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We study the properties of compact stars in the Randall-Sundrum type-II braneworld (BW)model. To this
end, we solve the braneworld generalization of the stellar structure equations for a static fluid distribution
with spherical symmetry considering that the spacetime outside the star is described by a Schwarzschild
metric. First, the stellar structure equations are integrated employing the so-called causal limit equation of
state (EOS), which is constructed using a well-established EOS at densities below a fiducial density, and the
causal EOSP ¼ ρ above it. It is a standard procedure in general relativistic stellar structure calculations to use
such EOSs for obtaining a limit in the mass radius diagram, known as the causal limit, abovewhich no stellar
configurations are possible if the EOS fulfills the condition that the sound velocity is smaller than the speed of
light.We find that the equilibrium solutions in the braneworldmodel canviolate the general relativistic causal
limit, and for sufficiently largemass they approach asymptotically to the Schwarzschild limitM ¼ 2R. Then,
we investigate the properties of hadronic and strange quark stars using two typical EOSs: a nonlinear
relativistic mean-field model for hadronic matter and the Massachusetts Institute of Technology (MIT) bag
model for quark matter. For masses below ∼1.5M⊙–2M⊙, the mass versus radius curves show the typical
behavior found within the frame of general relativity. However, we also find a new branch of stellar
configurations that can violate the general relativistic causal limit and that, in principle, may have an
arbitrarily large mass. The stars belonging to this new branch are supported against collapse by the nonlocal
effects of the bulk on the brane. We also show that these stars are always stable under small radial
perturbations. These results support the idea that traces of extra dimensions might be found in astrophysics,
specifically through the analysis of masses and radii of compact objects.
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I. INTRODUCTION

Braneworld (BW) models represent the universe as a
three-dimensional brane where elementary particles live
embedded in a higher-dimensional spacetime called the
bulk, only accessed by gravity [1]. Within this framework,
astrophysical and cosmological models can be constructed
where the gravitational effect of extra dimensions can be
assessed. Two well-known examples of braneworld models
are the Randall-Sundrum (RS) [2] and Dvali-Gabadadze-
Porrati (DGP) [3] models. In RS models, ultraviolet mod-
ifications to general relativity are introduced. Significant
deviations from Einstein’s theory occur at very high
energies, e.g., in the early Universe, in gravitational col-
lapse, and in compact objects. DGP models present infrared
modifications with respect to general relativity.

In the present work we focus on the RS type-II brane-
world model [2], which has attracted much attention
because it includes nontrivial gravitational dynamics
despite a simple construction. In the RS model, our
universe is a brane embedded in one extra dimension
(the bulk) which is a portion of a 5D anti–de Sitter
spacetime (AdS5); i.e., the extra dimension is curved or
warped rather than flat. Significant deviations from
Einstein’s theory occur at very high energies. At low
energies, gravity has an exponentially suppressed tail into
the extra dimension due to a negative bulk cosmological
constant, Λ5 ¼ −6=l2, where l is the curvature radius of
AdS5. The brane gravitates with self-gravity in the form of
a brane tension λ, where λ ¼ 3M2

p=ð4πl2Þ andM2
p ¼ M3

5l.
On the brane, the negative Λ5 is counterbalanced by the
positive brane tension λ.
The Einstein field equation takes the conventional form

but with an effective energy-momentum tensor Teff
μν ; i.e., it

reads
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Gμν ¼ 8πGTeff
μν ; ð1Þ

where Gμν is the usual Einstein field tensor, and we
consider c ¼ 1.
The effective energy-momentum tensor has the form [4]

Teff
μν ¼ Tμν þ

6

λ
Sμν −

1

8πG
Eμν; ð2Þ

where the first term contains the standard energy momen-
tum tensor; e.g., for a perfect fluid we have Tμν ¼ ρuμuνþ
phμν, where p is the pressure of the fluid, ρ is its energy
density, uμ is the four-velocity, and hμν ¼ gμν þ uμuν is the
projection orthogonal to uμ. The second and third terms
include modifications with respect to the standard 4D
Einstein field equation. The bulk correction includes a
local term and a nonlocal one (second and third terms,
respectively) [1]. For a perfect fluid, the local contribution
reads

Sμν ¼
1

12
ρ2uμuν þ

1

12
ρðρþ 2pÞhμν: ð3Þ

The nonlocal contribution for static spherical symmetry
reads

Eμν ¼ −
6

8πGλ

�
Uuμuν þ Prμrν þ

ðU − PÞ
3

hμν

�
; ð4Þ

where U and P are respectively the nonlocal energy density
and nonlocal pressure on the brane and rμ is a unit radial
vector. Notice that, as λ → ∞, the bulk corrections vanish
and general relativity is recovered.
Some consequences for compact star physics have been

explored within the above-described braneworld model. In
their pioneering work, Germani and Maartens [5] showed
that the Schwarzschild solution is no longer the unique
asymptotically flat vacuum exterior. In general, the exterior
carries an imprint of nonlocal bulk graviton stresses and
knowledge of the 5D Weyl tensor is needed as a minimum
condition for uniqueness. They also found an exact uni-
form-density stellar solution on the brane, and showed that
the existence of neutron stars leads to a constraint on the
brane tension that is stronger than the big bang nucleo-
synthesis constraint, but weaker than the Newton-law
experimental constraint. After this work, other studies of
spherical static stars considering a Schwarzschild exterior
metric in the braneworld model were done in order to
determine how local and nonlocal corrections affect the
stellar structure. In Refs. [6–8], the role of the local and
nonlocal corrections is examined in nonuniform and uni-
form stars. In these works, to overcome all problems
associated with the system of equations, the time metric
component is prescribed. This approach helps to find an
exact solution of the Einstein equations on the brane and an

analytic form of the Weyl curvature terms. More recently,
some properties of compact stars in the braneworld model
were analyzed using neutron star equations of state and
assuming that the Weyl terms obey the simplest relation
P ¼ wU [9]. However, we must notice that in this work the
boundary condition for the nonlocal energy density U was
set at the stellar center and not at the surface of the star as it
should be.
In this work we investigate several aspects of compact

stars within braneworld models. In Sec. II we review the
stellar structure equations on the brane and the boundary
conditions, and we explain the shooting method used for
the numerical integration of the equations. In Sec. III we
describe the causal limit equation of state (EOS) employed
in the literature to obtain the causal limit above which
compact stars are not expected in general relativity.
Thereafter, we employ the causal limit EOS to obtain such
limit in braneworld models, finding that the general
relativistic limit can be violated. In Sec. IV we study the
properties of hadronic and quark stars using typical EOSs
for hadronic and quark matter and find striking features that
differentiate their structure with respect to the general
relativistic case. Since only stellar configurations in stable
equilibrium are acceptable from the astrophysical point of
view, in Sec. V we analyze the stability of the compact stars
under small radial perturbations using a static method that
allows us to determine the precise number of unstable
normal radial modes. Finally, in Sec. VI we summarize and
discuss our results.

II. STELLAR STRUCTURE ON THE BRANE

A. Stellar structure equations and boundary conditions

Germani and Maartens [5] solved the Einstein equations
on the brane and derived the braneworld generalization of
the stellar structure equations for a static fluid distribution
with spherical symmetry

dm
dr

¼ 4πr2ρeff ; ð5Þ

dp
dr

¼ −ðρþ pÞ dϕ
dr

; ð6Þ

dϕ
dr

¼
Gmþ 4πGr3ðpeff þ 4P

ð8πGÞ2λÞ
rðr − 2GmÞ ; ð7Þ

dU
dr

¼ −ð4U þ 2PÞ dϕ
dr

− 2ð4πGÞ2ðρþ pÞ dρ
dr

− 2
dP
dr

−
6

r
P; ð8Þ

where
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ρeff ¼ ρ

�
1þ ρ

2λ

�
þ 6U
ð8πGÞ2λ ; ð9Þ

peff ¼ pþ ρ

2λ
ðρþ 2pÞ þ 2U

ð8πGÞ2λ : ð10Þ

To solve Eqs. (5)–(8) we need an equation of state
ρ ¼ ρðpÞ and a relation of the form P ¼ PðUÞ relating
the nonlocal components (“dark” equation of state).
Two of the boundary conditions of the stellar structure

equations on the brane are the same as for the standard
general relativistic equations. Specifically, at the center of
the star (r ¼ 0) the enclosed mass is zero,

mðr ¼ 0Þ ¼ 0; ð11Þ

and at the surface of the object the pressure vanishes,

pðRÞ ¼ 0: ð12Þ

The remaining boundary condition is determined by the
Israel-Darmois matching condition ½Gμνrν�Σ ¼ 0 at the
surface of the object Σ, where ½f�Σ ≡ fðRþÞ − fðR−Þ
(in the following we use the superscripts − and þ to
indicate quantities inside and outside the star, respectively).
By the brane field equation (1), this implies ½Teff

μν rν�Σ ¼ 0,
leading to ½peff þ 4P=ðð8πGÞ2λÞ�Σ ¼ 0. Since at the sur-
face of the object we have pðRÞ ¼ 0, we have

ð4πGÞ2ρ2ðRÞ þ U−ðRÞ þ 2P−ðRÞ ¼ UþðRÞ þ 2PþðRÞ;
ð13Þ

which holds for any static spherical star with vanishing
pressure at the surface.
In braneworld models, the Schwarzschild solution is no

longer the unique asymptotically flat vacuum exterior. In
general, the exterior carries an imprint of nonlocal bulk
graviton stresses. Knowledge of the 5DWeyl tensor is needed
as a minimum condition for uniqueness. If there are no Weyl
stresses in the interior (U− ¼ P− ¼ 0Þ, and if the energy
density is nonvanishing at the surface, ρðRÞ ≠ 0, then there
must beWeyl stresses in the exterior; i.e., the exterior solution
cannot be the Schwarzschild one [5]. Equivalently, if we
assumeaSchwarzschildexteriorsolution(Uþ ¼ Pþ ¼ 0)and
the energy density is nonzero at the surface, then the interior
solution must have nonvanishing nonlocal Weyl stresses.
On the other hand, despite previous no-go results,

braneworld compact objects with a Schwarzschild exterior
are obtained in Ref. [10]. This result is arises at the price of
having negative pressure inside a narrow shell at the star
surface, which effectively acts as a solid crust separating
the inner fluid from the vacuum exterior [10]. Such a crust
has a negligible thickness, falling below any physically
sensible length scale for astrophysical sources, and the

discontinuities in U and P at r ¼ R are negligibly
small. Therefore, the crust can be neglected in the calcu-
lation of the mass-radius diagram and other global stellar
properties.
However, we emphasize that in the present work, the

physicality of the Schwarzschild exterior is not necessarily
guaranteed. Nonetheless, in order to simplify the analysis
and to facilitate the comparison with GR, we focus here on
a class of models that satisfy the following properties:
(1) We consider a Schwarzschild exterior solution

(Uþ ¼ Pþ ¼ 0).
(2) We assume P− ¼ 0, which is consistent with the

isotropy of the physical pressure in the star.
As a consequence, the interior must have nonvanishing

nonlocal Weyl stresses (U− ≠ 0). Therefore, the boundary
condition for U at r ¼ R simplifies to

ð4πGÞ2ρ2ðRÞ þ U−ðRÞ ¼ 0: ð14Þ

In summary, the full set of equations to be solved is

dm
dr

¼ 4πρeffr2; ð15Þ

dp
dr

¼ −ðpþ ρÞ ½4πGp
effrþ mG

r2 �
½1 − 2mG

r � ; ð16Þ

dU−

dr
¼ 4U−

pþ ρ

dp
dr

− 2ð4πGÞ2ðρþ pÞ dρ
dr

; ð17Þ

with the boundary conditions mðr ¼ 0Þ ¼ 0, pðRÞ ¼ 0

and ð4πGÞ2ρ2ðRÞ þ U−ðRÞ ¼ 0. An equation of state
ρ ¼ ρðpÞ must be supplied to close the system. In
the limit λ → ∞, we have ρeff → ρ and peff → p, and
the general relativistic stellar structure equations are
recovered.

B. Numerical integration of the structure equations

For a given EOS of the form ρ ¼ ρðpÞ and a given value
of the brane tension λ, Eqs. (15)–(17) can be integrated
simultaneously with a Runge-Kutta method from the center
towards the surface of the object. However, since the
boundary condition for U−ðrÞ is given at the star’s surface,
a shooting method is used in order to match Eq. (14).
The integration of Eqs. (15), (16), and (17) begins with

the values

mð0Þ ¼ 0; pð0Þ ¼ pc; U−ð0Þ ¼ U−
c;trial; ð18Þ

where pc is a given value for the central pressure and U−
c;trial

is a trial value of U− at r ¼ 0. The integration proceeds
outwards until the pressure vanishes in order to verify
Eq. (12). However, after such integration Eq. (14) is not
necessarily fulfilled. Therefore, the trial value of U−

c is
corrected through a Newton-Raphson iteration scheme in
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order to improve the matching of Eq. (14) in the next
integration. The integration from r ¼ 0 is repeated succes-
sively until Eq. (14) is satisfied with the desired precision.
Once such precision is attained, the point at which the
pressure of the fluid vanishes determines the star’s radius R
and the star’s mass M ¼ mðRÞ.
It is worth mentioning that for some simple EOSs,

Eq. (17) can be integrated analytically. In the Appendix
we derive the explicit solution for a linear EOS of the form
ρ ¼ p=c2s þ b, where c2s and b are arbitrary constants. This
EOS is very useful because it includes as special cases the
causal EOS ρ ¼ p, the ultrarelativistic EOS ρ ¼ 3p, and
the MIT bag model EOS for massless quarks ρ ¼ 3pþ 4B,
that we will use below.

III. UPPER BOUND ON THE MAXIMUM MASS
OF COMPACT STARS IN THE BRANEWORLD

MODEL: THE CAUSAL LIMIT

A. The causal limit EOS

A complete knowledge of the equation of state of
neutron star matter is still a challenge at present. The
EOS can be reliably determined up to ∼2ρsat, being ρsat ≈
151 MeV=fm3 the nuclear saturation density. However, for
larger densities, the determination of a well-founded EOS
strongly depends on the knowledge of strong interactions
in a regime that cannot be reached experimentally. As a
consequence, there is a large amount of high-density EOSs
in the literature that incorporate several aspects that may
play a crucial role at the inner core of the star, such as three-
body forces, bosonic condensates, hyperonic degrees of
freedom, and quark matter [11,12].
An important aspect of neutron stars within the frame of

general relativity is that there exists a maximum gravita-
tional mass above which there are no stable stellar
configurations. The maximum mass exists no matter what
the EOS, but its determination depends on a deep com-
prehension of the EOS up to several times ρsat. However,
using the so-called causal limit EOS, it is possible to
circumvent the uncertainties related to the properties of
high-density matter and obtain upper bounds to the
maximum allowed mass of a neutron star [11,12]. The
causal limit EOS can be constructed by using a detailed
EOS at density ranges where they can be safely regarded as
accurate and imposing generic constraints at densities
exceeding some fiducial density, e.g., subluminal sound
velocity and thermodynamic stability (see, e.g., [11–13]).
In this work, we adopt the well-established Baym,

Pethick, and Sutherland (BPS) EOS [14] at densities below
a fiducial density ρt, and a causal equation of state (i.e.,
sound velocity ¼ speed of light) p ¼ ρ − a above ρt
[12,13]. Since both EOSs are matched at an energy density
ρt and a pressure pt, the constant a in the high-density EOS
is given by a ¼ ρt − pt, where ρt and pt also fulfill the
BPS EOS (see Table I).

B. The causal limit in general relativity

Using the causal limit EOS, it is possible to obtain a
curve, known as the causal limit, that represents an upper
bound in the mass-radius diagram for compact stars. The
procedure to find the causal limit within the frame of
general relativity has been explained in several textbooks
(see, e.g., [11,12]). For completeness, we present it here
and in the next subsection we discuss it within the brane-
world model.
For a givenvalue ofa, the stellar structure equations can be

integrated, and a maximum stellar mass can be determined
together with the corresponding stellar radius. For example,
using ρt ¼ 260.1 MeV=fm3 andpt ¼ 3.809 MeV=fm3), the
sequence has a maximum mass object with

Mmax ¼ 3.131M⊙; R ¼ 13.35 km: ð19Þ

Repeating the calculations for many different values of a, it
can be shown that the maxima fall on a straight line given by
M ¼ 0.345R (see Fig. 1).
Therefore, the region excluded by causality in theM − R

diagram is given by [11,12,15,16]

TABLE I. Values of the fiducial energy density ρt, fiducial
pressure pt, and a≡ ρt − pt. The values of ρt and pt were
extracted from Table V of Ref. [14].

ρtðMeV=fm3Þ ptðMeV=fm3Þ aðMeV=fm3Þ
192.6 2.103 190.5
217.9 2.675 215.2
260.1 3.809 256.3
285.8 4.613 281.2

FIG. 1. Mass-radius relationship in general relativity (λ → ∞)
for the causal limit EOS matched continuously with the BPS
EOS. Both EOSs are matched at different fiducial densities that
lead to different values of a ¼ ρf − pf . The dots over the curves
indicate the maximum masses, which fall along the causal limit
of Fig. 3.
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M ≳ 0.345R ð20Þ

or, equivalently, �
M
M⊙

�
≳ 0.234

�
R
km

�
: ð21Þ

C. The causal limit in the braneworld model

In order to determine the causal limit in the braneworld
model, we integrate the stellar structure equations on the
brane using the causal limit equation of state presented in
Sec. III A. For small masses (≲1.5M⊙–2M⊙), the curves
show the typical behavior found within the frame of general
relativity. Specifically, very small mass stars have very
large radii, and as the mass increases above a few tenths
of solar masses the radii fall within a range of a few
km around ∼10 km. Nevertheless, for large mass objects,
local high-energy effects as well as nonlocal corrections
lead to significant deviations with respect to general
relativity. At around 1.5M⊙–2M⊙ the MðRÞ curves bend
counterclockwise as in the general relativistic case. However, instead of reaching a maximum mass as in general relativity,

the curves bend once more (clockwise) for larger masses and
thereafter they increase roughly linearly (see Fig. 2).
A striking feature of this behavior is that once theM − R

curves bend clockwise they may fall above the causal limit
obtained within general relativity [cf. Eqs. (21)–(20)]. It
can also be checked that as the masses and radii increase,
the curves tend asymptotically to the Schwarzschild limit
M ¼ 2R. The asymptotic approach depends on the value of
the brane tension λ: when λ is small the curves go close
to the line M ¼ 2R at relatively small masses, but for large
λ the approaching occurs at higher masses.
Since the M − R curves for the causal EOS approach

asymptotically the line M ¼ 2R, but do not go beyond it,
the Schwarzschild limit M ¼ 2R is a good representation
of the causal limit in the braneworld model.1 In other
words, the equilibrium solutions found in the braneworld
can violate the limit of causality for general relativity
[Eqs. (21)–(20)] and, for sufficiently large mass, can
occupy the region between the straight lines shown in
Fig. 3.

IV. MODELS FOR HADRONIC AND STRANGE
QUARK STARS

In this section, we investigate the properties of hadronic
and strange quark stars using typical models for the
equations of state. As mentioned in Sec. III A, there is a
large amount of high-density EOS that fulfill present
experimental and astrophysical constraints. However, our

(a)

(b)

FIG. 2. (a) The mass-radius relationship obtained using the
causal limit EOS given in Sec. III A for some values of a (in
MeV=fm3) and two different values of λ. (b) Same as in (a) but for
a larger range of M and R.

FIG. 3. The causal limit for general relativity and the
Schwarzschild limit M ¼ 2R. In the braneworld model, static
stellar configurations fulfilling a causal EOS (sound velocity <
speed of light) can occupy the region between both straight lines.

1In a more general way, this is also discussed in [17]. Those
authors focus on the field theoretical description of a generic
theory of gravity flowing to Einstein’s general relativity in IR and
prove that, if ghost-free, in the weakly coupled regime such a
theory can never become weaker than general relativity.
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purpose is not to make an exhaustive survey of all the
available EOSs, but rather to explore the qualitative
properties of hadronic and strange quark stars using
two models that have been extensively employed in the
literature: a nonlinear relativistic mean-field model for
hadronic matter and the MIT bag model for quark matter.
In Sec. IVA we briefly summarize the EOSs and in
Sec. IV B we study the structural properties of the resulting
compact objects.

A. Equations of state

For the hadronic phase we use a nonlinear Walecka
model [19–21] including the whole baryon octet, electrons,
and the corresponding antiparticles. The Lagrangian is
given by

L ¼ LB þ LM þ LL; ð22Þ

where the indices B, M, and L refer to baryons, mesons,
and leptons respectively. For the baryons we have

LB ¼
X
B

ψ̄B½γμði∂μ − gωBωμ − gρB~τ · ~ρμÞ

− ðmB − gσBσÞ�ψB; ð23Þ

with B extending over nucleons n, p, and the following
hyperons: Λ, Σþ, Σ0, Σ−, Ξ−, and Ξ0. The contribution of
the mesons σ, ω, and ρ is given by

LM ¼ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − b

3
mNðgσσÞ3 −

c
4
ðgσσÞ4

−
1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ

−
1

4
~ρμν · ~ρμν þ

1

2
m2

ρ~ρμ · ~ρμ; ð24Þ

and the coupling constants are

gσB ¼ xσBgσ; gωB ¼ xωBgω; gρB ¼ xρBgρ: ð25Þ

Electrons are included as a free Fermi gas, LL ¼P
lψ̄ lði=∂ −mlÞψ l, in chemical equilibrium with all other

particles.
The constants in the model are determined by the proper-

ties of nuclear matter and hyperon potential depths known
from hypernuclear experiments. In the present work we use
the GM1 parametrization for which we have ðgσ=mσÞ2 ¼
11.79 fm−2, ðgω=mωÞ2 ¼ 7.149 fm−2, ðgρ=mρÞ2 ¼
4.411 fm−2, b ¼ 0.002947, and c ¼ 0.001070 [21]. For
the hyperon coupling constants we adopt xσi ¼ xρi ¼ 0.6
and xωi ¼ 0.653 [21]. At low densities we use the BPS
model [14]. For details on the explicit formof the equation of
state derived from this Lagrangian the reader is referred to
Refs. [22,23] and references therein.

We describe quark matter through the MIT bag model.
For simplicity we assume a zero strong coupling constant
and consider massless quarks. If such effects were taken
into account, the equation of state would be qualitatively
the same but we would find nonanalytic expressions. In
practice, only u, d, and s quarks appear in quark matter
because other quark flavors have masses much larger that
the chemical potentials involved (roughly 300 MeV). Since
these quarks are assumed to be massless, leptons are not
necessary to electrically neutralize the phase and, thus, they
are not present in the system [24]. In such a case, the
equation of state adopts the simple form

ρ ¼ 3pþ 4B; ð26Þ

where B is the bag constant. Witten [18] conjectured that, at
zero pressure and temperature, three-flavor quark matter
may have an energy per baryon smaller than ordinary
nuclei. This would make strange quark matter the true
ground state of strongly interacting matter and would lead
to the existence of strange quark stars, i.e., stellar objects
completely composed by strange quark matter [25]. Within
the MIT bag model for massless quarks and zero strong
coupling constant, the Witten hypothesis is verified if the
bag constant is in the range 57 MeV=fm3 ≲ B≲ 94

MeV=fm3. In this paper we adopt B ¼ 60 MeV=fm3.

B. Structural properties of hadronic
and strange quark stars

In the following we present our results for hadronic and
strange quark stars using the equations of state presented in
the previous subsection.
In Fig. 4 we show the mass-radius relationship for some

values of the brane tension λ. In the top panel we display
the results for strange quark matter and in the bottom
panel the results for hadronic matter. We also include the
causal limit found before for general relativity and the
Schwarzschild limit M ¼ 2R.
For small masses (≲1.5⊙–2M⊙), the curves show the

typical behavior found within the frame of general rela-
tivity; i.e., very small mass hadronic stars have very large
radii, while strange stars follow roughly MðRÞ ∝ R3.
For large mass objects, braneworld effects lead to the

deviations with respect to general relativity that were
explained in the case of the causal EOS of previous section.
At around 1.5⊙–2M⊙ the MðRÞ curves for hadronic and
quark stars bend counterclockwise as in the general relativ-
istic case. Then, the curves bend once more (clockwise) for
larger masses and thereafter they increase roughly linearly
and approach asymptotically to the Schwarzschild limit.
In summary, the main characteristics of the mass-

radius relationship already found for the causal EOS are
confirmed for both the hadronic and the strange quark
mater EOSs:
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(i) The MðRÞ curves violate the general relativistic
causal limit for large-enough masses; instead, they
can occupy the region between the general relativ-
istic causal limit and the Schwarzschild limit.

(ii) Static stellar configurations do not have a maximum
mass as in the general relativistic case; i.e., objects of
any mass are possible in principle.

Notice that, different from the causal EOS, we find now
that in some cases there is a local maximum in the MðRÞ
curves at M ∼ 2 M⊙. Nevertheless, after bending clock-
wise, the behavior of all the MðRÞ curves is qualitatively
the same.
Figure 5 shows the dependence of the mass with the

central energy density ρc for some values of the brane
tension λ. For a given value of ρc, the mass of a star is larger
in the braneworld model than in general relativity due to
local and nonlocal extradimensional modifications to the
structure equations on the brane. As expected, these
corrections are small for low central energy densities but

they become significant with increasing central energy
density, especially for the smaller values of the brane
tension λ. A remarkable feature of the MðρcÞ curves is that
there is a value of ρc for which the stellar mass diverges.
This means that for large-enough masses the nonlocal
energy density U− supports the star against gravitational
collapse. The maximum value of ρc increases with the
brane tension λ as can be seen in Fig. 5. In particular, as we
approach the general relativistic case (λ → ∞) the maxi-
mum density is shifted to infinity.
In Fig. 6 we show the nonlocal energy density U−

as a function of the radial coordinate r for a central
energy density ρc ¼ 2500 MeV=fm3 and five values of
the brane tension λ. For both strange quark stars and
hadronic stars, the nonlocal energy density starts at a large
negative value at the center of the star and grows mono-
tonically towards the stellar surface. The more negative
values of U− are found for the lower values of λ. A star
with a more negative nonlocal energy density admits more
mass, because U− acts as an effective negative pressure
helping against the collapse.

(a)

(b)

FIG. 5. Mass of (a) strange stars and (b) hadronic stars versus
the central energy density ρc for different values of brane tension
λ. The labels of the curves are the same as given in Fig. 4.

(a)

(b)

FIG. 4. Mass-radius relationship for (a) strange quark stars and
(b) hadronic stars, using several values of the brane tension λ.
These values of λ lead to M5 ¼ ð4

3
πλM2

pÞ1=6 ∼ 2000 TeV, i.e.,
larger than 10 TeV, in compatibility with LHC. We also show the
general relativistic and braneworld model causal limits.
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V. STELLAR STABILITY

In the previous sections we found that in braneworld
models there is a new branch of stellar configurations that is
not present within general relativity. Since only stellar
configurations in stable equilibrium are acceptable from the
astrophysical point of view, we should check the stability of
the previously obtained stellar models. Awell-known static
criterion that is widely used in the literature states that a
necessary condition for a model to be stable is that its mass
M increases with growing central density, i.e.,

dM
dρc

> 0: ð27Þ

The latter is a necessary but not sufficient condition. The
opposite inequality dM=dρc < 0 always implies instability
of stellar models; i.e., configurations lying on the segments

FIG. 6. Nonlocal energy density as a function of the radial
coordinate for strange quark stars and hadronic stars. In all cases
the central energy density is ρc ¼ 2500 MeV=fm3.

(a) (b)

(c) (d)

FIG. 7. Stability analysis of stellar configurations in braneworld models; for simplicity we present only the curves for strange quark
stars. Panels (a) and (b) correspond to a value of the brane tension, λ ¼ ð551 MeVÞ4, that results in no critical points. Panels (c) and
(d) correspond to a different value of the brane tension, λ ¼ ð724 MeVÞ4, that results in a local maximum and a local minimum in both
the MðRÞ and MðρcÞ curves. For the analysis of the stellar stability based on these panels, see the text.
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with dM=dρc < 0 are always unstable with respect to small
perturbations.
In Figs. 4 and 5 there are two qualitatively different types

of MðRÞ and MðρcÞ curves. One type presents one local
maximum and one local minimum in both the MðRÞ and
the MðρcÞ curves. The other one has no critical points.
These two types are represented separately in Fig. 7, where
we show the MðRÞ and MðρcÞ curves for strange quark
stars for two different values of λ (for simplicity we do
not show hadronic stars because the stability analysis is
completely equivalent, as we shall see below). For λ ¼
ð551 MeVÞ4 (upper panels) the stellar mass is always an
increasing function of the central density ρc and the MðRÞ
curve has no local maxima or minima. Thus, the above
necessary stability condition is always verified in this
case. For λ ¼ ð724 MeVÞ4 (lower panels) the part of the
MðρcÞ curve between the points M1 and M2 verifies
dM=dρc < 0; i.e., those configurations are unstable. M1
indicates the local maximum and M2 indicates the local
minimum of the mass in both plots. The necessary stability
condition is verified for the branch to the left of M1 and to
the right ofM2 in theMðρcÞ curve and in the corresponding
branches of the MðRÞ curve. Therefore, the branches that
approach asymptotically to the Schwarzschild limit verify
the necessary condition dM=dρc > 0 for any λ, but, as
stated before, this is not a sufficient condition for stability.
A more detailed study of the stability of nonrotating

spherically symmetric equilibrium models against small
perturbations should be carried out through the analysis of
their radial oscillations. However, this is left for future work
because it is necessary to derive and solve the pulsation
equations on the brane. Instead, we employ here a sufficient
criterion which enables one to determine the precise
number of unstable normal radial modes using the MðRÞ
curve [11,26]. According to such criterion, at each critical
point of theMðRÞ curve (local maxima or minima) one and
only one normal radial mode changes its stability, from
stable to unstable or vice versa. There are no changes of
stability associated with radial pulsations at other points of
the MðRÞ curves. Moreover, one mode becomes unstable
(stable) if and only if the MðRÞ curve bends counterclock-
wise (clockwise) at the critical point.
In order to analyze the stellar stability using the above

criterion, we assume that the low mass branch (up to
≲1.5⊙–2M⊙) of the MðRÞ curves is stable for all radial
modes, as it is in the general relativistic case. For the curves
with two critical points, theMðRÞ curve bends counterclock-
wise at the local maximum and the fundamental oscillation
mode becomes unstable. However, at the local minimum the
fundamental mode becomes stable again because the curve
bends clockwise there. Beyond the local minimum there are
nomore critical points and all the radial modes remain stable.
In the casewithout critical points, thewhole sequence remains
stable for all radial modes provided that the low mass
configurations are stable. Thus, we can conclude that the
branches that approach asymptotically to the Schwarzschild

limit are always stable under small radial perturbations. As a
consequence, stellar configurations of arbitrarily large mass
are allowed within braneworld models.

VI. SUMMARY AND CONCLUSIONS

In this work we have studied the structure of compact
stars in a Randall-Sundrum type-II braneword model. To
this end, we employed the braneworld generalization of the
stellar structure equations for a static fluid distribution with
spherical symmetry. We considered that the spacetime
outside the star is described by a Schwarzschild metric,
i.e., the nonlocal pressure and energy density vanish
outside the star, and assumed that the nonlocal pressure
is zero in the stellar interior. As a consequence, the interior
must have nonvanishing nonlocal Weyl stresses (U− ≠ 0).
In order to obtain an upper bound to the maximum mass

of compact stars in the braneworld model, we integrated the
stellar structure equations employing the causal limit EOS,
which is obtained adopting the well-established Baym,
Pethick, and Sutherland EOS at densities below a fiducial
density, and an EOS with the sound velocity equal to the
speed of light above it. Assuming the causal limit EOS, it
can be shown that the region above the causality limit
depicted in Fig. 3 is forbidden within general relativity.
However, the equilibrium solutions found in the brane-
world model can violate the limit of causality for general
relativity, and for sufficiently large mass they approach
asymptotically to the Schwarzschild limit M ¼ 2R. Hence,
there is a region in the M − R plane that is forbidden in
general relativity for causal equations of state but that can
be accessed within braneworld models, i.e., the region
between the straight lines shown in Fig. 3.
Then, we investigated the properties of hadronic and

strange quark stars using two typical EOSs that have been
extensively employed in the literature: a nonlinear
relativistic mean-field model for hadronic matter and the
MIT bag model for quark matter. The main characteristics
of the mass-radius relationship found using the causal limit
EOS are confirmed for both hadronic and strange quark
stars. For small masses (≲1.5⊙–2M⊙), the curves show the
typical behavior found within the frame of general rela-
tivity; i.e., very small mass hadronic stars have very large
radii, while strange stars follow roughly MðRÞ ∝ R3.
Moreover, the MðRÞ curves for hadronic and quark stars
bend anticlockwise at around 1.5⊙–2M⊙ as in the general
relativistic case. However, the curves bend once more
(clockwise) for larger masses and thereafter they increase
roughly linearly and approach asymptotically to the
Schwarzschild limit. Again, two remarkable features are
that the MðRÞ curves violate the general relativistic causal
limit, and that static stellar configurations do not have a
maximum mass as in the general relativistic case; i.e.,
objects of any mass are possible in principle (see Fig. 4).
These large mass stars are supported against collapse by the
nonlocal effects of the bulk on the brane.
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Finally, we studied the stability under small perturba-
tions of the stellar configurations in the braneworld. We
used a static criterion which enables one to determine the
precise number of unstable normal radial oscillation modes
analyzing the bending of the mass-radius curves at the
critical points (see Fig. 7). We assumed that the low mass
branch (up to≲1.5⊙–2M⊙) of theMðRÞ curves is stable for
all radial modes, as it is in the general relativistic case. For
the models without critical points, there are no changes of
stability associated with radial oscillation modes, and
therefore all configurations are stable. For the models with
two critical points, theMðRÞ curve bends counterclockwise
at the local maximum and the fundamental oscillation mode
becomes unstable there. However, the fundamental mode
regains stability at the local minimum because the curve
bends clockwise there. Beyond that minimum there are no
more critical points and all the radial modes remain stable.
In summary, within braneworld models we obtain the

low mass branch of compact star configurations already
known from general relativistic calculations, but we also
find a new branch that approaches asymptotically to the
Schwarzschild limit which is always stable under small
radial perturbations. This new branch contains stellar
configurations of arbitrarily large mass, supported against
collapse by the nonlocal effects of the bulk on the brane.
It is worth emphasizing that black holes are still possible

within the here-studied braneworld models. Moreover, the
stellar configurations that asymptotically approach to the
Schwarzschild limit are expected to be stable under small
perturbations, but not necessarily under largeones. Therefore,
a very largemass braneworld compact star could collapse into
a black hole if strongly perturbed in a catastrophic astro-
physical event, e.g., in a binary stellar merging.
Finally, we remark that although a complete 5D analysis

would be necessary to fully understand the properties of the
new branch, these results serve as a proof of principle that
traces of extra dimensions might be found in astrophysics,
specifically through the analysis of masses and radii of
compact objects.
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APPENDIX: ANALYTIC SOLUTION FOR THE
NONLOCAL ENERGY DENSITY U− FOR A

LINEAR EQUATION OF STATE

For an arbitrary equation of state, the nonlocal energy
density inside the star U−ðrÞ must be obtained through the

numerical integration of Eq. (17) together with Eqs. (15)
and (16). However, as we show below, an analytic solution
for U−ðrÞ can be obtained in the case of a linear EOS. First,
we rewrite Eq. (17) in the form

dU−ðrÞ
dr

þ U−ðrÞgðrÞ ¼ fðrÞ; ðA1Þ

where

gðrÞ ¼ −
4

pðrÞ þ ρðrÞ
dpðrÞ
dr

; ðA2Þ

fðrÞ ¼ −2ð4πGÞ2ðρðrÞ þ pðrÞÞ dρðrÞ
dr

: ðA3Þ

Multiplying by the integrating factor e
R

gðrÞdr we have

d
dr

ðU−ðrÞe
R

gðrÞdrÞ ¼ fðrÞe
R

gðrÞdr; ðA4Þ

which gives

U−ðrÞ ¼ e−
R

gðrÞdr
�Z

fðrÞe
R

gðrÞdrdrþ C1

�
; ðA5Þ

where C1 is an integration constant.
Now, we consider a linear EOS of the form

ρ ¼ p=c2s þ b, where c2s and b are constants (cs is the
speed of sound). Notice that this EOS includes as special
cases the causal EOS ρ ¼ p, the ultrarelativistic EOS
ρ ¼ 3p, and the MIT bag model EOS for massless quarks
ρ ¼ 3pþ 4B. For such EOS, Eq. (A5) reads

U−ðrÞ ¼ ½ð1þ c2sÞpðrÞ þ bc2s �
4c2s

ð1þc2s Þ

�
−
2ð4πGÞ2

c4s

×
Z

½ð1þ c2sÞpðrÞ þ bc2s �
1−3c2s
1þc2s dpþ C1

�
; ðA6Þ

with k1 being an integration constant that comes from the
integral

R
gðrÞdr. Integrating Eq. (A6) we find

U−ðrÞ ¼

8>>>>>>>>><
>>>>>>>>>:

½2pðrÞ þ b�2½−ð4πGÞ2 lnð2pðrÞ þ bÞ
þk2�; cs ¼ 1;

½ð1þ c2sÞpðrÞ þ bc2s �
4c2s

ð1þc2s Þ

�
− ð4πGÞ2

ð1−c2sÞ×

½ð1þ c2sÞpðrÞ þ bc2s �
2ð1−c2s Þ
ð1þc2s Þ þ k2

�
; cs < 1;

ðA7Þ
where k2 ¼ C2 þ k1C1, C2 being another integration
constant.
To determine k2 we use the boundary condition

ð4πGÞ2ρ2ðRÞ þ U−ðRÞ ¼ 0: ðA8Þ
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The value U−ðRÞ is obtained evaluating Eq. (A7) at the
surface of the star, and from the EOS we obtain ρðRÞ ¼ b
because pðRÞ ¼ 0. Therefore, Eq. (A8) reads

k2 ¼

8>>><
>>>:

ð4πGÞ2½lnðbÞ − 1�; cs ¼ 1;

ð4πGÞ2b ðbc2sÞ
ð1−3c2s Þ
ð1þc2s Þ

ð1−c2sÞ ; cs < 1.
ðA9Þ

Replacing k2 from Eq. (A9) into Eq. (A7) we find

U−ðrÞ ¼

8>>>>>>>>><
>>>>>>>>>:

−ð4πGÞ2½2pðrÞ þ b�2½lnð2pðrÞ þ bÞ
− lnðbÞ þ 1�; cs ¼ 1;

− ð4πcsGÞ2
ð1−c2sÞ

�
1
c2s

�
ð1þc2sÞ

c2s
pðrÞ þ b

�
2

−b
2ð1−c2s Þ
ð1þc2s Þ

�
ð1þc2sÞ

c2s
pðrÞ þ b

� 4c2s
ð1þc2s Þ

�
; cs < 1;

ðA10Þ

which gives U−ðrÞ as a function of pðrÞ, where pðrÞ is to
be obtained from the integration of Eqs. (15) and (16). An
equivalent expression of U−ðrÞ as a function of ρðrÞ can be
obtained using the EOS

U−ðrÞ ¼

8>>>>>>>><
>>>>>>>>:

−ð4πGÞ2½2ρðrÞ − b�2½lnð2ρðrÞ − bÞ
− lnðbÞ þ 1�; cs ¼ 1;

− ð4πcsGÞ2
ð1−c2sÞ

�
c2s

�
ð1þc2sÞ

c2s
ρðrÞ − b

�
2

−b
2ð1−c2s Þ
ð1þc2s Þ ½ð1þ c2sÞρðrÞ − bc2s �

4c2s
ð1þc2s Þ

�
; cs < 1.

ðA11Þ

In particular, we can evaluate the latter expression at the
center of the star in order to obtain a relationship between
the central nonlocal energy density U−

c ≡ U−ð0Þ and the
central mass-energy density ρc ≡ ρð0Þ

U−
c ¼

8>>>>>>>><
>>>>>>>>:

−ð4πGÞ2½2ρc − b�2½lnð2ρc − bÞ
− lnðbÞ þ 1�; cs ¼ 1;

− ð4πcsGÞ2
ð1−c2sÞ

�
c2s

�
ð1þc2sÞ

c2s
ρc − b

�
2

−b
2ð1−c2s Þ
ð1þc2s Þ ½ð1þ c2sÞρc − bc2s �

4c2s
ð1þc2s Þ

�
; cs < 1.

ðA12Þ
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