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Spin supplementary conditions for spinning compact binaries
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We consider different spin supplementary conditions (SSC) for a spinning compact binary with the
leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed, but it is
acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed
by Ostrogradsky and compute the conserved quantities and the dissipative part of relative motion during
the gravitational radiation of each SSC. We give the orbital elements and observed quantities of the SO
dynamics, for instance, the energy and the orbital angular momentum losses and waveforms, and discuss

their SSC dependence.
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I. INTRODUCTION

The first direct observation of a gravitational-wave signal
from two coalescing black holes took place on September
14, 2015 [1]. It has been confirmed that these compact
binaries are a main source of gravitational waves. The
rough estimates also indicate that typical stellar black hole
(~30 M) binaries can be observed 2-32 times per year
[2]. Precise measurements allow the observation of the
finite size effects of individual bodies, such as the masses
and spins, with high accuracy. The spin effects of these
components can help the understanding of several astro-
physical processes, e.g., the spin-flip phenomenon [3,4],
frame dragging [5], and the evolution of accretion disks
around black holes [6].

The simple Lagrangian formalism of a relativistic
spinning-point particle depends on the acceleration as
demonstrated in Refs. [7,8]. The description of such a
system is not unique in generalized mechanics. The
generalized Lagrangian formalism was first developed by
Jacobi and Ostrogradsky [9] in the 19th century, see
reviews Refs. [10-13].

The description of spinning masses had been studied in
general relativity, but the first important result was achieved
by Mathisson [14] who described the motion of extended
bodies in general cases, and he also generalized the
mechanics of test bodies in curved backgrounds in 1937.
In the early 1950s Papapetrou found the same equations
of motion in Ref. [15], but his results came from a
noncovariant formalism. Later the equations of spinning
bodies were improved in Refs. [16,17] and since then they
are called the Mathisson-Papapetrou-Tulczyjew-Dixon
equations (afterwards MPTD-equations).

It is well known that this system of equations is not
closed; therefore, we have to impose some spin supple-
mentary conditions (afterwards SSC). In the literature there
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are basically four SSCs, namely the Frenkel-Mathisson-Pirani,
the Newton-Wigner-Pryce, the Corinaldesi-Papapetrou, and
the Tulczyjew-Dixon (see Refs. [14-25]). The MPTD-
equations have been used with these SSCs to study the motion
of a test spinning particle in different curved backgrounds and
in the ultrarelativistic regime (see Refs. [26-31]).

The first effective description of the leading-order
spin effect in the post-Newtonian sense (hereafter PN) was
given by Tulczyjew in Ref. [32]. The nongeodesic motion of
test particles and compact binaries with PN corrections
were first developed by Barker and O’Connell for different
SSCsin Refs. [33,34]. The acceleration of the compact binary
with leading-order spin-orbit interaction (hereafter SO) is not
obvious, but it rather depends on the chosen SSC [35]. Some
authors have first investigated the spin effects with the help
of the PN approach for some of the SSCs in Refs. [35-40].
The Lagrangian of compact binaries with SO interaction is
acceleration-dependent in two cases of SSC [37,39], but the
Lagrangian does not depend on acceleration terms for the
Newton-Wigner-Pryce SSC in Refs. [36,38,41]. Taking into
account the spins of the bodies in physical systems leads to
additional extra degrees of freedom, for instance, spin-
precession equations, which are important for the investiga-
tion of classical and/or quantum systems [3]. It is important
to know how the motion of the spins changes the orbital
evolution and the dissipation under gravitational radiation for
compact sources.

Recently, a simple Hamiltonian in ADM coordinates
for covariant SSC has been found by [42]; it follows
the leading-order and next-to-leading-order equations of
motion of SO contribution in harmonic coordinates in
[43,44]. Recently, effective field theory (EFT) methods have
been used for the computation of the spin-orbit, spin-spin, and
self-spin contributions in [45—47]. Nowadays, there are also
EFT results for the 4 PN-order spin contributions [48-51].

In this paper we give the Lagrangian of the compact
spinning binary with leading-order SO interaction for
well-known SSCs. We calculate all the conserved quantities
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and orbital parameters for these SSCs. As the main result
we give the classical relative orbital evolution of a spinning
binary system. Because the Lagrangian is acceleration-
dependent in two SSCs, we compute the generalized
Lagrangian and its canonical dynamics. We construct
the nontrivial type of the Ostrogradsky Hamiltonian
method, and then we show two examples for the elimina-
tion of acceleration-dependent terms from Lagrangians,
i.e., the constrained dynamics in Refs. [7,8] and the double
zero method proposed by Barker and O’Connell in
Refs. [52-55].

Moreover, we consider the dissipative part of the
evolution of the compact binary. We calculate the sym-
metric trace-free (STF)-multipole moments and investigate
the instantaneous energy and the orbital angular momen-
tum losses. It can be seen that these instantaneous losses
depend on SSC, but the SSC dependence disappears after
averaging over one orbital period. Finally, we compute the
gravitational waveforms for all SSCs, where it can be seen
that the leading-order contribution is independent of SSC,
but the next-to-leading-order terms depend on SSC.

Our Lagrangian (and Hamiltonian) formalism is con-
sistent with the equations of motion for all SSCs in
Ref. [35]. Several authors eliminated the covariant SSC
at the level of the potential using the Dirac bracket method
and the variation of the action principle in Refs. [47,56].
They first applied the nonreduced SO part of the potential
and achieved the reduced Hamiltonian form of dynamics,
and their result is consistent with one of the Barker
O’Connell type equations of motion if we use the baryonic
coordinate transformation (see Ref. [45]).

This article is organized as follows. In Sec. II we
introduce the MPTD-equations and then we focus on the
SSCs. In Sec. III we discuss the generalized Lagrangian
and canonical mechanics of the compact binary system
with spin-orbit interaction for all SSCs. We construct the
canonical (Ostrogradsky type) dynamics, and we demon-
strate the elimination of the acceleration-dependent terms
from the Lagrangian using the constrained dynamics and
the double zero method in Appendixes A and B, respec-
tively. We rewrite the equations of motion from Lagrangian
formalism in Sec. IV, and then we add the radial and
angular motion in a simple case in Sec. V. In Sec. VI we
compute the energy and the angular momentum losses
due to gravitational radiation, and finally we calculate the
waveform of the SO interaction terms for all SSCs in
Sec. VII. At the end of this paper Appendixes A, B and C
describe the relationship between the Hamiltonian and
Lagrangian formalisms.

In this paper Greek indices a, f,... run from O to 3 and
the Roman indices a, b,... run from 1 to 3. The repeated
Greek (Roman) indices in a row mean Einstein’s summa-
tion from 1 (0) to 3. Generally, we use lowercase indices for
spatial tensors. We use angular and square brackets for
symmetrized and antisymmetrized indices, respectively,
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e.gs Tap)y = (Tap +Tpa)/2 and Tigp) = (Tap — Ta) /2
The fully symmetric trace-free part of tensor will be
denoted by “STE” (T4,)5™ =T 4y =T () = 80T (ce)/ 3-
The use of the transverse-traceless part of the tensor will be
denoted by “TT,” (Tab)TT = Aab,chcd’ where Aab,cd =
PyiPj, — PyPcy/2 and P, = 6,, — NN, is the projector
and the vector N is the line of sight. The G is the
gravitational constant and ¢ is the speed of light. Each
calculation of the spin-orbit coupling is valid only to the
leading-order contributions with a 1.5 PN accuracy.

I1. SPIN SUPPLEMENTARY CONDITIONS

The MPTD-equations of motion of the spinning body in
general relativity in Refs. [14,15] are

DS

Dr piu’ = pPuc, (1)
Dp° 1

De = "3 RS (2)

where 7 is the affine parameter of the trajectory, p® is the
four-momentum, u”* = dx*/dr is the tangent vector to
the trajectory, S% is the skew canonical spin tensor which
represents the internal angular three-momentum after using
some SSC, i.e., spin, R;),’yﬁ is the Riemann tensor, and
D/Dt = u*V, is the covariant derivative along u®. The
spin vector is given by S, = —€,5,,u’S" /2 for Frenkel-
Mathisson-Pirani SSC where €,4,, is the four-dimensional
Levi-Civita tensor (we use the unit ¢ = 1 in this section).
The three-dimensional spin vector can be obtained from the
use of any SSC (see Ref. [38] or Appendix A in Ref. [35]).
We assume the u”u, = —1 for the four-velocity. There are
some scalars, i.e., the rest mass m = —p“u, with respect to
u®, the “other” rest mass u> = —p%p, with respect to p?,
and the magnitude of spin 25> = %S5 These quantities
are not conserved for all cases, e.g., the m is conserved for
the Frenkel-Mathisson-Pirani SSC, the u is conserved for
the Tulczyjew-Dixon SSC, and the s is conserved for the
Tulczyjew-Dixon and the Frenkel-Mathisson-Pirani SSCs
(see details, e.g., Ref. [28]). Thus, the variables of the
Egs. (1) and (2) are more than the number of equations,
so we have to impose the spin supplementary condition. In
the literature, there are basically four SSCs: the Frenkel-
Mathisson-Pirani (hereafter SSC 1) [14,18,19], the Newton-
Wigner-Pryce (SSC II) [21,22], the Corinaldesi-Papapetrou
(SSC II) [20] and the Tulczyjew-Dixon (SSC 1V)
[16,17,23].

Sy, =0 SSCI, (3)
28% 4+ u,S% =0 SSCII, (4)
5§ =0 SSCIII, (5)

064023-2
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S%p, =0 SSCIV. (6)

First, SSC I appeared in the description of the spin of
electrons in [18]. This condition is also called the covariant
SSC. In this SSC Weyssenhoff and Raabe pointed out the
appearance of the helical motion which is unphysical [57].
However, recently this motion was interpreted by a hidden
electromagneticlike momentum [58]. SSC II was first used
for quantum mechanics because it is well known that the
center of mass of a rotating particle is not invariant under
the Lorentz transformation, see Refs. [21,22]. This SSC II
has been generalized for curved spacetimes in [59]. Our
definition of SSC II is equivalent to Egs. (4.6) and (4.7) in
Ref. [59] for flat spacetime where the unit timelike vector
field reduces to the Kronecker delta. The simplest way
is to choose SSC III where the timelike components were
dropped by Corinaldesi and Papapetrou in Ref. [20]. Barker
and O’Connell have found that the macroscopic limit of the
potential of two quantum spinning masses with spin 1/2
from the quantum theory of gravitation by Gupta, which
leads to the acceleration of SSC II in Refs. [34,60]. SSC I
and SSC IV are equivalents of each other if we neglect the
quadratic terms in spin. This should be valid for the spin-
orbit interaction because this interaction is linear in spin.
The transformations between the SSCs were described by
Ref. [33] for spinning test particles of the nongeodesic
motion. We note that the Lagrangian of the spin-orbit
interaction of compact binaries does not depend on the
acceleration only in SSC II, and the acceleration-dependent
terms appear in other SSCs [39]. Note that recently another
SSC has been given by Ohashi, Kyrian, and Semerék in
Refs. [24,25]. For more details see Ref. [61].

ITII. GENERALIZED MECHANICS OF SPINNING
TWO-BODY SYSTEMS

Consider a compact two-body system with leading-order
spin-orbit interaction, where masses are m; and spins are S;
(i =1, 2). The equation of motion (relative acceleration)
for the three different SSCs can be found in Ref. [35] as

Gm G

r {;r[(r X V) - (28 + (1 + k)o)]

2

—VX(4S+3G)+3—:I‘X(2S+(2—k)d)}, (7)

where r = |r| and v are the relative distance and velocity,
respectively, m = m; + m, is the total mass of the system
where the masses m; and m,, and the overdot denotes
the derivative with respect to the time, S = S; + S, is the
total spin vector and 6 = (m,/m;)S; + (m;/m,)S, is the
weighted spin vector where the individual spins S; and S,
follow the notations of Ref. [40]. Here we have introduced
the SSC-dependent parameter k£ with the following values
for the different SSCs
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FIG. 1. Different world lines of the center of spinning masses.
Three centers of mass (CMs) have been demonstrated for
each SSC.

for SSC 1,
for SSC 1I, (8)
for SSC III.

1
k=11
0

The transformation between the SSCs (see Fig. 1) is given
by Ref. [35] as

K —k

r =) + = —vxe, )
c'm
Gk — k)

vk = y(k) 4 —aa rxe (10)

Then we can compute the corresponding Lagrangian from
the acceleration in Ref. [37] for SSC I and Ref. [39] for
SSC 1II as

G G
L=Ev 2L TRy e x (28 + (1 + K)o)]
2 r cr
2k—1
G

>m v-(axoe), (11)

where y = mm,/m is the reduced mass. It can be seen that
the only case in which the Lagrangian does not depend
on acceleration terms is that of SSC II (for k = 1/2).
According to Ref. [62] the infinitesimal acceleration depend-
ence can be eliminated by a time-coordinate transformation.
Here only the k = 1/2 case is relevant, but in this way the
SSC dependence is shifted in the coordinates. Note that
the acceleration dependence can be eliminated if we use the
Newtonian-order acceleration ay = —(Gm/r*)rinEq. (11);
thus, we get the case of SSC II. The generalized moments
can be calculated by the generalized Lagrangian as

oL . oc

= Eind 12
a b+ 175 (12)

p

which yields to
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2k—1
Ck=Dp o+
2¢2m

(13)

The energy and the orbital angular momentum from accel-
eration-dependent Lagrangian dynamics are respectively

. G
p:ﬂr+cz—'lrl3rx[2s+(2—k)o'], q=

E=p-v+q-a—-L, (14)
L=rxp+vxgq. (15)

The energy E, the magnitude of the orbital angular momen-
tum L = |L|, the magnitudes of the spinvectors S,
and the total angular momentum vector J =L +S
are conserved quantities. We compute the energy and
the orbital angular momentum for different SSCs using
Eqgs. (14) and (15),

G Gu(l -2k
Eotp _Ome M(23 )
2 r cr

v-(rxo), (16)

G
LZ/tI’XV—f—Z—/éI‘X[I’X(ZS—i-(Z—k)O')]
cr
1 -2k
L (L=2ku

2, VX (Vo). (17)
Here the main conserved quantities, i.e., the energy E and the
magnitude of orbital angular momentum L, depend on SSC
although we do not mark the SSC dependence (k depend-
ence) on E and L. If we set k = 1/2, the Lagrangian does not
depend on the acceleration.

Considering the canonical dynamics the first Hamiltonian
description of the spin-orbit interaction for compact binary
systems in SSC II was given by Refs. [38,41], and [63], we
can calculate the Hamiltonian from (acceleration-dependent)
Lagrangian for all SSCs. The generalized Hamiltonian
from a generalized Legendre transformation is

H=p-v+q-a—L. (18)

Here we should eliminate the acceleration terms from the
Hamiltonian, Eq. (18); thus, we need to use the acceleration
in Eq. (7). Two canonical pairs appear here, which are (r, p)
and (v, q). This is nontrivial because we do not know which
canonical moment to use in the Legendre transformation.
After using the canonical moment p in Eq. (13), we can
calculate the Hamiltonian.

'If we do not use the canonical moments, but just straight-
forwardly keep the first and second terms p-v, q-a and
eliminate the acceleration L(r,v,a) — L£(r,v), then we get
Hp=—4v -4 p.v+q-a—;25v-[rx(4S+30)], where
a=a(r,v) is the acceleration from the Lagrangian. This
Hamiltonian satisfies the generalized Hamilton’s Egs. (20)
and (21), but it is not consistent for Newtonian limit by

H =p*/(2pu) = Gmp/r.
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p> Gmu G

H= Z r 20273

v [2p x (25 + (2 - K)o)
+(2k - 1)ﬂvxa]—(i—§”q-r
—WGﬁq-{px@S—l—&)‘)

_r[(exp) - (25 + (1 + o))

_3(r£p)rx(25+(2—k)o')}. (19)

r

Note that we had to add an extra term (1 —2k)G/
(2¢?r*)(uv —p) - (r x6) (which disappears if we use
the zeroth-order canonical moment p) to the original
Hamiltonian in Eq. (18); otherwise, it could not satisfy the
generalized Hamilton’s equations

. OH . OH
=22, =21 20
P or r op (20)
OH . OH
=-== == 21
v T g 21)
Then, the explicit Hamilton’s equations up to O(c~2) are
. Gm, G
p= —T’ur—ﬁp x [2S + (1 + k)o]
3G
+ Wr[(r xp)-(2S+ (1 +k)o)]. (22)
i=P_ Y pst -l (23)
U octr
. Gu(2k—1)
q :Wrxa, (24)
V= —G—Tr—%{px (4S + 30)
r cour
3
—ﬁr[(r xp)-(2S+ (1 +k)o)]
—30;7'2”)” (28 + (2—k)o-)}, (25)

where in Eqs. (22) and (23) we used the approximation
0O(q)O(c72) ~ 0, which can be seen from Eq. (13) or
Eq. (24). Equation (24) disappears for SSC II and Eqs. (22)
and (23) will be equivalent to Eq. (25), which is the
acceleration Eq. (7) in the Lagrangian method. In
Appendices A and B we show two different methods for
the elimination of the acceleration-dependent terms from
the Lagrangian.

A. Canonical structure

We define the generalized Poisson brackets following
the paper of Ref. [64], where f and g functions arbitrarily
depend on the canonical and spin variables
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(26)

where Q; =r, Q, =v, P, =p and P, = q are useful
vector notations, and the superscripts are the components

of the vectors. Thus, the nonvanishing fundamental Poisson
brackets are

{Pf’ Qj{} - 5ij51k’ (27)

{Sn j} *5zj€lkmS . (28)

The time evolutions are given by their Poisson brackets
with the Hamiltonian, so the generalized Hamilton’s
equations can be written as

P, = (P 1}, (29)

Q: = {QiH}. (30)

The time evolution of the spins, the orbital angular
momentum, and the Laplace-Runge-Lenz vector can be
computed using of the fundamental Poisson brackets
Egs. (27) and (28),

G 4+3l/i
Si ={Si.H} = %L xS, (31)
L={L, "} =-5+(4S+36)xL, (32)
2¢7r

A:{A,H}:CZ—(;[25+(2—/<)6} x A

3G
+—5—=(rxL)2L-S+ (1 + k)L - o]
cour

+% - exr+ (L-o)v|. (33)

with v; = v and v, = v~! as shorthand notations where

v =m,/m, is the mass ratio of the compact binary and
A :%x L —%r is the Laplace-Runge-Lenz (LRL) vector.?
To derive explicit evolution equations, we had to use the
integration of the equation q = (2k — 1)u/(2¢*m)6 x v
from Eqgs. (24) and (25). It can be seen that the time

*The magnitude of the zeroth-order LRL (Ay = |Ay]) is
conserved. The relationship between Ay, Ly, and Ey is uA% =
G?>m?u® + 2EyL3,. The Newtonian geometric condition L-A =0,
which contains the spin-orbit contributions, is only satisfied for

SSC 1II and for the single spin limit of the spin-orbit interaction in
Ref. [65].
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FIG. 2. Total and Newtonian angular momenta. The angles of ®
and Oy are different, but the evolution equations for the other two
Euler angles are equivalent with each other.

evolution of the LRL vector depends on SSC and is not
a pure precession as in the case of S; and L.’

IV. THE EQUATIONS OF MOTION

We need to compute the evolution of the angular
momenta. The evolution of the Newtonian orbital angular
momentum vector Ly = pr x v [the first term in Eq. (17)]
does not follow a pure precession motion since

Ly - *;G3rx[vx(4s+3a)]
if‘%r x[rx (25 +2-Ko):  (34)

meanwhile, the motion of the total orbital angular momen-
tum vector L. leads to a pure precession equation from
Eq. (32),

L:

5 (48 +36) x L. (35)

2¢4r

This pure precession can be given by the conservation of
the total angular momentum (J 0), and as a consequence

L = —S. This way the motion of the total spin vector does
not have pure precession, but the individual spin vectors of
the orbiting bodies do have one in Eq. (31) or in Ref. [33]. It
can be seen that the pure precession equation for the total
angular momentum vector does not depend on SSC, but
the evolution of the Newtonian angular momentum vector
depends on SSC; see Egs. (35) and (34), respectively,
and Fig. 2. We may get different angular equations
depending on which orbital momentum vectors (Ly or L)
we measure with the Euler angles. The radial motion is
invariant to this choice. Hereafter, we only consider the
orbital motion involved in dynamical quantities fixed to
Ly, where we will give the full radial motion for each of

*We can get a pure precession using the Newtonian orbital
average of Eq. (33) only for SSC II (see Refs. [66] and [67]).
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the other SSCs, and we neglect the total angular motion
(see Refs. [38,40,41,63,68,69]).

We compute the orbital evolution using the conserved
quantities £ and L in Egs. (16) and (17) for different SSCs.
The first integrals can be separated into radial and angular
motion. The radial and angular motion from energy and
the magnitude of the orbital angular momentum are
governed by

. . 2G
i? = V%V_C'zﬂl’j 2L -S+ (2-k)L -0)
202k - 1)E
+ Emr (L o), (36)

S G
(ﬂ:(PN‘f'ﬁ(ZL-S-F:;(l—k)L'O')
c°Lr

_ (CZ:n ;Ll)rf (L-6). (37)

where ¢ is the azimuthal angle on the orbital plane.
We have introduced the Newtonian formulas where
% =2Eu~' +2Gmr™' — L*r2u=2 and ¢y = Ly~ 'r 2
We neglected the precession of the orbital plane.
Accordingly, we have assumed that (Fx¥) L for
derivation of the angular equation in Eq. (37)." It means
that the inclination angle between the total angular momen-
tum J and the orbital angular momentum L is constant
because the evolution of the angle is squared in magnitude
of spin d/dt(L - J) ~ O(S?) (for SSC II see Ref. [69]). In
other words, it means that the orbital angular momentum L
from Eq. (17) determines the orbital plane instead of the
Newtonian angular momentum Ly = u(r x v) (for SSC II
see Ref. [41]). If we consider the unit angular momentum
vector I, = (# x ¥)(1 + &) from Eq. (17), where § is the
leading-order perturbation, then the angular equation is
@ = Lu~'r2(1 = §); see Eq. (37). We have assumed that
the scalar products L - S and L - ¢ are constant because
they appear in the perturbative terms of O(c™?) [or the
evolution of scalar products S; - Ly (or S; - L) represents
first-order effects; see Ref. [40]]. The radial equation agrees
with the expressions of Refs. [38] and [40] for SSC I
(k=1) and SSC II (k =2), respectively. L. and Ly
appearing in perturbations are freely interchangeable in
scalar products because we have eliminated the quadratic
terms in spin [O(S?)].

Generally, there are three angular equations with Euler
angles (i.e., @, T, ®y) for spin-orbit interaction given by
Ref. [69] as

*The evolution of polar angle 8 can be measured on the orbital
plane, but this plane is not conserved due to the spin precession
equation. Thus, the evolution of € can transform the inertial
frame; see Ref. [38].
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. L lSO Y

QP = W <1 - m) — COS @NT, (38)

: tang -

T = Oy, 39
sin®y " (39)

where Ag is a shorthand notation for the SO contributions
in Eq. (38) that we have computed for all SSCs. Agp =
—2GuL/(c?*r)[28 + 3(1 — k)Z] + 2(2k — 1)EL/(c*m)E,
which corresponds to the two SO correction terms in
Eq. (37). Here we used the original notations of
Ref. [38], where ¢ =y, T =—¢,, Oy =J-Ly and
©® = J-L in the Hamiltonian formalism. It can be seen
that if we do not take the evolution of the angle ® into
account, we get Eq. (37) from Egs. (38) and (39). In addition,

Oy = —mH(S 1)+ 3(6 1)
SIS0 s 1) + 2 o)
O I s L) + 31 - e L)

(40)

It is important to know that the polar angle ® does not
depend on SSC, but ®, does.

. 3Gu(v' -v)
O=—"-—""L-(S; xS,). 41
2C2 JI”3 ( 1 X 2) ( )
It can be seen that ©® = 0 is relevant for two different cases:
(i) equal mass (v = 1) and (ii) single spin (S; = 0orS, = 0)
cases. The evolutions of the angles of ® and ® are

quadratic in spin ©, Oy ~ O(S2).

V. ORBITAL MOTION

Let us consider the radial motion which is characterized
by Eq. (36). We will use the generalized true anomaly y
parametrization [39,40]

o ar(l - e%)

=" 42
1 +e,cosy (42)

where a, is the semimajor axis, and e, is the radial
eccentricity. These parameters can be given by the turning
points 7> = 0. Thus, we have found that the solution is in
the form rms=r, (1+r.), where r.=—(Gmu=+A)/(2E)=
L?/[u(GmuFA)] is the zeroth-order (or Newtonian)
solution with A2 = G?m%u® +2EL?*/u,” and r, is the

SThere is a global minus misprint in Ref. [39] for SSC II. The

i H I L? Gu(AFGmu)(4L-S+3L-6)
corrected equation is Fmax = WG A) + 22A .

064023-6



SPIN SUPPLEMENTARY CONDITIONS FOR SPINNING ...

linear-order perturbation. Here A is a conserved quantity
although it is not identical with the length of the LRL vector
which is only conserved for the Newtonian order. Then, we
get the turning points as

L2
Fmax — ————
m pu(Gmp F A)
y AGmuS + [3Gmu F (1 — 2k)A]Z
2¢2mLA '

+ (A F Gmyp)

(43)

Here we used the notations for conserved scalar products
S=L-Sand T =L -6 (the evolution of these quantities
are first-post Newtonian order effects, so we could use them
in linear-order terms; see Ref. [40]). The relationship
between the orbital elements and turning points is a, =
(rmax + rmin)/z and €y = (rmax - rmin)/(rmax + rmin)’ SO
the radial orbital parameters in all SSCs are

Gmu  Gu
=——+5-[2 2 - k)X, 44
a, =28+ RS + (2- (44
2EL? AE EL?
24—+ —— 4|1+ =S
€r +G2m2,u3+csz{ [ +G2m2,u3}
(5 —4k)EL?
+ [2(2—k)+G272M3 Zo. (45)

Then, the conserved quantities with orbital elements are

1/2
g=Smly G
—2a, czm1/2a§/2(1 —e2)l/?
x 28+ (2 - k)Z)}, (46)
Gl/2

L? = Gmya,(1 - e%){l -
sz1/2a3/2(1 _ 63)3/2

x 23+ e2)S+ (5—k+3(1 — k)ez)Z]}. (47)

The time evolution of the generalized true anomaly from
Eq. (36) in terms of the orbital elements is

dr r?
dy  \/Gma,(1 - é?)
G'/?(e2 -3 - 2e, cos;()}

X
2627}11/2613/2(1 - 62)3/2

{1+(28+(2—k)2)

(48)

After the integration, we can get the result with eccentric
anomaly u parametrization, namely r = a,(1 — e, cos u).
In other papers (e.g., [39]) it is indicated as 56 Then, we get

6 ] d¢ _ (u—e,sinu)

Integration formulas fqr e, <1 are f(1+e,cos;()2 = ey
and f cosgpddp _ (e,u—sinu)
(14e,cosy)? (1=e2)3/% *
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the generalized Kepler equation which contains the spin-
orbit contributions in all SSCs as

n(t—ty) = u—e;sinu, (49)

where we have introduced two orbital elements which
are the mean motion #n and the time eccentricity e, with
conserved quantities (E, L, S, and X),

1 [-2E\32
L , 50
" Gm< H > G0)
> 2EL? 4E
e; = 5=+
! G*m?’u®  *mL
(1 —2k)EL?

It can be seen that the mean motion does not contain SO
terms and the time eccentricity depends on SSC.

In the following let us consider the simple angular
motion of the binary systems which is described by
Eq. (37). As we have mentioned above, we solve the
equation of motion in a noninertial frame, which is the
orbital plane. Thus, the angular equation from Eq. (37) is

. L a p
S, 52
4 yr2+r2+r3 (52)

where we have introduced the shorthand notations

o _(2k-DET (53)

ccmu

_ G2S+3(1- k)3
_ 5 ,

p

54
- (54
Using the generalized true anomaly parametrization in
Eq. (42), the angular equation Eq. (52) can be integrated
in terms of the orbital elements

17214 > —(1=2kX
1_G 4S8 +3Z —( k) ercos;(]. (55)

czm'/Qaf/z(l _ 63)3/2

g _
dy

After the integration we get the angular motion as (see
Ref. [70] for the first post-Newtonian corrections)

®—po=Ky—Qsiny, (56)

where ¢, is the integration constant. We have also
introduced some shorthand notations with conserved
quantities

G*my? (48 + 3%)
K=1- TR : (57)
G (2k — 1)AS
Q - CQLS : (58)
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There is another solution for the angular evolution in
literature, which is introduced by Damour and Deruelle
in Ref. [71] using the conchoidal transformation. In this
parametrization there is a third eccentricity ey If we
use the conchoidal transformation r = 7+ $/(2L) with
L=L /i + ain Eq. (52), then the angular equation has the
simple form (like the Newtonian equation for the angular
motion)

. L
The integration of this angular equation with the generalized
eccentric anomaly parametrization r = a,(1 — e, cosu),
where we used the deformed parametrization

F=a(l—ecosu), (60)

with @ = a, — /(2L) and & = a,e,/a as shorthand nota-
tions, is straightforward. With the help of Egs. (60) and (49)
in Eq. (59) we get

dp L
du  na*(1—egcosu)’

(61)

where we have introduced the angular eccentricity ey =
2e — e, as an orbital parameter. After the integration we get

9—9o=(1+k), (62)

where k = L/(na*\/1 —e2) —1 is the pericenter drift
and v = 2arctan (\/(1 + eg)/(1 — ep) tanu/2) is a similar

Damour-Deruelle true anomaly. Finally, we add the angular
orbital elements with conserved quantities, as

- G*my? (48 + 3%)
k=— T : (63)
2EL? EL? \ 4E(4S +3%)
=1+ GCmd + ( + G2m2u3> 2ml . (64)

The Damour-Deruelle angular orbital parameters eg

and k in Egs. (63) and (64) are not SSC-dependent. This
angular motion does not agree with cases of SSC /I in
Refs. [38,72], and [73] because in these cases they only
considered the Newtonian term [the first term in Eq. (37)],
but we have the same angular motion in Ref. [41], which is
identical with the paper of Ref. [63] for the eccentric case
(see the Appendix C).

Both parametrizations are equivalent to each other.
Apparently Eq. (56) depends on SSC, but if we use the
eccentric anomaly parametrization u, the SSC dependence
disappears. The relationships between quantities for the
angular motion are

K=1+k (65)
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Gmu*Ap

0="r2

, (66)
where we have introduced p = 1 —¢,/ey as a shorthand
notation.

VI. DISSIPATION UNDER
GRAVITATIONAL RADIATION

The energy and the orbital angular momentum change
due to the gravitational radiation at 2.5 PN order. The
instantaneous losses for the spin-orbit interaction were
given by Kidder [35] using SSC I. Some authors calculated
the averaged losses for SSC I/II [40,72,74]. We compute
these averaged losses for all SSCs including the missing
SSC M. The multipolar momenta are necessary for
computation of the energy and the angular momentum
losses up to the SO order. The mass Z;; and current J;;
quadrupole momentums in relative Descartes coordinates
are

Tij = p(rir)>™

+ % (€1 (14 3K)rjv, = 20,7,)6,)5TE,  (67)
Tij = —ném(e;p,rir,v,)5™

+ jd—ﬂm (r,[S; = o;])STF, (68)

where # = p/m is the symmetric mass ratio, x; are relative
coordinates, v; = X; is the relative velocity of the binary, S;
and o; are the coordinates of the spin vector S and o,
respectively, the mass difference dm = m; — m, (choosing
my Z m, by convention), and ¢, is the Levi-Civita symbol.
The last term is apparently singular for equal masses in
Eq. (68) because it can be expressed as (3/2)Gm(rn;)3™
with another spin vector n = pu(S,/m; —S,/m,)/(Gm?)
(see Table I). It can be proved that the current angular
momentum J;; does not depend on SSC. Here STF means
the indices of the momentums Z;; and J;; are symmetric-
trace-free. Thus, the instantaneous energy and the angular
momentum losses up to the SO order are given by [37]

dE G [ - 16 -~ -
E:—S?<Iijz-ij+@«7ijjij>, (69)
dL 2G

. 16 ~ -« \.
T 5o ina (jpquj + @@j%) Ly (70)
where repeated indices indicate summation, dots over
multipolar moments mean time derivatives, and L; denotes
the components of the unit angular momentum vector in
Eq. (17). Then, we get the instantaneous losses for different
SSCs
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TABLE 1. Different notations for spin vectors. One of the most widely used notations is the total S and the weighted & spins in
Ref. [40]. S = ¢ and 6 = £ in Refs. [35,37], and [74] (but here a factor Gm?® is used in definitions, so ¢ = (S, +S,)/Gm? and
E= (1S, +v7'S,)/Gm?) where v = m,/m, is the mass ratio parameter). The total and other combinations of weighted spins
A = (m/ém)(o — S) are also used in Refs. [35] and [77], X = A. Some authors used an effective spin combination S+ = 2S + (3/2)e,
which is a convenient notation for SSC II in Refs. [38,41,63,68,72]. There are other symmetrized spin quantities ), =

PHYSICAL REVIEW D 95, 064023 (2017)

(Sy/m3 +S,/m?)/2 and yx, = (S,/m3 —S,/m?)/2, which are useful notations for the dimensionless angular-momentum Kerr

parameters of the individual bodies in Refs. [76] and [78].

Spin vectors (S1, Sy) (S, o) (S, A) s> Aa)
1, 8 STk g SThL % =308 400,
6 =128+ 8, A=m(GE—n) xa=%(§,—§—i—‘%)
S, o) S, :v;]S_—f, A=1H(c-8) 2z :W,
5 =i ra= g
—1_ _(1_ o 1—v 2
S, A) S, = u-lbﬁ_il-;)A’ 6=S+{%A X = <‘2+m”2)y",
S, — (1-12)8+(1-v)A Yy = 2(1+v)S-(1+2) (1 +v)e
2 v -2 @ 2mPu(1-v)
, — v () — (=Ygt (1407 — v [ )y (7 )]
(Kss Aa) S, = ey S = (140) s S = (140)2 s
S, = mMut) o = 2k = (et () ]
27 T (14)?  (14w)? - -2
dE  8G’m*u? .5 ) these formulas for one Newtonian orbital period (see
dr 15054 (1177 = 1207) Ref. [66]), the explicit k dependence disappears, but E
8G3mul Gm and L depend on SSC as in Egs. (16) and (17) (see Fig. 3).
T Tz 76 27}"2—377}2—12— 8
15¢’r r

+ [3(22k—5)i2 — (48k — 5)2? +4(6k—5)G—rm]2},

(71)

d_L _ 8G*mulL 372 — 2y — 2Gm
dt 501 r

[6(3?21)2 — 4% 4 o)

)
— 268 (12— 2y — S ]s
r

r2
+ [6(16 — 21k)i?v? — (78 — 90k) i

— (17 = 36k)v* + GT'" [(7 — 24K) 72
— 8(1 - 3k)7] —5G2mz]z}, (72)

72

where S=L-S and £ =L -6. It can be seen that our
results are equivalent with that of Ref. [35] for k = 1 and
Ref. [74] for k = 1/2.

The instantaneous energy and the angular momentum
losses depend on SSC in Egs. (71) and (72), so these
formulas involve parameter k. If we use the E and L
conserved quantities instead of r, v, and 7, the dependence
on parameter k remains. On the other hand, if we average

)= W(148E2L4+732G2m2ﬂ3ﬂ

<dE> _ G*m(=2Ep)*?

Gz(—2EM)3/2
10c7L°

+ 10740G*m*® E2L* + 24990G*m*uSEL?

+12579Gm®u®)S + (256 E3L°

+ 6660G*m? > E*L* + 16660G*m*u°EL?

+ 8673Gmou°)x], (73)

+ 425G*m*ub) + [(520E3LS

dE dL
Y X, () (G} o

FIG. 3. Dissipative quantities in the different SSCs. The
compact binary system is characterized by the energy E and
the magnitude of the orbital angular momentum L, which depend
on SSC (here k means the SSC dependence). Here D is the
luminosity distance and /C; ;; ;; are the different frames for SSCs.
Thus, the averaged energy and the orbital angular momentum
losses due to gravitational radiation depend on SSC, however the
leading-order spin-orbit waveform does not depend on SSC.
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<%> B ‘4—G2ms(c_sif”)3/2 (MEL? +15G?m*y)
G2(_2Eﬂ>3/2
15¢7L°
+6756G*m?* > EL? + 5345G*m*u%)S
+ (772E°L* + 4476G*m* 1’ EL?

+3665G*m*u®)x]. (74)

[(1188E2L*

We will compute the SO contributions of the waveform for
different SSCs in the next chapter.

VII. WAVEFORM

We need the current octopole momentum 7, for the
computation of the waveform h;; (see Eq. (3.20b) in
Ref. [35]). Thus, the J;; does not depend on SSC up
to the SO order as

Tk = n(l - 3’7)(rirj8kpqrpvq)STF
+ 2n(r;r;op)°, (75)
The second term in Eq. (75) is relevant for the computation
of the waveform, as the first term only appears in the next

PN-order corrections. The waveform up to the SO order is
computed by

2G - 4 .. 1

hij=—— Iij+§€kl(iu7j)kNl+ﬁ€kl(iu7j)kleNm ,

= *D
(76)

where D is the distance between the source and observer,
Ny, are the components of the unit vector N which points
from the source to the observer, and (-);; means the
transverse-traceless transformation [we have omitted the
pure relativistic PN corrections, so the first terms in
Egs. (75) and (68) can be neglected].

The gravitational waveforms for all SSCs (here we have
neglected the pure relativistic corrections P*9~2Q,; which
are given in Refs. [75] and [76]) are given as

2Gu
by = 2910, 4 POY + PO, ()
with
Gm
Qi = 2(”;”/ - 7’;’/), (78)
POSO = 2™ {l(6—8) x N|, 1} 79
0;; = Asm (6-5) (s (79)
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3r,~rj

2
PS030 _F{ >

—ru[vx (4S8 + (3+2k)o)]

(rxv)-2S+ (1 +k)o]

67
—2kv(;(rxe); +7r(,»[r x(S+a)l)

+ [(3—:1’ - 2V> (N-r)—2r(N- V)] (6xN),)) }

(80)

(i

where we have used the following formulas which are valid
for any TT-tensor and a and b vectors:

<5ij)TT = (Nibj)TT =0,
[bi(a X N)j]TT = [ai(b X N)j]TT’ (81)

where 6;; is the Kronecker delta function. The tensor Q;; is
the zeroth-order waveform, the PQ,SJ»O is the leading-order SO
contribution [which does not contain terms O(N)], and the
P2 Q7P is the next-to-leading-order SO contribution [which
is proportional to terms O(N°) and O(N?)] to the waveform.
The leading-order SO contribution PQ?? is singular for
equal masses since (6 —S)/ém = S,/m, —S,/m,. Here
we can use the spin vector A of Kidder (see Table I). It is
transparent that for k = 1 we retain the SSC I case as in the
classical paper of Ref. [35].

VIII. SUMMARY

We presented the spin supplementary conditions for the
leading-order spin-orbit contribution of compact binaries.
The Lagrangian contains acceleration-dependent terms in
some cases of SSC. Thus, we have to use the Ostrogradsky
dynamics for the generalized Lagrangian. We have shown
some procedures of the elimination of the acceleration from
the Lagrangian, i.e., the method of the double zero and
constrained dynamics in the Appendixes. We constructed
the generalized Hamiltonian function with the presence of
high-order canonical moments and computed the general-
ized Hamilton’s equations.

Our radial and angular motion of the compact binaries
represent the SSC dependence of any orbital parameters for
eccentric orbits. We calculated the energy and the orbital
angular momentum losses due to gravitational radiation
in each SSC, and we concluded that the dependence of
SSC apparently disappears since we use averaging over
one orbital period. However, these expressions are SSC-
dependent because the energy and the orbital angular
momentum depend on SSC; see Eqs. (14) and (15).

Nevertheless, we calculated the leading-order gravita-
tional waveform that contains the spin-orbit corrections. It
has been proven that the leading-order spin orbit does not
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depend on SSC, but the next-to-leading-order spin-orbit
contribution does.
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APPENDIX A: THE ELIMINATION OF
ACCELERATION: CONSTRAINED DYNAMICS

Constrained dynamics arose from the degenerate
Lagrangian developed by Dirac, Anderson, and
Bergmann (see [79,80]). The simple acceleration-
dependent Lagrangian of a relativistic spinning body
studied by Refs. [7] and [8] leads to constrained dynamics.
The Dirac formalism for a constrained Hamiltonian of a
spherical spinning top interacting with Poisson brackets
was given by Ref. [81].

We introduce two new variables using the method of
Lagrange multipliers where A = r for the acceleration term,
and § is a multiplier in the Lagrangian. The transformation

of the Lagrangian is £(r,v,a) - L*(r,v, ;\,)'\4,6) as

G G
£ =5+ T SR e x (28 4+ (14 K)o )]
2 r cr
2k —1 .
+¥V'(X X6 )+d-(v—»_). (A1)
2¢°m
Then, the Euler-Lagrange equations are
G 2G
,ua:—&r—z—/;vaS—i-(l%—k)c)
r cr
3Gu
+ﬁr[(r xV)-(2S + (1 + k)o )]
3Gur
(2k — V) - .
—W(}\. X 6 ) -0 s
(2k = 1)
0=29 —W(a X 0 ),
O0=v-»~. (A2)

Using these equations, we have derived the acceleration of
Eq. (7). It can be seen that the Lagrangian is degenerate, so
we have to construct the constrained dynamics for this case.
We compute the conjugate momenta as

o or o
pl‘ ar ’p}\, 8;'\/ ’Pﬁ 68 ’

(A3)

then
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G
p,:yv+cz—/:3rx(25+(l+k)6)

(2k = Dp
2c—2m)\. X 0 +6,

(2k—1)u

202m VX0,

Py = — (A4)

and the first kind of subsidiary condition is

b1 =ps =0, (A3)
where the symbol = denotes the weak equality (see
Ref. [79]). The second kind of condition is

b, =v-A

P G
(2k-1) . 0

A ———A =0.
2¢2m x° u

(A6)

A new further condition can be given as

¢; =, ~0.

Then, the Hamiltonian is

(A7)

3
HZ'HO-FZC;"(I)," (A8)
i=1

where ¢; are arbitrary multipliers and

It can be seen that, the final Hamiltonian is

_p_%_Gm/A G(2k—-1)

23 pr-(I’XG>

H =
2u r 2¢7r

—é%ﬂhﬂrx@s+(ﬁ+@6ﬂ

+G(2k_l)(?r.r)Pa'(rx6)

2c%ur

G(2k—-1) P: Gm
—WPS'(VXG)—fi(;—X) —7Px'r
G
—Wl’x‘{l’rx (4S + 30
—r[(rxp;) - (2S+ (1 +k)o )]

—Lfr)rx (28+(2—k)6)}.

r

(A10)

(A x 06 ) because the ps is vanishing on the constraint

surface, and we replaced the variables X, k by the
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acceleration with p, and r in Eq. (7). Thus, the Hamilton’s
equations are consistent with the Euler-Lagrange equations
in Eq. (A2), and they are satisfied up to the SO order as

L OH . OH

Pr = ar,Px— 8;\,136— 95

. OH . OH . OH

F=— A =—0,8 =—. All
op, op,, Oops (Al1)

APPENDIX B: THE ELIMINATION
OF ACCELERATION: THE METHOD
OF THE DOUBLE ZERO

Barker and O’Connell proposed a procedure for the
perturbation method in which the acceleration terms can be
eliminated from the Lagrangian, which is called the method
of the double zero. In this method the Lagrangian contains
some lower-order conserved quantities [52-54]. We are
following this method. Let us write the Lagrangian,
Eq. (11), as

L=Ly+ Lhona + L, (B1)
with

o,  Gmp
== —_— B2
Ly 5V + P (B2)

G,
Lhona = Tzﬂlﬁv. [r x (4S + 30)], (B3)
, (2k—1) Gm

Ea:—mﬂ' a—|—7r X Uuvi. (B4)

It can be seen that £}, does not depend on SSC if we use
the Newtonian-order acceleration Lagrangian of Eq. (11).
Then, we get the L] ... Our aim is to eliminate the
acceleration from Lj. Let us consider the next double
zero term

_%(GO —6)- Ka+cr—3mr) x,w} (BS)

Here the Newtonian-order equation of motion is ay =
—(Gmr=3)r,and 6 = 0, s0 6, is the conserved quantity up
to SO order. Then,

Lo+ZZy = —(Zk—21>o—0 : [(a +G—’3nr> xuv]. (B6)
2c¢*m r

Moreover, we note that the S and & spin vectors are

conserved quantities in Eq. (B1), and we just follow the

original paper of [55]. Afterwards, we consider the other

double zero and total time-derivative terms
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ZZ—%{(a—i—Gr—;nr) -r}(LO—L)

r

(%) v

TTD:%((V'r)L—Z(V'r)LO—f—(V'LO)r>. (BS)

r2 rZ r2

(B7)

Here L. = pur x v is the angular momentum vector and L
is the conserved quantity for the Newtonian-order. This
distinction is important even in the lowest order because it
is essential for the extraction of equations of motion from
the Lagrangian. We define the new Lagrangian which does
not contain the acceleration-dependent terms as

L' = 'CN + *C:lona + 'ng + ZZN

2k—1
_! - )6y (ZZ+TTD),  (BO)
so we get
G G,
L= gvz + ’r”” + 2(;2”r3v' I x (48 + 36,)]

_ <(i_’5” (r-Lg) + 2(; ) (v Lo)) (60 - 1)

+ Lo (ao-v)}.

I%

(B10)

We have replaced the spin vectors S and 6 with S
and 6 because these are conserved quantities in L,,.
The equations of motion can be derived from the accel-
eration-independent Lagrangian £ with the replacement of
Sy, 64, and L in the equations of motion by S, ¢, and L,
respectively.

APPENDIX C: THE HAMILTONIAN
FORMALISM FOR SSC II

Let us consider the Hamiltonian formalism for SSC II,
p?

H:Z ,

Gum

G
+Wr-[px(4s+3o')], (C1)

where the limit of kK = 1/2 is not appropriate. The required
limit is q — O because the higher-order terms have to
disappear in this case. Then, the usual Hamilton’s equations
are
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. Gum G
+ 553 r[(r x p)- (4S + 30)], (C2)
2c7r
p
:;—2C2r3rx (4S + 30). (C3)

It is interesting to note that the total angular momentum
has a simple form, L = r x p, but if we use Eq. (C3), we
get the complicated form of Eq. (13) in the Lagrangian
formalism for SSC 1II as

Gﬂ
2c?
We assume that the canonical momentum has the decom-
position p = p,e, + pyey + pye, with orthonormal basis
(e,. ey, €,) in an inertial frame fixed by the conserved total
angular momentum vector J. We use the decomposition
of v=u,e, + vpey + v,e, from the simple definition of
r=e, In Eq. (C3)

L=urxv+

;T [rx (48 +36)]. (C4)

2

L
PP=pitpitpy=pit g (C5)
where we have used the identity p*> = (F- p)>+(F x p)>
Here we can rewrite the simple relationship v = re,+

rOey + resin Oe . Then, the radial equation is (p? = u*#?)

., 2E 2Gm L?
=T 22

P = _
u r uer
3 G(4S ;— 330') L ’ (C6)
cour
which is the same as Eq. (36). Let us consider the angular
motion. We compute the quantity L - e, (where the unit
vector e, is e, =e,cosd —eysinf in spherical polar
coordinates), so L-ez = Lcos® = pyrsinf. Using
Eq. (C5), we get the components of p, where © is the
angle between L and J.

Lcos®
_ LeosH C7
Py rsin@ (C7)
L? cos2 ®
2_"_1[1- . C8
Po =" < sin? 9) (C8)

Using the equations r sin 0 = €V, rf = e, - v, and the
Hamilton Eq. (C3), we get (f x ey = e,, I X e, = —ey)

- Lcos® Gusin6S, (C9)
~ urtsin?é 2¢’Lrcos®)’
L LA(1—s@ GusS
U (L GSe ) cq)
Hr ALr /1 cos’ @

sin® @

where the Sy =e,- (4S +36) and the S, = e, - (4S + 30)
are shorthand notations. The equations for polar angles 6
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and ¢ can be transformed in Euler-angle equations
(p,Y,0) if we write the unit separation vector T of
Descartes components in an invariant system fixed to J,
as in

cosf = sin@sin®,
sin(¢p — Y) sin€ = sin @ cos O,

cos(¢p — 1) sin@ = cos ¢. (C11)

These transformation identities are the same as the other
three angles ¢, Y,0®y, but we use the substitution of
® — Op. The relationship between the two angles
from the components of Ly = L[l —1/(2L%)](0,

—cos@®y/sin@, /1 —cos’@y/sin9) and L = L(0,
—cos @/ sin#, /1 — cos®> ©/sin 0) in a spherical coordi-
nate system is

G,u 1— co:§2®N

sin’@

2¢2rL

sin@ | cos’@y
1 ———Sy+ S C12
x (cos Oy sin29 ° i ¢)] (€12)

where we used the quantity A, = 2L - Lgg in a spherical
coordinate system, as in

cos® = cos By {1 +

cos’@y
sin’0

Ao = B So —

GuL (cosOy
cr

S¢), (C13)

sin 6

where the inclination angles can be replaced by @y <> ©
because these angles appear in leading-order contributions.
The time evolution from Eq. (C11) is

cos?®
sin%0

0=—sin(p—_")O —4/1 - @.  (Cl4)

After eliminating 0 we get the final formula for the
evolution of ¢

. L
HUT

which agrees with Eq. (6.13) in Ref. [63], but we chose the
sign — after the extraction of Eq. (C10). The last term is
Osin(¢p — T)(1 - coszG)/sin249)‘1/2 which corresponds to
the equation for T in Eq. (39) interchanging @y <> ©
because quantity © (and G)N) has a linear order O(c¢~2), and
here we can use the approximation ® = Oy [see Egs. (40),
(41)]. If we assume the equal masses of single-spin cases,
then ® is a constant, and the second term is zero in
Eq. (C15). Since J is conserved using Eq. (C14), we get

_ cos’*®
1 sin’6

) —Tcos®, (C15)
2¢2Lr

e, S = —ur’0 + O(c™?). Then, we get a similar angular
equation Eq. (4.29) as in Ref. [41]. In general cases, if we
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compute S, (and Sy) up to the leading-order for Eq. (C15),
we get the same angular Egs. (38) and (39). In scalar
products @y <> O are interchangeable, which corresponds
to the equations

cos?® (4S + 30) - L
sin® @ L ’

Sp=1/1- (C16)

PHYSICAL REVIEW D 95, 064023 (2017)

cos® (4S + 30) - L
=- . 17
S sin 6 L (C17)

If we want to compare the angular Egs. (C9) and (C10) to
our earlier results in [39], we need to use the transformation
between ® and Oy in Eq. (C12).
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