xi,
∇2 ¼ ∂i∂i, ∂hi∂ji ≡ ∂i∂j − 1=3δij∇2, and a dot represents
a derivative with respect to conformal time η. The quantity
jΦ −Ψj is known as the gravitational slip [54,55,68], which
is zero in the linear regime and in the absence of anisotropic
stress. At higher orders in perturbation theory, the gravi-
tational slip is nonzero, and Φ ≠ Ψ; see e.g. Ref. [70].
We perturb the density and coordinate 3-velocity by

making the substitutions

ρ ¼ ρ̄ð1þ δÞ; ð8aÞ

vi ¼ δvi; ð8bÞ

where ρ̄ represents the background FLRW density and
v̄i ¼ 0. We derive the relativistic fluid equations from the
components of the energy-momentum conservation law,

∇αTμ
α ¼ 0; ð9Þ

where ∇α is the covariant derivative associated with the 4-
metric. The resulting continuity and Euler equations are

_δ ¼ 3 _Φ − ∂ivi; ð10aÞ

Hvi þ _vi ¼ −∂iΨ: ð10bÞ

III. FLRW SPACETIME

We test our thorn FLRWSolver together with the
Einstein toolkit on two analytic solutions to Einstein’s
equations relevant to cosmology. Our first and simplest test
is the flat, dust FLRW model. Here, we initialize a
homogeneous and isotropic matter distribution and spatial
metric and evolve in the harmonic gauge, as outlined in
Sec. II A. While the Einstein Toolkit has been previously
tested on FLRWand Kasner cosmologies [52,71], this is an

important first test of FLRWSolver and its interaction
with the evolution thorns.

A. Setup

The line element for a spatially homogeneous and
isotropic FLRW spacetime is given by

ds2 ¼ a2ðηÞ
�
−dη2 þ 1

ð1þ kr2=4Þ2 δijdx
idxj

�
; ð11Þ

where k ¼ −1, 0, 1 if the universe is open, flat or
closed, respectively. Assuming homogeneity and isotropy,
Einstein’s equations reduce to the Friedmann equations
[72,73],

�
_a
a

�
2

¼ 8πρa2

3
− k; ð12aÞ

_ρ ¼ −3
_a
a
ðρþ PÞ: ð12bÞ

In the remainder of the paper, we assume a flat spatial
geometry, supported by combined Planck and baryon
acoustic oscillation data [74]. The flat (k ¼ 0), dust
(P ≪ ρ) solution to (12) is

a
ainit

¼ ξ2;
ρ

ρinit
¼ ξ−6; ð13Þ

where ainit; ρinit are the values of a, ρ at η ¼ 0, respectively,
and we have introduced the scaled conformal time coor-
dinate

ξ≡ 1þ
ffiffiffiffiffiffiffiffiffiffi
2πρ�

3ainit

s
η; ð14Þ

where ρ� ¼ ρa3 is the conserved (constant) comoving
density for an FLRW universe. The familiar τ2=3

solution for the scale factor arises for a flat spacetime in
the Newtonian gauge with ds2 ¼ −dτ2 þ γijdxidxj (see
Appendix).
We initialize a homogeneous and isotropic matter dis-

tribution by specifying constant density ρinit ¼ 10−8 and
zero velocity in FLRWSolver, with ainit ¼ 1. The Einstein
Toolkit then initializes the stress-energy tensor, coupled to
our homogeneous and isotropic spacetime, characterized
by the spatial metric, γij ¼ a2ðηÞδij, and extrinsic curva-
ture, also set in FLRWSolver. We define the extrinsic
curvature via the relation

d
dt

γij ¼ −2αKij; ð15Þ

where d=dt ¼ ∂=∂t − Lβ and Lβ is the Lie derivative with
respect to the shift vector. Since we choose βi ¼ 0, we have
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d=dt ¼ ∂=∂t. The extrinsic curvature for our FLRW setup
is therefore

Kij ¼ −
_aa
α
δij: ð16Þ

We evolve the simulation in the harmonic gauge until the
domain volume has increased by one million, correspond-
ing to a change in redshift of ∼100.
To analyze our results, we scale the time from the metric

(1) to the longitudinal gauge (4) using the coordinate
transform t ¼ tðηÞ. This gives

dt
dη

¼ aðηÞ
αðtÞ ; ð17Þ

which we integrate to find the scaled conformal time in
terms of t to be

ξðtÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

6πρinit
p Z

αðtÞdtþ 1

�
1=3

; ð18Þ

where we numerically integrate the lapse function α using
the trapezoidal rule. This coordinate transformation allows
us to simulate longer evolutions using less computational
time, while still performing our analysis in the longitudinal
gauge to extract physically meaningful results.

B. Results

Figure 1 compares our numerical relativity solutions
with the exact solutions to the Friedmann equations. The
top panels show the time evolution of a and ρ (dashed
magenta curves) relative to their initial values, which may
be compared to the exact solutions, aFLRW and ρFLRW

(black solid curves). The bottom panels show the residuals
in our numerical solutions at resolutions of 203, 403 and
803. The error can be seen to decrease when the spatial
resolution is increased. The increase in spatial resolution
causes the time step to decrease via the Courant condition.
To quantify this, we compute the L1 error, given by (e.g. for
the scale factor)

L1ðaÞ ¼
1

n

Xn
i¼1

���� a
aFLRW

− 1

����; ð19Þ

where n is the total number of time steps. As outlined in
Sec. II, we expect fourth-order convergence due to the
spatial homogeneity. Figure 2 demonstrates this is true for
the scale factor (left), density (middle) and the Hamiltonian
constraint (right),

H ≡ ð3ÞR − KijKij þ K2 − 16πρ ¼ 0; ð20Þ

where ð3ÞR is the 3-Riemann scalar and K ¼ γijKij. For
the FLRW model, this reduces to the first Friedmann
equation (12a).
The results of this test demonstrate that the Einstein

Toolkit, in conjunction with our initial-condition thorn
FLRWSolver, produces agreement with the exact solution
for a flat, dust FLRW spacetime, with relative errors less
than 10−6, even at low spatial resolution (803).

IV. LINEAR PERTURBATIONS

For our second test, we introduce small perturbations to
the FLRW model. The evolution of these perturbations in
the linear regime can be found by solving the system of

FIG. 1. Comparison between our numerical simulations (magenta) and the exact solutions (black) for a dust FLRW universe. Top:
evolution of the scale factor, a (left), and the density, ρ (right), relative to their initial values ainit and ρinit, as a function of conformal time
η. Bottom: errors in the FLRW scale factor (left) and density (right) at domain sizes 203; 403 and 803.
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equations (7). We use these solutions (derived below) to set
the initial conditions.

A. Setup

In the absence of anisotropic stress, we have Ψ ¼ Φ.
Equation (7c) then becomes purely a function of Φ and the
FLRW scale factor a. Solving this gives

Φ ¼ fðxiÞ − gðxiÞ
5ξ5

; ð21Þ

where f, g are functions of only the spatial coordinates. We
substitute (21) into the Hamiltonian constraint, Eq. (7a), to
give the fractional density perturbation δ≡ δρ=ρ̄, in the
form

δ ¼ C1ξ
2∇2fðxiÞ − 2fðxiÞ

− C2ξ
−3∇2gðxiÞ − 3

5
ξ−5gðxiÞ; ð22Þ

where we have defined

C1 ≡ ainit
4πρ�

; C2 ≡ ainit
20πρ�

: ð23Þ

Using the momentum constraint, Eq. (7b), the velocity
perturbation δvi is therefore

δvi ¼ C3ξ∂ifðxiÞ þ 3

10
C3ξ

−4∂igðxiÞ; ð24Þ

where we have

C3 ≡ −
ffiffiffiffiffiffiffiffiffiffi
ainit
6πρ�

r
: ð25Þ

Equation (22) demonstrates both a growing and decaying
mode for the density perturbation [67,75]. We set gðxiÞ ¼ 0
to extract only the growing mode, giving

Φ ¼ fðxiÞ; ð26aÞ

δ ¼ C1ξ
2∇2fðxiÞ − 2fðxiÞ; ð26bÞ

δvi ¼ C3ξ∂ifðxiÞ; ð26cÞ

from which we set our initial conditions. We choose

Φ ¼ Φ0

X3
i¼1

sin

�
2πxi

L

�
; ð27Þ

where L is the length of one side of our computational
domain. We require the amplitude Φ0 ≪ 1 so that our
assumptions of linearity are valid, and so we setΦ0 ¼ 10−8.
This choice then sets the form of our density and velocity
perturbations, as per (26b) and (26c). At η ¼ 0 (ξ ¼ 1),
these are

δ ¼
��

2π

L

�
2

C1 − 2

�
Φ0

X3
i¼1

sin

�
2πxi

L

�
; ð28Þ

δvi ¼ 2π

L
C3Φ0

X3
i¼1

cos

�
2πxi

L

�
; ð29Þ

and the choice of Φ0 results in amplitudes of δ ∼ 10−5

and δvi ∼ 10−7. We set these matter perturbations in
FLRWSolver, implementing negligible pressure with a
polytropic equation of state P ¼ ~Kρ2 with ~K ¼ 1 and again
using (15) to define the extrinsic curvature. For a linearly
perturbed FLRW spacetime with Ψ ¼ Φ and _Φ ¼ 0, we
have

Kij ¼ −
_aa
α
ð1 − 2ΦÞδij: ð30Þ

We evolve these perturbations in the harmonic gauge until
the volume of the domain has increased by 125 million,

FIG. 2. Fourth-order convergence in the FLRW calculations, showing the L1 error as a function of resolution for the scale factor (left),
density (middle) and Hamiltonian constraint (right). N refers to the number of grid points along one spatial dimension. Filled circles
indicate data points from our simulations, dashed lines join these points, and black solid lines indicate the expected N−4 convergence.
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ðΔaÞ3 ∼ 1.25 × 108, corresponding to a factor of 500
change in redshift.

B. Results

Dashed magenta curves in Fig. 3 show the conformal
time evolution of the fractional density perturbation, δ≡
δρ=ρ̄ (top left), and the velocity perturbation, δv (top right).
Solid black curves show the solutions (26b) for δexact and
(26c) for δvexact. Bottom panels show the relative errors for
three different resolutions. Figure 4 shows the L1 error as a
function of resolution, demonstrating the expected second-
order convergence. Figure 5 shows the Hamiltonian (top)

and momentum (bottom) constraints as a function of
conformal time at our three chosen resolutions. The
Hamiltonian constraint was defined in Eq. (20). For our
linearly perturbed FLRW spacetime, this reduces to
Eq. (7a). The momentum constraint is

Mi ≡DjKj
i −DiK − Si ¼ 0; ð31Þ

where Dj is the covariant derivative associated with the
3-metric and the matter source Si ¼ −γiαnβTαβ, with nβ the
normal vector [62]. For linear perturbations, this constraint
reduces to Eq. (7b). Figure 5 shows a better preservation of

FIG. 3. Comparison between our numerical relativity solutions and exact solutions for the linear perturbations to a dust FLRWmodel.
We show the conformal time (η) evolution of the fractional density perturbation (top left) and the velocity perturbation (top right)
computed from one-dimensional slices along the x axis of our domain. Bottom: relative errors for calculations at 203, 403 and 803.

0

FIG. 4. Second-order convergence of our numerical solutions to the exact solutions for a linearly perturbed FLRW spacetime, showing
L1 errors in the density (left) and velocity perturbations (right). N refers to the number of grid points along one spatial dimension. Filled
circles indicate data points from our simulations, dashed lines join these points, and black solid lines indicate the expected N−2

convergence.
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the Hamiltonian constraint with increasing resolution. The
momentum constraint shows the opposite. We attribute this
to the momentum constraint being preserved to of order the
roundoff error, which will become larger with an increase
in resolution. Even at the highest resolution, the momentum
constraint is preserved to within 10−15.
This second test has demonstrated a match to within

∼10−3 of our numerical relativity solutions to the exact
solutions for the linear growth of perturbations, while
exhibiting the expected second-order convergence.

V. NONLINEAR EVOLUTION

In order to evolve our perturbations to a nonlinear
amplitude in a reasonable computational time, we increase
the size of our initial perturbations to Φ0 ¼ 10−6, which in
turn gives δ ∼ 10−3 and δvi ∼ 10−5. The linear approxima-
tion remains valid for the initial conditions.
We choose the starting redshift to be that of the cosmic

microwave background (CMB). That is, we set z ¼ 1000,
such that our initial density perturbation is roughly con-
sistent with the amplitude of temperature fluctuations in the
CMB (∼10−5) [76]. We emphasize that this redshift, and all
redshifts shown in figures, should not be taken literally; its
purpose is to assign an approximate change in redshift,
calculated directly from the FLRW scale factor.

A. Results

Figure 6 shows a series of one-dimensional slices
through the origin of the y and z axes at four different
times. Dashed magenta curves show solutions for the
density (top row) and velocity (bottom row) perturbations,
which may be compared to the black solid curves showing
the analytic solutions for linear perturbations. At η ¼ 0 and
η ¼ 1.9 × 104 (first and second columns, respectively), the
solutions are linear, while at η ¼ 6.2 × 104 (third column),
both the density and velocity perturbations deviate from
linear theory. The perturbations are nonlinear at η ¼
1.3 × 105 (fourth column) where matter collapses toward
the overdensity, indicated by the shift in the maximum
velocity.

FIG. 5. Maximum (anywhere in the domain) of the Hamil-
tonian (top panel) and momentum (bottom panel) constraints in a
linearly perturbed FLRW spacetime. We show evolution over
conformal time η at resolutions 203, 403 and 803.

FIG. 6. Density (top row) and velocity (bottom row) perturbations as a function of position within our domain. Here, we show one-
dimensional slices of our 403 domain during the conformal time (η) evolution. All quantities are shown in code units. Dashed magenta
curves show our numerical solutions, and black solid curves show the exact solutions for the linear regime. Initial data (η ¼ 0; first
column) and η ¼ 1.9 × 104 (second column) match linear theory. We see a clear deviation from linear theory at η ¼ 6.2 × 104 (third
column) and η ¼ 1.3 × 105 (fourth column). Simulation redshifts are shown as an indicator of the change in redshift.
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The final column shows an apparent decrease in the
average density. This is an artifact of taking a one-dimen-
sional slice through a three-dimensional box. Figure 7
shows the column-density perturbation, δcol, computed by
integrating the density perturbation along the z axis. Panels
show η ¼ 0 and η ¼ 1.3 × 105, respectively. The right
panel shows an increase of ∼3000 times in the column-
density perturbation at x; y ≈ −120; 120. A corresponding
void can be seen in the lower right of Fig. 7, explaining the
underdensity along the y axis seen in the final column
of Fig. 6.
Figure 8 shows the maximum value of the density (left)

and velocity (right) perturbations as a function of time.
Dashed magenta curves show the numerical solutions,
which may be compared to the black curves showing
the linear analytic solutions. Perturbations can be seen to
deviate from the linear approximation at η ≈ 3 × 104, when
δρ=ρ̄ ≈ 0.1. At η ≈ 105, the maximum of the density and
velocity perturbations have, respectively, grown 25 and 2
times larger than the linear solutions.

B. Gravitational slip and tensor perturbations

Gravitational slip is defined as the difference between the
two potentials Φ and Ψ [54,55], which is zero in the linear

regime, see Eq. (7d), but nonzero in the nonlinear regime;
see e.g. Ref. [70]. We reconstruct Φ and Ψ from the metric
components, although we note the interpretation of these
potentials becomes unclear in the nonlinear regime. From
(3), the spatial metric is

γij ¼ a2½ð1 − 2ΦÞδij þ hij�; ð32Þ

and we adopt the traceless gauge condition δijhij ¼ 0

[30,31]. The potential Φ is then

Φ ¼ 1

2

�
1 −

δijγij
3a2

�
; ð33Þ

which holds for all times the metric (3) applies. The
potential Ψ is more complicated: our gauge choice implies
lapse evolution according to (2), where we have set
fðαÞ ¼ 1=4, and

K ¼ −3
_a
aα

; ð34Þ

in the linear regime, which gives

200

FIG. 7. Column-integrated density perturbation showing the gravitational collapse of an overdense region. The two panels correspond
to the left and right panels of Fig. 6, respectively, at conformal times of η ¼ 0 and η ¼ 1.3 × 105. All quantities are shown in code units
for our 403 simulation. Gray dashed lines indicate the position of the one-dimensional slices shown in Fig. 6.

FIG. 8. Nonlinear growth of the density (left) and velocity (right) perturbations. Dashed magenta curves show the maximum value
within the domain as a function of conformal time η (in code units), while black solid curves show the analytic solutions for linear
growth. Here, we show the simulation with domain size 403. Blue circles represent the times of the (η > 0) panels shown in Fig. 6.
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_α ¼ 3

4

_aα
a
: ð35Þ

Integrating this results in a lapse evolution of

α

αinit
¼ DðxiÞ

�
a
ainit

�
3=4

; ð36Þ

where DðxiÞ is a function of our spatial coordinates.
According to the metric (4), and with αinit ¼ ainit ¼ 1, this
implies

α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ψ

p
a3=4; ð37Þ

from which we reconstruct the potential Ψ to be

Ψ ¼ 1

2

��
α

a3=4

�
2

− 1

�
; ð38Þ

valid in the linear regime. Our gauge choice βi ¼ 0 implies
that in the nonlinear regime we expect additional modes to
be present in this reconstruction of Ψ.
We use an FLRW simulation for the scale factor a in (33)

and (38), from which we calculate the gravitational slip
jΦ −Ψj. This is potentially problematic once the pertur-
bations become nonlinear, as the gauges of the two
simulations will differ. Figure 9 shows one-dimensional
slices of the gravitational slip at the same times as were
shown in Fig. 6. Dashed curves show the numerical results,
with black lines showing the linear solution: zero gravita-
tional slip. In the fourth panel (η ¼ 1.3 × 105), we see a
positive shift of the gravitational slip to ≈4 × 10−6 for this
one-dimensional slice, with the maximum value in the
three-dimensional domain being 6.5 × 10−6 at this time.
The Newtonian potential Ψ has a positive average value at
η ¼ 1.3 × 105, due to the majority of the domain being
underdense (see Fig. 7), and the potential Φ takes a

negative average value. This can be interpreted as an
overall positive contribution to the expansion, from the
metric (3).
Relativistic corrections to one-dimensional N-body sim-

ulations in Ref. [31] resulted in a gravitational slip of
4 × 10−6. We show a gravitational slip of the same
amplitude, including the full effects of general relativity
in a three-dimensional simulation, for a time when our
density perturbation is comparable in size to that of
Ref. [31]. Gravitational slip is a measurable effect that
can be quantified by combining weak gravitational lensing
and galaxy clustering [68]. Our simulations show tentative
evidence for the importance of gravitational slip due to
nonlinear gravitational effects. However, robust predictions
require higher resolution simulations with more realistic
initial conditions.
In our initial conditions, we neglected vector and tensor

perturbations in the perturbed FLRW metric (3), since in
the linear regime the scalar perturbations dominate. These
higher-order perturbations appear in the nonlinear regime.
The tensor perturbation can be extracted from the off-
diagonal, spatial components of the metric,

γij ¼ a2hij for i ≠ j; ð39Þ

however, details of these tensor modes may be dependent
on the choice of gauge. We calculate hij using the value of
a as per the scalar perturbations.
Figure 10 shows a two-dimensional cross section of the

xy component of the tensor perturbation hij. All other
components are identical. The cross section is shown at
η ¼ 1.3 × 105, corresponding to the right panel of Figs. 6, 7
and 9. While the maximum amplitude of the tensor
perturbation is small (∼2 × 10−6), an asymmetry develops
in hxy, corresponding to the location of the overdensity in
Fig. 7. We also see a diffusion of the tensor perturbation in

FIG. 9. Time evolution of a one-dimensional slice of the gravitational slip. Dashed magenta curves show numerical solutions for a 403

domain, while black solid lines show the solution for linear perturbation theory: zero. The potentials Φ and Ψ are reconstructed
according to (33) and (38), respectively. Initial data (η ¼ 0) are shown in the left column, and time increases toward the right as indicated
by time stamps. We show the simulation redshift as an indicator of the approximate change in redshift only, and all quantities here are
shown in code units.
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the void, indicating the beginning of growth of higher-order
perturbations.

VI. DISCUSSION AND CONCLUSIONS

We have demonstrated the feasibility of inhomogeneous
cosmological simulations in full general relativity using the
Einstein Toolkit. The overall approach is similar to other
recent attempts [48,50], with the main difference being in
the construction of initial conditions which allows us to
simulate a pure growing mode, instead of a mix of growing
and decaying modes (see Ref. [77]). We also use a different
code than Ref. [48], allowing for independent verification.
As with the other studies, we were able to demonstrate the
evolution of a density perturbation into the nonlinear
regime.
As this is a preliminary study, we have focused on the

numerical accuracy and convergence, rather than a detailed
investigation of physical effects such as backreaction. Our
main conclusions are as follows:

(i) We demonstrate fourth-order convergence of the
numerical solution to the exact solution for a flat,
dust FLRW universe with errors ∼10−5 even at low
spatial resolution (403).

(ii) We demonstrate second-order convergence of the
numerical solutions for the growth of linear pertur-
bations, matching the analytic solutions for the
cosmic evolution of density, velocity and metric
perturbations to within ∼10−3.

(iii) We show that numerical relativity can successfully
be used to follow the formation of cosmological
structures into the nonlinear regime. We demonstrate
the appearance of nonzero gravitational slip and
tensor modes once perturbations are nonlinear with
amplitudes of ∼4×10−6 and ∼2×10−6, respectively.

The main limitation of our study is that we have
employed only low-resolution simulations compared to
current Newtonian N-body cosmological simulations (e.g.
Refs. [1–3]) and used only simple initial conditions rather
than a more realistic spectrum of perturbations (but see
Ref. [48]). Representing the density field on a grid means
our simulations are limited by the formation of shell-
crossing singularities. The relative computational expense
means that general relativistic simulations are unlikely to
replace the Newtonian approach in the near future.
However, they are an important check on the accuracy
of the approximations employed.
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APPENDIX: NEWTONIAN GAUGE

Throughout this paper, we work in the longitudinal
gauge. For completeness, we show here the equivalent
background and perturbation equations in the Newtonian
gauge. The flat FLRW metric is

ds2 ¼ −dτ2 þ a2ðτÞdxidxjδij; ðA1Þ

which gives the Friedmann equations for a dust (P ≪ ρ)
universe to be

�
a0

a

�
2

¼ 8πρ

3
; ðA2aÞ

ρ0¼ −3
a0

a
ρ; ðA2bÞ

where a dash represents d=dτ. Solutions to these give the
familiar time dependence of the scale factor,

200

FIG. 10. Two-dimensional slice of the xy component of the
tensor perturbation hij at η ¼ 1.3 × 105. We use (39) to calculate
hxy using the off-diagonal metric component gxy. All quantities
are shown in code units for our 403 simulation.
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a
ainit

¼ s2=3;
ρ

ρinit
¼ s−2; ðA3Þ

where

s≡ 1þ
ffiffiffiffiffiffiffiffiffiffi
6πρ�

p
τ: ðA4Þ

We match our numerical evolution to this alternative set of
solutions by instead making the coordinate transform
t ¼ tðτÞ. With this, we see the expected fourth-order
convergence and maximum errors in the scale factor and
density of ∼10−7 for our highest resolution (803) simu-
lation. Figure 11 shows the convergence of the scale factor
(left), density (middle) and Hamiltonian constraint (right)
for analysis performed in this gauge.
The linearly perturbed FLRW metric in this gauge,

including only scalar perturbations, is

ds2 ¼ −ð1þ 2ψÞdτ2 þ a2ðτÞð1 − 2ϕÞδijdxidxj; ðA5Þ

where ψ ;ϕ are not the usual gauge-invariant Bardeen
potentials (which are defined in the longitudinal gauge).
Solving the perturbed Einstein equations (6) in this gauge
using the time-time, time-space, trace and trace free
components gives

∇2ϕ − 3aa0
�
ϕ0 þ a0

a
ψ

�
¼ 4πρ̄δa2; ðA6aÞ

a0

a
∂iψ þ ∂iϕ

0¼ −4πρ̄a2δijδvj; ðA6bÞ

ϕ00 þ a0

a
ðψ 0 þ 3ϕ0Þ¼ 1

2a2
∇2ðϕ − ψÞ; ðA6cÞ

∂hi∂jiðϕ − ψÞ ¼ 0; ðA6dÞ

FIG. 11. Fourth-order convergence of the FLRW solutions analyzed in the Newtonian gauge. We show the L1 error as a function of
resolution for the scale factor (left), density (middle) and Hamiltonian constraint (right). N refers to the number of grid points along one
spatial dimension. Filled circles indicate data points from the simulations, and black solid lines indicate the expected N−4 convergence.

FIG. 12. Second-order convergence of the numerical solutions for a linearly perturbed FLRW spacetime, analyzed in the Newtonian
gauge. We show L1 errors in the density (left) and velocity perturbations (right). N refers to the number of grid points along one spatial
dimension. Filled circles indicate data points from our simulations, and black solid lines indicate the expected N−2 convergence.
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in the linear regime. Solving these equations, we find the
form of the potential ϕ to be

ϕ ¼ fðxiÞ − 3

5
s−5=3gðxiÞ; ðA7Þ

where f, g are functions of the spatial coordinates. From
this, we find the density and velocity perturbations to be,
respectively,

δ ¼ C1s2=3∇2fðxiÞ − 2fðxiÞ

þ 3C2s−1∇2gðxiÞ − 9a3init
5

s−5=3gðxiÞ; ðA8aÞ

δvi¼ C3s−1=3∇ifðxiÞ þ 3C4s−2∇igðxiÞ; ðA8bÞ

where the C’s were defined in (23) and (25). We set gðxiÞ ¼
0 to extract only the growing mode of the density
perturbation, giving exact solutions to be

ϕ ¼ fðxiÞ; ðA9aÞ

δ ¼ C1s2=3∇2fðxiÞ − 2fðxiÞ; ðA9bÞ

δvi¼ C3s−1=3∇ifðxiÞ: ðA9cÞ

We note that these solutions give initial conditions
equivalent to those found in Sec. IVA since, ini-
tially, s ¼ ξ ¼ 1.
We compare our numerical relativity solutions to the

exact solutions for linear perturbations in this gauge
using the coordinate transform t ¼ tðτÞ. We find the
expected second-order convergence with maximum
errors in the density and velocity perturbations of
∼10−3 for our highest resolution (803) simulation.
Figure 12 shows the convergence of the density (left)
and velocity (right) perturbations when analyzed in the
Newtonian gauge.

[1] S. Genel, M. Vogelsberger, V. Springel, D. Sijacki, D.
Nelson, G. Snyder, V. Rodriguez-Gomez, P. Torrey, and L.
Hernquist, Mon. Not. R. Astron. Soc. 445, 175 (2014).

[2] V. Springel et al., Nature (London) 435, 629 (2005).
[3] J. Kim, C. Park, G. Rossi, S. M. Lee, and J. R. Gott, III,

J. Korean Astron. Soc. 44, 217 (2011).
[4] J. K. Yadav, J. S. Bagla, and N. Khandai, Mon. Not. R.

Astron. Soc. 405, 2009 (2010).
[5] M. I. Scrimgeour et al., Mon. Not. R. Astron. Soc. 425, 116

(2012).
[6] L. Amendola et al., arXiv:1606.00180.
[7] R. Maartens, F. B. Abdalla, M. Jarvis, and M. G. Santos,

arXiv:1501.04076.
[8] Z. Ivezic et al., arXiv:0805.2366.
[9] S. Räsänen, J. Cosmol. Astropart. Phys. 02 (2004) 003.

[10] E.W. Kolb, S. Matarrese, A. Notari, and A. Riotto, Phys.
Rev. D 71, 023524 (2005).

[11] E.W. Kolb, S. Matarrese, and A. Riotto, New J. Phys. 8, 322
(2006).

[12] A. Notari, Mod. Phys. Lett. A 21, 2997 (2006).
[13] S. Räsänen, Classical Quantum Gravity 23, 1823 (2006).
[14] S. Räsänen, J. Cosmol. Astropart. Phys. 11 (2006) 003.
[15] N. Li and D. J. Schwarz, Phys. Rev. D 76, 083011 (2007).
[16] N. Li and D. J. Schwarz, Phys. Rev. D 78, 083531 (2008).
[17] J. Larena, J.-M. Alimi, T. Buchert, M. Kunz, and P.-S.

Corasaniti, Phys. Rev. D 79, 083011 (2009).
[18] T. Buchert et al., Classical Quantum Gravity 32, 215021

(2015).
[19] S. R. Green and R. M. Wald, Classical Quantum Gravity 33,

125027 (2016).
[20] K. Bolejko and P. D. Lasky, Mon. Not. R. Astron. Soc. 391,

L59 (2008).
[21] T. Buchert, Gen. Relativ. Gravit. 40, 467 (2008).

[22] T. Buchert and S. Räsänen, Annu. Rev. Nucl. Part. Sci. 62,
57 (2012).

[23] A. G. Riess et al., Astrophys. J. 116, 1009 (1998).
[24] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[25] D. Parkinson et al., Phys. Rev. D 86, 103518 (2012).
[26] L. Samushia et al., Mon. Not. R. Astron. Soc. 429, 1514

(2013).
[27] S. Matarrese and D. Terranova, Mon. Not. R. Astron. Soc.

283, 400 (1996).
[28] S. Räsänen, Phys. Rev. D 81, 103512 (2010).
[29] S. R. Green and R. M. Wald, Phys. Rev. D 83, 084020

(2011).
[30] S. R. Green and R. M. Wald, Phys. Rev. D 85, 063512

(2012).
[31] J. Adamek, D. Daverio, R. Durrer, and M. Kunz, Phys. Rev.

D 88, 103527 (2013).
[32] J. Adamek, D. Daverio, R. Durrer, and M. Kunz, J. Cosmol.

Astropart. Phys. 07 (2016) 053.
[33] J. Adamek, D. Daverio, R. Durrer, and M. Kunz, Nat. Phys.

12, 346 (2016).
[34] V. A. A. Sanghai and T. Clifton, Phys. Rev. D 91, 103532

(2015).
[35] T. A. Oliynyk, Phys. Rev. D 89, 124002 (2014).
[36] H. Noh and J.-C. Hwang, Phys. Rev. D 69, 104011 (2004).
[37] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[38] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.

Zlochower, Phys. Rev. Lett. 96, 111101 (2006).
[39] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. Lett. 96, 111102 (2006).
[40] R. Arnowitt, S. Deser, and C.W. Misner, Phys. Rev. 116,

1322 (1959).
[41] J. Centrella and R. A. Matzner, Astrophys. J. 230, 311

(1979).

MACPHERSON, LASKY, and PRICE PHYSICAL REVIEW D 95, 064028 (2017)

064028-12

http://dx.doi.org/10.1093/mnras/stu1654
http://dx.doi.org/10.1038/nature03597
http://dx.doi.org/10.5303/JKAS.2011.44.6.217
http://dx.doi.org/10.1111/j.1365-2966.2010.16612.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16612.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21402.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21402.x
http://arXiv.org/abs/1606.00180
http://arXiv.org/abs/1501.04076
http://arXiv.org/abs/0805.2366
http://dx.doi.org/10.1088/1475-7516/2004/02/003
http://dx.doi.org/10.1103/PhysRevD.71.023524
http://dx.doi.org/10.1103/PhysRevD.71.023524
http://dx.doi.org/10.1088/1367-2630/8/12/322
http://dx.doi.org/10.1088/1367-2630/8/12/322
http://dx.doi.org/10.1142/S0217732306021852
http://dx.doi.org/10.1088/0264-9381/23/6/001
http://dx.doi.org/10.1088/1475-7516/2006/11/003
http://dx.doi.org/10.1103/PhysRevD.76.083011
http://dx.doi.org/10.1103/PhysRevD.78.083531
http://dx.doi.org/10.1103/PhysRevD.79.083011
http://dx.doi.org/10.1088/0264-9381/32/21/215021
http://dx.doi.org/10.1088/0264-9381/32/21/215021
http://dx.doi.org/10.1088/0264-9381/33/12/125027
http://dx.doi.org/10.1088/0264-9381/33/12/125027
http://dx.doi.org/10.1111/j.1745-3933.2008.00555.x
http://dx.doi.org/10.1111/j.1745-3933.2008.00555.x
http://dx.doi.org/10.1007/s10714-007-0554-8
http://dx.doi.org/10.1146/annurev.nucl.012809.104435
http://dx.doi.org/10.1146/annurev.nucl.012809.104435
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1103/PhysRevD.86.103518
http://dx.doi.org/10.1093/mnras/sts443
http://dx.doi.org/10.1093/mnras/sts443
http://dx.doi.org/10.1093/mnras/283.2.400
http://dx.doi.org/10.1093/mnras/283.2.400
http://dx.doi.org/10.1103/PhysRevD.81.103512
http://dx.doi.org/10.1103/PhysRevD.83.084020
http://dx.doi.org/10.1103/PhysRevD.83.084020
http://dx.doi.org/10.1103/PhysRevD.85.063512
http://dx.doi.org/10.1103/PhysRevD.85.063512
http://dx.doi.org/10.1103/PhysRevD.88.103527
http://dx.doi.org/10.1103/PhysRevD.88.103527
http://dx.doi.org/10.1088/1475-7516/2016/07/053
http://dx.doi.org/10.1088/1475-7516/2016/07/053
http://dx.doi.org/10.1038/nphys3673
http://dx.doi.org/10.1038/nphys3673
http://dx.doi.org/10.1103/PhysRevD.91.103532
http://dx.doi.org/10.1103/PhysRevD.91.103532
http://dx.doi.org/10.1103/PhysRevD.89.124002
http://dx.doi.org/10.1103/PhysRevD.69.104011
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1103/PhysRev.116.1322
http://dx.doi.org/10.1103/PhysRev.116.1322
http://dx.doi.org/10.1086/157087
http://dx.doi.org/10.1086/157087


[42] J. Centrella, Phys. Rev. D 21, 2776 (1980).
[43] J. Centrella and R. A. Matzner, Phys. Rev. D 25, 930

(1982).
[44] J. Centrella and J. R. Wilson, Astrophys. J. 273, 428

(1983).
[45] J. Centrella and J. R. Wilson, Astrophys. J. 54, 229 (1984).
[46] J. Rekier, I. Cordero-Carrión, and A. Füzfa, Phys. Rev. D

91, 024025 (2015).
[47] J. M. Torres, M. Alcubierre, A. Diez-Tejedor, and D. Núñez,

Phys. Rev. D 90, 123002 (2014).
[48] J. T. Giblin, J. B. Mertens, and G. D. Starkman, Phys. Rev.

Lett. 116, 251301 (2016).
[49] J. T. Giblin, Jr, J. B. Mertens, and G. D. Starkman, As-

trophys. J. 833, 247 (2016).
[50] E. Bentivegna and M. Bruni, Phys. Rev. Lett. 116, 251302

(2016).
[51] T. Buchert, Gen. Relativ. Gravit. 32, 105 (2000).
[52] F. Löffler et al., Classical Quantum Gravity 29, 115001

(2012).
[53] M. Zilhão and F. Löffler, Int. J. Mod. Phys. A 28, 1340014

(2013).
[54] S. F. Daniel, R. R. Caldwell, A. Cooray, and A. Melchiorri,

Phys. Rev. D 77, 103513 (2008).
[55] S. F. Daniel, R. R. Caldwell, A. Cooray, P. Serra, and A.

Melchiorri, Phys. Rev. D 80, 023532 (2009).
[56] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke,

E. Seidel, and J. Shalf, in Vector and Parallel Processing—
VECPAR ’2002, 5th International Conference, Lecture
Notes in Computer Science (Springer, Berlin, 2003).

[57] W. Kastaun and F. Galeazzi, Phys. Rev. D 91, 064027
(2015).

[58] D. Radice, L. Rezzolla, and F. Galeazzi, in Numerical
Modeling of Space Plasma Flows ASTRONUM-2014,
edited by N. V. Pogorelov, E. Audit, and G. P. Zank,

Astronomical Society of the Pacific Conference Vol. 498
(2015), p. 121.

[59] L. Baiotti, I. Hawke, P. J. Montero, F. Löffler, L. Rezzolla,
N. Stergioulas, J. A. Font, and E. Seidel, Phys. Rev. D 71,
024035 (2005).

[60] D. Brown, P. Diener, O. Sarbach, E. Schnetter, and
M. Tiglio, Phys. Rev. D 79, 044023 (2009).

[61] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995).
[62] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,

024007 (1999).
[63] B. Giacomazzo and L. Rezzolla, Classical Quantum Gravity

24, S235 (2007).
[64] P. Mösta, B. C. Mundim, J. A. Faber, R. Haas, S. C. Noble,

T. Bode, F. Löffler, C. D. Ott, C. Reisswig, and E. Schnetter,
Classical Quantum Gravity 31, 015005 (2014).

[65] I. Hawke, F. Löffler, and A. Nerozzi, Phys. Rev. D 71,
104006 (2005).

[66] C. Bona, J. Massó, E. Seidel, and J. Stela, Phys. Rev. Lett.
75, 600 (1995).

[67] J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).
[68] E. Bertschinger, Phil. Trans. R. Soc. A 369, 4947 (2011).
[69] R. K. Sachs and A.M. Wolfe, Astrophys. J. 147, 73 (1967).
[70] G. Ballesteros, L. Hollenstein, R. K. Jain, and M. Kunz,

J. Cosmol. Astropart. Phys. 05 (2012) 038.
[71] D. N. Vulcanov and M. Alcubierre, Int. J. Mod. Phys. C 13,

805 (2002).
[72] A. Friedmann, Z. Phys. 10, 377 (1922).
[73] A. Friedmann, Z. Phys. 21, 326 (1924).
[74] P. A. R. Ade et al. (Planck Collaboration), Astron.

Astrophys. 594, A13 (2016).
[75] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,

Phys. Rep. 215, 203 (1992).
[76] C. L. Bennett et al., Astrophys. J. 208, 20 (2013).
[77] D. Daverio, Y. Dirian, and E. Mitsou, arXiv:1611.03437.

INHOMOGENEOUS COSMOLOGY WITH NUMERICAL RELATIVITY PHYSICAL REVIEW D 95, 064028 (2017)

064028-13

http://dx.doi.org/10.1103/PhysRevD.21.2776
http://dx.doi.org/10.1103/PhysRevD.25.930
http://dx.doi.org/10.1103/PhysRevD.25.930
http://dx.doi.org/10.1086/161381
http://dx.doi.org/10.1086/161381
http://dx.doi.org/10.1086/190927
http://dx.doi.org/10.1103/PhysRevD.91.024025
http://dx.doi.org/10.1103/PhysRevD.91.024025
http://dx.doi.org/10.1103/PhysRevD.90.123002
http://dx.doi.org/10.1103/PhysRevLett.116.251301
http://dx.doi.org/10.1103/PhysRevLett.116.251301
http://dx.doi.org/10.3847/1538-4357/833/2/247
http://dx.doi.org/10.3847/1538-4357/833/2/247
http://dx.doi.org/10.1103/PhysRevLett.116.251302
http://dx.doi.org/10.1103/PhysRevLett.116.251302
http://dx.doi.org/10.1023/A:1001800617177
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.1142/S0217751X13400149
http://dx.doi.org/10.1142/S0217751X13400149
http://dx.doi.org/10.1103/PhysRevD.77.103513
http://dx.doi.org/10.1103/PhysRevD.80.023532
http://dx.doi.org/10.1103/PhysRevD.91.064027
http://dx.doi.org/10.1103/PhysRevD.91.064027
http://dx.doi.org/10.1103/PhysRevD.71.024035
http://dx.doi.org/10.1103/PhysRevD.71.024035
http://dx.doi.org/10.1103/PhysRevD.79.044023
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1088/0264-9381/24/12/S16
http://dx.doi.org/10.1088/0264-9381/24/12/S16
http://dx.doi.org/10.1088/0264-9381/31/1/015005
http://dx.doi.org/10.1103/PhysRevD.71.104006
http://dx.doi.org/10.1103/PhysRevD.71.104006
http://dx.doi.org/10.1103/PhysRevLett.75.600
http://dx.doi.org/10.1103/PhysRevLett.75.600
http://dx.doi.org/10.1103/PhysRevD.22.1882
http://dx.doi.org/10.1098/rsta.2011.0369
http://dx.doi.org/10.1086/148982
http://dx.doi.org/10.1088/1475-7516/2012/05/038
http://dx.doi.org/10.1142/S0129183102003577
http://dx.doi.org/10.1142/S0129183102003577
http://dx.doi.org/10.1007/BF01332580
http://dx.doi.org/10.1007/BF01328280
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://arXiv.org/abs/1611.03437

