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We study the scalar-tensor theory of gravity profoundly in the action level as well as in the
thermodynamic level. Contrary to the usual description in the literature about the equivalence in the
two conformally connected frames, this paper addresses several incomplete inferences regarding it and
mentions some inequivalences which were not pointed out earlier. In the thermodynamic level, our analysis
shows the two frames are equivalent. In that process, we identify the entropy, the energy and the
temperature for the thermodynamic description, and we find these quantities are conformally invariant even
without any prior assumption. The same conclusion is reached from the gravitational action as well as from
the Gibbons-Hawking-York boundary term, establishing the result in a more convincing manner.
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I. INTRODUCTION

It is now a well-known fact that Einstein’s theory of
general relativity is not considered as the complete theory
to describe the Universe. Though, the theory has been
played the pioneering role for decades and is highly
accurate up to several precession, several incompleteness
of the theory are coming out in the course of time. The
theory is not consistent with the present acceleration of
the Universe and fails to explain several observational data
[1–9]. Moreover, there are some long-standing problems in
Einstein’s theory of general relativity (GR), such as the
presence of singularities in this theory (where GR fails to
describe), galaxy rotation curves, difficulties in explaining
the inflation model, etc. Due to these drawbacks, many
alternative GR theories have been introduced (for details
see [10–14]). These theories are also known as modified
theories of gravity which should reproduce GR in the weak-
field regime or in solar length scale. However, in principle,
they can differ substantially from GR in the strong
curvature regime, where nonlinear effects might be dom-
inant. The simplest picture one can think of in alternative
theory of gravity case is the coupling of the gravitational
field with a scalar field. Moreover, the gravitational field
can also be coupled with vectors and higher-dimensional
tensors in principle. But, of course, one should keep one
thing in mind that those extra fields should be suppressed in
the region where the GR is highly tested.
The scalar-tensor theory of gravity, pioneered by Jordan,

Brans and Dicke [15], is probably the most popular among
those alternative GR theories. Moreover, one of the other
strong reasons to study the theory might be the fact that in
the low energy limit, the bosonic string theory boils down
to the Brans-Dicke theory [16]. Here we do our analysis for

the more general scalar-tensor theory and from the scalar-
tensor theory, one can obtain the Brans-Dicke theory just
putting the parameter ωðϕÞ as a constant. It has already
been proved that the Brans-Dicke theory, (special case of
the scalar-tensor theory, in this case ω is not a function of
the scalar field ϕ) has been surpassed by Einstein’s theory
of gravity in the inflation model of the Universe [17–19]. In
the standard Einstein theory of general relativity, the metric
tensor or the geometry is the sole quantity that describes the
gravity. In this theory, another scalar field ϕ is introduced in
addition to the spacetime metric to describe that. The scalar
field in this theory automatically ends up the inflationary
era without providing fine tuning of the cosmological
parameters. Moreover, the parameter ω, which character-
izes the coupling strength of the matter and the scalar field,
can be adjusted according to the demand of the situation
and it is not determined by the theory a priory. It has been a
conviction for long time that the theory boils down to the
standard GR theory of Einstein when ω → ∞ [20] while
some works refutes the statement [21,22] for the cases
when the trace of the energy momentum tensor vanishes
(although recent work [23] suggests that for quantized
Brans-Dicke theory indeed reduces to GR when ω → ∞,
even though Tμ

μ ¼ 0). The gravitational constant G is not a
constant in this theory (Jordan’s frame), rather the G is
replaced here by Geff ¼ ϕ−1. The scalar field ϕ is non-
minimally coupled with the Ricci scalar in the Lagrangian
of this frame and makes the theory to be highly nonlinear.
Using the conformal transformation of the metric tensor
and rescaling the scalar field ϕ, one can project the theory
in Einstein’s frame, and now the Ricci scalar is not coupled
with the matter in this frame; rather, the scalar field is
coupled with the matter field. In Einstein’s frame, the
gravitational constant is a true constant.
Over the years, the scalar-tensor and the Brans-Dicke

theories have been studied as two of the most popular
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alternative theories of gravity ([13,14,24–32]). In these
works, many aspects have been studied, including ones
regarding the solutions of the metric [25,26,32], the
comparative study of the two frames and their equivalence
[13,24,30], the thermodynamic entities in the two frames
[24,27–29,31] and others. There are also many aspects that
have been recently studied. For example, the Brans-Dicke
theory has been studied with the Weyl geometry [33],
where the Jordan frame is compared with the Riemann
frame in the Weyl geometry and the Einstein frame is
compared with the geometrical Weyl frame. There have
been many discussions in the literature about the physical
(in)equivalence of the two frames and much dissonance
among people in interpreting one frame as more physical
than the other (for a review, see [14]). Most of the works
suggest that the two frames are equivalent in the classical
level, but they are not in the quantum level (one of the
recent works in this context is [34]). Recently, [35] finds the
equivalence of the two frames in the quantum level during
the absence of any external matter field and, thereby,
disproves the previous conclusion mentioned in [34].
Still, there is no unanimous conclusion in this issue. The
anomaly about the equivalence in the two frames in f(R)
gravity, which is a subclass of scalar-tensor theory, has been
discussed earlier [36] as well as recently in [37] which also
addresses some earlier works in this context. It should be
remembered that the mathematical equivalence of the two
frames using conformal transformation does not guarantee
the physical equivalence.
In this work, we shall try to explore the equivalence of

the two frames on the various aspects. Also, many things
will be highlighted that are often not mentioned in the
literature. Our approach is completely different compared
to other works. This paper will cast light on the two frames
in their dynamic level as well as in the thermodynamic
point of view. To compare the two frames classically, the
Lagrangian in the two frames requires detailed scrutiny to
find the equivalence. Besides, the Gibbons-Hawking-York
boundary term will be introduced in both frames, and the
role of this term in the discussion of the equivalence of the
two frames at the classical level will be justified. Later, a
comparative study of the two gravitational actions and the
same of the Einstein-Hilbert one will be provided and the
special properties of the latter action (specially the holo-
graphic property of the GR) will be verified so that one can
compare the theory with the usual GR case and can savor
the new aspects of this theory very distinctly. This work
will also discuss how the equations of motion are connected
to same in the other frame. Moreover, the way of obtaining
the equations of motion from the bulk part will be discussed
and obliterating the contribution from the surface part will
be rationalized.
To compare the two frames in the thermodynamic level,

the focus will be on obtaining the entropy in the two
frames. For that, the Noether current and the potential of the

two frames needs to be found as those are directly
connected to the thermodynamic quantities. Then the
Virasoro algebra technique will be introduced to obtain
the entropy from the first principle and, thereby, the relation
of entropy in the two frames can be found out. One of the
other important features of the Einstein-Hilbert action is
that it can be interpreted as the free energy of spacetime.
This paper will also highlight that issue for the scalar-tensor
theory in its two frames. From that discussion, we shall
obtain the relation between the other thermodynamic
quantities (the energy and the temperature) in the two
frames. Once the relations between those quantities in the
two frames gets determined from the analysis of the
gravitational action, we shall verify all the conclusions
from the GHY surface terms as well.
The discussions in this paper are organized as follows:

the following section will be assigned for the discussions
on the equivalence of the two frames in the classical level
and for the comparative study of the two frames with the
usual GR case. The equivalence of the two frames at the
action level and the role of the GHY term will be high-
lighted and, later, the total action in the two frames will be
decomposed in terms of the bulk term and the total
derivative surface term. After that the separation of the
total Lagrangian in both the frames will be justified by
obtaining the equations of motion in the two frames and by
getting the holographic relation between the two terms. In
the subsequent section, we shall explore the whole theory
from the thermodynamic point of view. We shall obtain the
Noether current and the Noether potential in the two frames
and in the next part those will be used to obtain the entropy
using the Virasoro algebra technique. Afterward, the
relation of the energy and the temperature in the two
frames will be obtained and, thereby, we shall try to
interpret the action as the free energy of the spacetime.
Also, the holographic relation will also be checked in the
thermodynamic level as well and in the final part we
discuss all the arguments in thermodynamic level form the
GHY term. We shall summarize our results, and the
conclusion of our analysis will be in the final section.
We shall provide a brief summary at the end of each
section.

II. COMPARISON OF THE TWO FRAMES
AT THE LAGRANGIAN LEVEL

As mentioned earlier, there are multifarious works on the
(in)equivalence of the two frames and still there are a few
scopes of pointing out the areas where people can examine
the (in)equivalence of the two frames. Here, the analysis
starts from the action level. The theory in the action level
will be studied in a great detail manner. It will be shown,
while projecting the theory from one frame to the other by
the conformal transformation of the metric and rescaling of
the scalar field, one neglects a total derivative term to
conclude that the actions in the two frames are equivalent.
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Therefore, the usual way of saying the mathematical
equivalence of the two frames is an incomplete statement.
If one incorporates the Gibbons-Hawking-York(GHY)
boundary term in the analysis, then the total action(the
gravitational with the GHY term) is invariant under those
transformation. The holographic property will also be
tested in each frame for the discussion on the equivalence
of the two frames and to compare the theory with the GR
after the separation of the total action into the bulk and the
surface part. The results of all the analysis is mentioned in
the proper places.

A. Actions in the two frames from bird’s eye

The action of the gravitational field of the scalar-tensor
theory in Jordan frame is given by

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L

¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

16π

�
ϕR −

ωðϕÞ
ϕ

gab∇aϕ∇bϕ − VðϕÞ
�
:

ð1Þ

As we have mentioned earlier, in this frame the scalar field
ϕ is nonminimally coupled with the Ricci scalar which
makes the theory highly nonlinear.
With the help of the conformal transformation of the

metric and the re-scaling of the scalar field ϕ, the non-
minimal coupling of the field ϕ with the scalar curvature in
the Jordan frame goes away and one then arrives to the
mathematically equivalent picture or frame which is known
as the Einstein frame. The transformations are given by

gab → ~gab ¼ Ω2gab; Ω ¼
ffiffiffiffi
ϕ

p
ð2Þ

and also by the nonlinear transformation of the scalar field:

ϕ → ~ϕ with d ~ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

16π

r
dϕ
ϕ

: ð3Þ

The action of the gravitational field in the Einstein frame is
given by

~A ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p
~L

¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
~R

16π
−
1

2
~gab ~∇a

~ϕ ~∇b
~ϕ −Uð ~ϕÞ

�
: ð4Þ

As one can see, in this frame the scalar field is not coupled
with the Ricci scalar and, therefore, the gravitational part is
similar to the GR case. Although we are not interested with
the matter field, let us make comment that in this frame the
matter field is nonminimally coupled with the scalar field
ϕ, unlike the Jordan frame.

It should be mentioned here that the transformations (2)
and (3) does not give the exactly same Lagrangian in the
two frames mathematically, rather, they are related by

16π
ffiffiffiffiffiffi
−~g

p
~L ¼ 16π

ffiffiffiffiffiffi
−g

p
L − 3

ffiffiffiffiffiffi
−g

p
□ϕ; ð5Þ

withUð ~ϕÞ ¼ VðϕÞ
16πϕ2. The actions can be obtained as the same

in the two frames, neglecting the total derivative term (i.e.
the last term on the right-hand side of the above) as it does
not affect the equation of motion. This is usually stated in
the literature, but it must be noted that the actual math-
ematical relation is (5), and to obtain the correct equations
of motion, one has to fix both the variation of the field and
its derivative, i.e. δϕ and ∂iδϕ, as zero. This is forbidden as
it violates the uncertainty relation and also creates the
unphysical nature of the theory. So the statement that
actions (1) and (4) are equivalent as the total derivative
terms, do not contribute and, hence, can be neglected, now
sounds questionable.
Now remember that it is the same problem that appears

in the Einstein-Hilbert action and, therefore, the GHY
surface term is needed with the actual gravitational action.
One needs to follow the same prescription to get rid of this
difficulty here also. Let us start with the Gibbons-Hawking-
York boundary action in the Einstein frame. It is given by
the standard form:

~AGHY ¼ −
1

8π

Z
d3x

ffiffiffi
~h

p
~K ð6Þ

Here ~K ¼ − ~∇a
~Na ¼ − 1ffiffiffiffi

−~g
p ∂að

ffiffiffiffiffiffi
−~g

p
~NaÞ, the trace of the

extrinsic curvature tensor and ~Na is the unit normal to the
slice, which is spacelike or timelike, depending on the type
of slice chosen; i.e. ~gab ~N

a ~Nb ¼ ϵ where ϵ ¼ þ1 spacelike
while ϵ ¼ −1 for timelike normals. Under the conformal
transformation (2) the unit normal transforms as ~Na ¼
Ω−1Na such that gabNaNb ¼ ϵ again. Then one can easily
determine the relation between the K and ~K:

~K ¼ 1

Ω
K −

3

Ω2
Na∂aΩ; ð7Þ

where K ¼ −∇aNa. Therefore if the total action of the
theory in the Einstein frame is defined as
~Atotal ¼ ~Aþ ~AGHY, then under the transformations (2)
and (3) it takes the form:

~Atotal ¼ A −
1

8π

Z
d3x

ffiffiffi
h

p
Ω2K

þ 3

8π

Z
d3x

ffiffiffi
h

p
ΩNa∂aΩ −

3

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
□ϕ:

ð8Þ
In the above (5) has been used. Now the last term
on the right-hand side, by using Gauss’s theorem, can be
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expressed as
R
d3x

ffiffiffi
h

p
Na∂aϕ, which for Ω ¼ ffiffiffiffi

ϕ
p

leads to

the third term of the above. Then we get ~Atotal ¼ ~Aþ
~AGHY ¼ AþAGHY with the Gibbons-Hawking-York sur-
face term in the Jordan frame identified as

AGHY ¼ −
1

8π

Z
d3x

ffiffiffi
h

p
ϕK: ð9Þ

At this point, we can say confidently that the scalar-tensor
theory has an equivalent description at the action level in
both the Einstein and Jordan frames that is free of any
discrepancy. One should also note that if one takes the
external matter field from the beginning, one finds that all
the above relations are unchanged as the matter field itself
is equivalent in the two frames.

1. Summary

While projecting the theory from one frame to the other
by the conformal transformation of the metric and rescaling
of the scalar field, one neglects a total derivative term to
conclude that the two actions are equivalent. However, only
if one incorporates the Gibbons-Hawking-York(GHY)
boundary term in the analysis is the total action (gravita-
tional and GHY term) invariant in the two frames.

B. Decomposition of the action as bulk
term and surface term

Let us now have a deeper inspection of the scalar-tensor
theory in the two frames. In the case of the Einstein frame,
the situation is similar to the GR case. It is a well-known
fact that the Einstein-Hilbert Lagrangian (i.e. without the
Gibbons-Hawking-York surface term) can be separated into
two parts. The first one is the quadratic part Lquad,
containing the OðΓ2Þ terms and the second one is the total
divergence term Lsur (for details see [38]). Here we
introduce the same discussions for the scalar-tensor theory
in the Einstein and Jordan frames and we show that one can
get the similar terms in these frames as well. Like the usual
one, the GHY term will not be considered. So the relation
(5) is of importance in this section. In addition, the last total
derivative term will not been thrown as we shall observe
that it plays an important role in the later discussion. We
start with the Lagrangian in the Einstein frame since it is
similar to GR where this decomposition is known, and then
we use the transformations to obtain the required decom-
position in the Jordan frame.

1. Einstein frame

The Lagrangian of the scalar-tensor theory in the
Einstein frame is given by (4), and it is connected with
the Lagrangian of the Jordan frame by (5). Now, one can
show that

ffiffiffiffiffiffi
−~g

p
~R ¼

ffiffiffiffiffiffi
−~g

p
~gabð ~Γi

ja
~Γj
ib − ~Γi

ab
~Γj
ijÞ þ ∂c½

ffiffiffiffiffiffi
−~g

p
~Vc�; ð10Þ

where ~Vc ¼ ~gik ~Γc
ik − ~gck ~Γm

km. Therefore, we identify the
bulk term of the scalar-tensor theory in the Einstein
frame as

~Lbulk ¼
1

16π
~gabð ~Γi

ja
~Γj
ib − ~Γi

ab
~Γj
ijÞ −

1

2
~gab ~∇a

~ϕ ~∇b
~ϕ −Uð ~ϕÞ;

ð11Þ

whereas the surface part is given by

~Lsur ¼ −∂c
~Pc; ð12Þ

where

~Pc ¼ −
1

16π

ffiffiffiffiffiffi
−~g

p
~Vc ¼

ffiffiffiffiffiffi
−~g

p
16π

ð~gck ~Γi
ki − ~gik ~Γc

ikÞ; ð13Þ

such that
ffiffiffiffiffiffi
−~g

p
~L ¼ ffiffiffiffiffiffi

−~g
p

~Lbulk þ ~Lsur.

2. Jordan frame

Now, using the transformations (2) and (3), one can get
the corresponding terms in the Jordan frame. Straight
forward calculations give

~gabð ~Γi
ja
~Γj
ib − ~Γi

ab
~Γj
ijÞ ¼ Ω2gab

ffiffiffiffiffiffi
−g

p ½Γi
jaΓ

j
ib − Γi

abΓ
j
ij�

− 2Ω2gab
ffiffiffiffiffiffi
−g

p
Γi
abð∂i lnΩÞ

þ 6
ffiffiffiffiffiffi
−g

p
Ω2ð∂i lnΩÞð∂i lnΩÞ

þ 2
ffiffiffiffiffiffi
−g

p
Ω2Γi

ijð∂j lnΩÞ; ð14Þ

and

ffiffiffiffiffiffi
−~g

p
~Vc ¼ Ω2 ffiffiffiffiffiffi

−g
p ðgikΓc

ik − gckΓm
kmÞ − 6Ω2 ffiffiffiffiffiffi

−g
p ∂cðlnΩÞ:

ð15Þ

Therefore, one obtains

ffiffiffiffiffiffi
−~g

p
~L¼ð1=16πÞ½Ω2gab

ffiffiffiffiffiffi
−g

p ½Γi
jaΓ

j
ib−Γi

abΓ
j
ij�

−2Ω2gab
ffiffiffiffiffiffi
−g

p
Γi
abð∂i lnΩÞþ2

ffiffiffiffiffiffi
−g

p
Ω2Γi

ijð∂j lnΩÞ�

−
4

16π

ffiffiffiffiffiffi
−g

p
ωΩ2ð∂i lnΩÞð∂i lnΩ�− VðϕÞ

16πϕ2

þð1=16πÞ½∂c½Ω2 ffiffiffiffiffiffi
−g

p ðgikΓc
ik−gckΓm

kmÞ�
−∂c½6ðΩ2 ffiffiffiffiffiffi

−g
p ∂cðlnΩÞ��; ð16Þ

where one needs to use that Uð ~ϕÞ ¼ V=16πϕ2. Using (5)
one can get the action in the Jordan frame expressed in bulk
and surface terms. These are given by
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Lbulk ¼ ð1=16πÞ½Ω2gab½Γi
jaΓ

j
ib − Γi

abΓ
j
ij�

− 2Ω2gabΓi
abð∂i lnΩÞ þ 2Ω2Γi

ijð∂j lnΩÞ�

−
4

16π
ωΩ2ð∂i lnΩÞð∂i lnΩÞ − VðϕÞ

16πϕ2
ð17Þ

and

Lsur ¼
1

16π
∂cðΩ2 ffiffiffiffiffiffi

−g
p

VcÞ
¼ ð1=16πÞ∂c½Ω2 ffiffiffiffiffiffi

−g
p ðgikΓc

ik − gckΓm
kmÞ�; ð18Þ

where one can identify Vc ¼ gikΓc
ik − gckΓm

km, such thatffiffiffiffiffiffi−gp
L ¼ ffiffiffiffiffiffi−gp

Lbulk þ Lsur.
Now to test that the division of the Lagrangian in the

bulk and surface terms in the Jordan frame is perfectly
alright, we show in the next section that the correct
equations of motions can be obtained solely from the bulk
term.

C. Equation of motion from the bulk term

The division of surface and bulk terms in Einstein frame
is obvious as the action is similar to usual Einstein-Hilbert
action for which such terms are already well known. For
confirmation of the correct identification of the two terms
in the Jordan frame, we find the equations of motion from
the bulk part and show that these are the correct ones,
thereby proving the validity of the divisions (17) and (18).

1. Einstein frame

We have
ffiffiffiffiffiffi
−~g

p
~Lbulk ¼

ffiffiffiffiffiffi
−~g

p
~L − ~Lsur and, hence, the

arbitrary variation of the bulk term is given by

δð
ffiffiffiffiffiffi
−~g

p
~LbulkÞ ¼ δð

ffiffiffiffiffiffi
−~g

p
~LÞ − δð ~LsurÞ; ð19Þ

where

δð
ffiffiffiffiffiffi
−~g

p
~LÞ ¼

ffiffiffiffiffiffi
−~g

p �
~Gab

16π
−
1

2
~∇a

~ϕ ~∇b
~ϕþ 1

4
~gab ~∇i ~ϕ ~∇i

~ϕ

þ 1

2
~gabUð ~ϕÞ

�
δ~gab þ

ffiffiffiffiffiffi
−~g

p �
~∇a

~∇a ~ϕ −
dU

d ~ϕ

�
δ ~ϕ

þ
ffiffiffiffiffiffi
−~g

p
~∇a

�
δ ~va

16π
− ð ~∇a ~ϕÞδ ~ϕ

�
ð20Þ

and

δð ~LsurÞ ¼ ð1=16πÞ∂aðδð
ffiffiffiffiffiffi
−~g

p
~VaÞÞ

¼ 1

16π
∂a

�
−
1

2

ffiffiffiffiffiffi
−~g

p
~gikδ~gik ~V

a þ
ffiffiffiffiffiffi
−~g

p
δ ~va

þ
ffiffiffiffiffiffi
−~g

p
ðδ~gik ~Γa

ik − δ~gak ~Γm
kmÞ

�
: ð21Þ

Here δ ~va ¼ 2 ~Pibad ~∇bδ~gid and ~Piabd ¼ ∂ ~R
∂ ~Riabd

¼
1
2
½~gia ~gbd − ~gid ~gab�. Usually in the literature the equations

of motion for metric and ~ϕ are obtained from (20). But this
is not conceptually correct as here one needs to fix both the
metric and its first derivative. Interestingly this does not
happen for bulk term as the problematic term δ ~va cancels
out as it appears in both the ~L and surface terms. Now
imposition of the condition that the fields ~gab and ~ϕ are
fixed at the boundary, leads to the correct equations of
motion:

~Gab

16π
−
1

2
~∇a

~ϕ ~∇b
~ϕþ 1

4
~gab ~∇i ~ϕ ~∇i

~ϕþ 1

2
~gabUð ~ϕÞ ¼ 0 ð22Þ

and

~∇a
~∇a ~ϕ ¼ dU

d ~ϕ
: ð23Þ

2. Jordan frame

In the case of the theory in the Jordan frame, one obtains
the same result. Here

δð ffiffiffiffiffiffi
−g

p
LbulkÞ ¼ δð ffiffiffiffiffiffi

−g
p

LÞ − δLsur

¼
ffiffiffiffiffiffi−gp

16π

�
ϕGab þ

ω

2ϕ
∇iϕ∇iϕgab −

ω

ϕ
∇aϕ∇bϕþ V

2
gab −∇a∇bϕþ∇i∇iϕgab

�
δgab

þ
ffiffiffiffiffiffi−gp

16π

�
R −

1

ϕ

dω
dϕ

∇iϕ∇iϕþ 2∇a

�
ω

ϕ
∇aϕ

�
−
dv
dϕ

þ ω

ϕ2
∇aϕ∇aϕ

�
δϕ

þ
ffiffiffiffiffiffi−gp

16π
∇a

�
−2gab

ω

ϕ
ð∇bϕÞδϕþ ϕδva − 2ð∇bϕÞpiabdδgid

��
− ð1=16πÞδ∂cðϕ

ffiffiffiffiffiffi
−g

p
VcÞ; ð24Þ
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where δva ¼ 2pibad∇bδgid and piabd ¼ ∂R
∂Riabd

¼
1
2
½giagbd − gidgab�. The last term in (24) comes from the

variation of the surface part and the rest of the previous
terms come from the variation of the total Lagrangian. Like
the earlier one, we can apply the same arguments here to
obtain the equations of motion from only the bulk term of
the total Lagrangian. The problematic total derivative terms
are almost the same as earlier, and they are overall
multiplied by ϕ inside the derivative. The equations of
motions are

ϕGab þ
ω

2ϕ
∇iϕ∇iϕgab −

ω

ϕ
∇aϕ∇bϕþ V

2
gab −∇a∇bϕ

þ∇i∇iϕgab ¼ 0; ð25Þ

and, using the above equation of gab, the coefficient of δϕ
gives the equation of motion of the field ϕ as

□ϕ ¼ 1

2ωþ 3

�
ϕ
dV
dϕ

−
dω
dϕ

∇iϕ∇iϕ − 2V

�
: ð26Þ

So one can conclude that the equations of motion can be
obtained only from the bulk part of the Lagrangian. Note
that, here in the calculation, we have taken the contribution
of the last term of (5) to identify the bulk and the surface
parts of the actions and, thereby, obtain the correct
equations of motion by a physically consistent prescription.
Thus, the dropping of that surface term is unjustified.
It should be mentioned here that the equation of motions

of ~gab and gab (or ~ϕ and ϕ) in the two frames are connected
with each other by the transformation of the metrics given
by (2) and (3). In other word, if the equation of motion of
say, the metric tensor (or the scalar field) is given in any
frame, the mentioned transformation relations give the
same in the another frame. We shall use this result in
our later discussions. Moreover, here one can conclude that
in the dynamic level the two frames are equivalent.

3. Summary

The identification of the surface term and the bulk term
for both the frames are consistent with the analysis made in
this section. In both the frames, we have obtained the
equations of motions only from the bulk part of the total
action, which is the correct method as mentioned. Not,
only the total action, we have shown that the equations of
motions are invariant as well under the transformations
[(2) and (3)] in the two frames.

D. Connection of the surface and the bulk terms
of the action: The holographic relation

One of the most striking feature of the Einstein-Hilbert
action in GR is that, the surface and the bulk part of the
Lagrangian are connected to each other (for details
see the original works [38,39] for GR and [40] for

Lanczos-Lovelock gravity). The basic idea is as follows:
It can be shown that for any given Lagrangians, say
L1ðq; ∂qÞ and L2ðq; ∂q; ∂2qÞ which are related as

L2ðq; ∂q; ∂2qÞ ¼ L1 − ∂
�
q

∂L1

∂ð∂qÞ
�
; ð27Þ

the same equation of motion is produced when one
extremizes the actions. For the former case one has to
fix q and for the latter case one has to fix ∂L1∂ _q (which is the
canonical momentum) on the boundary. Remarkably, the
last total derivative of (27) term matches with the surface
part of the Lagrangian in GR when L1 is the bulk part
(which is a function of gab and ∂gab) and L2 is the total
Lagrangian (which is a function of gab,∂gab and ∂2gab).
This relation in literature is known as the holographic
relation [38].
Here we check whether we get the same result for the

scalar-tensor theory in the two frames as well.

1. Einstein frame

The action in the Einstein frame is quite similar to the
Einstein-Hilbert action, and the Lagrangian in this frame is
the function of the metric tensor ~gab and its first- and
second-order derivatives, but it depends only on ~ϕ and its
first-order derivative. In spite of that, differentiation offfiffiffiffiffiffi
−~g

p
~Lbulk with respect to only the ∂c ~gab gives the desired

result, and we do not need any term containing the
differentiation of the bulk Lagrangian with respect to
∂i
~ϕ. This is because the total Lagrangian is not the function

of the second-order derivative of ~ϕ. From (27), one can say
that q cannot be ~ϕ. Otherwise, the total Lagrangian will be
the function of the second-order derivative of ~ϕ, which we
cannot allow here. One can check that the holographic
property is maintained here in this frame, and a straightfor-
ward calculation gives the relation between the surface and
the bulk part as

ffiffiffiffiffiffi
−~g

p
~L ¼

ffiffiffiffiffiffi
−~g

p
~Lbulk − ∂c

�∂ ffiffiffiffiffiffi
−~g

p
~Lbulk

∂ ~gij;c ~gij

�
: ð28Þ

Here the last term is the surface term. So, it is obvious from
the above that this can be obtained from the bulk part of the
Lagrangian. Thus, as is done for the Einstein-Hilbert action
[38], one can get the same relations for the scalar-tensor
theory in the Einstein frame as well. Therefore, like the
Einstein-Hilbert case, one can correlate the bulk part of the
Lagrangian ~Lbulk with L1ðq; ∂qÞ and the total gravitational
Lagrangian with L2ðq; ∂q; ∂2qÞ, and one can conclude that
in this frame the gravity is “holographic.”
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2. Jordan frame

Let us now check whether the same conclusion can be
drawn for the theory in Jordan frame as well. We have
already separated the Lagrangian in the Jordan frame in
bulk part and the total derivative surface part (17) and (18).
Here, also, the total Lagrangian is the function of gab and its
first- and second-order derivative, but it depends solely on
ϕ and its first-order derivative. Thus, here also we can apply
the same arguments and we cannot allow q to be ϕ in (27)
to obtain the holographic relation. We perform the same
steps as done in Einstein’s frame and find

∂ ffiffiffiffiffiffi−gp
Lbulk

∂gab;c gab¼−
1

16π
Ω2 ffiffiffiffiffiffi

−g
p

Vcþ 6

16π
ðΩ2 ffiffiffiffiffiffi

−g
p ∂cðlnΩÞÞ:

ð29Þ

Note that the right-hand side of the above equation is the
surface part plus an extra term. So, unlike in the Einstein
frame, one cannot draw the same conclusion for the theory
in the Jordan frame. This is significant inequivalence
of the two frame at the classical level even without
considering any matter field.

3. Summary

We get the inequivalence of the two frames in the
classical level. In the Einstein frame, the holographic
property is valid while in the Jordan frame the property
is not maintained.
So far, we have made our analysis at the action level. Let

us now compare the two frames in the thermodynamic
level.

III. ENTROPY FROM NOETHER CURRENT
AND THE NOETHER POTENTIAL IN

THE TWO FRAMES

Bekenstein-Hawking formula of entropy [41] says that
for a black hole in GR, the entropy is proportional to its
horizon area. This was one of the earlier works that shows
the connection the spacetime geometry with the gravita-
tional thermodynamics and this connection seems more
convincing with the passage of time. In our earlier work
[42], we have shown that the thermodynamic structure is
still maintained for the realistic time dependent black holes
as well. However, it was believed that there should be a
much more general expression of entropy, of which the
Bekenstein-Hawking formula is just the first-order approxi-
mation, and the general formula should be valid for any
arbitrary dimension in any theory. For the generalization of
the expression of entropy, an operative definition of the
black hole entropy was essential. Meanwhile, Wald
obtained a direct relation of the entropy with the
Noether potential [43] and the entropy is a conserved
charge when the Lagrangian is considered to be diffeo-
morphism invariant. But, in this method one has to put the

factor of the surface gravity by hand. Later, for the Brans-
Dicke theory (not the scalar-tensor one), Kang [31] for-
mulated the entropy being proportional to the area and the
scalar field ϕ from the argument of the nondecreasing
surface area. It has been shown that due to the presence of
the scalar field ϕ in Brans-Dicke theory the surface area of a
black hole becomes oscillatory during the dynamical
evolution, violating the area law(that the horizon area
of a black hole is an increasing function of time) which
is valid in Einstein’s gravity. Kang’s prescription was to
take the entropy of a black hole in this theory as
SBH ¼ 1

4

R
d2x

ffiffiffi
h

p ¼ ϕA
4
.

This section discusses about the procedure to get the
Noether current and the Noether potential in the two
frames. After that, using those quantities, entropy will be
obtained from the first principle.

A. Noether current and charge

1. Jordan frame

The variation of the total Lagrangian in Jordan frame is
shown earlier in (24). The on-shell (i.e. using the equations
of motion) expression of the variation of the total
Lagrangian in the Jordan frame appear as

δð
ffiffiffiffiffiffiffiffiffi
−gL

p
Þ ¼

ffiffiffiffiffiffi−gp
16π

∇a

�
−2gab

ω

ϕ
ð∇bϕÞδϕþ ϕδva

− 2ð∇bϕÞpiabdδgid

�
ð30Þ

Under the diffeomorphism xa → xa þ ξa, the δ is taken to
be Lie derivative. Therefore £ξϕ ¼ ξa∇aϕ, δgab ¼ ∇aξb þ
∇bξa and £ξgab ¼ −ð∇aξb þ∇bξaÞ. Since L is a scalar,
δð ffiffiffiffiffiffi−gp

LÞ≡ £ξð ffiffiffiffiffiffi−gp
LÞ ¼ ffiffiffiffiffiffi−gp ∇aðLξaÞ. In that case one

gets the relation ∇aJa ¼ 0, where Ja can be identified as
the conserved Noether current, given by

Ja ¼ 1

16π

�
16πLξa þ 2gab

ω

ϕ
ð∇bϕÞ£ξϕ − ϕ£ξva

þ 2ð∇bϕÞpiabd£ξgid

�

¼ 1

16π

��
ϕR −

ωðϕÞ
ϕ

gab∇aϕ∇bϕ − VðϕÞ
�
ξa

þ 2
ω

ϕ
ð∇aϕÞξbð∇bϕÞ − ϕ£ξva

þ 2ð∇bϕÞpiabd£ξgid

�
: ð31Þ

Using the equation of motion for the field gab (25) and also
using the explicit form of £ξva and piabd one gets the
expression of the on-shell Noether current as (for the
calculations in detail, see Appendix A)

FRESH LOOK AT THE SCALAR-TENSOR THEORY OF … PHYSICAL REVIEW D 95, 064026 (2017)

064026-7



Ja ¼ 1

16π
∇b½ϕð∇aξb −∇bξaÞ þ 2ξað∇bϕÞ − 2ξbð∇aϕÞ�

ð32Þ

Therefore, the antisymmetric Noether potential Jab, defined
as ∇bJab ¼ Ja, turns out to be

Jab ¼ 1

16π
½ϕð∇aξb −∇bξaÞ þ 2ξað∇bϕÞ − 2ξbð∇aϕÞ�

ð33Þ

2. Einstein Frame

We do the same for the Einstein frame. The variation of
the total action in the Einstein frame is shown earlier in
(20), on-shell expression of which gives the surface term as

δð
ffiffiffiffiffiffi
−~g

p
~LÞ ¼ ~∇a

�
δ ~va

16π
− ð ~∇a ~ϕÞδ ~ϕ

�
ð34Þ

In the case of the diffeomorphism symmetry, when
~xa → ~xa þ ~ξa, the δ is taken to be the Lie derivative in
this frame and it leads to the relation as ~∇a

~Ja ¼ 0, where
one can identify ~Ja as the conserved Noether current for the
diffeomorphism symmetry in the Einstein frame given by

~Ja ¼ ~L~ξa −
£ξ ~va

16π
þ ð ~∇a ~ϕÞ£ξ ~ϕ ð35Þ

Now, using the equation of motion for the field ~gab (22),
one can obtain the on-shell Noether current as (for details,
see Appendix A)

~Ja ¼ 1

16π
~∇b½ ~∇a ~ξb − ~∇b ~ξa�: ð36Þ

Again, one can identify the Noether potential ~Jab in the
Einstein frame as

~Jab ¼ 1

16π
½ ~∇a ~ξb − ~∇b ~ξa� ð37Þ

In the following section, we use these expressions of the
Noether currents and the Noether potentials of the two
frames to obtain the entropy using the Virasoro algebra
technique. One can ask why we do not follow Wald’s
method [43] to get the entropy, where the calculations are
much more simplistic. The answer is: Using Wald’s
prescription, one can obtain the entropy for the GR cases,
where it is given by a quarter of the horizon surface area,
and for that, one has to incorporate a factor of surface
gravity by hand with the conserved Noether current to
obtain it. However, in the scalar-tensor theory, we do not
know the expression of the entropy, and, therefore, we
cannot predict whether the inclusion of the factor of the

surface gravity with the conserved Noether current gives
entropy in this theory. Therefore, we want to get entropy
from the first principle using the Virasoro algebra tech-
nique. This method was originally introduced by Brown
and Henneaux [44] and was further developed by Carlip
[45] in the near horizon symmetry. We follow this tech-
nique to obtain the entropy for the scalar-tensor theory of
gravity.

B. Virasoro algebra and the entropy

In this section, we need some important relations which
is given in Appendix A of [45] and derived in Appendix B
of [46]. All the following calculations in this section are
done in the near horizon limit.
In this approach, we need the definition of charge and the

bracket among the charges. These are derived in [46] as
follows

Q½ξ� ¼ 1

2

Z
dΣab

ffiffiffi
h

p
Jab ð38Þ

and

½Q1; Q2� ¼
Z ffiffiffi

h
p

dΣab½ξa2Jb½ξ1� − ξa1J
b½ξ2��

¼
Z ffiffiffi

h
p

dΣab½ξa2Jb1 − ξa1J
b
2� ð39Þ

Here, h is the determinant of the induced 2-metric and dΣab
is the two-dimensional surface element. The calculation of
this charge and its bracket is one of the key aspects of this
process. For different theories this two quantities are
calculated by one of the authors [46–52]. To get the explicit
expressions of this bracket and the charge in this theory, we
shall follow the methods prescribed in [45]. We take a set of
diffeomorphism generators defined by the relation
ξa ¼ Tχa þ Rρa, where χa is the timelike Killing vectors
and ρa is the orthogonal to the Killing vector. The
component R of the diffeomorphism generator ξa along
the orthogonal vector ρa is related [as argued in [46],

Eq. (12)] by R ¼ χ2

κρ2
DT, where D≡ χa∇a. Now, the lie

bracket of the diffeomorphism operators is given by
(Eq. (26) of [46]),

fξ1;ξ2ga¼ðT1DT2−T2DT1Þχa−
1

κ
DðT1DT2−T2DT1Þρa:

ð40Þ

For the mentioned set of diffeomorphism generators, one
can calculate (for details, see Appendix B)

Q½ξ� ¼ 1

16π

Z ffiffiffi
h

p
d2xϕ

�
2κT −

1

κ
D2T

�
ð41Þ
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and

½Q1; Q2� ≔
1

16π

Z ffiffiffi
h

p
d2xϕ½2κðT1DT2 − T2DT1Þ

−
1

κ
ðT1D3T2 − T2D3T1Þ�: ð42Þ

Using the relation (40), one obtains

Q½fξ1; ξ2g� ¼
1

16π

Z ffiffiffi
h

p
d2x½2κðT1DT2 − T2DT1Þ

−
1

κ
D2ðT1DT2 − T2DT1Þ�ϕ: ð43Þ

Therefore, the central term, defined by the relation
K½ξ1; ξ2� ¼ ½Q1; Q2� −Q½fξ1; ξ2g�, is

K½ξ1;ξ2�¼
1

16π

Z ffiffiffi
h

p
d2xϕ

1

κ
½ðDT1ÞðD2T2Þ−ðDT2ÞðD2T1Þ�:

ð44Þ

If one takes the Fourier modes of T as T ¼ P
mAmTm and

takes the usual ansatz for Tm as given in [46],

Tm ¼ 1

κ
Exp½imfκtþ gðxÞ þ p:x⊥g�; ð45Þ

then the Fourier modes of the charges are

Q½ξm� ¼
R ffiffiffi

h
p

d2xϕ
8π

δm;0 ¼
Aϕ
8π

δm;0; ð46Þ

where we define
R ffiffiffi

h
p

d2x ¼ A as the area of the null
surface. We want to comment on the fact that ϕ is the
function of all coordinates in general. As the calculations in
this section are near the horizon, we expand ϕ
about the horizon to get ϕðt; r; XAÞ ¼ ϕðrHÞþ
ðr − rHÞϕ0ðt; rH; XAÞ þ � � �. Near the horizon only the first
term contributes which is independent of all the coordinates
to be consistent with the zeroth law of thermodynamics
[13]. Therefore, the ϕ in Eq. (48) is actually the first term of
the expansion of ϕðt; r; XAÞ. We shall use this convention
throughout this section. Similarly, one obtains

Q½fξm; ξng� ¼ iðm − nÞQ½ξmþn�; ð47Þ

and

K½ξm; ξn� ¼ −
im3ϕA
8π

δmþn¼0: ð48Þ

From (43) and (44), collecting all the terms, we obtain

i½Qm;Qn� ¼ ðm − nÞQ½ξmþn� þm3
Aϕ
8π

δmþn;0 ð49Þ

Comparing the obtained relation with the stranded
Virasoro algebra of charges given by

i½Qm;Qn� ¼ ðm − nÞQmþn þ
C
12

m3δmþn;0; ð50Þ

one finds

C
12

¼ Aϕ
8π

: ð51Þ

One already knows that the Cardy formula for entropy is
given by the relation [45,53]

S ¼ 2π

ffiffiffiffiffiffiffi
CΔ
6

r
ð52Þ

where Δ is defined as Δ ¼ Q0 − C
24
, Q0 ¼ Aϕ

8π being the
zeroth mode of charge. Therefore, the expression of
entropy determined by the Cardy formula is given by

S ¼ Aϕ
4

ð53Þ

We see that the expression of entropy S ¼ ϕA
4
agrees to the

Kang’s prescription [31]. For the Einstein frame, the
calculation will be exactly similar to the usual GR case
[46] as the Noether current is exactly the same in both the

cases. So, in that case, ~S ¼ ~A
4
, where ~A ¼ R ffiffiffi

~h
p

d2x ¼ ϕA.
Therefore, the entropy in both the frame are the same.
So, using the Virasoro algebra, we find the entropy of the

two frames to be equivalent. We proved this without any
assumption and without including any extra prescription by
hand. The equivalence of the entropy in the two frames is
used later in this paper to obtain the relation of the other
thermodynamic quantities (the energy and the temperature)
in the two frames.

1. Summary

We obtain the expression of the entropy from the first
principle, it is proved that the entropy in the two frames are
equivalent. For the theory in the Jordan frame, the entropy
is proportional to the area of the surface horizon as well as
the scalar field ϕ.

IV. COMPARISON AT THE
THERMODYNAMIC LEVEL

In the following part we shall find the correspondence
of the thermodynamic variables between the two frames.
Although in [24], it has been proved that all the
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thermodynamic quantities are equivalent. But, it is based on
a few assumptions along with the another as the two vectors
ξa and ~ξa to be the same without any justification. In the
previous section, we obtained the expressions of the
entropy in the two frames and we proved they are
equivalent in the two frames without any assumption.
Now we try to develop the relation of energy and temper-
ature in the two frames. Our approach is completely
different from all the others in the literature and it is not
based on any assumption. Instead, our analysis will prove
that ~ξa ¼ ξa, justifying the earlier assumption of [24] and
our own results.

A. Action as the free energy of spacetime

One of the most interesting fact of the Einstein-Hilbert
action is that it can be treated as the free energy of
spacetime for stationary background (For details see
[38]). The question that naturally arises is whether the
same interpretation of the action is applicable for this
theory or not. Firstly, we try for this theory in Einstein
frame, as the action quite resembles to the Einstein-Hilbert
one and then we do for the theory in Jordan frame.

1. Einstein frame

The gravitational action in this frame is given by (4). Now
the equation of motion of the metric tensor in this frame,
when the matter field is included, is given in (22), and only

the zero on the right-hand side is replaced by
~Tab
2
, where, ~Tab

is the energy-momentum tensor of the matter field in the
Einstein frame. If one raises one index of the equation of
motion and then fixes the value of both indexes as zero, one

obtains ~G0
0 ¼ ~R0

0 − 1
2
~R ¼ 1

2
~∇0 ~ϕ ~∇0

~ϕ − 1
4
~∇i ~ϕ ~∇i

~ϕ − U
2
þ ~T0

0

2
.

From this relation if one replaces ~R in the Lagrangian given
in (4), one obtains

~L ¼ − ~T0
0 þ

2 ~R0
0

16π
− ~∇0

~ϕ ~∇0 ~ϕ: ð54Þ

The last term in the above equation does not contribute as we
have assumed the spacetime is stationary and therefore, the
field ϕ is independent of the time. It should be mentioned
here that the components of the Energy-Momentum tensor of
the Einstein fame is related to the Jordan frame with the

relation ~Tb
a ¼ Tb

a

ϕ2. The stationary spacetime has a timelike

Killing vector ~χa ¼ ð1; 0; 0; 0Þ. Therefore, a straightforward
calculation gives

~Ra
j ~χ

j ¼ ~∇b
~∇a

~χb ¼ 1ffiffiffiffiffiffi
−~g

p ∂bð
ffiffiffiffiffiffi
−~g

p
~∇a

~χbÞ; ð55Þ

where, the last identity comes from the fact that ~∇a
~χb is an

antisymmetric tensor (following the relation of the Killing
vector). Since ~χa has only the time component, one obtains

R0
0 ¼

1ffiffiffiffiffiffi
−~g

p ∂bð
ffiffiffiffiffiffi
−~g

p
~gi0 ~Γb

i0Þ: ð56Þ

Note that the index b cannot be time as the spacetime is
stationary. Moreover, one should integrate the Lagrangian in
the four-dimensional spacetime manifold, and for that, one
has to take finite range of time (0, ~β) to get a finite result as the
spacetime is the stationary one. Therefore, one can express
the action as

~A ¼ ~β

Z
~N

ffiffiffi
~h

p
~ρd3 ~xþ

~β

8π

Z
d2 ~x

ffiffiffi
~σ

p
~N ~nαð~gi0 ~Γα

i0Þ: ð57Þ

The last term is obtained after converting the space volume
integral of ~R0

0 to the surface integral. Here, ~h and ~σ are the
determinant of the induced 3- and 2-metric, respectively, and
~N ¼ ffiffiffiffiffiffiffiffiffiffi

−~g00
p

is the lapse function. We have also used the
relation ~T0

0 ¼ −~ρ. Thus, identifying the integral part of the
first term of (57) as the energy and the whole second term as
the (negative of) entropy one gets ~A≡ ~β ~E− ~S. So, one can
conclude that the action can be interpreted as the free energy
of the spacetime. Earlier, the same interpretation was given
for the GR as mentioned earlier and one find that the same
interpretation is applicable for this scalar-tensor theory in the
Einstein frame as well. Let us now find out whether one can
give the same inference of the action of this theory in
Jordan frame.

2. Jordan frame

The gravitational action in this frame is given by (1). In
this case as well, one should use the equation of motion of
the metric tensor (25). One has to rise one index and then
one has to fix both indexes as zero (as done in the Einstein
frame) to obtain

L¼ 1

16π

�
2ϕR0

0þ16πρþ2ω

ϕ
∇0ϕ∇0ϕ−2∇0∇0ϕþ2□ϕ

�
:

ð58Þ

Now, in general, for any vector one can write

Rb
j ðϕχjÞ ¼ ∇a∇bðϕχaÞ −∇b∇aðϕχaÞ ð59Þ

For this theory in stationary background, let there be
the timelike Killing vector χa ¼ ð1; 0; 0; 0Þ. Now, the
second term∇b∇aðϕχaÞ ¼ ∇bðχa∇aϕÞ −∇bðϕ∇aχ

aÞ van-
ishes using the property of the Killing vector χa. So,

ϕRb
jχ

j ¼ ∇a∇bðϕχaÞ
¼ ∇a½ϕð∇bχaÞ� þ ð∇aχ

aÞð∇bϕÞ þ χa½∇a∇bϕ�
ð60Þ

The first term in the above equation is an antisymmetric
tensor which can be written in terms of a total derivative
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form. The second term vanishes and therefore one
obtains

ϕRb
j χ

j ¼ 1ffiffiffiffiffiffi−gp ∂a½ϕ
ffiffiffiffiffiffi
−g

p ð∇bχaÞ� þ χa∇a∇bϕ: ð61Þ

As, the Killing vector has only the time component, one
obtains

ϕR0
0 −∇0∇0ϕ ¼ 1ffiffiffiffiffiffi−gp ∂a½ϕ

ffiffiffiffiffiffi
−g

p
g0iΓa

i0�: ð62Þ

So, ultimately one can obtain

A ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4x

�
16πρ −

2ffiffiffiffiffiffi−gp ∂a

h
ϕ

ffiffiffiffiffiffi
−g

p
g0iΓa

i0

i

þ 2□ϕ

�

¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4x

�
16πρ −

2ffiffiffiffiffiffi−gp ∂a

h ffiffiffiffiffiffi
−g

p ðϕg0iΓa
i0

þ gaj∂jϕÞ
�
: ð63Þ

As done earlier, here also the action can be treated as the
free energy of the spacetime:

A¼ β

Z
N

ffiffiffi
h

p
d3xρþ β

8π

Z
d2x

ffiffiffi
σ

p
Nnαðϕg0iΓα

0iþgαj∂jϕÞ

¼ βE−S: ð64Þ

In this frame, the second integration gives (the negative of)
the entropy.
A few comments should be made in this regards. Earlier

we have shown that the entropy in the two frame are the
same. Again, one can show

ffiffiffi
~σ

p
~N ~nαð~gi0 ~Γα

i0Þ ¼
ffiffiffi
σ

p
Nnαðϕgi0Γα

i0Þ −
1

2

ffiffiffi
σ

p
Nnαgαj∂jϕ

ð65Þ

Now, ϕ ¼ Ω2 is not the function of time. Also, the last term
on the right-hand side vanishes at the boundary of a
stationary spacetime. So, one gets

ffiffiffi
~σ

p
~N ~nαð~gi0 ~Γα

i0Þ ¼ffiffiffi
σ

p
Nnαðϕgi0Γα

i0Þ. Therefore, for a stationary metric one
can show (from the expressions of the entropy in the two
frames) ~β ¼ β as the entropy is the same in the two frames.

Again, one can also prove ~N
ffiffiffi
~h

p
~ρ ¼ N

ffiffiffi
h

p
ρ, as

~N ¼
ffiffiffiffiffiffiffiffiffiffi
−~g00

p
¼ ffiffiffiffi

ϕ
p

N,
ffiffiffi
~h

p
¼ ϕ

3
2

ffiffiffi
h

p
and ~ρ ¼ ~T0

0 ¼ T0
0

ϕ2 ¼ ρ
ϕ2.

3. Summary

Like the analysis done in the action level, it has been
shown here that the total action in both the frames can be

separated out in the two parts. The total derivative one,
which we identify as the surface term in the thermodynamic
level and accounts to the entropy in both the frames. Also,
there is the term containing the component of the energy-
momentum tensor which gives the energy in both the
frames. Later, we have also shown that for the stationary
metric, the temperature and the energy is invariant in the
two frames.

B. Holographic relation at the thermodynamic level

The holographic relation was obtained earlier in the
action level. We found that in the Einstein frame the
holographic relation holds but in the Jordan frame a total
derivative term blemishes the relation. Here we try to
obtain the relation in the thermodynamic level and find
that a total derivative term in both the frames accounts for
the entropy, and the remaining term contributes as the
energy. Let us call the earlier one the surface term (Lsur)
and the later one, the bulk term (Lbulk).

1 Our aim is now to
see if we can have a similar relation like in the earlier
analysis.
To proceed, here one trick will be used followed from

[54]. Firstly one has to calculate the variation of total
Lagrangian [equivalent to L2ðq; ∂q; ∂2qÞ of (27)] and Lsur.
Then the difference of this two variation gives the same for
the bulk part Lbulk. Note that the total Lagrangians [(1) and
(4)] in the two frames are the function of the metric tensor,
its first derivative and the second derivative and the scalar
field and its first-order derivative. Therefore, following the
earlier logic of Sec. II D, we shall consider the variation
with respect to the metric tensor and its derivatives (first
and second order) only.

1. Einstein frame

We have identified the surface term in the thermody-
namic level from (54) as ~Lsur ¼ 2 ~R0

0

16π. Therefore, writing the
bulk part in the thermodynamic level as ~Lbulk ¼ ~L − ~Lsur
and following the calculations of Appendix A of [54], one
can show that

~Lsur ¼ −∂i

�
~gab

δE ~Lbulk

δEð∂i ~gabÞ
þ ∂j ~gab

∂ ~Lbulk

∂ð∂i∂j ~gabÞ
�
; ð66Þ

where δE ~Lbulk
δEð∂i ~gabÞ implies the Euler derivative of the bulk

Lagrangian with respect to ∂igab. Thus, one can conclude
that in the thermodynamic level as well one can obtain the
holographic relation for the theory in the Einstein frame.

1Note, in general, that the bulk or surface terms in the two
cases (the analysis in the classical level and here in the
thermodynamic level) are not the same.
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2. Jordan frame

Here the total Lagrangian is given in (1) and the
surface part, from (58), is identified as, Lsur ¼
1

16π ð2ϕR0
0 − 2∇0∇0ϕþ 2□ϕÞ. So, the bulk part in the

thermodynamic level is Lbulk ¼ L − Lsur. We obtain (for
a detailed calculation, see Appendix C)

∂i

�
gab

δELbulk

δEð∂igabÞ
þ ∂jgab

∂Lbulk

∂ð∂j∂igabÞ
�

¼ −Lsur þ
3

16

ffiffiffiffiffiffi
−g

p
□ϕ: ð67Þ

So, in the thermodynamic level, one does not get the
holographic relation in Jordan frame as was the case in the
action level earlier. Moreover, one can check that it is
the same extra term that spoils the holographic relation.

3. Summary

Like the analysis done in the action level, here we have
shown that the surface and the bulk part are connected by
the holographic relation in the Einstein frame. But, one
cannot draw the same conclusion for the theory in the
Jordan frame. The same extra term appears that blemishes
the theory to be holographic in the latter frame as was the
case in the analysis in the action level.

C. Relation between different thermodynamic
entities from the GHY term

So far, all the calculations are done for the gravitational
actions without the GHY term. It has been argued that the
thermodynamic entities are invariant for the stationary
background. In this section, we want to justify our argu-
ments again from the GHY boundary term.
The GHY surface term in Einstein frame, mentioned in

(6), provides the antisymmetric Noether potential (see the
Appendix of [47])

~JabS ¼ ~Kð ~Na ~ξb − ~Nb ~ξaÞ: ð68Þ
Similarly, the GHY term in the conformally connected
Jordan’s frame, mentioned in (9) yields the Noether
potential

JabS ¼ Ω2KðNaξb − NbξaÞ: ð69Þ
To develop the relation between the thermodynamic quan-
tities, we assume that the diffeomorphism vectors ~ξa and ξa

of the two frames are proportional to each other with the
proportionality constant being the arbitrary power of the
conformal factor. Let,

~ξa ¼ Ωαξa; ð70Þ

where, Ω ¼ ffiffiffiffi
ϕ

p
in this theory. Unlike [24] we do not

consider that the two vectors are equal. It should be

mentioned here that in [24], they have made the mentioned
assumption and thereby they have shown that the thermo-
dynamic quantities are the same in the two frames. Here in
this discussion we want to fix the value of α, and from
that we shall show that we can get the relationship
between the thermodynamic quantities of the two frames.
Coincidentally, we shall show that our result matches
theirs.
Using the relations (7) and (70), one can easily obtain

~JabS ¼ Ωα−4JabS − 3ðNi∂iΩÞΩα−3ðNaξb − NbξaÞ: ð71Þ

Now, following the usual process, if one defines the
conserved Noether charges as (in Einstein frame and in
Jordan frame) ~Q ¼ 1

2

R
d ~Σab

~JabS ,Q ¼ 1
2

R
dΣabJabS then for a

stationary black hole (ξa ¼ χa and ~ξa ¼ ~χa, where χa and
~χa are the time-like Killing vectors) one obtains

~Q ¼ ΩαQ ð72Þ

on the horizon. To achieve this one needs to
use the relations d ~Σab ¼ ð~la ~χb − ~lb ~χaÞd2x⊥

ffiffiffi
~σ

p
,

dΣab¼ðlaχb−lbχaÞd2x⊥
ffiffiffi
σ

p
, ~la¼Ω−αla and

ffiffiffi
~σ

p ¼Ω2
ffiffiffi
σ

p
.

Here, la and ~la are the auxiliary null vectors in the two
frames satisfying ~χa~la ¼ −1 ¼ χala.
From the Noether potentials (68) and (69) if one

calculates the entropy on a null surface, one defines entropy
in, say Jordan frame as S ¼ 2π

κ Q. One uses the similar
definition in Einstein frame as well. The surface gravity κ is
defined by the relation χa∇aχ

b ¼ κχb. For the transforma-
tion mentioned in (70) one can find ~κ ¼ Ωακ with ~κ defined
as ~χa ~∇a ~χ

b ¼ ~κ ~χb. Therefore, from (72) one finds that the
entropy is the same in the two frame. This implies that for
any value of α, the entropy is equivalent in the two frames.
So, it is not surprising that [24] got the same conclusion as
the entropy is invariant in the two frames with the specific
choice of α ¼ 0. But, for the other thermodynamic quan-
tities one has to fix α to get the proper relation in the two
frames. For instance,

~T ¼ ΩαT; ð73Þ

where T ¼ κ
2π and so on. To fix α we take a particular

example. Consider a static, spherically symmetric(SSS)
metric in the Jordan frame2

ds2 ¼ f1ðrÞdt2 −
dr2

f2ðrÞ
− r2ðdθ2 þ sin2θdΦ2Þ ð74Þ

2We are not going into the arguments in some paper (for
example [25]) whether the SSS metric represents a black hole
solution in the scalar-tensor theory. Here, the calculations are
done on the null surface.
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Now, the GHY surface term in Jordan frame, mentioned in
(9) gives contribution on r ¼ const surface as

AGHYjr ¼ −
1

8π

Z
r¼rH

ϕ
ffiffiffiffiffiffiffi
hðrÞ

p
KðrÞd3x

¼ −
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f01ðrHÞf02ðrHÞ

p
4

ðϕr2HÞ ¼ −ϕπr2H ¼ −S

ð75Þ

where, T ¼ κ
2π ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0
1
ðrHÞf02ðrHÞ

p
4π ¼ β−1 from the definition of

surface gravity has been used. We have defined ϕ
times quarter of the surface area as the entropy. Here,
Nr ¼ 1ffiffiffiffiffi

jgrr
p

j ¼
1ffiffiffiffiffiffiffiffi
f2ðrÞ

p is the normal defined in the r ¼ const

hypersurface.
Let us recall the fact mentioned in Sec. II C that the

equations of motion are equivalent in the two frames as
shown by transformations (2) and (3). So if the metric gab is
the solution in the Jordan frame, then ϕgab is the solution in
Einstein frame. Hence, the corresponding conformally
connected metric tensor of (74) is the solution in the
Einstein frame:

d~s2 ¼ ϕ

�
f1ðrÞdt2 −

dr2

f2ðrÞ
− r2ðdθ2 þ sin2θdΦ2Þ

�
ð76Þ

The same calculation (calculation of the GHY surface
term (6) at constant r surface) in Einstein’s frame leads to
the result

~AGHYjr ¼ −
1

8π

Z
r¼rH

ffiffiffiffiffiffiffi
~hðrÞ

p
~KðrÞd3x

¼ −
~β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f01ðrHÞf02ðrHÞ

p
4

ðϕr2HÞ
¼ − ~S; ð77Þ

where, ~Nr ¼
ffiffiffiffiffiffiffiffi
ϕ

f2ðrÞ
q

. One can verify that the two surface

actions AGHY and ~AGHY given in (6) and (9) are invariant
near the null surface as they are connected with each other
by the relation (7) and the last term of that equation does
not contribute at the r ¼ const surface. Therefore, we can
say the result of (75) and (77) are the same. From that, one
can conclude that ~β ¼ β. Hence, the temperature is invari-
ant in both the frames. So, from (73) one gets α ¼ 0 which
justifies the assumption of [24].
Next, let us see how the gravitational energy are related

in the two frames. For that, let us calculate the GHY terms
in all the frames. The motivation is from the fact that, in the
GR case, the surface term is interpreted as the free energy of
the spacetime (AðGRÞ

GHY ¼ −SðGRÞ þ βðGRÞEðGRÞ) when it is
calculated for all the surfaces (for details, see [55]). Note
that when the GHY term is calculated for all the surfaces,
generally there are four surfaces—constant r, constant θ,

constant ϕ and constant t. But, for SSS spacetime, the
contribution from the last two surfaces vanishes as the
metric components are independent of t and ϕ. The GHY
surface term, when calculated collectively on all the
surfaces, gives

AGHY ¼ AGHYjr þAGHYjθ
¼ −S −

1

8π

Z
θ
ϕ

ffiffiffiffiffiffiffiffi
hðθÞ

p
KðθÞd3x

¼ −Sþ β

2

Z
rH

0

ϕ

ffiffiffiffiffi
f1
f2

s
dr ¼ −Sþ E

T
; ð78Þ

where E is defined as E ¼ 1
2

R rH
0 ϕ

ffiffiffiffi
f1
f2

q
dr and the same

calculation in Einstein frame gives

~AGHY ¼ ~AGHYjr þ ~AGHYjθ
¼ − ~S −

1

8π

Z
r¼rH

ffiffiffiffiffiffiffiffi
~hðθÞ

p
~KðθÞd3x

¼ − ~Sþ
~β

2

Z
rH

0

ϕ

ffiffiffiffiffi
f1
f2

s
dr ¼ − ~Sþ

~E
~T
: ð79Þ

Like the GR cases, we found that the GHY term has the free
energy structure in both the frames. Now, one can show that
two GHY actions are the same on the horizon as they are
connected by the relation (7), and the last term of that
equation does not contribute there. So we can say the
results of (75) and (77) are the same. Since ~T ¼ T and
~S ¼ S, one gets the equivalent expression of the energy in

both frames as ~E ¼ E ¼ 1
2

R rH
0 ϕ

ffiffiffiffi
f1
f2

q
dr.

Now our analysis suggests that all the thermodynamic
variables are invariant in both frames. Reference [56]
argues that the expression of the temperature should be
equivalent under the conformal transformation. Our argu-
ments give identical results, although obtained in a different
fashion. The literature [24] demands that all the thermo-
dynamic variables are invariant in both the Jordan and
Einstein frame when the spacetime is asymptotically flat.
To prove these, the authors made the key assumption that
the vectors ~ξa and ξa are the same in both the frames. There
is no justification for how they took it for granted. Our
analysis gives the identical results, although it is much
more robust.
It should be mentioned here that although, the energy in

the two frames should be invariant, but, unfortunately, we
have not been able to give any covariant form of the energy.
So, we cannot compare it with existing expression of
energy in the literature. But, we can predict whatever may
be the expression, it should be conformally invariant.
Interestingly, one candidate fulfils this condition on the
horizon which is the Brown-York energy [57]. On the other
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hand, the recent works suggests that the Misner-Sharp
energy [58] or the Hawking-Heyward quasilocal energy
([59–61]) and the others are not conformally invariant and,
hence, they cannot be the candidates. Although, [62]
suggests that the Brown York energy is conformally
invariant all over the spacetime, but that is not correct.
The wrong statement of the mentioned paper is due to the
fact that Eq. (2.25) of [62] (the relation between the traces
of the two extrinsic curvature tensors in the two frames) is
incorrect. For (1þ 3) dimensions, we derived the correct
one in (7). This correct one tells us that the Brown-York
energy is the same only on the horizon.
Thus, in our analysis, we found that the thermodynamic

quantities are invariant in the two frames from the whole
action as well as from the GHY surface term. So, from the
thermodynamic point of view, the two frames are equiv-
alent for the static spherical symmetric spacetime.

1. Summary

The GHY term in both the frames can be interpreted as
the free energy of the spacetime. Moreover, only from the
surface part one can conclude that the thermodynamic
quantities (entropy, energy and temperature) are invariant in
both the frames.

V. CONCLUSION

In this work, we have deeply studied the well-known
scalar-tensor theory from action as well as thermodynamic
framework. Also, some consideration, which is often taken
for granted without even proper declaration, is mentioned
here. Moreover, the work also assists for a comparative
study of this theory with the usual GR one. It has earlier
been mentioned that the argument whether the two frames,
on which the theory is described, is equivalent is not still
been resolved and people are studying the two frames in
numerous ways to distinguish the equivalence (or inequi-
valence) of the two frames. This work basically have
addressed those issues, though studied from the different
perspective.
Here, we have started analyzing the theory in the two

frames form the action level. What we found is the usually
mentioned mathematical equivalence in the literature is an
incomplete statement. One just unseeingly neglects a total
derivative term while projecting the theory from one frame
to the other. It has been shown that the concern does not
arise while one incorporates the GHY surface term in this
theory. Which means, the usual description of the math-
ematical equivalence of the two frames breaks while one
does not include the GHY surface term. After that, we have
separated the gravitational action in each frame as a bulk
part and a total derivative surface part. Later the separation
is justified by obtaining the equation of motion from the
bulk part of the total action. Thereafter, we endeavored to
obtain the connection of the two part of the gravitational

action by the holographic relation. Unlike the GR case, it
has been shown here that the holographic property is not
valid in the original(Jordan) frame. But, it continues to be
valid in the Einstein one and, thereby, obtaining the
inequivalence of the two frames in the action (classical)
level even without the presence of the external matter field.
Afterwards, the two frames are compared at the thermo-

dynamic level. The relation of the thermodynamic entities
in the two frames were not well known. It has also been the
subject of debate which form of the energy in the literature
should be used to describe the thermodynamics of the
system in this theory. Although, some earlier attempts has
been made to solve the enigma, those are based on some
assumptions. In this paper, the entropy in the two frames
has been obtained from the first principle using the
Virasoro algebra technique, the first attempt to obtain
entropy in this theory in that way. We have been able to
prove that the entropy in the two frames are indeed
equivalent. Later, we have interpreted the gravitational
action as the free energy of the spacetime in the two frames
and it has also been shown that the identified expression of
the energy and the temperature in the two frames is
equivalent. The result coincides with some previous works,
though obtained in a more robust way. Also, the attempt has
been made to get the “holographic” relation at the thermo-
dynamic level as we have separated out the total action in
the thermodynamic level as a bulk part which was
identified in terms of energy and a total derivative surface
term which accounts to the entropy. The result obtained
here is the same as earlier; i.e. the holographic relation is
maintained in the Einstein frame, while it is defiled in the
original one. We have also noticed that the same term
appears in this case as well to spoil the holographic
property in the Jordan frame. Finally, all the earlier
obtained relation of the thermodynamic entities has been
verified from the GHY surface terms. Moreover, it has been
shown that the GHY surface term itself can be interpreted
as the free energy of the spacetime.
The analysis suggests that the energy which should be

used in this theory to describe the thermodynamics of the
system, should be conformally invariant. The Brown-York
formalism of the quasilocal energy in the literature is
conformally invariant near the horizon. On the other hand,
the Misner-Sharp energy or the Hawking-Heyward quasi-
local energy are not conformally invariant. As the identified
expression of energy in our analysis has not been obtained
in a covariant form, we cannot count on any standard form
of energy in the literature to be the absolute one for the
thermodynamic description. We only have found out that it
should be conformally invariant. Therefore, it is more
probable for the Brown-York one to describe the thermo-
dynamics of the system in this theory rather than the
Misner-Sharp or the Hawking-Heyward quasilocal one.
Finally we want to make a comment that the method was

used to identify the different thermodynamic quantities
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which lead to the fact that energy has to be conformally
invariant. This is what we find within this method, but that
there is no consensus on which method provides the “right”
answer at this stage, so other approaches may provide
different answers. The value of our analysis lies in the facts
that it raises and in proposing what seems like an important
approach, rather than in giving definitive answers. All the
works in this regards (including this one) suggest that the
investigation on these issues needs to be continued. So we
hope we shall be able to give more insight in near future.
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APPENDIX A: DERIVATION OF
EQS. (32) AND (36)

1. Equation (32)

The last two terms of Eq. (31) can be expressed as
follows:

2ð∇bϕÞPiabd£ξgid ¼ ð∇dϕÞ½∇aξd þ∇dξ
a�− 2ð∇aϕÞð∇iξ

iÞ
ðA1Þ

and

£ξva ¼ 2Pibad∇b£ξgid ¼ 2Piabd∇b£ξgid

¼ ∇b∇aξb þ∇b∇bξa − 2∇a∇bξ
b: ðA2Þ

Therefore,

2ð∇bϕÞPiabd£ξgid − ϕ£ξva

¼ ð∇bϕÞð∇aξbÞ þ ϕ∇b∇aξb − ϕ□ξa

þ ð∇bϕÞð∇bξaÞ − 2ð∇aϕÞð∇bξ
bÞ − 2ϕgacRkcξ

k;

ðA3Þ

where one has to use the relation ∇b∇dξ
i −∇d∇bξ

i ¼
Ri
jbdξ

j. The first three terms of the above equation give
ð∇bϕÞð∇aξbÞþϕ∇b∇aξb−ϕ□ξa¼∇b½ϕð∇aξb−∇bξaÞ�þ
ð∇bϕÞð∇bξaÞ with this and using 2ð∇bϕÞð∇bξaÞ−
2ð∇aϕÞð∇bξ

bÞ ¼ 2∇b½ξað∇bϕÞ − ξbð∇aϕÞ� þ 2ξb∇b∇aϕ
−2ξa□ϕ, one obtains

2ð∇bϕÞPiabd£ξgid − ϕ£ξva

¼ ∇b½ϕð∇aξb −∇bξaÞ þ 2ξað∇bϕÞ − 2ξbð∇aϕÞ�
þ 2ξb∇b∇aϕ − 2ξa□ϕ − 2ϕgacRkcξ

k: ðA4Þ

Using this in (31), one can write Noether current as

Ja ¼ 1

16π

�
∇b½ϕð∇aξb −∇bξaÞ þ 2ξað∇bϕÞ − 2ξbð∇aϕÞ�

×

�
ϕR −

ωðϕÞ
ϕ

gab∇aϕ∇bϕ − VðϕÞ
�
ξa

þ 2
ω

ϕ
ð∇aϕÞξbð∇bϕÞ

þ 2ξb∇b∇aϕ − 2ξa□ϕ − 2ϕgacRkcξ
k

�
: ðA5Þ

Now, using the equation of motion of the metric tensor gbc

in this frame as given in (25), and then contracting it with

gabξc one can obtain ðϕR−ωðϕÞ
ϕ gab∇aϕ∇bϕ−VðϕÞÞξaþ

2ω
ϕð∇aϕÞξbð∇bϕÞþ2ξb∇b∇aϕ−2ξa□ϕ−2ϕgacRkcξ

k¼0.
Thus, the on shell Noether current is given by (32).

2. Derivation of Eq. (36)

In Einstein frame, the Noether current is given by (35).
Now, similar to the Jordan frame (A2) one can obtain

£ξ ~va ¼ ~∇b
~∇a ~ξb þ ~∇b

~∇b ~ξa − 2 ~∇a ~∇b
~ξb

¼ ~∇b
~∇b ~ξa − ~∇b

~∇a ~ξb þ 2~gac ~Rkc
~ξk: ðA6Þ

To obtain the last step, one has to use the same relation
∇b∇dξ

i −∇d∇bξ
i ¼ Ri

jbdξ
j in the tilde frame. So, using

(A6) one can obtain

~Ja ¼
��

~R
16π

−
1

2
~gij ~∇i

~ϕ ~∇j
~ϕ −Uð ~ϕÞ

�
~ξa þ ð ~∇a ~ϕÞ~ξbð ~∇b

~ϕÞ

−
2

16π
~gac ~Rkc

~ξk þ 1

16π
~∇b½ ~∇a ~ξb − ~∇b ~ξa�: ðA7Þ

Again, using the equation of motion of the metric tensor ~gbc

in the Einstein frame (22) and contracting it with ~gab ~ξc one
finds all the other terms vanish except for the last total
derivative one and, therefore, the on-shell Noether current
is given by (36).

APPENDIX B: DERIVATION OF
EQS. (41) AND (42)

1. Derivation of Eq. (41)

To calculate (38) one already know that the Noether
potential in Jordan frame is defined by (33). If one writes
it in terms of the Killing and the normal vectors using

ξa ¼ Tχa þ Rρa with R ¼ χ2

κρ2
DT, one obtains
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Jab ¼ 1

16π

�
ϕ

�
2κ

χ2
ðχaρb − χbρaÞT

−
1

κχ2
ðχaρb − χbρaÞðD2TÞ

�
þ 2ξa∇bϕ − 2ξb∇aϕ

�
:

ðB1Þ

Using the relation dΣab ¼ −d2xðχaρb − χbρaÞ jχj
ρχ2

from

(A.2) of [46] one obtains

dΣabJab ¼ −
d2x
16π

jχj
ρχ2

�
2ρ2ϕ

�
2κT −

1

κ
D2T

�

þ ðχaρb − χbρaÞð2ξa∇bϕ − 2ξb∇aϕÞ
�
: ðB2Þ

Using χa∇aϕ ¼ 0 and at the horizon ρa∇aϕ ¼ Oðχ2Þ, one
gets the contributing terms at the horizon as

dΣabJab ¼
d2x
16π

2ϕ

�
2κT −

1

κ
D2T

�
: ðB3Þ

Therefore, one can find the desired relation (41).

2. Derivation of Eq. (42)

As done in the previous part, writing ξa in terms of two
orthogonal vectors χa and ρa, one can obtain from Eq. (32)

Ja ¼ 1

16π

�
−

1

κχ2
ð∇bϕÞχaρbðD2TÞ

−
2Rκ
χ2

ρaρb þ ϕ

�
1

κχ2
ρaðD3TÞ − 2κ

χ2
ρaðDTÞ

�

þ 2ðTχa þ RρaÞ□ϕ − 2ð∇aϕÞ
�
DT þ Rκ

χ2
ðχ2 − ρ2Þ

�

− 2ðTχb þ RρbÞð∇b∇aϕÞ
�
: ðB4Þ

To calculate the Lie bracket of the charges (39), one needs
to calculate dΣabξ

a, which is given by

dΣabξ
a ¼ −d2x

jχj
ρχ2

½Tχ2ρb − Rρ2χb�: ðB5Þ

Hence, a straightforward calculation gives

dΣabξ
a
2J

b
1 ¼ −

d2x
16π

jχj
ρχ2

�
ð∇aϕÞ

�
1

κ
R2ρ

2ρaðD2T1Þ − 2R1κT2ρ
2ρa

�
þ T2ρ

2ϕ

�
1

κ
ðD3T1Þ − 2κðDT1Þ

�

þ 2ð□ϕÞρ2χ2ðR1T2 − T1R2Þ − 2ð∇bϕÞ½T2χ
2ρb − R2ρ

2χb�
�
DT1 þ

R1κ

χ2
ðχ2 − ρ2Þ

�

− 2½T2χ
2ρb − R2ρ

2χb�ðT1χ
a þ R1ρ

aÞð∇a∇bϕÞ
�
: ðB6Þ

Now we shall take only those terms which contribute to
calculate the bracket defined in (39) at the horizon and
neglect all other terms. As χa is a Killing vector,
χa∇aϕ ¼ 0, and at the horizon, ρa∇aϕ ¼ Oðχ2Þ.
Therefore, some terms vanish. Taking the nonvanishing

terms and using R ¼ χ2

κρ2
ðDTÞ, one obtains

dΣabξ
a
2J

b
1 ¼ −

d2x
16π

jχj
ρχ2

�
T2ρ

2ϕ

�
1

κ
D3T1 − 2κDT1

�
þ 2ð□ϕÞχ4ðT2DT1 − T1DT2Þ

− 2

�
T2χ

2ρb −
χ2

κ
ðDT2Þχb

��
T1χ

a

þ χ2ρa

κρ2
ðDT1Þ

�
ð∇a∇bϕÞ

�
: ðB7Þ

At the null surface χ2 ¼ 0. Therefore, the second term
containing □ϕ does not contribute at the horizon as it is

proportional to χ2. Also, the calculation gives a few
symmetric terms for the interchanging of 1 ↔ 2. At the
horizon one can prove that χaχbð∇a∇bϕÞ ¼
ρaρbð∇a∇bϕÞ ¼ 0. Ultimately, the contributing terms to
calculate the bracket (39) is

dΣabξ
a
2J

b
1 ¼ −

d2x
16π

jχjϕ
ρ

�
2κT2ðDT1Þ −

1

κ
T2ðD3T1Þ

�
þOðχ2Þ þ ð1 ↔ 2 symmetric termsÞ: ðB8Þ

So, ultimately, the bracket (39) gives the value mentioned
in (42).

APPENDIX C: DERIVATION OF EQ. (67)

The total Lagrangian in the Jordan frame is given is
given by (1). We want the variation of the

ffiffiffiffiffiffi−gp
ϕR with

respect to the first- and second-order derivative of the
metric tensor gab, which is given by
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δð ffiffiffiffiffiffi
−g

p
ϕRÞ ¼ 2ϕ

ffiffiffiffiffiffi
−g

p
δð∂m∂ngpqÞPpnmq

− 2
ffiffiffiffiffiffi
−g

p
ϕδð∂mgnqÞ½PnbmdΓq

bd þ PnbcdΓm
bc

þ PimcqΓn
ic�; ðC1Þ

where, Pbcd
a ¼ ∂R

∂Ra
bcd
, and Pabcd ¼ 1

2
ðgacgbd − gadgbcÞ. Now,

from the straightforward calculation, one can obtain
(expanding the Euler derivative)

∂i

�
gab

δE
ffiffiffiffiffiffi−gp

L

δEð∂igabÞ
þ ∂jgab

∂ ffiffiffiffiffiffi−gp
L

∂ð∂i∂jgabÞ
�

¼ ∂i

�
gab

∂ ffiffiffiffiffiffi−gp
L

∂ð∂igabÞ
− gab∂h

∂ ffiffiffiffiffiffi−gp
L

∂ð∂h∂igabÞ

þ ∂jgab
∂ ffiffiffiffiffiffi−gp

L

∂ð∂i∂jgabÞ
�
¼ 3

16π

ffiffiffiffiffiffi
−g

p
□ϕ: ðC2Þ

Now, the surface term at the thermodynamic level is

ffiffiffiffiffiffi
−g

p
Lsur ¼

ffiffiffiffiffiffi−gp
16π

ð2ϕR0
0 − 2∇0∇0ϕþ 2□ϕÞ

¼ 1

16π
ð2∂aðϕ

ffiffiffiffiffiffi
−g

p
g0iΓa

i0Þ þ 2
ffiffiffiffiffiffi
−g

p
□ϕÞ ðC3Þ

From straightforward calculation, one obtains

∂i

�
gab

δE
ffiffiffiffiffiffi−gp

Lsur

δEð∂igabÞ
þ ∂jgab

∂ ffiffiffiffiffiffi−gp
Lsur

∂ð∂i∂jgabÞ
�

¼ ∂i

�
gab

∂ ffiffiffiffiffiffi−gp
Lsur

∂ð∂igabÞ
− gab∂h

∂ ffiffiffiffiffiffi−gp
Lsur

∂ð∂h∂igabÞ

þ ∂jgab
∂ ffiffiffiffiffiffi−gp

Lsur

∂ð∂i∂jgabÞ
�
¼ Lsur: ðC4Þ

Subtracting (C4) from (C2), one gets the mentioned result
in (67).
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