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We consider different spin supplementary conditions (SSC) for a spinning compact binary with the
leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed, but it is
acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed
by Ostrogradsky and compute the conserved quantities and the dissipative part of relative motion during
the gravitational radiation of each SSC. We give the orbital elements and observed quantities of the SO
dynamics, for instance, the energy and the orbital angular momentum losses and waveforms, and discuss
their SSC dependence.
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I. INTRODUCTION

The first direct observation of a gravitational-wave signal
from two coalescing black holes took place on September
14, 2015 [1]. It has been confirmed that these compact
binaries are a main source of gravitational waves. The
rough estimates also indicate that typical stellar black hole
(∼30 M⊙) binaries can be observed 2–32 times per year
[2]. Precise measurements allow the observation of the
finite size effects of individual bodies, such as the masses
and spins, with high accuracy. The spin effects of these
components can help the understanding of several astro-
physical processes, e.g., the spin-flip phenomenon [3,4],
frame dragging [5], and the evolution of accretion disks
around black holes [6].
The simple Lagrangian formalism of a relativistic

spinning-point particle depends on the acceleration as
demonstrated in Refs. [7,8]. The description of such a
system is not unique in generalized mechanics. The
generalized Lagrangian formalism was first developed by
Jacobi and Ostrogradsky [9] in the 19th century, see
reviews Refs. [10–13].
The description of spinning masses had been studied in

general relativity, but the first important result was achieved
by Mathisson [14] who described the motion of extended
bodies in general cases, and he also generalized the
mechanics of test bodies in curved backgrounds in 1937.
In the early 1950s Papapetrou found the same equations
of motion in Ref. [15], but his results came from a
noncovariant formalism. Later the equations of spinning
bodies were improved in Refs. [16,17] and since then they
are called the Mathisson-Papapetrou-Tulczyjew-Dixon
equations (afterwards MPTD-equations).
It is well known that this system of equations is not

closed; therefore, we have to impose some spin supple-
mentary conditions (afterwards SSC). In the literature there

arebasically fourSSCs, namely theFrenkel-Mathisson-Pirani,
the Newton-Wigner-Pryce, the Corinaldesi-Papapetrou, and
the Tulczyjew-Dixon (see Refs. [14–25]). The MPTD-
equations have been usedwith these SSCs to study themotion
of a test spinning particle in different curved backgrounds and
in the ultrarelativistic regime (see Refs. [26–31]).
The first effective description of the leading-order

spin effect in the post-Newtonian sense (hereafter PN) was
given by Tulczyjew in Ref. [32]. The nongeodesic motion of
test particles and compact binaries with PN corrections
were first developed by Barker and O’Connell for different
SSCs inRefs. [33,34]. The acceleration of the compact binary
with leading-order spin-orbit interaction (hereafter SO) is not
obvious, but it rather depends on the chosen SSC [35]. Some
authors have first investigated the spin effects with the help
of the PN approach for some of the SSCs in Refs. [35–40].
The Lagrangian of compact binaries with SO interaction is
acceleration-dependent in two cases of SSC [37,39], but the
Lagrangian does not depend on acceleration terms for the
Newton-Wigner-Pryce SSC in Refs. [36,38,41]. Taking into
account the spins of the bodies in physical systems leads to
additional extra degrees of freedom, for instance, spin-
precession equations, which are important for the investiga-
tion of classical and/or quantum systems [3]. It is important
to know how the motion of the spins changes the orbital
evolution and the dissipation under gravitational radiation for
compact sources.
Recently, a simple Hamiltonian in ADM coordinates

for covariant SSC has been found by [42]; it follows
the leading-order and next-to-leading-order equations of
motion of SO contribution in harmonic coordinates in
[43,44]. Recently, effective field theory (EFT) methods have
beenused for the computation of the spin-orbit, spin-spin, and
self-spin contributions in [45–47]. Nowadays, there are also
EFT results for the 4 PN-order spin contributions [48–51].
In this paper we give the Lagrangian of the compact

spinning binary with leading-order SO interaction for
well-known SSCs. We calculate all the conserved quantities*mikoczi.balazs@wigner.mta.hu
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and orbital parameters for these SSCs. As the main result
we give the classical relative orbital evolution of a spinning
binary system. Because the Lagrangian is acceleration-
dependent in two SSCs, we compute the generalized
Lagrangian and its canonical dynamics. We construct
the nontrivial type of the Ostrogradsky Hamiltonian
method, and then we show two examples for the elimina-
tion of acceleration-dependent terms from Lagrangians,
i.e., the constrained dynamics in Refs. [7,8] and the double
zero method proposed by Barker and O’Connell in
Refs. [52–55].
Moreover, we consider the dissipative part of the

evolution of the compact binary. We calculate the sym-
metric trace-free (STF)-multipole moments and investigate
the instantaneous energy and the orbital angular momen-
tum losses. It can be seen that these instantaneous losses
depend on SSC, but the SSC dependence disappears after
averaging over one orbital period. Finally, we compute the
gravitational waveforms for all SSCs, where it can be seen
that the leading-order contribution is independent of SSC,
but the next-to-leading-order terms depend on SSC.
Our Lagrangian (and Hamiltonian) formalism is con-

sistent with the equations of motion for all SSCs in
Ref. [35]. Several authors eliminated the covariant SSC
at the level of the potential using the Dirac bracket method
and the variation of the action principle in Refs. [47,56].
They first applied the nonreduced SO part of the potential
and achieved the reduced Hamiltonian form of dynamics,
and their result is consistent with one of the Barker
O’Connell type equations of motion if we use the baryonic
coordinate transformation (see Ref. [45]).
This article is organized as follows. In Sec. II we

introduce the MPTD-equations and then we focus on the
SSCs. In Sec. III we discuss the generalized Lagrangian
and canonical mechanics of the compact binary system
with spin-orbit interaction for all SSCs. We construct the
canonical (Ostrogradsky type) dynamics, and we demon-
strate the elimination of the acceleration-dependent terms
from the Lagrangian using the constrained dynamics and
the double zero method in Appendixes A and B, respec-
tively. We rewrite the equations of motion from Lagrangian
formalism in Sec. IV, and then we add the radial and
angular motion in a simple case in Sec. V. In Sec. VI we
compute the energy and the angular momentum losses
due to gravitational radiation, and finally we calculate the
waveform of the SO interaction terms for all SSCs in
Sec. VII. At the end of this paper Appendixes A, B and C
describe the relationship between the Hamiltonian and
Lagrangian formalisms.
In this paper Greek indices α, β,... run from 0 to 3 and

the Roman indices a, b,... run from 1 to 3. The repeated
Greek (Roman) indices in a row mean Einstein’s summa-
tion from 1 (0) to 3. Generally, we use lowercase indices for
spatial tensors. We use angular and square brackets for
symmetrized and antisymmetrized indices, respectively,

e.g., TðabÞ ¼ ðTab þ TbaÞ=2 and T ½ab� ¼ ðTab − TbaÞ=2.
The fully symmetric trace-free part of tensor will be
denoted by “STF,” ðTabÞSTF≡Thabi ¼TðabÞ−δabTðccÞ=3.
The use of the transverse-traceless part of the tensor will be
denoted by “TT,” ðTabÞTT ¼ Λab;cdTcd, where Λab;cd ¼
PaiPjb − PabPcd=2 and Pab ¼ δab − NaNb is the projector
and the vector N is the line of sight. The G is the
gravitational constant and c is the speed of light. Each
calculation of the spin-orbit coupling is valid only to the
leading-order contributions with a 1.5 PN accuracy.

II. SPIN SUPPLEMENTARY CONDITIONS

The MPTD-equations of motion of the spinning body in
general relativity in Refs. [14,15] are

DSαβ

Dτ
¼ pαuβ − pβuα; ð1Þ

Dpa

Dτ
¼ −

1

2
Rα
γδβS

δβuγ; ð2Þ

where τ is the affine parameter of the trajectory, pα is the
four-momentum, uα ¼ dxα=dτ is the tangent vector to
the trajectory, Sαβ is the skew canonical spin tensor which
represents the internal angular three-momentum after using
some SSC, i.e., spin, Rα

βγδ is the Riemann tensor, and
D=Dτ ¼ uα∇α is the covariant derivative along uα. The
spin vector is given by Sα ¼ −ϵαβμνuβSμν=2 for Frenkel-
Mathisson-Pirani SSC where ϵαβμν is the four-dimensional
Levi-Civita tensor (we use the unit c ¼ 1 in this section).
The three-dimensional spin vector can be obtained from the
use of any SSC (see Ref. [38] or Appendix A in Ref. [35]).
We assume the uαuα ¼ −1 for the four-velocity. There are
some scalars, i.e., the rest mass m ¼ −pαuα with respect to
uα, the “other” rest mass μ2 ¼ −pαpα with respect to pα,
and the magnitude of spin 2s2 ¼ SαβSαβ. These quantities
are not conserved for all cases, e.g., the m is conserved for
the Frenkel-Mathisson-Pirani SSC, the μ is conserved for
the Tulczyjew-Dixon SSC, and the s is conserved for the
Tulczyjew-Dixon and the Frenkel-Mathisson-Pirani SSCs
(see details, e.g., Ref. [28]). Thus, the variables of the
Eqs. (1) and (2) are more than the number of equations,
so we have to impose the spin supplementary condition. In
the literature, there are basically four SSCs: the Frenkel-
Mathisson-Pirani (hereafter SSC I) [14,18,19], the Newton-
Wigner-Pryce (SSC II) [21,22], the Corinaldesi-Papapetrou
(SSC III) [20] and the Tulczyjew-Dixon (SSC IV)
[16,17,23].

Sαβua ¼ 0 SSC I; ð3Þ

2S0β þ uαSαβ ¼ 0 SSC II; ð4Þ

Sα0 ¼ 0 SSC III; ð5Þ
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Sαβpα ¼ 0 SSC IV: ð6Þ

First, SSC I appeared in the description of the spin of
electrons in [18]. This condition is also called the covariant
SSC. In this SSC Weyssenhoff and Raabe pointed out the
appearance of the helical motion which is unphysical [57].
However, recently this motion was interpreted by a hidden
electromagneticlike momentum [58]. SSC II was first used
for quantum mechanics because it is well known that the
center of mass of a rotating particle is not invariant under
the Lorentz transformation, see Refs. [21,22]. This SSC II
has been generalized for curved spacetimes in [59]. Our
definition of SSC II is equivalent to Eqs. (4.6) and (4.7) in
Ref. [59] for flat spacetime where the unit timelike vector
field reduces to the Kronecker delta. The simplest way
is to choose SSC III where the timelike components were
dropped by Corinaldesi and Papapetrou in Ref. [20]. Barker
and O’Connell have found that the macroscopic limit of the
potential of two quantum spinning masses with spin 1=2
from the quantum theory of gravitation by Gupta, which
leads to the acceleration of SSC II in Refs. [34,60]. SSC I
and SSC IV are equivalents of each other if we neglect the
quadratic terms in spin. This should be valid for the spin-
orbit interaction because this interaction is linear in spin.
The transformations between the SSCs were described by
Ref. [33] for spinning test particles of the nongeodesic
motion. We note that the Lagrangian of the spin-orbit
interaction of compact binaries does not depend on the
acceleration only in SSC II, and the acceleration-dependent
terms appear in other SSCs [39]. Note that recently another
SSC has been given by Ohashi, Kyrian, and Semerák in
Refs. [24,25]. For more details see Ref. [61].

III. GENERALIZED MECHANICS OF SPINNING
TWO-BODY SYSTEMS

Consider a compact two-body system with leading-order
spin-orbit interaction, where masses aremi and spins are Si
(i ¼ 1, 2). The equation of motion (relative acceleration)
for the three different SSCs can be found in Ref. [35] as

a ¼ −
Gm
r3

rþ G
c2r3

�
3

r2
r½ðr × vÞ · ð2Sþ ð1þ kÞσÞ�

− v × ð4Sþ 3σÞ þ 3_r
r
r × ð2Sþ ð2 − kÞσÞ

�
; ð7Þ

where r ¼ jrj and v are the relative distance and velocity,
respectively, m ¼ m1 þm2 is the total mass of the system
where the masses m1 and m2, and the overdot denotes
the derivative with respect to the time, S ¼ S1 þ S2 is the
total spin vector and σ ¼ ðm2=m1ÞS1 þ ðm1=m2ÞS2 is the
weighted spin vector where the individual spins S1 and S2

follow the notations of Ref. [40]. Here we have introduced
the SSC-dependent parameter k with the following values
for the different SSCs

k ¼
8<
:

1 for SSC I;
1
2

for SSC II;

0 for SSC III.

ð8Þ

The transformation between the SSCs (see Fig. 1) is given
by Ref. [35] as

rðkÞ ¼ rðk0Þ þ k0 − k
c2m

v × σ; ð9Þ

vðkÞ ¼ vðk0Þ þ Gðk − k0Þ
c2r3

r × σ: ð10Þ

Then we can compute the corresponding Lagrangian from
the acceleration in Ref. [37] for SSC I and Ref. [39] for
SSC II as

L ¼ μ

2
v2 þ Gmμ

r
þ Gμ
c2r3

v · ½r × ð2Sþ ð1þ kÞσÞ�

þ ð2k − 1Þμ
2c2m

v · ða × σÞ; ð11Þ

where μ ¼ m1m2=m is the reduced mass. It can be seen that
the only case in which the Lagrangian does not depend
on acceleration terms is that of SSC II (for k ¼ 1=2).
According toRef. [62] the infinitesimal acceleration depend-
ence can be eliminated by a time-coordinate transformation.
Here only the k ¼ 1=2 case is relevant, but in this way the
SSC dependence is shifted in the coordinates. Note that
the acceleration dependence can be eliminated if we use the
Newtonian-order accelerationaN ¼ −ðGm=r3Þr in Eq. (11);
thus, we get the case of SSC II. The generalized moments
can be calculated by the generalized Lagrangian as

p ¼ ∂L
∂ _r − _q; q ¼ ∂L

∂a ; ð12Þ

which yields to

FIG. 1. Different world lines of the center of spinning masses.
Three centers of mass (CMs) have been demonstrated for
each SSC.
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p¼ μ_rþ Gμ
c2r3

r× ½2Sþð2−kÞσ�; q¼ð2k−1Þμ
2c2m

σ× _r:

ð13Þ

The energy and the orbital angular momentum from accel-
eration-dependent Lagrangian dynamics are respectively

E ¼ p · v þ q · a − L; ð14Þ

L ¼ r × pþ v × q: ð15Þ

The energy E, the magnitude of the orbital angular momen-
tum L ¼ jLj, the magnitudes of the spinvectors Si,
and the total angular momentum vector J ¼ Lþ S
are conserved quantities. We compute the energy and
the orbital angular momentum for different SSCs using
Eqs. (14) and (15),

E ¼ μ

2
v2 −

Gmμ

r
þ Gμð1 − 2kÞ

c2r3
v · ðr × σÞ; ð16Þ

L ¼ μr × v þ Gμ
c2r3

r × ½r × ð2Sþ ð2 − kÞσÞ�

þ ð1 − 2kÞμ
2c2m

v × ðv × σÞ: ð17Þ

Here themain conserved quantities, i.e., the energyE and the
magnitude of orbital angular momentum L, depend on SSC
although we do not mark the SSC dependence (k depend-
ence) onE andL. If we set k ¼ 1=2, the Lagrangian does not
depend on the acceleration.
Considering the canonical dynamics the first Hamiltonian

description of the spin-orbit interaction for compact binary
systems in SSC II was given by Refs. [38,41], and [63], we
can calculate theHamiltonian from (acceleration-dependent)
Lagrangian for all SSCs. The generalized Hamiltonian
from a generalized Legendre transformation is

H ¼ p · v þ q · a − L: ð18Þ

Here we should eliminate the acceleration terms from the
Hamiltonian, Eq. (18); thus, we need to use the acceleration
in Eq. (7). Two canonical pairs appear here, which are (r, p)
and (v, q). This is nontrivial because we do not know which
canonical moment to use in the Legendre transformation.
After using the canonical moment p in Eq. (13), we can
calculate the Hamiltonian.1

H ¼ p2

2μ
−
Gmμ

r
þ G
2c2r3

r · ½2p × ð2Sþ ð2 − kÞσÞ

þ ð2k − 1Þμv × σ� − Gm
r3

q · r

−
G

c2μr3
q ·

�
p × ð4Sþ 3σÞ

− r½ðr × pÞ · ð2Sþ ð1þ kÞσÞ�

−
3ðr · pÞ

r2
r × ð2Sþ ð2 − kÞσÞ

�
: ð19Þ

Note that we had to add an extra term ð1 − 2kÞG=
ð2c2r3Þðμv − pÞ · ðr × σÞ (which disappears if we use
the zeroth-order canonical moment p) to the original
Hamiltonian in Eq. (18); otherwise, it could not satisfy the
generalized Hamilton’s equations

_p ¼ −
∂H
∂r ; _r ¼ ∂H

∂p ; ð20Þ

_q ¼ −
∂H
∂v ; _v ¼ ∂H

∂q : ð21Þ

Then, the explicit Hamilton’s equations up to Oðc−2Þ are

_p ¼ −
Gmμ

r3
r −

G
c2r3

p × ½2Sþ ð1þ kÞσ�

þ 3G
c2r5

r½ðr × pÞ · ð2Sþ ð1þ kÞσÞ�; ð22Þ

_r ¼ p
μ
−

G
c2r3

r × ½2Sþ ð2 − kÞσ�; ð23Þ

_q ¼ Gμð2k − 1Þ
2c2r3

r × σ; ð24Þ

_v ¼ −
Gm
r3

r −
G

c2μr3

�
p × ð4Sþ 3σÞ

−
3

r2
r½ðr × pÞ · ð2Sþ ð1þ kÞσÞ�

−
3ðr · pÞ

r2
r × ð2Sþ ð2 − kÞσÞ

�
; ð25Þ

where in Eqs. (22) and (23) we used the approximation
OðqÞOðc−2Þ ≈ 0, which can be seen from Eq. (13) or
Eq. (24). Equation (24) disappears for SSC II and Eqs. (22)
and (23) will be equivalent to Eq. (25), which is the
acceleration Eq. (7) in the Lagrangian method. In
Appendices A and B we show two different methods for
the elimination of the acceleration-dependent terms from
the Lagrangian.

A. Canonical structure

We define the generalized Poisson brackets following
the paper of Ref. [64], where f and g functions arbitrarily
depend on the canonical and spin variables

1If we do not use the canonical moments, but just straight-
forwardly keep the first and second terms p · v, q · a and
eliminate the acceleration Lðr; v; aÞ → Lðr; vÞ, then we get
HL ¼−μ

2
v2−Gmμ

r þp ·vþq ·a− Gμ
2c2r3 v · ½r× ð4Sþ3σÞ�, where

a ¼ a(r; v) is the acceleration from the Lagrangian. This
Hamiltonian satisfies the generalized Hamilton’s Eqs. (20)
and (21), but it is not consistent for Newtonian limit by
H ¼ p2=ð2μÞ − Gmμ=r.

BALÁZS MIKÓCZI PHYSICAL REVIEW D 95, 064023 (2017)

064023-4



ff; gg ¼
X3;2
j;i¼1

� ∂f
∂Qj

i

∂g
∂Pj

i

−
∂f
∂Pj

i

∂g
∂Qj

i

−
∂f
∂Sj

i

�
Sj
i ×

∂g
∂Sj

i

��
;

ð26Þ

where Q1 ≡ r, Q2 ≡ v, P1 ≡ p and P2 ≡ q are useful
vector notations, and the superscripts are the components
of the vectors. Thus, the nonvanishing fundamental Poisson
brackets are

fPl
i; Q

k
jg ¼ δijδlk; ð27Þ

fSli; Skjg ¼ δijεlkmSmi . ð28Þ

The time evolutions are given by their Poisson brackets
with the Hamiltonian, so the generalized Hamilton’s
equations can be written as

_Pi ¼ fPi;Hg; ð29Þ

_Qi ¼ fQi;Hg: ð30Þ

The time evolution of the spins, the orbital angular
momentum, and the Laplace-Runge-Lenz vector can be
computed using of the fundamental Poisson brackets
Eqs. (27) and (28),

_Si ¼ fSi;Hg ¼ Gð4þ 3νiÞ
2c2r3

L × Si; ð31Þ

_L ¼ fL;Hg ¼ G
2c2r3

ð4Sþ 3σÞ ×L; ð32Þ

_A ¼ fA;Hg ¼ G
c2r3

½2Sþ ð2 − kÞσ� ×A

þ 3G
c2μr5

ðr ×LÞ½2L · Sþ ð1þ kÞL · σ�

þ Gð2k − 1Þ
c2r3

�
μv2

2
σ × rþ (L · σ)v

�
: ð33Þ

with ν1 ¼ ν and ν2 ¼ ν−1 as shorthand notations where
ν ¼ m2=m1 is the mass ratio of the compact binary and
A¼p

μ×L−Gmμ
r r is the Laplace-Runge-Lenz (LRL) vector.2

To derive explicit evolution equations, we had to use the
integration of the equation _q ¼ ð2k − 1Þμ=ð2c2mÞσ × _v
from Eqs. (24) and (25). It can be seen that the time

evolution of the LRL vector depends on SSC and is not
a pure precession as in the case of _Si and _L.3

IV. THE EQUATIONS OF MOTION

We need to compute the evolution of the angular
momenta. The evolution of the Newtonian orbital angular
momentum vector LN ¼ μr × v [the first term in Eq. (17)]
does not follow a pure precession motion since

_LN ¼ −
μG
c2r3

r × ½v × ð4Sþ 3σÞ�

þ 3μG_r
c2r4

r × ½r × ð2Sþ ð2 − kÞσÞ�; ð34Þ

meanwhile, the motion of the total orbital angular momen-
tum vector L leads to a pure precession equation from
Eq. (32),

_L ¼ G
2c2r3

ð4Sþ 3σÞ ×L: ð35Þ

This pure precession can be given by the conservation of
the total angular momentum (_J ¼ 0), and as a consequence
_L ¼ − _S. This way the motion of the total spin vector does
not have pure precession, but the individual spin vectors of
the orbiting bodies do have one in Eq. (31) or in Ref. [33]. It
can be seen that the pure precession equation for the total
angular momentum vector does not depend on SSC, but
the evolution of the Newtonian angular momentum vector
depends on SSC; see Eqs. (35) and (34), respectively,
and Fig. 2. We may get different angular equations
depending on which orbital momentum vectors (LN or L)
we measure with the Euler angles. The radial motion is
invariant to this choice. Hereafter, we only consider the
orbital motion involved in dynamical quantities fixed to
LN, where we will give the full radial motion for each of

FIG. 2. Total and Newtonian angular momenta. The angles ofΘ
and ΘN are different, but the evolution equations for the other two
Euler angles are equivalent with each other.

2The magnitude of the zeroth-order LRL (AN ¼ jANj) is
conserved. The relationship between AN , LN , and EN is μA2

N ¼
G2m2μ3 þ 2ENL2

N . The Newtonian geometric conditionL·A¼0,
which contains the spin-orbit contributions, is only satisfied for
SSC II and for the single spin limit of the spin-orbit interaction in
Ref. [65].

3We can get a pure precession using the Newtonian orbital
average of Eq. (33) only for SSC II (see Refs. [66] and [67]).

SPIN SUPPLEMENTARY CONDITIONS FOR SPINNING … PHYSICAL REVIEW D 95, 064023 (2017)

064023-5



the other SSCs, and we neglect the total angular motion
(see Refs. [38,40,41,63,68,69]).
We compute the orbital evolution using the conserved

quantities E and L in Eqs. (16) and (17) for different SSCs.
The first integrals can be separated into radial and angular
motion. The radial and angular motion from energy and
the magnitude of the orbital angular momentum are
governed by

_r2 ¼ _r2N −
2G

c2μr3
ð2L · Sþ ð2 − kÞL · σÞ

þ 2ð2k − 1ÞE
c2mμ2r2

ðL · σÞ; ð36Þ

_φ ¼ _φN þ G
c2Lr3

ð2L · Sþ 3ð1 − kÞL · σÞ

−
ð2k − 1ÞE
c2mμLr2

ðL · σÞ; ð37Þ

where φ is the azimuthal angle on the orbital plane.
We have introduced the Newtonian formulas where
_r2N ¼ 2Eμ−1 þ 2Gmr−1 − L2r−2μ−2 and _φN ¼ Lμ−1r−2.
We neglected the precession of the orbital plane.
Accordingly, we have assumed that ðr̂ × v̂Þ ∝ L̂ for
derivation of the angular equation in Eq. (37).4 It means
that the inclination angle between the total angular momen-
tum J and the orbital angular momentum L is constant
because the evolution of the angle is squared in magnitude
of spin d=dtðL̂ · ĴÞ ≈OðS2Þ (for SSC II see Ref. [69]). In
other words, it means that the orbital angular momentumL
from Eq. (17) determines the orbital plane instead of the
Newtonian angular momentum LN ¼ μðr × vÞ (for SSC II
see Ref. [41]). If we consider the unit angular momentum
vector L̂ ¼ ðr̂ × v̂Þð1þ δÞ from Eq. (17), where δ is the
leading-order perturbation, then the angular equation is
_φ ¼ Lμ−1r−2ð1 − δÞ; see Eq. (37). We have assumed that
the scalar products L · S and L · σ are constant because
they appear in the perturbative terms of Oðc−2Þ [or the
evolution of scalar products Si ·LN (or Si ·L) represents
first-order effects; see Ref. [40]]. The radial equation agrees
with the expressions of Refs. [38] and [40] for SSC I
(k ¼ 1) and SSC II (k ¼ 2), respectively. L and LN
appearing in perturbations are freely interchangeable in
scalar products because we have eliminated the quadratic
terms in spin [OðS2Þ].
Generally, there are three angular equations with Euler

angles (i.e., φ, ϒ, ΘN) for spin-orbit interaction given by
Ref. [69] as

_φ ¼ L
μr2

�
1 −

λSO
2L2

�
− cosΘN

_ϒ; ð38Þ

_ϒ ¼ tanφ
sinΘN

_ΘN; ð39Þ

where λSO is a shorthand notation for the SO contributions
in Eq. (38) that we have computed for all SSCs. λSO ¼
−2GμL=ðc2rÞ½2S þ 3ð1 − kÞΣ� þ 2ð2k − 1ÞEL=ðc2mÞΣ,
which corresponds to the two SO correction terms in
Eq. (37). Here we used the original notations of
Ref. [38], where φ ¼ ψ , ϒ ¼ −ϕn, ΘN ¼ Ĵ · L̂N and
Θ ¼ Ĵ · L̂ in the Hamiltonian formalism. It can be seen
that if we do not take the evolution of the angle Θ into
account, we get Eq. (37) from Eqs. (38) and (39). In addition,

_ΘN ¼ −
GμðS · vÞ
c2JLNr3

½4ðS · rÞ þ 3ðσ · rÞ�

þ 3Gμ_rðS · rÞ
c2r4

½2ðS · rÞ þ ð2 − kÞðσ · rÞ�

þ Gμ_rðS ·LNÞ
c2JL2

Nr
2

½2ðS ·LNÞ þ 3ð1 − kÞðσ ·LNÞ�:

ð40Þ

It is important to know that the polar angle Θ does not
depend on SSC, but ΘN does.

_Θ ¼ 3Gμðν−1 − νÞ
2c2Jr3

L · ðS1 × S2Þ: ð41Þ

It can be seen that _Θ ¼ 0 is relevant for two different cases:
(i) equal mass (ν ¼ 1) and (ii) single spin (S1 ¼ 0 or S2 ¼ 0)
cases. The evolutions of the angles of Θ and ΘN are
quadratic in spin _Θ, _ΘN ≈OðS2Þ.

V. ORBITAL MOTION

Let us consider the radial motion which is characterized
by Eq. (36). We will use the generalized true anomaly χ
parametrization [39,40]

r ¼ arð1 − e2rÞ
1þ er cos χ

; ð42Þ

where ar is the semimajor axis, and er is the radial
eccentricity. These parameters can be given by the turning
points _r2 ¼ 0. Thus, we have found that the solution is in
the form rmax

min
¼r�ð1þrεÞ, where r�¼−ðGmμ�AÞ=ð2EÞ¼

L2=½μðGmμ∓AÞ� is the zeroth-order (or Newtonian)
solution with A2 ¼ G2m2μ2 þ 2EL2=μ,5 and rε is the

4The evolution of polar angle θ can be measured on the orbital
plane, but this plane is not conserved due to the spin precession
equation. Thus, the evolution of θ can transform the inertial
frame; see Ref. [38].

5There is a global minus misprint in Ref. [39] for SSC II. The
corrected equation is rmax

min
¼ L2

μðGmμ∓AÞ þ GμðA∓GmμÞð4L·Sþ3L·σÞ
2c2L2A

.
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linear-order perturbation. Here A is a conserved quantity
although it is not identical with the length of the LRL vector
which is only conserved for the Newtonian order. Then, we
get the turning points as

rmax
min

¼ L2

μðGmμ ∓ AÞ þ ðA ∓ GmμÞ

×
4GmμS þ ½3Gmμ ∓ ð1 − 2kÞA�Σ

2c2mLA
: ð43Þ

Here we used the notations for conserved scalar products
S ¼ L̂ · S and Σ ¼ L̂ · σ (the evolution of these quantities
are first-post Newtonian order effects, so we could use them
in linear-order terms; see Ref. [40]). The relationship
between the orbital elements and turning points is ar ¼
ðrmax þ rminÞ=2 and er ¼ ðrmax − rminÞ=ðrmax þ rminÞ, so
the radial orbital parameters in all SSCs are

ar ¼
Gmμ

−2E
þ Gμ
c2L

½2S þ ð2 − kÞΣ�; ð44Þ

e2r ¼ 1þ 2EL2

G2m2μ3
þ 4E
c2mL

�
4

�
1þ EL2

G2m2μ3

�
S

þ
�
2ð2 − kÞ þ ð5 − 4kÞEL2

G2m2μ3

�
Σ
�
: ð45Þ

Then, the conserved quantities with orbital elements are

E ¼ Gmμ

−2ar

�
1þ G1=2

c2m1=2a3=2r ð1 − e2rÞ1=2

× ð2S þ ð2 − kÞΣÞ
�
; ð46Þ

L2 ¼ Gmμ2arð1 − e2rÞ
�
1 −

G1=2

c2m1=2a3=2r ð1 − e2rÞ3=2

× ½2ð3þ e2rÞS þ ð5 − kþ 3ð1 − kÞe2rÞΣ�
�
: ð47Þ

The time evolution of the generalized true anomaly from
Eq. (36) in terms of the orbital elements is

dt
dχ

¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmarð1 − e2rÞ

p �
1þ ð2S þ ð2 − kÞΣÞ

×
G1=2ðe2r − 3 − 2er cos χÞ
2c2m1=2a3=2r ð1 − e2rÞ3=2

�
: ð48Þ

After the integration, we can get the result with eccentric
anomaly u parametrization, namely r ¼ arð1 − er cos uÞ.
In other papers (e.g., [39]) it is indicated as ξ6 Then, we get

the generalized Kepler equation which contains the spin-
orbit contributions in all SSCs as

nðt − t0Þ ¼ u − et sin u; ð49Þ

where we have introduced two orbital elements which
are the mean motion n and the time eccentricity et with
conserved quantities (E, L, S, and Σ),

n ¼ 1

Gm

�
−2E
μ

�
3=2

; ð50Þ

e2t ¼ 1þ 2EL2

G2m2μ3
þ 4E
c2mL

×

�
2S þ

�
2 − kþ ð1 − 2kÞEL2

G2m2μ3

�
Σ
�
: ð51Þ

It can be seen that the mean motion does not contain SO
terms and the time eccentricity depends on SSC.
In the following let us consider the simple angular

motion of the binary systems which is described by
Eq. (37). As we have mentioned above, we solve the
equation of motion in a noninertial frame, which is the
orbital plane. Thus, the angular equation from Eq. (37) is

_φ ¼ L
μr2

þ α

r2
þ β

r3
; ð52Þ

where we have introduced the shorthand notations

α ¼ −
ð2k − 1ÞEΣ

c2mμ
; ð53Þ

β ¼ G½2S þ 3ð1 − kÞΣ�
c2

: ð54Þ

Using the generalized true anomaly parametrization in
Eq. (42), the angular equation Eq. (52) can be integrated
in terms of the orbital elements

dφ
dχ

¼ 1 −
G1=2½4S þ 3Σ − ð1 − 2kÞΣer cos χ�

c2m1=2a3=2r ð1 − e2rÞ3=2
: ð55Þ

After the integration we get the angular motion as (see
Ref. [70] for the first post-Newtonian corrections)

φ − φ0 ¼ Kχ −Q sin χ; ð56Þ
where φ0 is the integration constant. We have also
introduced some shorthand notations with conserved
quantities

K ¼ 1 −
G2mμ3ð4S þ 3ΣÞ

c2L3
; ð57Þ

Q ¼ Gμ2ð2k − 1ÞAΣ
c2L3

: ð58Þ
6Integration formulas for er < 1 are

R dϕ
ð1þer cos χÞ2 ¼

ðu−er sin uÞ
ð1−e2r Þ3=2

and
R cosϕdϕ

ð1þer cos χÞ2 ¼ − ðeru−sin uÞ
ð1−e2r Þ3=2 .
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There is another solution for the angular evolution in
literature, which is introduced by Damour and Deruelle
in Ref. [71] using the conchoidal transformation. In this
parametrization there is a third eccentricity eθ. If we
use the conchoidal transformation r ¼ ~rþ β=ð2 ~LÞ with
~L ¼ L=μþ α in Eq. (52), then the angular equation has the
simple form (like the Newtonian equation for the angular
motion)

_φ ¼
~L
~r2
: ð59Þ

The integration of this angular equation with the generalized
eccentric anomaly parametrization r ¼ arð1 − er cosuÞ,
where we used the deformed parametrization

~r ¼ ~að1 − ~e cosuÞ; ð60Þ

with ~a ¼ ar − β=ð2 ~LÞ and ~e ¼ arer= ~a as shorthand nota-
tions, is straightforward. With the help of Eqs. (60) and (49)
in Eq. (59) we get

dφ
du

¼
~L

n ~a2ð1 − eθ cos uÞ
; ð61Þ

where we have introduced the angular eccentricity eθ ¼
2~e − et as an orbital parameter. After the integration we get

φ − φ0 ¼ ð1þ ~kÞv; ð62Þ

where ~k ¼ ~L=ðn ~a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2θ

q
Þ − 1 is the pericenter drift

and v ¼ 2 arctan ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ eθÞ=ð1 − eθÞ
p

tan u=2Þ is a similar
Damour-Deruelle true anomaly. Finally, we add the angular
orbital elements with conserved quantities, as

~k ¼ −
G2mμ3ð4S þ 3ΣÞ

c2L3
; ð63Þ

e2θ ¼ 1þ 2EL2

G2m2μ3
þ
�
1þ EL2

G2m2μ3

�
4Eð4S þ 3ΣÞ

c2mL
: ð64Þ

The Damour-Deruelle angular orbital parameters eθ
and ~k in Eqs. (63) and (64) are not SSC-dependent. This
angular motion does not agree with cases of SSC I/II in
Refs. [38,72], and [73] because in these cases they only
considered the Newtonian term [the first term in Eq. (37)],
but we have the same angular motion in Ref. [41], which is
identical with the paper of Ref. [63] for the eccentric case
(see the Appendix C).
Both parametrizations are equivalent to each other.

Apparently Eq. (56) depends on SSC, but if we use the
eccentric anomaly parametrization u, the SSC dependence
disappears. The relationships between quantities for the
angular motion are

K ¼ 1þ ~k ð65Þ

Q ¼ Gmμ2Aρ
2EL2

; ð66Þ

where we have introduced ρ ¼ 1 − er=eθ as a shorthand
notation.

VI. DISSIPATION UNDER
GRAVITATIONAL RADIATION

The energy and the orbital angular momentum change
due to the gravitational radiation at 2.5 PN order. The
instantaneous losses for the spin-orbit interaction were
given by Kidder [35] using SSC I. Some authors calculated
the averaged losses for SSC I/II [40,72,74]. We compute
these averaged losses for all SSCs including the missing
SSC III. The multipolar momenta are necessary for
computation of the energy and the angular momentum
losses up to the SO order. The mass I ij and current J ij

quadrupole momentums in relative Descartes coordinates
are

I ij ¼ μðrirjÞSTF

þ 2η

3c2
ðεipq½ð1þ 3kÞrjvp − 2vjrp�σqÞSTF; ð67Þ

J ij ¼ −ηδmðεipqrjrpvqÞSTF

þ 3μ

2δm
ðri½Sj − σj�ÞSTF; ð68Þ

where η ¼ μ=m is the symmetric mass ratio, xi are relative
coordinates, vi ¼ _xi is the relative velocity of the binary, Si
and σi are the coordinates of the spin vector S and σ,
respectively, the mass difference δm ¼ m1 −m2 (choosing
m1 ≧m2 by convention), and εijk is the Levi-Civita symbol.
The last term is apparently singular for equal masses in
Eq. (68) because it can be expressed as ð3=2ÞGmðriηjÞSTF
with another spin vector η ¼ μðS1=m1 − S2=m2Þ=ðGm2Þ
(see Table I). It can be proved that the current angular
momentum J ij does not depend on SSC. Here STF means
the indices of the momentums I ij and J ij are symmetric-
trace-free. Thus, the instantaneous energy and the angular
momentum losses up to the SO order are given by [37]

dE
dt

¼ −
G
5c5

�
I
���
ijI
���
ij þ

16

9c2
J
���

ijJ
���

ij

�
; ð69Þ

dL
dt

¼ −
2G
5c5

εipq

�
J̈ pjI

���
qj þ

16

9c2
J̈ pjJ

���
qj

�
L̂i; ð70Þ

where repeated indices indicate summation, dots over
multipolar moments mean time derivatives, and L̂i denotes
the components of the unit angular momentum vector in
Eq. (17). Then, we get the instantaneous losses for different
SSCs
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dE
dt

¼ 8G3m2μ2

15c5r4
ð11_r2 − 12v2Þ

−
8G3mμL
15c7r6

��
27_r2 − 37v2 − 12

Gm
r

�
S

þ
�
3ð22k− 5Þ_r2 − ð48k− 5Þv2 þ 4ð6k− 5ÞGm

r

�
Σ
�
;

ð71Þ

dL
dt

¼ 8G2mμL
5c5r5

�
3_r2 − 2v2 −

2Gm
r

�

þ 12G2μ2

45c7r7

��
6ð3_r2v2 − 4_r4 þ v4Þ

− 26
Gm
r

ð_r2 − v2Þ − 6
G2m2

r2

�
S

þ
�
6ð16 − 21kÞ_r2v2 − ð78 − 90kÞ_r4

− ð17 − 36kÞv4 þGm
r

½ð7 − 24kÞ_r2

− 8ð1 − 3kÞv2� − 5
G2m2

r2

�
Σ
�
; ð72Þ

where S ¼ L̂ · S and Σ ¼ L̂ · σ. It can be seen that our
results are equivalent with that of Ref. [35] for k ¼ 1 and
Ref. [74] for k ¼ 1=2.
The instantaneous energy and the angular momentum

losses depend on SSC in Eqs. (71) and (72), so these
formulas involve parameter k. If we use the E and L
conserved quantities instead of r, v, and _r, the dependence
on parameter k remains. On the other hand, if we average

these formulas for one Newtonian orbital period (see
Ref. [66]), the explicit k dependence disappears, but E
and L depend on SSC as in Eqs. (16) and (17) (see Fig. 3).

	
dE
dt



¼ −

G2mð−2EμÞ3=2
15c5L7

ð148E2L4 þ 732G2m2μ3EL

þ 425G4m4μ6Þ þG2ð−2EμÞ3=2
10c7L9

½ð520E3L6

þ 10740G2m2μ3E2L4 þ 24990G4m4μ6EL2

þ 12579G6m6μ9ÞS þ ð256E3L6

þ 6660G2m2μ3E2L4 þ 16660G4m4μ6EL2

þ 8673G6m6μ9ÞΣ�; ð73Þ

TABLE I. Different notations for spin vectors. One of the most widely used notations is the total S and the weighted σ spins in
Ref. [40]. S ≡ ζ and σ ≡ ξ in Refs. [35,37], and [74] (but here a factor Gm2 is used in definitions, so ζ ¼ ðS1 þ S2Þ=Gm2 and
ξ ¼ ðνS1 þ ν−1S2Þ=Gm2Þ where ν ¼ m2=m1 is the mass ratio parameter). The total and other combinations of weighted spins
Δ ¼ ðm=δmÞ(σ − SÞ are also used in Refs. [35] and [77], Σ ≡ Δ. Some authors used an effective spin combination Seff ¼ 2Sþ ð3=2Þσ,
which is a convenient notation for SSC II in Refs. [38,41,63,68,72]. There are other symmetrized spin quantities χs ¼
ðS2=m2

2 þ S1=m2
1Þ=2 and χa ¼ ðS2=m2

2 − S1=m2
1Þ=2, which are useful notations for the dimensionless angular-momentum Kerr

parameters of the individual bodies in Refs. [76] and [78].

Spin vectors (S1, S2) (S, σ) (S, Δ) (χs, χa)

(S1, S2) � � � S ¼ S1 þ S2 ,
σ ¼ m2

m1
S1 þ m1

m2
S2

S ¼ S1 þ S2 ,
Δ ¼ mðS2

m2
− S1

m1
Þ

χs ¼ 1
2
ðS2m2

2

þ S1
m2

1

Þ ,
χa ¼ 1

2
ðS2m2

2

− S1

m2
1

Þ
(S, σ) S1 ¼ ν−1S−σ

ν−1−ν ,

S2 ¼ νS−σ
ν−ν−1

� � � Δ ¼ 1þν
1−ν ðσ − SÞ χs ¼ ð1þνÞ2Sþð1−ν2ÞΔ

2m2ν
,

χa ¼ ð1þνÞ2ðS−ΔÞ
2m2ν

(S, Δ) S1 ¼ ðν−1−νÞS−ð1−νÞΔ
ν−1þ1−ν−ν2 ,

S2 ¼ ð1−ν2ÞSþð1−νÞΔ
ν−1þ1−ν−ν2

σ ¼ Sþ 1−ν
1þνΔ � � � χs ¼ ð1þνÞ2σ

2m2ν
,

χa ¼ 2ð1þνÞS−ð1þν2Þð1þνÞσ
2m2νð1−νÞ

(χs, χa) S1 ¼ νm2ðχs−χaÞ
ð1þνÞ2 ,

S2 ¼ m2ðχsþχaÞ
ð1þνÞ2

S ¼ m2½ð1−ν2Þχaþ(1þν2Þχs�
ð1þνÞ2 ,

σ ¼ 2νm2χs

ð1þνÞ2

S ¼ νm2½ðν−1−νÞχaþ(ν−1þνÞχs�
ð1þνÞ2 ,

Δ ¼ m2½ð1−ν2Þχaþ(1þν2Þχs�
1−ν2

� � �

FIG. 3. Dissipative quantities in the different SSCs. The
compact binary system is characterized by the energy E and
the magnitude of the orbital angular momentum L, which depend
on SSC (here k means the SSC dependence). Here D is the
luminosity distance andKI;II;III are the different frames for SSCs.
Thus, the averaged energy and the orbital angular momentum
losses due to gravitational radiation depend on SSC, however the
leading-order spin-orbit waveform does not depend on SSC.
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dL
dt



¼ −

4G2mð−2EμÞ3=2
5c5L4

ð14EL2 þ 15G2m2μ3Þ

þG2ð−2EμÞ3=2
15c7L6

½ð1188E2L4

þ 6756G2m2μ3EL2 þ 5345G4m4μ6ÞS
þ ð772E2L4 þ 4476G2m2μ3EL2

þ 3665G4m4μ6ÞΣ�: ð74Þ

We will compute the SO contributions of the waveform for
different SSCs in the next chapter.

VII. WAVEFORM

We need the current octopole momentum J ijk for the
computation of the waveform hij (see Eq. (3.20b) in
Ref. [35]). Thus, the J ijk does not depend on SSC up
to the SO order as

J ijk ¼ μð1 − 3ηÞðrirjεkpqrpvqÞSTF
þ 2ηðrirjσkÞSTF; ð75Þ

The second term in Eq. (75) is relevant for the computation
of the waveform, as the first term only appears in the next
PN-order corrections. The waveform up to the SO order is
computed by

hij ¼
2G
c4D

�
Ï ij þ

4

3c2
εklðiJ̈ jÞkNl þ

1

2c2
εklðiJ

���
jÞkmNlNm

�
TT
;

ð76Þ

where D is the distance between the source and observer,
Nk are the components of the unit vector N which points
from the source to the observer, and ð··ÞTT means the
transverse-traceless transformation [we have omitted the
pure relativistic PN corrections, so the first terms in
Eqs. (75) and (68) can be neglected].
The gravitational waveforms for all SSCs (here we have

neglected the pure relativistic corrections P0.5−1.5Qij which
are given in Refs. [75] and [76]) are given as

hij ¼
2Gμ
c4D

½Qij þ PQSO
ij þ P1.5QSO

ij �
TT
; ð77Þ

with

Qij ¼ 2

�
vivj −

Gm
r3

rirj

�
; ð78Þ

PQSO
ij ¼ 2m

r3δm
f½ðσ − SÞ ×N�ðirjÞg; ð79Þ

P1.5QSO
ij ¼ 2

r3

�
3rirj
r2

ðr× vÞ · ½2Sþð1þ kÞσ�

− rði½v× ð4Sþð3þ 2kÞσÞ�jÞ
− 2kvðiðr× σÞjÞ þ

6_r
r
rði½r× ðSþ σÞ�jÞ

þ
��

3_r
r
r− 2v

�
ðN · rÞ− 2rðN · vÞ

�
ði
ðσ×NÞjÞ

�
;

ð80Þ

where we have used the following formulas which are valid
for any TT-tensor and a and b vectors:

ðδijÞTT ¼ ðNibjÞTT ¼ 0;

½biða ×NÞj�TT ¼ ½aiðb ×NÞj�TT; ð81Þ

where δij is the Kronecker delta function. The tensor Qij is
the zeroth-orderwaveform, thePQSO

ij is the leading-order SO
contribution [which does not contain terms OðNÞ], and the
P1.5QSO

ij is the next-to-leading-order SO contribution [which
is proportional to termsOðN0Þ andOðN2Þ] to thewaveform.
The leading-order SO contribution PQSO

ij is singular for
equal masses since ðσ − SÞ=δm ≡ S2=m2 − S1=m1. Here
we can use the spin vector Δ of Kidder (see Table I). It is
transparent that for k ¼ 1 we retain the SSC I case as in the
classical paper of Ref. [35].

VIII. SUMMARY

We presented the spin supplementary conditions for the
leading-order spin-orbit contribution of compact binaries.
The Lagrangian contains acceleration-dependent terms in
some cases of SSC. Thus, we have to use the Ostrogradsky
dynamics for the generalized Lagrangian. We have shown
some procedures of the elimination of the acceleration from
the Lagrangian, i.e., the method of the double zero and
constrained dynamics in the Appendixes. We constructed
the generalized Hamiltonian function with the presence of
high-order canonical moments and computed the general-
ized Hamilton’s equations.
Our radial and angular motion of the compact binaries

represent the SSC dependence of any orbital parameters for
eccentric orbits. We calculated the energy and the orbital
angular momentum losses due to gravitational radiation
in each SSC, and we concluded that the dependence of
SSC apparently disappears since we use averaging over
one orbital period. However, these expressions are SSC-
dependent because the energy and the orbital angular
momentum depend on SSC; see Eqs. (14) and (15).
Nevertheless, we calculated the leading-order gravita-

tional waveform that contains the spin-orbit corrections. It
has been proven that the leading-order spin orbit does not
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depend on SSC, but the next-to-leading-order spin-orbit
contribution does.
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APPENDIX A: THE ELIMINATION OF
ACCELERATION: CONSTRAINED DYNAMICS

Constrained dynamics arose from the degenerate
Lagrangian developed by Dirac, Anderson, and
Bergmann (see [79,80]). The simple acceleration-
dependent Lagrangian of a relativistic spinning body
studied by Refs. [7] and [8] leads to constrained dynamics.
The Dirac formalism for a constrained Hamiltonian of a
spherical spinning top interacting with Poisson brackets
was given by Ref. [81].
We introduce two new variables using the method of

Lagrange multipliers where λ ¼ _r for the acceleration term,
and δ is a multiplier in the Lagrangian. The transformation
of the Lagrangian is Lðr; v; aÞ → L�ðr; v; λ; _λ; δ Þ as

L� ¼ μ

2
v2 þ Gmμ

r
þ Gμ
c2r3

v ·½r × ð2Sþ ð1þ kÞσ Þ�

þ ð2k − 1Þμ
2c2m

v · ð _λ × σ Þ þ δ ·ðv − λ Þ. ðA1Þ

Then, the Euler-Lagrange equations are

μa ¼ −
Gmμ

r3
r −

2Gμ
c2r3

v × ð2Sþ ð1þ kÞσ Þ

þ 3Gμ
c2r5

r½ðr × vÞ·ð2Sþ ð1þ kÞσ Þ�

þ 3Gμ_r
c2r4

r × ð2Sþ ð1þ kÞσ Þ

−
ð2k − 1Þμ
2c2m

ðλ̈ × σ Þ − _δ ;

0 ¼ δ −
ð2k − 1Þμ
2c2m

ða × σ Þ;
0 ¼ v − λ : ðA2Þ

Using these equations, we have derived the acceleration of
Eq. (7). It can be seen that the Lagrangian is degenerate, so
we have to construct the constrained dynamics for this case.
We compute the conjugate momenta as

pr ¼
∂L�

∂ _r ;pλ ¼
∂L�

∂ _λ ;pδ ¼
∂L�

∂ _δ ; ðA3Þ

then

pr ¼ μv þ Gμ
c2r3

r × ð2Sþ ð1þ kÞσ Þ

þ ð2k − 1Þμ
2c2m

_λ × σ þ δ ;

pλ ¼ −
ð2k − 1Þμ
2c2m

v × σ ; ðA4Þ

and the first kind of subsidiary condition is

ϕ1 ≐ pδ ≈ 0; ðA5Þ
where the symbol ≈ denotes the weak equality (see
Ref. [79]). The second kind of condition is

ϕ2 ≐ v − λ

¼ pr

μ
−

G
c2r3

r × ð2Sþ ð1þ kÞσ Þ

−
ð2k − 1Þ
2c2m

_λ × σ −
δ
μ
− λ ≈ 0: ðA6Þ

A new further condition can be given as

ϕ3 ≐ _ϕ2 ≈ 0: ðA7Þ
Then, the Hamiltonian is

H ¼ H0 þ
X3
i¼1

ci · ϕi ; ðA8Þ

where ci are arbitrary multipliers and

H0 ¼ pr · _rþ pλ · _λ − L�: ðA9Þ

It can be seen that, the final Hamiltonian is

H ¼ p2
r

2μ
−
Gmμ

r
þGð2k − 1Þ

2c2r3
pr · ðr × σ Þ

−
G
c2r3

pr · ½r × ð2Sþ ð1þ kÞσ Þ�

þ Gð2k − 1Þðpr · rÞ
2c2μr5

pδ · ðr × σ Þ

−
Gð2k − 1Þ
2c2r3

pδ · ðv × σ Þ − δ ·
�
pr

μ
− λ

�
−
Gm
r3

pλ · r

−
G

c2μr3
pλ ·

�
pr × ð4Sþ 3σ Þ

− r½ðr × prÞ · ð2Sþ ð1þ kÞσ Þ�

−
3ðr · pr)

r2
r × ð2Sþ ð2 − kÞσ Þ

�
: ðA10Þ

ð λ̈ × σ Þ because the pδ is vanishing on the constraint

surface, and we replaced the variables _λ ; ̈λ by the
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acceleration with pr and r in Eq. (7). Thus, the Hamilton’s
equations are consistent with the Euler-Lagrange equations
in Eq. (A2), and they are satisfied up to the SO order as

_pr ¼ −
∂H
∂r ; _pλ ¼ −

∂H
∂λ ; _pδ ¼ −

∂H
∂δ ;

_r ¼ ∂H
∂pr

; _λ ¼ ∂H
∂pλ

; _δ ¼ ∂H
∂pδ

: ðA11Þ

APPENDIX B: THE ELIMINATION
OF ACCELERATION: THE METHOD

OF THE DOUBLE ZERO

Barker and O’Connell proposed a procedure for the
perturbation method in which the acceleration terms can be
eliminated from the Lagrangian, which is called the method
of the double zero. In this method the Lagrangian contains
some lower-order conserved quantities [52–54]. We are
following this method. Let us write the Lagrangian,
Eq. (11), as

L ¼ LN þ L0
nona þ L0

a; ðB1Þ

with

LN ¼ μ

2
v2 þ Gmμ

r
; ðB2Þ

L0
non a ¼

Gμ
2c2r3

v · ½r × ð4Sþ 3σÞ�; ðB3Þ

L0
a ¼ −

ð2k − 1Þ
2c2m

σ ·

��
aþGm

r3
r

�
× μv

�
: ðB4Þ

It can be seen that L0
nona does not depend on SSC if we use

the Newtonian-order acceleration Lagrangian of Eq. (11).
Then, we get the L0

nona. Our aim is to eliminate the
acceleration from L0

a. Let us consider the next double
zero term

ZZN ¼ −
ð2k − 1Þ
2c2m

ðσ0 − σÞ ·
��

aþ Gm
r3

r
�
× μv

�
: ðB5Þ

Here the Newtonian-order equation of motion is aN ¼
−ðGmr−3Þr, and _σ ¼ 0, so σ0 is the conserved quantity up
to SO order. Then,

L0
a þ ZZN ¼ −

ð2k − 1Þ
2c2m

σ0 ·

��
aþ Gm

r3
r

�
× μv

�
: ðB6Þ

Moreover, we note that the S and σ spin vectors are
conserved quantities in Eq. (B1), and we just follow the
original paper of [55]. Afterwards, we consider the other
double zero and total time-derivative terms

ZZ ¼ 2

r2

��
aþ Gm

r3
r

�
· r

�
ðL0 −LÞ

−
1

r2

��
aþGm

r3
r
�
· ðL0 −LÞ

�
r; ðB7Þ

TTD ¼ d
dt

�ðv · rÞ
r2

L −
2ðv · rÞ

r2
L0 þ

ðv ·L0Þ
r2

r

�
: ðB8Þ

Here L ¼ μr × v is the angular momentum vector and L0

is the conserved quantity for the Newtonian-order. This
distinction is important even in the lowest order because it
is essential for the extraction of equations of motion from
the Lagrangian. We define the new Lagrangian which does
not contain the acceleration-dependent terms as

L00 ¼ LN þ L0
non a þ L0

a þ ZZN

−
ð2k − 1Þ
2c2m

σ0 · ðZZþ TTDÞ; ðB9Þ

so we get

L00 ¼ μ

2
v2 þ Gmμ

r
þ Gμ
2c2r3

v · ½r × ð4S0 þ 3σ0Þ�

−
ð2k − 1Þ
2c2m

��
v2

r2
−
Gm
r3

−
2ðv · rÞ2

r4

�
σ0 · ðL − 2L0Þ

−
�
Gm
r5

ðr ·L0Þ þ
2ðv · rÞ

r4
ðv ·L0Þ

�
ðσ0 · rÞ

þ ðv ·L0Þ
r2

ðσ0 · vÞ
�
: ðB10Þ

We have replaced the spin vectors S and σ with S0

and σ0 because these are conserved quantities in L0
nona.

The equations of motion can be derived from the accel-
eration-independent LagrangianL00 with the replacement of
S0, σ0, and L0 in the equations of motion by S, σ, and L,
respectively.

APPENDIX C: THE HAMILTONIAN
FORMALISM FOR SSC II

Let us consider the Hamiltonian formalism for SSC II,

H ¼ p2

2μ
−
Gμm
r

þ G
2c2r3

r · ½p × ð4Sþ 3σÞ�; ðC1Þ

where the limit of k ¼ 1=2 is not appropriate. The required
limit is q → 0 because the higher-order terms have to
disappear in this case. Then, the usual Hamilton’s equations
are

BALÁZS MIKÓCZI PHYSICAL REVIEW D 95, 064023 (2017)

064023-12



_p ¼ −
Gμm
r3

r −
G

2c2r3
p × ð4Sþ 3σÞ

þ 3G
2c2r5

r½ðr × pÞ · ð4Sþ 3σÞ�; ðC2Þ

_r ¼ p
μ
−

G
2c2r3

r × ð4Sþ 3σÞ: ðC3Þ

It is interesting to note that the total angular momentum
has a simple form, L ¼ r × p, but if we use Eq. (C3), we
get the complicated form of Eq. (13) in the Lagrangian
formalism for SSC II as

L ¼ μr × v þ Gμ
2c2r3

r × ½r × ð4Sþ 3σÞ�: ðC4Þ

We assume that the canonical momentum has the decom-
position p ¼ prer þ pθeθ þ pϕeϕ with orthonormal basis
ðer; eθ; eϕÞ in an inertial frame fixed by the conserved total
angular momentum vector J. We use the decomposition
of v ¼ vrer þ vθeθ þ vϕeϕ from the simple definition of
r̂ ≡ er. In Eq. (C3)

p2 ¼ p2
r þ p2

θ þ p2
ϕ ¼ p2

r þ
L2

r2
; ðC5Þ

where we have used the identity p2 ¼ ðr̂ · pÞ2þðr̂ × pÞ2.
Here we can rewrite the simple relationship v ¼ _rerþ
r_θeθ þ r _ϕ sin θeϕ. Then, the radial equation is (p2

r ¼ μ2 _r2)

_r2 ¼ 2E
μ

þ 2Gm
r

−
L2

μ2r2

−
Gð4Sþ 3σÞ ·L

c2μr3
; ðC6Þ

which is the same as Eq. (36). Let us consider the angular
motion. We compute the quantity L · ez (where the unit
vector ez is ez ¼ er cos θ − eθ sin θ in spherical polar
coordinates), so L · eZ ≡ L cosΘ ¼ pϕr sin θ. Using
Eq. (C5), we get the components of p, where Θ is the
angle between L and J.

pϕ ¼ L cosΘ
r sin θ

; ðC7Þ

p2
θ ¼

L2

r2

�
1 −

cos2Θ
sin2 θ

�
: ðC8Þ

Using the equations r sin θ _ϕ ¼ eϕ · v, r_θ ¼ eθ · v, and the
Hamilton Eq. (C3), we get (r̂ × eθ ¼ eϕ, r̂ × eϕ ¼ −eθ)

_ϕ ¼ L cosΘ
μr2 sin2 θ

�
1 −

Gμ sin θSθ
2c2Lr cosΘ

�
; ðC9Þ

_θ2 ¼ L2ð1 − cos2 Θ
sin2 θ Þ

μ2r4

 
1þ GμSϕ

c2Lr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 Θ

sin2 θ

q
!
; ðC10Þ

where the Sθ ≡ eθ · ð4Sþ3σÞ and the Sϕ ≡ eϕ · ð4Sþ 3σÞ
are shorthand notations. The equations for polar angles θ

and ϕ can be transformed in Euler-angle equations
(φ;ϒ;Θ) if we write the unit separation vector r̂ of
Descartes components in an invariant system fixed to J,
as in

cos θ ¼ sinφ sinΘ;

sinðϕ −ϒÞ sin θ ¼ sinφ cosΘ;

cosðϕ −ϒÞ sin θ ¼ cosφ: ðC11Þ
These transformation identities are the same as the other
three angles φ;ϒ;ΘN , but we use the substitution of
Θ → ΘN . The relationship between the two angles
from the components of LN ¼ L½1 − λso=ð2L2Þ�ð0;
− cosΘN= sin θ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ΘN=sin2θ

p
Þ and L ¼ Lð0;

− cosΘ= sin θ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 Θ=sin2 θ

p
Þ in a spherical coordi-

nate system is

cosΘ ¼ cosΘN

�
1þ

Gμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ΘN

sin2θ

q
2c2rL

×
�

sin θ
cosΘN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

cos2ΘN

sin2θ

s
Sθ þ Sϕ

��
; ðC12Þ

where we used the quantity λso ¼ 2L ·LSO in a spherical
coordinate system, as in

λso ¼
GμL
c2r

�
cosΘN

sin θ
Sθ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

cos2ΘN

sin2θ

s
Sϕ

�
; ðC13Þ

where the inclination angles can be replaced by ΘN ↔ Θ
because these angles appear in leading-order contributions.
The time evolution from Eq. (C11) is

_θ ¼ − sinðϕ −ϒÞ _Θ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

cos2Θ
sin2θ

s
_φ: ðC14Þ

After eliminating _θ we get the final formula for the
evolution of φ

_φ ¼ L
μr2

 
1þ GμSϕ

2c2Lr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2Θ

sin2θ

q
!
− _ϒ cosΘ; ðC15Þ

which agrees with Eq. (6.13) in Ref. [63], but we chose the
sign − after the extraction of Eq. (C10). The last term is
_Θ sinðϕ −ϒÞð1 − cos2Θ=sin2θÞ−1=2, which corresponds to
the equation for _ϒ in Eq. (39) interchanging ΘN ↔ Θ
because quantity _Θ (and _ΘN) has a linear orderOðc−2Þ, and
here we can use the approximation Θ ≈ ΘN [see Eqs. (40),
(41)]. If we assume the equal masses of single-spin cases,
then Θ is a constant, and the second term is zero in
Eq. (C15). Since J is conserved using Eq. (C14), we get
eϕ · S ¼ −μr2 _θ þOðc−2Þ. Then, we get a similar angular
equation Eq. (4.29) as in Ref. [41]. In general cases, if we
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compute Sϕ (and Sθ) up to the leading-order for Eq. (C15),
we get the same angular Eqs. (38) and (39). In scalar
products ΘN ↔ Θ are interchangeable, which corresponds
to the equations

Sϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

cos2Θ
sin2 θ

s
ð4Sþ 3σÞ ·L

L
; ðC16Þ

Sθ ¼ −
cosΘ
sin θ

ð4Sþ 3σÞ ·L
L

: ðC17Þ

If we want to compare the angular Eqs. (C9) and (C10) to
our earlier results in [39], we need to use the transformation
between Θ and ΘN in Eq. (C12).
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