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We present an asymptotically flat and stationary multiblack lens solution with biaxisymmetry of
U(1) x U(1) as a supersymmetric solution in the five-dimensional minimal ungauged supergravity. We
show that the spatial cross section of each degenerate Killing horizon admits different lens space topologies

of L(n,1) = S3 /Z, as well as a sphere S3. Moreover, we show that, in contrast to the higher-dimensional
Majumdar-Papapetrou multiblack hole and multi-Breckenridge-Myers-Peet-Vafa (BMPV) black hole
spacetime, the metric is smooth on each horizon even if the horizon topology is spherical.
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I. INTRODUCTION

In recent years, in the string theory and the various
contexts of AdS/CFT correspondence, higher-dimensional
black holes and other extended black objects have played
an important role [1-5]. In particular, the physics of
asymptotically flat black holes in the five-dimensional
minimal supergravity (Einstein-Maxwell-Chern-Simons
theory) has been the subject of increased attention, as it
describes a low-energy limit of the string theory. Various
types of black hole solutions in the theory have so far been
found, with the help of the recent development of solution-
generating techniques [6-38].

The topology theorem for stationary black holes gener-
alized to five dimensions [39-42] states that the topology of
the spatial cross section of the event horizon is restricted
to either a sphere S3, aring S' x S2, or lens spaces L(p, q)
(p, g: coprime integers), if one assumes that the space-
time is asymptotically flat and admits three commuting
Killing vector fields, a timelike Killing vector field, and
two axial Killing vector fields under the dominant energy
condition. As for the first two cases, one knows the
corresponding exact solutions in the five-dimensional
Einstein theory [2—4] and minimal ungauged supergravity
theory [14,16,17]. On the contrary, a regular black hole
solution with a lens space topology, at present, has not been
found to the five-dimensional vacuum Einstein equation,
although a few authors have attempted to construct such a
black lens solution by using the combination of the rod
diagram and the inverse scattering method [43,44].

Recently, there has been a new development in this
field. Asymptotically flat and stationary black lens
solutions, whose horizon topology is restricted to L(2, 1) =
§%/7,, were constructed by Kunduri and Lucietti as
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supersymmetric solutions to the five-dimensional minimal
ungauged supergravity [45] and U(1)? supergravity [46].
Furthermore, the more general black lenses with the horizon
topologies of L(n,1)=8%/Z,(n>3) were also con-
structed by one of the present authors in the former theory
[47]. The basic strategy to get these supersymmetric black
lens solutions is to use the well-known method developed by
Gauntlett et al. in Ref. [6], where the metric of super-
symmetric solutions admitting a timelike Killing field is
described in an adapted coordinate system by an R bundle
over the four-dimensional hyper-Kéhler base space.

It is well known that the Majumdar-Papapetrou solu-
tion to the four-dimensional Einstein-Maxwell equat-
ion describes an arbitrary number of charged static black
holes in an asymptotically flat spacetime by a balance of
electromagnetic and gravitational forces [48,49]. Such an
asymptotically flat, static multiblack hole solution was
previously generalized to higher-dimensional Einstein-
Maxwell theories [50]. Furthermore, a multiblack hole
solution in a rotational case (this is often called multi-
BMPV black hole) was constructed in five-dimensional
minimal supergravity [51]. As shown in Refs. [S1-53], in
contrast to the four-dimensional Majumdar-Papapetrou
solution [54], these solutions generalized to higher dimen-
sions do not admit smoothness of the metric at horizons,
whereas for the concentric multiblack ring solution [16],
the spacetime is known to be analytic at each event horizon.
Therefore, it is not entirely clear whether there does exist a
regular multiblack lens solution in higher dimensions,
simply because a black lens solution with a single horizon
exists.

The purpose of this paper is to construct an exact
solution describing an arbitrary number of charged rotating
black lenses with smooth horizons as an asymptotically flat
and stationary supersymmetric solution in five-dimensional
minimal supergravity. This work is essentially based on the
previous works of Refs. [45,47], where the strategy is to use
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the Gibbons-Hawking space as a hyper-Kihler base space
and allow the harmonic functions to have n point sources
with appropriate coefficients. We show that, by imposing
appropriate boundary conditions on the parameters, the n
point sources denote degenerate Killing horizons with the
topologies of different lens spaces L(n;, 1) =S$%/Z,
(i =1, ...,n). Moreover, introducing an appropriate coor-
dinate system, we also show that the metric and Maxwell’s
field strength are smooth on each horizon in contrast to the
higher-dimensional Majumdar-Papapetrou solutions and
multi-BMPV black hole solution.

This paper is organized as follows: In Sec. II, following
the work of Gauntlett er al. [6], we present the super-
symmetric solution on the Gibbons-Hawking base space,
which describes multiblack lenses (with n horizons) in the
five-dimensional minimal ungauged supergravity. The
solution admits three commuting Killing vector fields,
i.e., the stationary Killing vector field and two mutually
commuting axial Killing vector fields so that the isometry
group of the spacetime is R x U(1) x U(1). In Sec. III, we
impose the boundary conditions so that the spacetime is
asymptotically flat, neither conical nor curvature singular-
ities appear in the domain of outer communications, and no
orbifold singularity and no Dirac-Misner string exists on
the axis. Furthermore, we require that the spacetime should
not admit closed timelike curves (CTCs) in the domain of
outer communication. In particular, for n = 2, we numeri-
cally show that there exists no CTC outside the horizons.
Section IV is devoted to study some physical properties of
such multiple black lenses. In Sec. V, we summarize our
result and discuss further generalization.

II. BLACK LENS SOLUTION

We would like to consider supersymmetric solutions
in the five-dimensional minimal ungauged supergravity,
whose bosonic Lagrangian is described by the Einstein-
Maxwell-Chern-Simons theory:

8
L=Rx1-2FAxF———AAFAF, 1
373 (1)

where F' = dA is the Maxwell field. The metric and gauge
potential 1-form are given, respectively, by

ds*> = —f*(dt + w)* + f~ds},, (2)

A=

o5

fldi+o) =gy + =g, ()

where we choose the hyper-Kéhler metric ds3, to be the
Gibbons-Hawking metric:

ds3, = H ' (dy + x)* + Hdx'dx', (4)
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dy = *dH, (5)
where {x'} = (x,y,z) (i =1, 2, 3) are Cartesian coordi-

nates on E* and d/dy is a triholomorphic Killing vector.
Furthermore,

fP=H'K*+L, (6)
o = o, (dy + 1) + &, (7)
-2 g3 3 -1
o, =HZK + 5 H KL + M, (8)

3
#di) = HAM — MdH + 3 (KdL — LdK), ~ (9)

dé = — * dK. (10)

Here H, K, L, M are harmonic functions on E>, where it
should be noted that there exists a gauge freedom of
redefining harmonic functions [55]:

K - K + aH, L - L —2aK — a*H,

3 3, L,
M->M 2aL—|—2aK—|—2aH, (11)
where a is an arbitrary constant. In fact, under the trans-
formation (11), (f, @, y) remain invariant, whereas the
I-form & undergoes a change as & — & — ay. Since this
transformation merely amounts to the gauge transformation
A — A + ady, the transformation (11) makes the bosonic
sector invariant.

Following the papers on supersymmetric black lenses in
Refs. [45,47], we consider the next harmonic functions
with n point sources:

n h n .
H=S 2.5 (12)
= i =T
M = my + - ) (13)
i=1 Fi
n k
K= —
>k 14
i=1 "t
n l
L=1I+)» —. (15)
Here, each n; takes not only positive but also

negative integers (n; = £1,42,...), and r;:=|r—r;| =
Vo= + -y + k- with
(X3, Yir 22)-

constants
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From Eq. (5), (9), and (10), the 1-forms (y, &, @) are
determined as

X = i ho;, (16)
i=1

E= =3 ki, (17)
i=1

n

i 3

3 .
i.j=1(i#j)
n 3 B
_Z <m0hi+§loki>wi+c, (18)
i=1

where c is a constant and the 1-forms @; and @;; (i # j) on
[E3 are, respectively,
- z—zi(x—x)dy = (y —yi)dx

R e

5 (r=r) - (r=r;) [(ri = r;) X (r ="5)] dx*

Wij = — T2
il |(r; _r'Tr]”

—r;) X (r
(20)

Throughout this paper, we set x; = y; = 0 for all i, by
which x9/0y — y0/0x becomes another Killing field,
and assume z; < z; for i < j. In this case, @; and @;;
are simply written in spherical coordinates (x,y,z) =
(rsin@cos ¢, sin @ sin ¢, rcos 0) as

~ T

T

r? — (z; 4 z;)rcos 0 + z;z;
W = )

22
Zﬁrirj ( )

where zj; == z; — z;.

III. BOUNDARY CONDITIONS

In the present paper, we would like to obtain a super-
symmetric multiple black lens solution such that it
describes physically interesting spacetime. We impose
suitable boundary conditions at (i) infinity r — oo, (ii) hori-
zonr =r;(i=1,...,n),and (iii) on the z axisx = y = 0 in
the Gibbons-Hawking space: (i) At infinity r — oo, the
spacetime is asymptotically flat, (ii) each surface r =r;
(i=1,...,n) should correspond to a smooth degenerate
Killing horizon whose spatial cross section has a topology
of the lens space L(n;, 1) = §°/Z, , and (iii) on the z axis
x =y = 0 in the Gibbons-Hawking space, we require that
there should appear no Dirac-Misner string, and orbifold
singularity must be eliminated. Moreover, besides these
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boundaries, in the domain of outer communication, the
spacetime allows neither CTCs nor (conical and curvature)
singularities.

A. Infinity

First of all, let us consider the boundary condition
to satisfy asymptotic flatness. For r — oo, the metric
functions (f, w,,) behave as

fl=1l+ Kzik,)z + Zli] r
w,, = my +%IOZk,-. (23)

Since the 1-forms @; and &;; are approximated, respec-
tively, as

d
@; = cos 0dg, iy = iﬁ (24)
<ji
the 1-forms y and @ behave as, respectively,
¥ = hid;=> n;cos0dgp, (25)

W= <m0 + % ZOZkl) (dy + cos 0dgp)
3
— Z <mohl~ + 3 lok,-> cos 8d¢

m. +3k.1.
+ ( > ham; + 5Kl +“2k’l-’ + c> dg. (26)

LRy i

The asymptotic flatness demands that the parameters
should satisfy

Iy =1, (27)
> omi=1, (28)

i=1

hom. +3k1.
_ iy Tt 2
¢ Z Zjj ’ ( 9)
i.j(i#]) g
_ 3 >k (30)
my = 3 i

In terms of the radial coordinate p = 2\/?, the metric
asymptotically (p — oo) behaves as

ds® = —dr* + dp*

2
+ % [(dy + cos 0dp)? + d6® + sin0dg?].  (31)
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This coincides with the metric of Minkowski spacetime,
where the metric of S is written in terms of Euler
angles (y, ¢, 6). The avoidance of conical singularities
requires the range of angles to be 0 <0 <z, 0 < ¢ < 2z,
and 0 <y <4z with the identification ¢~ ¢ + 2z
and y ~y + 4x.

B. Horizon
Next, we show that each point source r=r;
(i =1,...,n) denotes a degenerate Killing horizon whose

spatial topology is a lens space L(n;, 1) = $3/Z, . In terms
of the radial coordinate redefined by r := |r — r;|, near the
ith point source r = 0, the four harmonic functions H, K,
L, and M behave as

**Z

Z

Izﬂl |Z]1|

(32)
and the functions f~! and w,, are approximated, respec-
tively, by

k*/n; + I
PR VAL B B
=T
k3 /n? + 3k;1;/2n; + m;
” ~ p + C/Z(i)' (33)

Here, the constants Cll(i) and c’2(l.) are defined, respectively, by

10+Z 2|z,,,| 2nikik; — k2n; +n?l)],  (34)

3
/
1) —m0+2h kily

1
j) <Ml
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0
by == b %)
Ji
b= —IM g (ki j £k, (37)
|Z/leI|ij

which leads to

Z 3 3 —cosd
@) 2 2 |2;il

3 ZjiZki
+ D ("1mk+2kfl">| > 20
JAEj0) ZjitkilZej
3
- mon,-+—loki cos @

‘Z( m0+

and

) _Zi + c} dg, (38)

|2l

X =hid + > hid; = <n cosf— > n; Z”|>d¢ (39)
JG) i

J(#)

It is obvious that the metric components g, and g,,
apparently diverge at r = 0. However, the apparent diver-
gence can be eliminated by introducing new coordinates

(v,y') given by
A, A
dv = dt — <—0+—1>dr,
r r

dy' = dy = n; 2 dp - 20 (40)

|zl

where the constants A, and By, are determined by demanding
the 1/r? term in g,, and the 1/r term g,,,, should vanish and
the constant A is determined to remove the 1/r term in g,,.,
which results in

1
= E \/3kizll'2 + 4nili3 - 4ml(2k? + 3”ikili + I’l%m,-),

The asymptotic behaviors of the 1-forms @; and @;; are (41)
Zkl‘3 + 3k,»l,»n,- + 2m,n12
@; =cosOdp, ;= - |Zf" dp (j#i), (36) AoBy = : : (42)
Zj
4AOA1 = —4k?m0 + 3llk12 - 6n,~k,~l,~m0 + 6”!1'1[2 - (4m0n,2 + 6k,~n,~)m
+ — [2([? - 3kiliml' - 2n1m12)nj + 3<klllz - 4k12m, —_ 2n,~l,~m[)kj
i 12l
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In terms of this coordinate system, we see that the metric is then analytic in » and therefore can be uniquely extended into the
r < 0 region. Moreover, one can easily confirm that the null surface r = 0 is the Killing horizon for the Killing field
V =0/0v.

Taking the limit as (v, r) — (v/e, er) and € — 0 [13], after short computations, we obtain the near-horizon geometry as

2

R3; 2k;(2k? + 3n,l;) — 4n?m; 2 4r?
2(i) i i ivi i .
dsiy = 1 dy' + n; cos Ode — R R rdv| + R%O)(a’Q2 + sin*0d¢?) — R dv? — 7 dvdr,
10" 2(1) 10" 2(1) 2(i)
(44)
and /3
3 n;r 2k3 + 3nk;l; 4+ 2n2m;
A=—|5——d ! — L (dy' ;cos0do) |, 45
R R, (dy +n; cos bdep) (45)
I
where we have defined Dirac-Misner string pathology happens on the z axis. As
is discussed in Ref. [56], there is a danger of CTCs arising
R%(l.) = k? + nl;, (46)  from Dirac-Misner strings at @ =0, 7= because the
space-space part of the metric ds; = Pf?H™2(dy+
R2 — 3kizl,~2+4n,~l,~3 —4m,(2kf +3n,k,l,—|—nlzm,) . (47) X — P_lewW&)¢d¢)2 -+ f_lH(VZSinzg - P—]é\)¢2)d¢2 +

2%y 4
W Ry,

This is isometric to the near-horizon geometry of the
BMPV black hole. In order to remove CTCs near all
horizons, we must require the inequalities

0> 0.

As will be shown, it can be expected that these are also
sufficient conditions for the avoidance of CTCs throughout
the outside region of black holes. The cross section of the event
horizon can be extracted by v = const and » = 0 in (44) as

Ri,>0, R (48)

R?,.
ds?, = Z“) (dy’ + n;cos 0dp)? + R?, (d6? + sin0dg?).
(49)
which is the squashed metric of the lens space

L(nl', 1) — S3/Zn,"

C. Axis

We impose @y = 0 on the z axis of E3 (e, x =y =0)
in the Gibbons-Hawking space, which implies that no
|

J

Il
v/\
=

3

_I_
[\)

Kap
=
~| R
&

_H
gy
3

oyl

fT'H(dr* 4+ r*d6*) (P = fH — wj,H*) cannot become
positive there unless @, vanishes on the polar axis. For the
black lens solution with a single horizon [45,47], @, = O is
a direct consequence of the bubble equations, whereas for
the multiblack lens solution obtained here, this is not the
case. This is why we demand @, = 0 on the z axis.

The z axis of E? in the Gibbons-Hawking space splits up
into the (n + 1) intervals: I_={(x,y,z)|[x=y=0,z<z},
[i={(x,y,2)[x=y=0,z;<z<ziyy} (@(=1,...,n=1),
and I, ={(x,y,2)]lx=y=0,2>z,}. On the z axis,
the 1-forms @;; and @; take simple forms, respectively,

oy = (z—z)(z—z) A, =

- zilz - zillz -z

<= Z
|z =z

de. (50)
In particular, on 1., @;; and @; become, respectively,

1

3 . 3 .

I 2
Hence, on I, @ automatically vanishes, since
3 de
+ 2k,> dp— > (hkmj - 2kk1,>
k.j(k#j)
(52)
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where we have used Eqgs. (28) and (30) in the last equality.

On the intervals I; (i = 1, ...,n — 1), we should impose @, = 0, since it does not automatically vanish there. Let us note
that if and only if the constants @[] — @y[I_], @4[l;] — @411 (0 =2,....n = 1), &y[l.] — @4[I,-,] vanish, the 1-form
@ vanishes on all the intervals I; (i = 1,...,n —1).

The constant @,[I,] — @,[I_] can be written as

. X 3 1 3 1 3
a)d)[ll]—wd)[l_] :—Z[hlm]—hjml—|—2(k]l]—k]ll)}—|— Z <hkmj+2kkl]>— <m0h1+2k1>
T LU k1) Lk

3 3 1 3 1
J#1 1 IV ke jketkj#1) Ik
3
_Z<m0h1 +§kj> —C
J
3 1 3
:—2#21 hlmj—h,ml—i—a(kllj—kjll) 5—2 mohl‘f’ikl . (53)

Similarly, the constant @,[I;] — @,[I;_;] can be simplified as

R . 3 1 3 1
a)¢[1i]—a)¢[li_l] = Z <hkm]+§kklj>z—— Z (hij—hjmk +§(kklj_kjlk)>z_
k.j<i(kej) k- kj(j<i<k) jk

3 1 3 3
+ Z (hkmj+§kkl]>z__z<m0h]+§kj> +Z<Wl0h]+§kj> +c

k. j(kj>i k) k- j(<i) J(>i)
3 1 3 1
— Z <hkmj —+ Ekklj> Z_ + Z (hkmj - hjmk + 5 (kklj - k]lk)> Z—
ke j<i=1 (k) ke ke j(ji-1<k) ik

3 3 3

k.j(k.j>i—1.k#j j(<i-1 j(>i-1

3 1 3 1
T j(<i)

Jj(<i) ji

3 1 3 1
_E h . —h. — ek __E h-m:.—h.-m: —(k:l. =kl _
k(>i>< KM, My =+ 2 (kklt kllk)> ] < lmj jml =+ 2 (kll] kjll)> Zji

Sk )
3 3
- (m()]’li + Ekl> - <m0hi + Ekl>

3 1 3 1
J(<i)

A (€] /!

The constant @[1 ] — @y[l,_;] becomes

3 1
WgllL] = dyll,mi] = =2 (h,,mj = hymy + 3 (Kol = k,,-ln)) —
Jj(<n)

Znj

3
-2 (moh,, + Ek”) . (55)

where we have used Eqgs. (28) and (30) in the last equality.
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From Egs. (53)—(55), it turns out that to assure @ = 0 on
the z axis, for i = 1,...,n — 1, the parameters should be
subject to the constraints

3 3 1
J(#) /
(56)

For the discussion of the issue of orbifold singularities,
we consider the rod diagram of the multiblack lenses. On
I, we get

x = *dg, (57)
and on /;,
Z Zi Z Z
= (S 3wl
< RTEL i< 1R
- (S X )
Jj<i i+1<j<n
=(Sn- 3 )
Jj<i i+1<j<n

= <2an - 1>d¢. (58)

Therefore, we can write the two-dimensional (¢, y) part of
the metric on the intervals /. and I; in the form

ds3 = (—=fPwy + [ H™)(dy + z4dp)*. (59)

Let us now use the coordinate basis vectors (9, , 0y, ) of 27
periodicity, instead of (9,5, 9,,), where these coordinates are
defined by ¢, == (y + ¢)/2 and ¢, == (y — ¢)/2. From
(59), one can observe that the Killing vector v := 8¢ —
X0, vanishes on each interval. Namely,

(1) on the interval 7, the Killing vector v, := 0, —
d, = (0, —1) vanishes,

(2) on each interval I; (i =1,...,n—1), the Killing
vector v;:=0,—(2n=2i+1)0, = (1=, 1, —
>_j(<iyn;) vanishes, and

(3) on the interval /_, the Killing vector v_ :=d, +
0, = (1,0) vanishes.

From these, we can observe that the Killing vectors v, v;
on the intervals satisfy

det(vl, 0! ) =n,, det(v!, o7 ) =n;, (60)

with

det(v!, v1) = n,. (61)

PHYSICAL REVIEW D 95, 064021 (2017)

Equation (60) assures that the metric smoothly joints at the
end points z = z; (1 <i < n) of the intervals [41], which
means that there exist no orbifold singularities at adjacent
intervals. Furthermore, Egs. (60) and (61) show that the
spatial cross section of the ith Killing horizon r =r; is
topologically the lens space L(n;, 1) = $°/Z, .

IV. PHYSICAL PROPERTIES

In this section, we study physical properties of the
multiblack lenses.

A. Conserved quantities

Let us investigate conserved quantities of the multiblack
lens solution. The Arnowitt-Deser-Misner (ADM) mass
and two ADM angular momenta can be computed as

M= §|Q| — 3ﬂ[(ziki>2 + Zl} (62)
J, = 4ﬂ[(zik,~>3 + Zm +% (Zk) (Zlﬂ ,

(63)

o (30 (520) + ()]

where Q is an electric charge, which saturates the
Bogomol’nyi bound.

The surface gravity and the angular velocities of the
horizon vanish, as expected for supersymmetric black
objects in the asymptotically flat spacetime [10]. The area
of the ith horizon reads from (44) as

area = SﬂZR%(l.)Rw). (65)

The interval I; (i =1,...,n — 1) represents the bubble
between adjacent two horizons which is topologically
an annulus S! x [0, 1]. The magnetic flux through I; is
defined as

1

alt = | F. (66)
T I;
Since the Maxwell gauge potential 1-form A, is smooth at

the horizons and bubbles, these fluxes are given by only the

contribution from the horizons Q[Ii] — [_ Aw]gigﬂ’ which
leads to
qll;] = Q kili +2nim; _ Kigili + 2ni+lmi+l:|
S22 [2( 4 nly)  2(k2 4 nili)
(i=1,..n—1). (67)

Let us see whether there exists a parameter region such
that magnetic fluxes vanish. For simplicity, we now

064021-7
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consider the two-black-lens solution (n =2). From
Eq. (67), the magnetic flux g[/,] between the two horizons
can be written as

\/§ k]ll +2n1m1 k212+2n2m2
Q[ll} =5 > - B . (68)
2 \2(ki+ml)  2(k3 +mply)

From Eq. (68), when m, is denoted by

_ kil (K3 4+ nyly) — koo (kF + nyny)
2n, (ki +nyly) ’

m, (69)

the magnetic flux g([/,] vanishes. Here, let us recall that, for
this case, the condition (56) for the absence of Dirac-
Misner string singularities on the z axis is simply written as

3 3
_Enl(kl +k2) +§k1

3 1
= —|(nymy — nymy) +§(k112 - k)| —, (70)
221

which gives

kllz - k211 + 2n1m2/3
niky — noky

1 = s (71)

where we have put m; = 0 from Eq. (11) without the loss
of generality. From our assumption, the constant z,; must
be positive. As shown in Fig. 1, there exists a parameter
region such that the magnetic flux vanishes for R? > 0,
R% >0, and z,; > 0.

As for the supersymmetric black lens solution in
obtained in Refs. [45,47], there exists no limit such that
all the magnetic fluxes vanish. Therefore, one can consider
that, at least, for the supersymmetric black lens with
the single horizon of the topology L(n,1)=S%/7,

MF 7~~~ T T T T

O :1 n n n 1 n n n 1 n n n 1 n n n 1 n n n 1;
o 2 4 6 8 10

FIG. 1. Region in a (k,k,) plane such that R? > 0, R} > 0,
221 > 0, and q[[d =0 for ny = 5, ny = —4, and ll = 12 =1.
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(n=2,3,...) in Refs. [45,47], the existence of the mag-
netic fluxes plays an essential role in supporting the horizon
of the black lens. On the other hand, for the supersymmetric
multiblack lenses obtained in this paper, it seems that the
magnetic flux does not necessarily need to exist.

B. No CTC
We demand that the domain of outer communication in
the five-dimensional spacetime does not admit CTCs. This
is achieved if the inequalities
oo > Ov gy/y/ > 07 gylwg¢¢ - gi(/} >0 (72)

are satisfied on and outside all horizons. Explicitly, these
conditions are replaced by

D, := K>+ HL > 0, (73)
3
D, = ZKzLZ —2K3M —3HKLM + HL? — H*M?* > 0,
(74)
D3 = D2r2 Sinze—é\)é > 0. (75)

It is a considerably troublesome problem to prove their
positivity.

As seen in Fig. 2, for n =2, we have checked the
absence of CTCs by seeing numerically the positivity of D;
(i=1, 2, 3) and found that there appear no causal
violations in the domain of outer communications. We
can expect that, for n =2, the inequalities (48) are
sufficient to remove CTCs in the whole domain of outer
communication. We also expect that, even for n > 2, (48)
are sufficient to remove causal pathologies on and outside
the horizon.

C. Critical surfaces

One of the physically interesting features is that the
harmonic function H becomes negative around r =r;
(i=1,...,n), which leads to the (—,—,—,—) signature
of the Gibbons-Hawking base space. However, the signa-
ture of the five-dimensional spacetime metric remains
Lorentzian, because the function f~'H is positive. In this
case, a so-called evanescent ergosurface appears [37] at the
places which f = 0 corresponding to H = 0.

At this surface, one must impose the regularity condition
K #0 when H =0, since, if this does not hold, the
spacetime could not become regular there. In other words,
if there exist points z = z. on the axis such that

H=Y " 0,

|Zc _Zi| B

ki

|z

1

these critical surfaces are singular, which leads to
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FIG. 2. Plots of D;’s against (p = /x> +y%, 2) forn, =2, n, = —1,2, =0, 2, =0.0011, k; =k, =4, 1, = I, = 1, m; =0, and

m, = 0.001. No naked CTC appears.

ZM = 0. (77)

i>2 |Zc - Zil

Hence, for instance, one of the sufficient conditions to
avoid the singularities at critical surfaces is that for any i
(i =2,...,n), nik; — n;k; must have the same signs:

I’llki — nikl >0 or l’llki — nikl < 0. (78)

For n = 2, one of the evanescent ergosurfaces exists at

niz, +nyz
7= 142 241 (79>
ny +7l2
for z € I, when n; > 0 and z € I_ when n; < 0, whereas
the other exists at
N2 — NyZ
7= 142 241 (80)

ny—np

for z € 1,.

V. SUMMARY

In this work, we have constructed an asymptotically flat
and stationary multiblack lens solution as a supersymmetric
solution in the bosonic sector of the five-dimensional
minimal supergravity. We have shown that this solution
describes a mechanical equilibrium state of an arbitrary
number of charged black lenses and the degenerate Killing
horizons admit different lens space topologies L(n;, 1) =
s3/ Z,, (i =1, ...,n), where each n; takes nonzero different
integers but must satisfy the constraint equation
> %, n; = 1. This multiblack lens spacetime has a spatial
symmetry of U(1) x U(1), because all horizons are aligned
on the z axis in the Gibbons-Hawking space. Moreover, we
have also computed the conserved charges including the
(positive and Bogomol’'nyi-Prasad-Sommerfeld (BPS)-
saturating) mass, two angular momenta, and the magnetic
fluxes on the bubbles.

For the supersymmetric single black lens in
Refs. [45,47], the existence of the magnetic fluxes plays
an essential role in supporting the horizon of the black lens,
whereas for the multiblack lenses obtained in this paper,
this is not the case, since the magnetic flux vanishes at least
for n = 2. This is one of the surprising features for the
multiblack lenses. This can be interpreted as follows: Even
if the magnetic fluxes do not exist, the electric force acting
on the black lenses (black holes) can support the horizons.
Furthermore, this fact leads to the following natural
question. Does a nonsupersymmetric black lens exist, for
instance, in pure Einstein gravity? If such a vacuum black
lens solution exists, the horizon must be supported by the
centrifugal force of a rotating black lens the same as the
black ring. This issue deserves further study.

In this work, we have considered the supersymmetric
solution subject to the constraint (28), which comes from
the requirement that the topology of spatial infinity r — oo
should be S3, when the spacetime asymptotically becomes
flat. This constraint seems to impose a considerably strong
restriction on the topologies of horizons. However, if one
replaces the harmonic function H in the Gibbons-Hawking
base space with, for instance, another one

(g i—1

and, moreover, if at each point r =r; (i=n+1,...,N)
where the harmonic function diverges, one demands
regularity (this corresponds to the conditions ¢, =0 in
Ref. [47]), one no longer may need to impose the constraint
(28). In this case, each horizon r =r; (i =1,...,n) can
have an independent lens space topology of L(n;, 1).
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