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A physically plausible Lemaître-Tolman-Bondi collapse in the marginally bound case is considered.
By “physically plausible,” we mean that the corresponding metric is C1 matched at the collapsing star
surface and further that its intrinsic energy is, as due, stationary and finite. It is proved for this Lemaître-
Tolman-Bondi collapse, for some parameter values, that its intrinsic central singularity is globally naked,
thus violating the cosmic censorship conjecture with, for each direction, one photon, or perhaps a pencil of
photons, leaving the singularity and reaching the null infinity. Our result is discussed in relation to some
other cases in the current literature on the subject in which some of the central singularities are globally
naked, too.
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I. INTRODUCTION

Spherical inhomogeneous dust collapse has been exten-
sively studied in the past, paying special attention to the
final stages of the evolutionary process. Behind these
studies, there usually exists an extra motivation: to confront
the validity of the Penrose conjecture [1] (censoring the
nakedness of essential space-time singularities) with the
singularities developed in specific collapsing situations.
For a select set of pioneering work in this context, see, for
instance, Refs. [2–6], which paved the way to delimitate the
hypothesis which ensures the validity of the aforemen-
tioned Penrose conjecture.
Recently, some spherically symmetric collapsing metrics

have been considered in Ref. [7] (see also the work in
Refs. [2] and [6]), in order to show that some of their central
singularities can violate the Penrose conjecture [1,2]. In
other words, these central singularities could be, against
the Penrose conjecture, global naked singularities; i.e., they
could be seen from null future infinity. See, for instance,
Ref. [6], Sec. 4, for a distinction about the difference
between local and global naked singularities. Here, we are
only concerned by the possible existence of global naked
singularities.
For some authors (see, for instance, Ref. [8]), to elucidate

whether there are in nature naked singularities or not is
important since in the affirmative case their vision could
give us some clues about how to change the theory of
general relativity in order to avoid these singularities,
leading to a, quantum or not, modification of the theory.
In the present paper, we consider the marginally bound

case of the dust Lemaître-Tolman-Bondi (LTB) family of
Einstein equations solutions [9–11] (see also Refs. [12,13]).
We will chose a subfamily made of the particular solutions

satisfying the Lichnerowicz matching conditions [14] with
the exterior Schwarzschild metric at the collapsing star1

surface. That is, in an admissible2 coordinate system, the
metric is assumed to be class C1; i.e., the metric and its first
derivatives are assumed to be continuous across this sur-
face. Perhaps this condition is not always a physically
realistic one, but in our opinion, it could be worth exploring
its consequences, as we do in the present case.
Furthermore, we impose the physical condition that

these metrics have a finite stationary intrinsic energy
(see Appendix A), and finally for the sake of simplicity,
we choose a simple metric of this particular subfamily of
metrics. Hereafter, we name this chosen metric the ξ-metric
for reasons that will appear later, when we introduce the ξ
parameter in Sec. IV.
Our main result is that for this ξ-metric, and for some

parameter values, the intrinsic central singularity is a
globally naked singularity; that is, given a 3-space direc-
tion, one outgoing radial null geodesic (or perhaps a pencil
of such geodesics) leaves this singularity and reaches the
future null infinity. On the other hand, in Ref. [6], the
authors raise the following question: “Could it be that
the initial distributions which lead to naked singularities are
not astrophysically realizable?” Thus, our result suggests
that such distributions are astrophysically realizable. Some
previous results in Refs. [2,6], and [7], for some marginally
bound LTB metrics, seem to support the same suggestion,
although differently than our case, all but one of these
metrics leading to the previous results do not fulfill all the
C1 matching requirements across the star boundary. Then,
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1Throughout the paper, the term “star” refers to any uncharged,
spherical, nonrotating, finite mass cloud.

2Following Ref. [14], the term “admissible” designates a
coordinate system of a C2 class (atlas) manifold structure
describing the space-time.
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we could confirm that the cosmic censorship conjecture
would become violated.
This is the paper’s outline. In Sec. II, we obtain the ξ-

metric, a LTB marginally bound solution obeying the
C1 matching conditions with vanishing intrinsic energy.
Section III revisits a sufficient condition for the global
nakedness of the central singularity. In Sec. IV, we prove
that this ξ-metric fulfills, for some parameter values, this
sufficient condition, and in Sec. V, we analyze numerically
this global nakedness with the help of Mathematica. The
last section, Sec. VI, is devoted to final considerations.
Detailed calculations concerning the intrinsic energy of the
ξ-metric have been included in Appendix A. The causal
character of the apparent horizon of this metric is analyzed
in Appendix B.
We takeG ¼ c ¼ 1 for the gravitational and the speed of

light constants.

II. MATCHING THE LTB MARGINALLY
BOUND COLLAPSE

As is well known, when referred to Gauss coordinates
adapted to the spherical symmetry, in the marginally bound
case, the metric element of the dust LTB metrics can be
written [12,13] (signature þ2)

ds2 ¼ −dτ2 þ A02dρ2 þ A2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

with A ¼ Aðτ; ρÞ and A0 ≡ ∂ρA. The general expression for
A, the solution of the Einstein field equations, is

Aðτ; ρÞ ¼
�
9

2
M

�
1=3

ðτ − ψÞ2=3; ð2Þ

whereM ¼ MðρÞ and ψ ¼ ψðρÞ are two arbitrary functions
of ρ, MðρÞ representing the enclosed partial mass in the
sphere of radius ρ and ψðρÞ representing the singular
time τ for the ρ shell. The regular coordinate ranges are
−∞ < τ < ψðρÞ, 0 ≤ ρ < ∞, 0 < θ < π, and 0 ≤ ϕ ≤ 2π.
The 2-surface τ ¼ ρ ¼ 0 and arbitrary θ and ϕ will be
referred to as the central singularity.
We can supplement Eq. (2) with the particular Einstein

field equation

4πμðτ; ρÞ ¼ M0

A2A0 ; M0 ≡ dM
dρ

; ð3Þ

relating the energy density source, μ, to the metric.
Let us take the commonly used scale Að0; ρÞ ¼ ρ (see,

for instance, Refs. [3]; [15], p. 245; and [16], p. 17). This
leads to

ψ ¼ 2

3

ρ3=2ffiffiffiffiffiffiffi
2M

p : ð4Þ

In this gauge, the C1 matching conditions with the exterior
Schwarzschild metric [see next Eq. (7)] through the star
surface, say, ρ ¼ λ, Mðρ ≥ λÞ ¼ m ¼ const, are in the
usual Hadamard notation [17],

½M� ¼ ½M0� ¼ ½M00� ¼ 0: ð5Þ

For a detailed proof of this result, see Ref. [18]. Notice
that in Eq. (1), besides A, its first derivative A0 appears.
As a result, the C1 matching conditions involve the second
derivative A00, too, which leads finally to the last condition
of (5), i.e., ½M00� ¼ 0.
A simple solution of Eq. (5) is3

MðρÞ ¼
8<
:m −m

�
1 − ρ2

λ2

�
3
; ρ ≤ λ

m; ρ ≥ λ:
ð6Þ

With this solution, we will build, through (1)–(4), what
we have called in the Introduction the ξ-metric. Further, this
metric has, as due, a stationary and finite intrinsic energy, as
shown in Appendix A. Notice that the ξ-metric source is a
spherical finite mass, regularly distributed before the
eventual collapse. Further, this physical system neither
expels nor accretes any mass and neither radiates electro-
magnetically nor gravitationally. Then, any meaningful
kind of energy we can ascribe to it has to be actually
stationary and finite as we have demanded, irrespective of
how much we approach the physical singularity.
However, before arriving at the basic result of the present

section, notice, to begin with, that the expression (2) can be
written for the Schwarzschild solution like

A ¼ r ¼
�
9m
2

�
1=3

ðτ − ψÞ2=3; ψ ¼ 2

3

ρ3=2ffiffiffiffiffiffiffi
2m

p ; ð7Þ

with r the standard static radial coordinate and m the
Schwarzschild mass parameter. Then, the generic singu-
larity event, τ ¼ ψðρÞ, will be visible from the star outside
if the leaving photon arrives at the star surface, ρ ¼ λ, in a
time τλ of which the corresponding r value given by Eq. (7)
is such that

r > 2m: ð8Þ

This condition gives for τλ the inequality

τλ <
2

3

λ3=2ffiffiffiffiffiffiffi
2m

p −
4m
3

¼ ψðλÞ − 4m
3

¼ τhðλÞ; ð9Þ

3Solution (6) is a specially simple case inside a large family of
LTB metrics satisfying Eq. (5). See next Eq. (34).
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with τhðρÞ ¼ ψðρÞ − 4M
3
, which is called the apparent

horizon of the metric (1) (see Ref. [2]) and is implicitly
defined by

AðτhðρÞ; ρÞ ¼ 2MðρÞ: ð10Þ

In other words, a radial outgoing null geodesic leaving out
the generic singular event τ ¼ ψðρÞ could only be seen from
future null infinity if its corresponding photon actually
arrives at the star surface and then if its arrival time, τλ,
to this surface satisfies the inequality (9), τλ < τhðλÞ.
Nevertheless, for the metric given by (1) and (2), there is

a well-known result (see, for instance, Ref. [12], p. 332, at
the beginning of Sec. 18.14 and the reference 17 in
Ref. [19]), according to which if M0 > 0 all these singu-
larities, out of the central one, are not visible from this
future null infinity. That is, all these singularities are
dressed ones. Thus, we will concentrate on the possible
global nakedness of the remaining singularity, the central
one, of our ξ-metric, and then, in the final section, we will
compare our result with some well-known results of the
present literature on the subject.

III. SUFFICIENT CONDITION FOR THE
GLOBAL NAKEDNESS OF THE

CENTRAL SINGULARITY

In Ref. [7], Eq. (26), a sufficient condition for the global
visibility of the central singularity,

ψ 0

M0 >
1

3
ð26þ 15

ffiffiffi
3

p
Þ; M0 > 0; ∀ ρ ∈ ð0; λÞ; ð11Þ

is given for the case of a marginally bound dust LTBmetric.
Notice that the present notation is different from the one
used in Ref. [7]. The justification of the above inequality
concerns the behavior of the radial null geodesics across the
region

A > 2M; ð12Þ

outside the apparent horizon. To make our discussion self-
contained, we give next our version of this justification.

A. Null geodesics from the center

To begin with, the general equation for the radial
outgoing null geodesics, ðτgðρÞ; ρÞ, for the metric (1) is

dτg
dρ

¼ A0; ð13Þ

where A0, having in mind Eq. (2), becomes

A0 ¼ 1

3

M0

M
Aþ

ffiffiffiffiffiffiffi
2M
A

r
ψ 0: ð14Þ

In the region A > 2M, let us consider the k-lines implicitly
defined by the condition

AðτkðρÞ; ρÞ ¼ kMðρÞ; k > 2; ð15Þ

which from Eq. (2) is equivalent to

τkðρÞ ¼ ψðρÞ − k
3

ffiffiffiffiffi
2k

p
MðρÞ ð16Þ

with k > 2. The slope of these lines,

τ0kðρÞ ¼ ψ 0ðρÞ − k
3

ffiffiffiffiffi
2k

p
M0ðρÞ; ð17Þ

might be compared with the slope of the outgoing radial
null geodesics, τ0g ¼ A0, on the events ðτ; ρÞ where both
families of lines, τkðρÞ and τgðρÞ, intersect. Notice that
these intersection events could always exist since they can
always be considered the initial condition of a correspond-
ing unique outgoing radial geodesic. Thus, taking A ¼ kM
in Eq. (14), we have for these intersecting events

τ0gðρÞjkM ≡ A0ðτkðρÞ; ρÞ ¼
ffiffiffi
2

k

r
ψ 0ðρÞ þ k

3
M0ðρÞ: ð18Þ

Then, a sufficient condition for this geodesic escaping to
null infinity is that for all these intersection events of the
geodesic lines, τg, with some τk>2 line, with the ρ values
belonging to the ð0; λÞ interval, we have the following
inequality:

τ0gðρÞjkM < τ0kðρÞ; k > 2: ð19Þ

In fact, from Eq. (17), τ0k>2 < τ0k¼2 ¼ τ0h, and Eq. (19)
implies

τ0gðρÞjkM < τ0hðρÞ; ð20Þ

in this interval.
Then, in particular, the photon arrives at the star surface

at time τλ, which satisfies Eq. (9). Consequently, the photon
escapes at the null infinity.
It remains to prove that such a geodesic starts from the

central singularity when Eq. (19) occurs.

B. Null geodesics from the central singularity

From Eqs. (17) and (18), the sufficient condition (19) is
equivalent to

ψ 0

M0 >
k
3

1þ ffiffiffiffiffi
2k

p

1 −
ffiffi
2
k

q ≡ fðkÞ; k > 2; ð21Þ
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which coincides with Eq. (25) in Ref. [7], once the
corresponding change in notation is taken into account.
Let us be more precise. Actually, the fulfillment con-

dition (19) for all ρ ∈ ð0; λÞ implies that the corresponding
k-line has to be timelike. One can easily arrive at this
conclusion by simply drawing the forward outgoing light
cone in the assumed intersection event of τg with τk>2.
These timelike lines actually exist because from
Appendix B, for each k > 2, the corresponding k-line is
timelike [as it was implied by Eq. (19)], provided that
Eq. (21) is satisfied for all ρ ∈ ð0; λÞ.
For k > 2, the function fðkÞ has a global minimum at

k ¼ km ¼ 2þ ffiffiffi
3

p
, the value of which is

fðkmÞ ¼
1

3
ð2þ

ffiffiffi
3

p
Þ3 ¼ 1

3
ð26þ 15

ffiffiffi
3

p
Þ ð22Þ

according to Eq. (26) in Ref. [7]. In fact, it is easy to verify
that f00ðkmÞ > 0.
In particular, the sufficient condition (21) will be

minimally demanding for k ¼ km. Then, henceforth, we
will put in Eq. (21) fðkmÞ; that is, we will demand (11).
From this assumption and the above considerations, the
following general statement (cf. Ref. [7] and references
quoted therein) can be proved: for any marginally bound
LTB metric (1) satisfying the inequality (11) with M
and M0 positive functions in the vicinity of ρ ¼ 0 and
Mð0Þ ¼ M0ð0Þ ¼ 0, there could exist a pencil of radial null
geodesics which come from the central singularity and
escape from the star.
Let us prove this result step by step:
(i) The family of lines (16) intersects the central

singularity τkð0Þ ¼ ψð0Þ becauseMðρÞ goes to zero
when ρ → 0.

(ii) In the vicinity of ρ ¼ 0, the slope of every line τk
(k > 2) remains larger than the corresponding slope
τ0gðρÞjkM for the outgoing radial null geodesic [com-
pare (17) and (18) keeping in mind thatM0ð0Þ ¼ 0].

(iii) Moreover, taking into account Eq. (22), the
smoothness of the functions involved in Eq. (21)
guarantees that an open elementary interval around
km, ðkm − ϵ; km þ ϵÞ, exists such that Eq. (19) is
satisfied, that is,

τ0gðρÞjlM < τ0lðρÞ ∀ l ∈ ðkm − ϵ; km þ ϵÞ;
∀ ρ ∈ ð0; λÞ: ð23Þ

(iv) Then, let us consider any one of the k-lines, k ¼ l,
and any one of the events on it; let us say the event
corresponding to ρ ¼ ρ1. Further, given a direction
θ, ϕ, consider the virtual unique null outgoing
geodesic, say τgðρÞjl, passing through this ρ1 event.
Assume that this virtual geodesic exists actually
from ρ ¼ 0. Can this geodesic remain over τlðρÞ

when ρ goes to zero? No, it cannot, since ðτ ¼ 0;
ρ ¼ 0Þ is the essential central singularity, such that
events with ρ ¼ 0 and τ > 0 are forbidden. Could
then the geodesic run, for ρ going to zero, the
opposite way, that is, to start from ρ ¼ 0 below the l
line, τlðρÞ? No, since in order to arrive at (23) for
ρ ¼ ρ1 we should have, contrarily to Eq. (23),
τ0gðρÞjlM > τ0lðρÞ for some ρ ¼ ρ2 < ρ1. But, as
remarked above in the present section, referring
to Appendix B, the l-line is timelike. Thus, simply
drawing the corresponding outgoing light cone for
ρ2, one becomes convinced that the last inequality is
impossible. In all, the outgoing radial l geodesics,
τgðρÞjl , start from the central essential singularity.

Therefore, a pencil of photons, one photon for each one
of the above corresponding l and ρ1 values, would exist and
would be emitted from the central singularity and would
remain always out of the apparent horizon A ¼ 2M, and
consequently, it could be detected outside the star.
Contrarily, no such a pencil can be present when we

consider the light leaving out the central regular events
(τ < 0, ρ ¼ 0), since given a direction ðθ;ϕÞ there is a
unique radial null geodesic leaving out any regular event.
Then, although leaving a door open to the actual existence
of that photon pencil leaving out the central singularity, we
must admit that such a pencil could be the result of having
assumed the actual existence of some virtual photons.
Notice that, in a mathematical terminology, Eq. (23)

together with the algebraic conditions τlð0Þ ¼ τhð0Þ and
τlðρÞ < τhðρÞ for all ρ ∈ ð0; λÞ say that the lines τlðρÞ are
subhorizon supersolutions of Eq. (13) of which the exist-
ence is equivalent to the global naked character of the
central singularity (see Ref. [20], Theorem 2.5). We have
just then proven that τlðρÞ is a set of subhorizon super-
solutions of Eq. (13).

IV. PROVING THAT THE CENTRAL
SINGULARITY OF THE ξ-METRIC IS

GLOBALLY NAKED FOR SOME ξ VALUES

In the present section, we will show, for some parameter
values, that the central singularity τ ¼ ψðρ ¼ 0Þ ¼ 0 for
the ξ-metric (see Sec. II) is a global naked singularity, in
accordance with a similar result from Ref. [3]. Our result
will be obtained numerically in the next section and also
applying the sufficient condition (11), according to Ref. [7],
in the present section.
However, it cannot be obtained from Ref. [3] going to

the limiting case where the 3-space curvature vanishes,
since this limit does not allow us to recover our ξ-metric.
Using inequality (11), the authors of Ref. [7] prove the

existence of four metrics with a global naked central
singularity for four different functions MðρÞ, Eqs. (28),
(33), (38), and (43), respectively, of Sec. Vof Ref. [7]. But
these M functions do not fulfill the last condition (5),

LAPIEDRA and MORALES-LLADOSA PHYSICAL REVIEW D 95, 064025 (2017)

064025-4



½M00� ¼ 0 and then do not fulfill all the corresponding C1

matching conditions across the star boundary, ρ ¼ λ. Could
this nonfulfillment be the reason for the nakedness and so
the reason for the corresponding violation of the cosmic
censorship conjecture? The answer is negative, since we are
going to see that our ξ-metric, which satisfies all conditions
(5), has a central global naked singularity for large enough
values of the parameter ξ≡ λ=2m.
Let us have in mind Eqs. (4) and (6) for ρ ≤ λ. In terms of

the dimensionless variable x ¼ ρ=λ ∈ ½0; 1�, the mass
function and the singularity time lines are given by

MðxÞ
m

¼ x2ðx4 − 3x2 þ 3Þ≡ x2PðxÞ ð24Þ

and

τðxÞ
m

¼ ψðxÞ
m

¼ 4

3
ξ3=2

ffiffiffiffiffiffiffiffiffiffi
x

PðxÞ
r

; ð25Þ

respectively, where PðxÞ≡ x4 − 3x2 þ 3. Thus, taking into
account Eqs. (24) and (25), the inequality (21) becomes

ξ > ½3fðkÞ�2=3FðxÞ; ð26Þ

where the function of the right-handed side is

FðxÞ≡ xPðxÞ
� ð1 − x2Þ2
1þ x2 − x4

�
2=3

; ð27Þ

which has a maximum value Fmax ≈ 0.74 at x ≈ 0.4 (see
Fig. 1). Thus, Eq. (26) is the expression of the sufficient
condition (21) for the ξ-metric. In particular, for k ¼ km,
from Eqs. (22) and (26), we obtain

ξ > ð2þ
ffiffiffi
3

p
Þ2FðxÞ: ð28Þ

Then, for any value of ξ larger than ð2þ ffiffiffi
3

p Þ2Fmax ≈
10.33, the corresponding ξ-metric has a central global
naked singularity. As discussed at the end of the Sec. III,
this naked singularity leads, for each central direction, to a
unique infinite escaping photon or even to a pencil of them.
On the other hand, this value of Fmax ≈ 0.74 provides

the threshold value of the ξ parameter from which the
apparent horizon of the metric is everywhere spacelike for
all x ∈ ð0; 1Þ. For a detailed proof of this statement, see
Appendix B.
The above four M functions of Ref. [7] can be specified

in terms of local expansions in ρ near the vanishing value of
ρ: the three first M functions go like ρ3, for small ρ values,
and the fourth one goes like ρ, while our M function,
Eq. (6), goes like ρ2.
But in Ref. [7], a fifth case for M is considered (see

Eq. (47) in Ref. [7]), this one leading to another central
global naked singularity in the paper and, although it is not
mentioned in Ref. [7], the corresponding metric fulfilling
the C1 matching conditions. Furthermore, its intrinsic
energy is finite and stationary (actually, it vanishes), as
it must be according to the comment at the paragraph that
follows Eq. (6) in Sec. II. The intrinsic energy of our ξ-
metric vanishes, too, because in this case, as we have noted,
M ∼ ρ2, for ρ → 0 (see Appendix A). The similar vanishing
in the fifthM case of Ref. [7] comes a fortiori from the fact
that now M ∼ ρ3, for ρ → 0. Actually, the mass function
(24) of the ξ-metric is slightly greater than the mass given
by Eq. (47) in Ref. [7] (see Fig. 2).
In all, the Penrose cosmic censorship conjecture

becomes violated at least for two plausible –C1 matched
and with a finite, stationary, intrinsic energy– metrics

FIG. 1. Plot of FðxÞ showing its maximum value at x ≈ 0.4. In
the text notation, Fmax ≈ Fð0.4Þ ≈ 0.74. The central singularity of
a ξ-metric is globally naked when the ξ parameter, ξ ¼ λ=2m, is
larger than ð2þ ffiffiffi

3
p Þ2Fmax ≈ 10.33.

FIG. 2. The upper line (colored in orange) is the normalized
mass function of the ξ-metric, MðxÞ

m ¼ x2ðx4 − 3x2 þ 3Þ. The line
below that (colored in blue) is the mass function of Eq. (47) in

Ref. [7], MðxÞ
m ¼ x3ð16 − 15xþ 12x ln xÞ.
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belonging to the marginally bound dust LTB family, one of
these two metrics having already been proposed in Ref. [7],
although the authors had not noticed that the proposed
metric was a C1 matching metric with a finite, stationary,
vanishing intrinsic energy.

V. SHOWING BY NUMERICAL CALCULATION
THAT THE CENTRAL SINGULARITY
OF THE ξ-METRIC IS GLOBALLY
NAKED FOR SOME ξ VALUES

Inequality (28) is a sufficient condition for central
global nakedness, but not a necessary condition. Then,
helped by Mathematica, we numerically calculate some of
the outgoing central null geodesics of our ξ-metric for
different values of the ξ parameter. We will show the
existence of this nakedness for ξ values lower than the
above ð2þ ffiffiffi

3
p Þ2Fmax ≈ 10.33 value.

The outgoing radial null geodesics ½x; yðxÞ� of the
marginally bound LTB metric (1) are the solution of the
ordinary differential equation4

y0ðxÞ ¼ 1

m
A0ðyðxÞ; xÞ; ð29Þ

where yðxÞ≡ τgðxÞ=m and now the prime stands for the
derivative of y with respect to x. Here, since we are dealing
with the specific case of the ξ-metric, we must use Eq. (2)
with M given by Eq. (24) and ψ given by Eq. (25), in the
interior of the star,5 and then the second member of (29) has
the expression

1

m
A0ðy; xÞ ¼

�
2

P

�
2=3

�
32=3

ð1 − x2Þ2
x1=3

�
4

3
ξ3=2

ffiffiffiffi
x
P

r
− y

�
2=3

þ 2ffiffiffi
33

p ξ3=2
x1=6ð1þ x2 − x4Þffiffiffiffi
P

p ð4
3
ξ3=2

ffiffiffi
x
P

p
− yÞ1=3

�
; ð30Þ

where y≡ yðxÞ and P≡ PðxÞ≡ x4 − 3xþ 3.
On the other hand, substitution of Eqs. (24) and (25) in

Eq. (16) gives the equation of the k-lines for the ξ-metric:

τkðxÞ
m

¼ 4

3
ξ3=2

ffiffiffiffi
x
P

r
−
k
3

ffiffiffiffiffi
2k

p
x2P: ð31Þ

By considering appropriate initial conditions, the inte-
gration of Eq. (29) with the second member given by
Eq. (30) will be carried out with Mathematica. The
figures of this section show, in a ðx; yÞ diagram, the
resulting null geodesics colored in red and also some
representative k-lines: the time singularity (k ¼ 0) in
black, the apparent horizon (k ¼ 2) in green, and the
k ¼ 2þ ffiffiffi

3
p

line in blue.

A. Sufficient condition ξ ≥ 10.33
for global nakedness

For the particular value of ξ, ξ ¼ 10.33, some of these
geodesics have been drawn in Fig. 3, using, as mentioned
above,Mathematica. Specifically, we have considered four
of them, corresponding to the initial conditions (1,30),
(1,34), (1,38), and (1,42). Then, in accordance with what
has been mentioned at the end of Sec. II, there would be an
actual or virtual pencil of outgoing radial null geodesics
emanating from the central singularity and escaping outside
the star to infinity since, in accordance with Eq. (9), the
corresponding geodesic times τgðλÞ are lower than the
horizon time τhðλÞ (see Fig. 3). It is to be noticed that,
according to Mathematica, in the overlapping region
x≲ 0.1, the geodesic lines have been actually calculated
(without extrapolation) up to at least x ≈ 10−4.
From this figure, looking at the kind of intersection

with the null geodesics (up-down or the opposite way),
it is easily concluded that, for the considered ξ value
(ξ ¼ 10.33), the apparent horizon is spacelike and that the
k ¼ 2þ ffiffiffi

3
p

line is timelike, in accordance with the results
obtained in Appendix B.

FIG. 3. For ξ ¼ 10.33, the central singularity is globally naked.
The red lines are outgoing null geodesics, ðx; yðxÞÞ, solutions of
Eq. (29) with ξ ¼ 10.33. All of them would come from the central
singularity: up to x ≈ 10−4, the four geodesics have actually been
calculated without extrapolation. The other three lines, upper,
middle, and lower curves, are the singularity time (in black), the
apparent horizon (in green), and the k ¼ 2þ ffiffiffi

3
p

line (in blue),
respectively. Normalized variables, x≡ ρ=λ and y≡ τ=m, are
used (in this and the remaining figures).

4To perform numerical integration and graphic representation,
normalized variables ðx; yÞ ¼ ðρ=λ; τ=mÞ are used for conven-
ience. Note the irrelevant, but graphically convenient, order
change with respect the starting ðτ; ρÞ coordinates.

5Notice that, inside the star, ψ and M are both increasing
functions. Then, Eq. (14) implies that A0 is always positive.
Consequently, shell crossing singularities (see Ref. [12], p. 321)
will not occur during the collapse. In addition, the proper
energy density μ≡ μðτ; ρÞ, that is, according to Eq. (3),
4πμ ¼ M0=ðA2A0Þ, is everywhere regular (except for the essential
singularity A ¼ 0). These properties could reinforce the belief in
the goodness of the ξ-metric.
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B. Threshold value ξ ≈ 4.5 for global nakedness

In a similar way, helped by Mathematica, we can find
the ξ values for which the central singularity becomes
dressed, that is, nonglobally naked. For the particular
value of ξ, ξ ¼ 1, one has τhðλÞ ¼ 0, and every null
geodesic, if any, starting from the center ρ ¼ 0 at
τ ¼ 0, cannot reach the exterior region of the star, and
then the central singularity is, indeed, dressed (see
Fig. 4). Notice how the radial null geodesics leaving
x ¼ 0 before y ¼ 0 finish their run in the intrinsic
singularity time, such that the sooner the initial value
of y gets close to zero, the faster the geodesic runs into the
singularity time. From Fig. 4, the kind of intersection of
these geodesics with the apparent horizon line makes
evident, in this case, that this line is spacelike.
The same conclusion follows by taking ξ ¼ 2, 3, 4.

Some outgoing radial null geodesics are plotted in Fig. 5
for ξ ¼ 4.
Figure 5 shows that, when these null geodesics τgðρÞ

approach more and more the one leaving out ρ ¼ 0 at
τ ¼ 0, their corresponding τgðλÞ values approach, from the
low, the τhðλÞ value until over a certain degree of this
approaching τgðλÞ becomes larger than τhðλÞ. As a result,
the corresponding photons leaving the central singularity
cannot reach the exterior of the star. Further, for all the
above cases with ξ < 4, we obtain that the central singu-
larity is dressed, too.
Nevertheless, going ahead the numerical integration of

Eq. (29) with Eq. (30), one can see that for ξ ¼ 4.5 and
ξ ¼ 5; 6;… the central singularity becomes globally naked.
For ξ ¼ 4.5 (see Fig 6), four representative geodesics are
displayed after numerical integration of Eq. (29) consid-
ering the initial conditions (1,11), (1,10), (1,9), and (1,8).
The upper geodesic is the one that corresponds to the initial

condition (1,11). This geodesic comes from the central
singularity and escapes out of the star. Then, for this
ξ¼4.5 value, the central singularity becomes globally naked.
A management by trial and error of the cases 4 < ξ < 5

leads to the following result: For the ξ metric, there is a
threshold ξ value, say, ξ0 ≈ 4.5, from which the central
singularity becomes globally naked.
The ξ parameter, ξ ¼ λ=2m, is related to the proper time,

ψðλÞ, at which the collapsing star surface reaches the
essential singularity. This follows from Eq. (4) by taking
ρ ¼ λ and MðλÞ ¼ m,

ψðλÞ ¼ 2

3

λ3=2ffiffiffiffiffiffiffi
2m

p ¼ 4

3
mξ3=2: ð32Þ

Then, we have

FIG. 4. For ξ ¼ 1, the central singularity is dressed (nonglobally
naked). The black (respectively, green, blue) line stands for the
singularity time (respectively apparent horizon, k ¼ 2þ ffiffiffi

3
p

) line.
The red lines are outgoing null geodesics, ðx; yðxÞÞ, solutions of
Eq. (29) with ξ ¼ 1, and correspond to the initial conditions
(0.1,0),(0.2,0),(0.3,0),(0.4,0),(0.5,0), and (0.6,0), respectively.

FIG. 5. For ξ ¼ 4, the central singularity is dressed (nonglobally
naked). The black (respectively green, blue) line stands for the
singularity time (respectively apparent horizon, k ¼ 2þ ffiffiffi

3
p

) line.
The red lines are outgoing null geodesics, ðx; yðxÞÞ, solutions of
Eq. (29) with ξ ¼ 4, and correspond to the initial conditions (1,10),
(1,9),(1,8), and (1,7), respectively.

FIG. 6. For ξ ¼ 4.5, the central singularity is globally naked.
The black (respectively green, blue) line stands for the singularity
time (respectively apparent horizon, k ¼ 2þ ffiffiffi

3
p

) line. The red
lines are outgoing null geodesics, ðx; yðxÞÞ, solutions of Eq. (29)
wiith ξ ¼ 4.5, and correspond to the initial conditions (1,11),
(1,10),(1,9), and (1,8), respectively.
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ξ ¼
�
3τλ
4m

�
2=3

; ð33Þ

where τλ ¼ ψðλÞ is the proper time duration of the collapse
from the formation, τ ¼ 0, of the central singularity.
To end this section, we would remark that our analysis

has been concentrated on the behavior of outgoing radial
null geodesics. The reason for this self-limitation is that, for
marginally bound collapse, a singularity is censored if it is
radially censored (see Ref. [21], Proposition 8). On the
other hand, we have just constructed a ξ-metric model with
a set of natural physical and mathematical requirements,
and we have checked numerically the global naked char-
acter of the central singularity of the model. For an
analytical and rigorous treatment of the behavior of the
radial null geodesics in the vicinity of the singular point
attached to a marginally bound dust collapse scenario,
see Ref. [22].

VI. FINAL CONSIDERATIONS

In accordance with our result of the previous section
showing that our ξ-metric has a global naked central
singularity, the metrics used in Refs. [2,6], and [7] for
the dust spherical collapsing case have global central naked
singularities, too. But these other metrics, except one, do
not satisfy the whole C1 matching requirements [actually,
they do not satisfy the condition ½M00� ¼ 0 of Eq. (5)],
whereas the metric with M given in Ref. [7], Eq. (47), and
our ξ-metric do satisfy it. Thus, a certain nonmatching
character of those metrics in Ref. [7] could not be the
reason why they violate the Penrose conjecture since two
other (C1 class) metrics, the ξ-metric plus the one associated
toM given by Eq. (47) in Ref. [7], do violate the conjecture.
Incidentally, instead of Eq. (6), we could have chosen

any mass function MðρÞ of the large family

MðρÞ ¼
(
mþP∞

k¼3Mk

�
1 − ρ

λ

�
k
; ρ ≤ λ

m; ρ ≥ λ;
ð34Þ

with the sole restriction on the constant coefficientsMk thatP∞
k¼3 Mkð1 − ρ

λÞk converges for any ρ ≤ λ. Actually, any of
these MðρÞ functions satisfies all the requirements (5).
Furthermore, these coefficients should guarantee the physi-
cal condition M > 0, M0 ≥ 0, ∀ρ > 0, and even more that
M ∼ ρn, n ≥ 2, for ρ ≪ λ, in order that the intrinsic energy
of the corresponding metric vanishes, in accordance with
what is explained in Appendix A for the ξ-metric.
Future work could confirm that Eq. (34), with the

supplementary conditions for the Mk coefficients, leads
to marginally bound collapsing LTB metrics with their
central singularities being globally naked for some ξ
parameter values. For the time being, we have proven
easily this statement for the interesting particular case of the
ξ-metric.

Further, we remark that the present paper’s calculations
have been performed in the particular gauge Að0; ρÞ ¼ ρ
(see Sec. II) largely used in the literature. However, our
main result –that a null geodesic, or a pencil of null
geodesics, leaving the central singularity of the ξ-metric
escape to the future null infinity– is a covariant one, and
therefore gauge independent. The same can be said of
similar results in the above-cited references.
Finally, there is a line of thinking that can be traced back

to Penrose [23], according to which the naked singularities
found in the spherically symmetric dust case, like the
ones found in the present paper, would be mere artifacts
due to the oversimplified case considered. However, this
objection could not be kept since the present literature on
the subject shows many cases in which naked singularities
persist when pressure is added to the initial dust case, and
the same literature shows other cases of this persistence
when the spherical symmetry is perturbed (see, for in-
stance, Refs. [24–26] concerning the first cases and
Refs. [27,28], concerning the second ones).
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APPENDIX A: INTRINSIC ENERGY
OF THE ξ-METRIC

Expressed as a 3-volume integral, the Arnowitt-Deser-
Misner energy [29] (see also Ref. [30]), P0, becomes

P0 ¼ 1

8π

Z ∂
∂ρi ð∂jgij − ∂igÞdρ1dρ2dρ3; ðA1Þ

with i, j ¼ 1, 2, 3, g≡ δijgij, G ¼ c ¼ 1, and ρi the
rectilinear coordinates associated to ðρ; θ;ϕÞ, gij being the
3-space metric components.
According with the more general situation considered

elsewhere [18], in the particular case of our ξ-metric, P0

becomes

P0 ¼ 1

8π

Z
∂i

�
ðA − ρA0Þ2 ni

ρ3

�
dρ1dρ2dρ3;

ni ¼
ρi
ρ
; ðA2Þ

which we call here its intrinsic energy, since the metric is
expressed in Gauss comoving coordinates adapted to the
spherical symmetry, at rest at the spatial infinity, and we
call these coordinates intrinsic coordinates [31,32].
Then, since the integrand in (A2) is regular enough (it is

continuous everywhere, except for ρ ¼ 0), we can apply the
Gauss theorem to the corresponding 3-volume integral and
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express it as a 2-surface integral on the boundary. More
specifically, this boundary will be made of two 2-surfaces,
ρ ¼ þ∞ and ρ ¼ ϵ > 0, where ϵ is a positive infinitesimal
quantity. Then, we will take the limit ϵ → 0.
So, we will have

P0 ¼ P0
∞ þ lim

ϵ→0
P0
ϵ ; ðA3Þ

with

P0
∞ ¼ lim

ρ→þ∞

1

8π

Z
Sρ

Q cos θdθdϕ ¼ 1

2
lim

ρ→þ∞
Q; ðA4Þ

where the double integral is calculated on the 2-sphere of
radius ρ, Sρ, and

P0
ϵ ¼ −

1

2
Qjρ¼ϵ; ðA5Þ

and where

Q≡ 1

ρ
ðA − ρA0Þ2: ðA6Þ

To calculate easily the limit (A4), notice that for ρ > λ
(and so for ρ → ∞) our ξ-metric is the Schwarzschild
metric, that is, Eq. (1) with Eq. (2) given by Eq. (7). Then,
an easy calculation gives for ρ > λ

Q ¼
�
9m
2

�
2=3 τ2

ρ
�
τ − 2

3
ρ3=2ffiffiffiffiffi
2m

p
�
2=3; ðA7Þ

the limit of which for ρ → ∞ and τ fixed vanishes. Notice
that we cannot put there τ ≥ ψðρ ¼ λÞ, since for this value
of ρ, the outer spherical shell of the star has just reached its
own singularity and we no longer have a classical object
ruled by general relativity. The same is partially true
for τ ≥ ψðρ ¼ 0Þ.
In all, the contribution P0

∞ to the total P0 vanishes, and
we are left with the other contribution limϵ→0P0

ϵ . Let us
calculate it. First, according to Eqs. (2) and (14), we can
write Q as

Q ¼ ρ

�
9M

2ðτ − ψÞ
�

2=3
��

1

ρ
−
1

3

M0

M

�
ðτ − ψÞ þ 2

3
ψ 0
�
2

:

ðA8Þ

Then, we are going to calculate P0 for τ < ψð0Þ since, as
already mentioned, for τ ¼ ψð0Þ, the inner spherical shell
of the star reaches the intrinsic singularity and full general
relativity begins to be not completely valid. Thus, in order
to calculate limρ→0Q, we only have to study how the
functionsM,M0, and ψ 0, present in Eq. (A8), behave in this
limit. But from Eqs. (4) and (6), it is easy to see that for

ρ=λ ≪ 1 the functionM goes likeM ∼ ρ2 and consequently
ψ ∼ ρ1=2. This entails the vanishing of limρ→0Q. In all, both
contributions to P0, present in Eq. (A3), vanish, and then
P0 vanishes, too, which means that P0, the intrinsic energy
of the ξ-metric, is stationary and finite, as is physically
required.

APPENDIX B: CAUSAL CHARACTER
OF THE LINES A= kM

In this Appendix, we consider the LTB marginal bound
metric (1) and analyze the causal character of the one-
parameter family of radial lines ðτkðρÞ; ρ; θ ¼ const;
ϕ ¼ constÞ, implicitly given by

AðτkðρÞ; ρÞ ¼ kMðρÞ; ðB1Þ

where k is a positive real parameter. The performed analysis
is model independent in the sense that it applies for
arbitrary positive increasing functions ψðρÞ and MðρÞ.
For each k-line, the square v2k ≡ gμνv

μ
kv

ν
k of the tangent

vector, vμk ¼ ðτ0kðρÞ; 1; 0; 0Þ (greek indices running from
0 to 1), is

v2k ¼
�
2

k
− 1

�
ψ 02 þ 2

3

ffiffiffiffiffi
2k

p
ðkþ 1Þψ 0M0 þ k2

9
ð1 − 2kÞM02

ðB2Þ

and can be written in the suitable form

v2k ¼ M02PkðβÞ; ðB3Þ

with

PkðβÞ ¼
�
2

k
− 1

�
β2 þ 2

3

ffiffiffiffiffi
2k

p
ðkþ 1Þβ þ k2

9
ð1 − 2kÞ

ðB4Þ

and where β is a function of ρ ∈ ð0; λÞ given by the ratio of
the derivatives of the free functions of the metric (1),

β≡ βðρÞ≡ ψ 0

M0 ðρÞ: ðB5Þ

The particular value k ¼ 2 corresponds to the apparent
horizon line, in which case (B4) becomes linear in β,
P2ðβÞ ¼ 4ðβ − 1

3
Þ. The detailed analysis of the causal

character of the apparent horizon for the ξ-metric is carried
out at the end of this Appendix. Thus, we will concentrate
here on a generic value k ≠ 2 for which (B4) is a quadratic
function of β, the discriminant Δk of which is always
positive,

Δk ¼ 4k2; ðB6Þ
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saying that PðβÞ has two distinct real roots which can be
written

βε ¼
k
3

εþ ffiffiffiffiffi
2k

p

1 − ε
ffiffi
2
k

q ; ε ¼ �1; ðB7Þ

and then

βþ − β− ¼ 2k2

k − 2
: ðB8Þ

Notice that, for ε ¼ þ1, the root βþ is the function fðkÞ
defined in Eq. (21), βþ ¼ fðkÞ; moreover, from Eq. (B8),
βþ − β− is positive (respectively, negative) if k > 2 (respec-
tively, k < 2). In addition, βþ is positive (respectively,
negative) for k > 2 (respectively, k < 2), and it becomes
βþ → þ∞ when k → 2þ. On the other hand, for ε ¼ −1,
the root β− is positive (respectively, negative) for k > 1=2
(respectively, k < 1=2) and vanishes for k ¼ 1=2; it is finite
for k ¼ 2, becoming for this value the root β ¼ 1=3 of the
linear polynomial P2ðβÞ.
According to this analysis, we conclude that for each

k > 2 (respectively, k < 2) and for each ρ ∈ ð0; λÞ, the line
τkðρÞ is timelike if, and only if, β > βþ or β < β−
(respectively, βþ < β < β−), with β� given by Eq. (B7).
This line is null for β ¼ βþ or β ¼ β−, and it becomes
spacelike when β− < β < βþ (respectively, β > β− or
β < βþ), where β≡ βðρÞ is given by Eq. (B5).
Notice that the first member of Eq. (21), ψ 0=M0,

is bounded for every fixed ρ ∈ ð0; λÞ, but the second
member, βþ, diverges when k → 2þ. In fact, for k → 2þ,
β < βþ ¼ þ∞ and β− → 1=3. Then, if β > 1=3 for all
ρ ∈ ð0; λÞ, the lines τ2þϵðρÞ are spacelike when ϵ → 0þ.
The apparent horizon line A ¼ 2M has to be considered

as a special case: for k ¼ 2, Eq. (B2) reduces to

v22 ¼ 4M0
�
ψ 0 −

1

3
M0

�
: ðB9Þ

Thus, for ρ ≠ 0; λ, the apparent horizon is spacelike, null, or
timelike if βðρÞ is greater than, equal to, or less than 1=3,
respectively.
Finally, we consider the ξ-metric. Deriving Eqs. (24)

and (25), the function β given by Eq. (B5) becomes

βðxÞ ¼ 1

3

�
ξ

FðxÞ
�

3=2
; ðB10Þ

where FðxÞ is given by Eq. (27). Then, using Eq. (B10),
one can express (for each k value) the above results about
the causal character of lines A ¼ kM in terms of the
normalized variable x ¼ ρ=λ and the ξ parameter values.
In particular, the following statements directly result from
the previous analysis.
For the ξ-metric:
(i) The line A ¼ kmM, km ¼ 2þ ffiffiffi

3
p

, is timelike for all
x ∈ ð0; 1Þ if ξ > ð2þ ffiffiffi

3
p Þ2Fmax ≈ 10.33.

(ii) The apparent horizon is spacelike for all x ∈ ð0; 1Þ
if, and only if, ξ > Fmax ≈ 0.74.

Moreover, for ξ ¼ Fmax, the apparent horizon line is
null at the sole point x ¼ x0 ≈ 0.4 ∈ ð0; 1Þ, such that
Fðx0Þ ¼ Fmax, being spacelike ∀x ∈ ð0; x0Þ∪ðx0; 1Þ.
Otherwise, for each ξ < Fmax, there always exist two
different values, say, x1 and x2, such that x1 < x0 < x2
where the apparent horizon is null; of course, it is spacelike
∀x ∈ ð0; x1Þ∪ðx2; 1Þ and timelike ∀x ∈ ðx1; x2Þ. It is
tacitly understood that at x ¼ 0 and x ¼ 1 the apparent
horizon line is always null whatever the value of the
parameter ξ may be.
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