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We discuss the conditions under which plane electromagnetic and gravitational waves can be amplified
by a rotating black hole due to superradiant scattering. We show, in particular, that amplification can occur
for low-frequency waves with an incidence angle parametrically close to 0 (or π) with respect to the black
hole spin axis and with a parametrically small left (or right) polarization. This is the case of the radiation
emitted by a spinning electric/magnetic dipole or gravitational quadrupole orbiting a black hole companion
at large radius and corotating with the latter. This can yield observable effects of superradiance, for
example, in neutron star-stellar mass black hole binaries, as well as in triple systems composed by a
compact binary orbiting a central supermassive black hole. Due to superradiance, the total source
luminosity in these systems exhibits a characteristic orbital modulation that may lead to significant
observational signatures, thus paving the way for testing, in the near future, one of the most peculiar
predictions of general relativity.

DOI: 10.1103/PhysRevD.95.064017

I. INTRODUCTION

Superradiance is one of the most interesting phenomena
in wave scattering in black hole space-times. In general
relativity, it is predicted to occur for bosonic waves (scalar,
electromagnetic and gravitational) propagating in rotating
and/or charged black holes,1 the former being the most
interesting case from the astrophysical point of view and
the focus of this work, since electromagnetic interactions
between a black hole and the surrounding plasma should
efficiently neutralize it.
Superradiant scattering is often referred to as the wave

analogue of the Penrose process for energy extraction from
a rotating black hole [1,2], although the nature of these
processes is somewhat different. In the latter, a particle
traveling in the ergoregion of a Kerr black hole may, for
example, decay into two particles. Since in the ergoregion
the Killing vector associated with time translations at
infinity becomes spacelike, one of the decay products
may carry a negative energy into the black hole, decreasing
its mass as measured by an asymptotic observer. The
energy extracted must, by energy conservation, be carried
away by the other decay product. In superradiant scattering
(see [3] for a recent review of this topic), a low-frequency
wave is amplified upon scattering off a rotating black hole,
carrying away part of its energy and also angular momen-
tum. This amplification occurs only for wave modes of
the form ψ ∼ e−iωtþimϕ, where ϕ is the azimuthal angle in
Boyer-Lindquist coordinates, such that

ω < mΩH; ð1Þ

where ΩH is the angular velocity of the black hole horizon.
As we will discuss in more detail later on, this condition
holds for the case where the wave frequency ω is positive
defined, such that the azimuthal wave number must be a
positive integer, while there is an analogous condition for
ω < 0 (i.e. modes of the form eiωt) and m < 0.
This phenomenon has been thoroughly analyzed in the

literature following the seminal works of Zeldovich [4],
Starobinsky [5], Teukolsky and Press [6–8], amongst
others, in the 1970s, and has merited a significant attention
in the recent literature since the realization that it could lead
to instabilities at the linear level for Kerr black holes. This
was first noted by Press and Teukolsky [9] (and later
studied in detail in [10]), who showed that by surrounding a
rotating black hole with a reflective mirror a huge amount
of energy could be extracted from the black hole due to
multiple superradiant scatterings and reflections, a phe-
nomenon popularly known as the “black hole bomb.”
Amongst other mechanisms, this mirrorlike effect occurs
naturally for massive fields, which may be confined in the
black hole’s vicinity by the gravitational potential in
quasibound states [11–24]. The superradiant condition
(1) requires the mass of the fields that can form these
states around astrophysical black holes (stellar or super-
massive) to be extremely small, namely below 10−10 eV,
such that the black hole bomb mechanism could be a
signature of exotic beyond the Standard Model particles
such as axions [17,19], hidden photons [20,21] or massive
gravitons [24]. It has also recently been shown that for
frequencies at the superradiant threshold, ω ¼ mΩH, the
stable bound states found at the linear level have nonlinear
“hairy” black hole counterparts [25].
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Despite this interesting connection to novel physics, with
a potentially large phenomenological impact, superradiant
scattering is in itself a remarkable prediction of general
relativity in the Kerr geometry.2 An observational con-
firmation of this process would therefore constitute an
important test of Einstein’s theory in a regime where it has
yet to be probed. In [28], we noted that pulsars constitute
sources of low-frequency electromagnetic and gravitational
radiation with the necessary properties to undergo super-
radiant scattering off a rotating black hole companion.
We showed, in particular, that superradiance results in a
modulation of the pulsar’s luminosity in both electromag-
netic and gravitational channels that could potentially be
measured observationally.
In this work, besides giving more details on the process

of superradiant scattering in pulsar-black hole binaries, we
develop a more general analysis. In particular, we derive the
generic conditions under which plane gravitational and
electromagnetic waves can be amplified upon scattering off
a rotating black hole. This is a nontrivial problem, since
plane waves are superpositions of different modes of the
form given above, some of which are amplified while
others are attenuated upon scattering off a Kerr black hole.
An overall amplification of a plane wave can therefore only
occur when superradiant modes satisfying (1) or its
analogue for negative ω carry a sufficiently large fraction
of the incident energy flux.
Plane waves are the leading form of the radiation

emitted by a distant source, namely at a distance from
the black hole exceeding the wavelength, and in this
work we will also determine the properties that sources
must exhibit such that their total luminosity increases
upon scattering off a black hole companion. We then
give examples of realistic sources that meet these
requirements, in particular pulsars, as proposed in
[28], and also compact binaries. We note that our results
provide only a first step towards testing the phenomenon
of black hole superradiance, since we will not only focus
on the plane-wave limit but also consider only the
effects of superradiance on the total power of the source,
rather than its luminosity along the line of sight or, in the
case of gravitational waves, the associated strain. This
involves additional technical difficulties that we hope
to overcome in the future, but this work nevertheless
lays the ground for studying more realistic astrophysical
settings.
We will see that superradiant scattering of electro-

magnetic and gravitational radiation can be analyzed in a
similar fashion and for completeness we discuss both
cases in parallel. As already briefly discussed in [28], the
electromagnetic channel is not very promising from the

observational point of view, since only very low-
frequency radio waves can undergo superradiant
scattering off astrophysical black holes. The required
frequencies are, in particular, too low to be observed on
Earth or its vicinity and may additionally not be able to
propagate in the interstellar or intergalactic medium, so
that one can hardly hope to observe any electromagnetic
signature of superradiance. Gravitational radiation
provides, on the other hand, a potentially very “clean”
channel, since it does not significantly interact with any
astrophysical plasmas. The recent discovery of gravita-
tional waves emitted by a coalescing binary black hole
system [29] provides, of course, a strong motivation for
studying the effects of superradiance in this channel.
We will show, in fact, that a compact binary is an ideal
source of gravitational waves that can undergo super-
radiant scattering of a central supermassive black hole,
yielding a very promising triple system (supermassive
black hole–compact binary) for testing the superradiance
phenomenon.
This work is organized as follows. In the next section, we

give an overview of the phenomenon of black hole super-
radiance in the Kerr space-time and compute, in particular,
the gain-loss factor upon scattering for different wave
modes, reproducing the results of [8]. In Sec. III, we
discuss the mode decomposition of plane waves and derive
the general conditions under which the total energy flux can
be amplified upon scattering off a Kerr black hole. We then
apply these results to particular astrophysical sources
satisfying the determined requirements, in particular pul-
sars and compact binaries, in Sec. IV. We summarize our
main conclusions and discuss possible extensions of this
work in Sec. V. In addition, we include two appendices on
spin-weighted spherical harmonics and wave multipole
decompositions.
In this work we use the ðþ;−;−;−Þ metric convention

and, by default, consider units such that ℏ ¼ c ¼ G ¼ 1
unless explicitly stated.

II. SUPERRADIANT SCATTERING IN
THE KERR SPACE-TIME

In this section we review the basic concepts and
techniques used to study the scattering of electromagnetic
and gravitational radiation off a rotating Kerr black hole.
We will consider a linear analysis, i.e. neglecting the
backreaction of the waves on the background space-time.
This is suitable for most astrophysical sources where the
energy extracted from the black hole, even over a very long
period, is negligible compared to the black hole mass, as we
will discuss later on when describing particular examples.
We refer the reader to [30] for a recent study of superradiant
scattering at the nonlinear level.
We start by writing the Kerr metric in Boyer-Lindquist

coordinates [31] for a black hole with Arnowitz-Deser-
Misner mass M and spin J ¼ aM:

2Note that superradiance may occur in nonrelativistic systems
as the original Zeldovich cylinder [4], and also possibly for
rotating relativistic systems without event horizons [26,27].
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ds2 ¼
�
1 −

2Mr
ρ2

�
dt2 −

ρ2

Δ
dr2 − ρ2dθ2

−
�
r2 þ a2 þ 2Ma2r sin2 θ

ρ2

�
sin2 θdϕ2

þ 4Mr
ρ2

a sin2 θdtdϕ; ð2Þ

where Δ ¼ r2 þ a2 − 2Mr and ρ2 ¼ r2 þ a2 cos2 θ. In
these coordinates, the event horizon is located at rþ ¼
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and the inner Cauchy horizon at

r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, such that Δðr�Þ ¼ 0. The ergore-

gion is bounded by the surface re ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos2 θ

p
and corresponds to the region where the Killing vector
ξt ¼ ∂=∂t, which is associated with time translations at
infinity, becomes spacelike and negative energy states may
exist from the perspective of an asymptotic observer.
The study of wave propagation in this background

geometry is greatly simplified by using the Newman-
Penrose (NP) formalism [32], where one projects the
electromagnetic field tensor and the Weyl tensor on a null
tetrad, typically chosen to be the Kinnersley tetrad [33]
defined by the 4-vectors ðlμ; nμ; mμ; m̄μÞ:

lμ ¼
�
r2 þ a2

Δ
; 1; 0;

a
Δ

�
;

nμ ¼ 1

2ρ2
½r2 þ a2;−Δ; 0; a�;

mμ ¼ 1ffiffiffi
2

p
ρ̄
½ia sin θ; 0; 1; i= sin θ�; ð3Þ

where ρ̄ ¼ rþ ia cos θ. Note that lμ and nμ coincide with
the two principal null directions of the Kerr metric’s Weyl
tensor, which makes this tetrad particularly suitable for the
study of incoming and outgoing radiation. For electromag-
netic waves, we can project the Maxwell tensor onto this
tetrad to obtain the complex NP scalars:

ϕ0 ¼ Fμνlμmν; ϕ2 ¼ Fμνm�μnν: ð4Þ

Analogously, for gravitational radiation we project the
Weyl tensor on the tetrad to obtain the complex scalars:

ψ0 ¼ −Cμνρσlμmνlρmσ;

ψ4 ¼ −Cμνρσnμm̄νnρm̄σ: ð5Þ

Note that other scalar quantities can be obtained for both
types of waves, but these will not be relevant for our
discussion. It was shown by Teukolsky [6] that both
Maxwell’s equations and the perturbed Einstein equations
in the Kerr space-time lead to decoupled second order
differential equations for each of the NP scalars and that, in
particular, the equations for ϕ0, ϕ2, ψ0 and ψ4 can be solved

by separation of variables. More explicitly, we can perform
a mode decomposition of the form:

ϒs ¼
X
l;m;ω

e−iωtþimϕ
sSslmðθÞsRlmðrÞ; ð6Þ

where s ¼ 1 corresponds to ϕ0, s ¼ −1 to ρ̄2ϕ2, s ¼ þ2 to
ψ0 and s ¼ −2 to ρ̄4ψ4. The NP scalars thus yield the
s ¼ �1 and s ¼ �2 components of electromagnetic and
gravitational waves, respectively. The corresponding angu-
lar functions satisfy the equation for spin-s spheroidal
harmonics, which up to OðaωÞ terms coincide with the
corresponding spin-weighted spherical harmonics, i.e.

eimϕ
sSlmðθÞ ¼ sYlmðθ;ϕÞ þOðaωÞ ð7Þ

with eigenvalues λ ¼ lðlþ 1Þ − sðsþ 1Þ þOðaωÞ. The
radial equation for each spin-s wave mode is then given
by Teukolsky’s master equation:

Δ
d2sRlm

dr2
þ 2ðsþ 1Þðr −MÞ dsRlm

dr

þ
�
K2 − 2isðr −MÞK

Δ
þ 4isωr − λ

�
sRlm ¼ 0; ð8Þ

where KðrÞ ¼ ðr2 þ a2Þω −ma.

A. Analytical asymptotic matching

Teukolsky’s equation cannot be solved exactly with
known analytical methods, but several approximate proce-
dures have been developed. A particularly useful technique
is to match the exact solutions that one can obtain in
two overlapping regions: (i) the near region r − rþ ≪ ω−1

and (ii) the far region r − rþ ≫ rþ. An overlap between
these two regions, and hence a consistent matching, is then
possible for ωrþ ≪ 1 [5].
In the near region, the general solution is given in terms

of hypergeometric functions, and upon imposing ingoing
boundary conditions at the horizon, such that no waves
escape from within the black hole, we obtain, omitting the
ðs; lmÞ indices for simplicity,

Rnear ¼ Aholeðxþ τÞiϖ=τx−s−iϖ=τ

× 2F1ð−l; lþ 1; 1 − s − 2iϖ=τ;−x=τÞ; ð9Þ

where we have defined the normalized distance to the
horizon x ¼ ðr − rþÞ=rþ, the extremality parameter τ ¼
ðrþ − r−Þ=rþ (0 ≤ τ ≤ 1) and ϖ ¼ ð2 − τÞðω̄ −mΩ̄HÞ,
with barred quantities being normalized to the horizon
radius, e.g. ω̄ ¼ ωrþ. This implies that close to the horizon
we have R ∼ Δ−se−iωr� in terms of the tortoise coordinate
defined via dr�=dr ¼ ðr2 þ a2Þ=Δ.
In the far region, the solution is given in terms of

confluent hypergeometric functions:
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Rfar ¼ e−iω̄xxl−s½CMðlþ 1 − s; 2lþ 2; 2iω̄xÞ
þDx−2l−1Mð−l − s;−2l; 2iω̄xÞ�: ð10Þ

This yields an expansion in terms of incoming and out-
going waves at infinity:

RfarðrÞ → Ain
e−iωr

r
þ Aout

eiωr

r2sþ1
; ð11Þ

where

Ain ¼
�
Cð−2iω̄Þ−lþs−1 Γð2lþ 2Þ

Γðlþ 1þ sÞ

þDð−2iω̄Þlþs Γð−2lÞ
Γð−lþ sÞ

�
rþ;

Aout ¼
�
Cð2iω̄Þ−l−1−s Γð2lþ 2Þ

Γðl − sþ 1Þ

þDð2iω̄Þl−s Γð−2lÞ
Γð−l − sÞ

�
r2sþ1
þ : ð12Þ

Taking the limits x ≫ 1, τ of the near-region solution and
ω̄x ≪ 1 of the far-region solution, we obtain that both
solutions are given in terms of two monomials in xl−s and
x−l−s−1. Matching the coefficients of each monomial in the
near- and far-region solutions yields

D
C

¼ Γð−2l − 1Þ
Γð−lÞ

Γðlþ 1Þ
Γð2lþ 1Þ

Γðlþ 1 − s − 2iϖ=τÞ
Γð−l − s − 2iϖ=τÞ τ2lþ1;

ð13Þ
which we may use to determine the ratio between the
incoming and outgoing energy far away from the black
hole. For electromagnetic waves, we can see from Eq. (11)
that ϕ0 (s ¼ 1) gives to leading order the incoming wave,
while ϕ2 (s ¼ −1) yields the outgoing wave. Similarly, in
the gravitational case ψ0 (s ¼ þ2) is an incoming wave and
ψ4 (s ¼ −2) is an outgoing wave. Writing the electromag-
netic energy-momentum tensor in terms of the NP scalars
[34], one can show that at infinity:

d2Ein

dtdΩ
¼ lim

r→þ∞
r2
jϕ0j2
8π

;
d2Eout

dtdΩ
¼ lim

r→þ∞
r2
jϕ2j2
2π

; ð14Þ

where the difference in numerical factors is due to the
additional 1=2 normalization of nμ compared to lμ.
Similarly, for gravitational waves one can define a
pseudo-energy-momentum tensor that yields

d2Ein

dtdΩ
¼ lim

r→þ∞
r2

jψ0j2
64πω2

;
d2Eout

dtdΩ
¼ lim

r→þ∞
r2

jψ4j2
4πω2

:

ð15Þ
Note that asymptotically the space-time is flat, such that in
terms of the electromagnetic fields ϕ0 ¼ ðEþ iBÞ · eþ and

2ϕ2 ¼ ðEþ iBÞ · e−, where e� ¼ ðeθ̂ � ieϕ̂Þ=
ffiffiffi
2

p
in the

orthonormal spherical basis, which justifies the above
expressions. Similarly, for waves propagating along the
radial direction ψ0 ¼ −ðω2=8Þhijeþieþj and ψ4 ¼
−ðω2=2Þhije−ie−j in terms of the metric perturbations
hij in the transverse-traceless (TT) gauge.
The two NP scalars are, in each case, related by linear

differential equations that take a simple form at infinity [7].
We may then express the incoming and outgoing power
in terms of a single quantity, which we choose as ϕ2 for
the electromagnetic case and ψ4 for the gravitational case.
Integrating over the solid angle, we then have for the
incoming and outgoing power at infinity for electromag-
netic waves:

dEin

dt
¼ 16ω4

l2ðlþ 1Þ2 jAinj2;
dEout

dt
¼ jAoutj2; ð16Þ

while in the gravitational case:

dEin

dt
¼ 128ω6

l2ðlþ 1Þ2ðl − 1Þ2ðlþ 2Þ2 jAinj2;
dEout

dt
¼ 1

2ω2
jAoutj2: ð17Þ

With these results, we may use the relations (12) and the
matching condition (13) to obtain the overall gain/loss
factor, which we can write for a general spin-s wave mode
with angular numbers ðl; mÞ in the form:

sZlmðωÞ≡ dEout=dt
dEin=dt

− 1

≃ −2ðω̄ −mΩ̄HÞ
ð2 − τÞ

τ
ð2ω̄τÞ2lþ1

×

�ðlþ sÞ!ðl − sÞ!
ð2lÞ!ð2lþ 1Þ!

�
2Yl
k¼1

�
k2 þ 4ϖ2

τ2

�
; ð18Þ

which is analogous to the expression first obtained in [5].
In obtaining the last line of the previous equation we have
used that ω̄τ ≪ 1 and that:

Γð−nÞ
Γð−mÞ ¼ ð−1Þn−m m!

n!
;

Γðlþ 2þ xÞ
Γð−lþ 2þ xÞ ¼ −

lþ 1

l
ð−1Þlx

Yl
k¼1

ðk2 − x2Þ: ð19Þ

We note that an analogous expression can be obtained
by computing the energy flux into the black hole
horizon, and by conservation of energy we have sZlm ¼
−ðdEhole=dtÞ=ðdEin=dtÞ. In addition, we must take into
account that both the electromagnetic field and the metric
are real quantities, although the NP scalars are complex
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since the components of the tetrad 4-vectors mμ and m̄μ

are complex valued. This implies that realistic waves will
include modes of the form e−iωt and eiωt, which can be
implemented by considering both positive and negative
values for ω, with the absolute frequency of the wave given
by jωj in this notation. It is easy to repeat the analysis above
for ω < 0 to conclude that

sZlmð−ωÞ ¼ sZl;−mðωÞ: ð20Þ

Superradiance is explicit in the form of the gain/loss factor
sZlmðωÞ ∝ −ðω −mΩHÞ, such that the reflected (outgoing)
power exceeds the incoming power for ω < mΩH. For
ω > 0, superradiant amplification, sZlm > 0, will then
occur for m > 0 modes satisfying the condition (1), while
for ω < 0 only the m < 0 modes will be amplified.
The result above shows that for low (positive) frequen-

cies ω ≪ r−1þ superradiance will be more effective for
the lowest (corotating) multipoles, namely l ¼ m ¼ 1 and
l ¼ m ¼ 2 in the electromagnetic and gravitational cases,
respectively, where to leading order we obtain

1Z1;1 ≃ −
4

9
ðω̄ − Ω̄HÞω̄3ð2 − τÞτ2;

2Z2;2 ≃ −
4

225
ðω̄ − 2Ω̄HÞω̄5ð2 − τÞτ4: ð21Þ

In this limit, superradiance is thus more effective in
extracting energy and spin from the black hole for
electromagnetic waves. The result above also suggests that
sZlm ¼ 0 for extremal black holes, τ ¼ 0, but this case has
to be treated separately since the near-region solution (9) is
not well defined in this limit. The matching procedure is,
moreover, limited to low-frequency waves and numerical
solutions of the Teukolsky equation show that superradiant
amplification is much stronger close to extremality and
frequencies just below the superradiant threshold, yielding
a maximum amplification of 4.4% for electromagnetic
waves (ω≃ 0.88ΩH) and 138% for gravitational waves
(ω≃ 2ΩH) in the corresponding lowest multipoles [8]. In
the next subsection we then develop a numerical method to
compute the gain/loss factor for different wave modes.

B. Numerical analysis

Teukolsky’s equation can be solvednumerically byusing a
forward integration method [7], that can be simply imple-
mented with Mathematica. This method consists in starting
with an ingoing wave arbitrarily close to the horizon of the
blackhole and then integratingTeukolsky’s equationnumeri-
cally up to a large distance, where the coefficients of the
incoming and outgoing waves can be extracted for different
frequencies.
The ingoing boundary condition at the horizon can be

set by noting that the radial function sRlm admits a generic
power-series expansion of the form:

sRlm ¼ x−s−iϖ=τ
X∞
n¼0

anxn: ð22Þ

The series coefficients an can be easily determined by
substituting this series expansion into the radial equation
and solving iteratively the resulting algebraic equations.
We can then integrate the Teukolsky equation up to a
distance x ≫ ω̄−1, where as seen earlier the solution has the
asymptotic form:

sRlmðxÞ → sA
lm
in

rþ

e−iω̄x

x
þ sA

lm
out

r2sþ1
þ

eiω̄x

x2sþ1
: ð23Þ

From this it is clear that the incoming waves give the
leading behavior for s ¼ þ1 and s ¼ þ2 (ϕ0 and ψ0

respectively), so that it will be more convenient to consider
these NP scalars in the numerical procedure. The coef-
ficient sA

lm
in can then be extracted by evaluating xjsRlmðxÞj

at a sufficiently large distance.
We can then compute the energy flow into the black hole

and compare it with the incoming power. We have for the
energy flow into the black hole [7], setting the overall
normalization a0 ¼ 1 for both electromagnetic and gravi-
tational waves:

dEhole

dt
¼

8<
:

τ2ω̄r2þ
4ϖ ; s ¼ þ1;

τ4ω̄r4þ
32ϖðϖ2þτ2=4Þ ; s ¼ þ2

: ð24Þ

For the incoming energy, we obtain

dEin

dt
¼

8<
:

r2þ
4
jþ1A

lm
in j2; s ¼ þ1;

r4þ
32ω̄2 jþ2A

lm
in j2; s ¼ þ2

: ð25Þ

The gain/loss factor defined in Eq. (18) is thus given by

sZlm ¼
8<
:

− τ2ω̄
ϖ jþ1A

lm
in j−2; s ¼ þ1;

− τ4ω̄3

ϖðϖ2þτ2=4Þ jþ2A
lm
in j−2; s ¼ þ2

: ð26Þ

For numerical accuracy, it is important to include spheroi-
dal corrections to the angular eigenvalues:

λ ¼ lðlþ 1Þ − sðsþ 1Þ − 2amωþ a2ω2 þ
Xþ∞

k¼1

ckðaωÞk;

ð27Þ

where approximate analytical expressions for the ck coef-
ficients can be found in [35], with numerical values
tabulated in [7,8]. We note that in [3] a fully numerical
analysis in both the radial and angular directions was
implemented.
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In Fig. 1 we show the results obtained for a=M ¼ 0.999
the leading multipoles of electromagnetic and gravita-
tional waves.
As one can see in this figure, the gain/loss factor is well

described by the analytical expressions obtained earlier
using the asymptotic matching procedure for small frequen-
cies. These are given by the dashed curves in the electro-
magnetic case and this is also observed for gravitational
waves, although for clarity of the plot we do not show these
explicitly.
As the frequency increases, the analytical expressions

generically underestimate jsZlmj for the corotating modes,
while for the nonsuperradiant modes m ≤ 0 this only
occurs up to a given frequency, since the gain/loss factor
saturates at high frequencies to Z≃ −1. This implies that
the incident energy is almost completely absorbed by the
black hole, in agreement with the results obtained by Press
and Teukolsky [8], and is related to the fact that such waves

have a sufficiently high energy to overcome the angular
momentum barrier that suppresses absorption/amplification
for lower frequencies.
Corotating modes are, as expected for ω > 0, amplified

in the superradiant regime ω < mΩH and the amplification
factor increases with the black hole spin and frequency
until very close to the superradiant threshold, particularly
for gravitational waves. As opposed to the behavior
observed at low frequencies, gravity waves are amplified
by a much larger factor than electromagnetic waves close to
the superradiant threshold, as well as for larger spins close
to extremality. For a=M ¼ 0.999, we obtain a maximum
amplification factor Zmax

EM ¼ 0.436 for electromagnetic
waves and Zmax

GW ¼ 1.02 for gravitational waves. Press
and Teukolsky obtained a maximum of 1.38 for gravita-
tional wave scattering off a black hole with spin
a=M ¼ 0.99999, and in this case we obtain 1.33, in fairly
good agreement with [8].3

We emphasize, in particular, that for electromagnetic
waves the maximum amplification for l ¼ m ¼ 1 is con-
siderably smaller than the corresponding absorption coef-
ficient jZj≃ 1 for m ¼ 0, −1. For gravitational waves, on
the other hand, superradiant amplification of the l ¼ m ¼ 2
mode is of the same order (and may even be slightly larger)
than the nonsuperradiant absorption of the m ≤ 0 modes.

III. PLANE-WAVE DECOMPOSITION AND
CONDITIONS FOR AMPLIFICATION

Having obtained the form of the gain-loss factor for
different wave modes, we can now investigate under which
conditions an incident wave will be amplified, which of
course depends on the relative abundance of superradiant
and nonsuperradiant modes in the incident flux. We will
focus our discussion on incident plane waves, which
constitute a good approximation for sources that are
sufficiently far away from the black hole, namely when
the distance L between the source and its spinning black
hole companion is large compared to the wavelength of
the radiation, λ. This approximation also requires L ≫ rþ,
RS, where RS is the source radius (or typical size if not
spherical). Our scattering problem will then have an
incident plane wave far away from the black hole, at
distances rþ ≪ r ≪ L, rather than explicitly considering a
source placed at a finite distance from the horizon in the
Kerr space-time.
The problem we pose is then the following. Given a

plane-wave boundary condition at infinity (i.e. r ≫ rþ),
with a given incident direction ðθ0;ϕ0Þ in Boyer-Lindquist
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FIG. 1. Numerical results for the gain/loss factor for a near-
extremal black hole with a=M ¼ 0.999, for the lowest multipoles
l ¼ 1 and l ¼ 2 in the electromagnetic and gravitational cases,
respectively. Note that Z < 0 for m ≤ 0 and also when ω > mΩH
form > 0 (with ω > 0). In the electromagnetic case we also show
the approximate asymptotic matching prediction for low fre-
quency (dashed lines).

3We note that our numerical code requires the inclusion of a
large number of terms in the near-horizon series equation (22)
very close to extremality, being hard to evaluate the accuracy of
the result for a=M ¼ 0.99999. It would be useful to use a
different numerical procedure to better understand the small
discrepancy of our results with those of [8] in this regime.

JOÃO G. ROSA PHYSICAL REVIEW D 95, 064017 (2017)

064017-6



coordinates, what is the fraction of the incident energy
flux carried by superradiant and nonsuperradiant modes?
Knowing the answer to this question and that different
ðω; l; mÞ modes evolve independently and are amplified/
attenuated by the gain/loss factors computed in the previous
section, we can compute the energy output of the scattering
process. This will allow us to determine what are the
properties of the incident plane wave required for an overall
amplification and energy extraction from the black hole.
We should note at this stage that in realistic problems

he source will not be static and, in particular, we will be
interested in cases where it orbits the black hole
companion. Since orbital frequencies, Ωorb, are typically
much smaller than the source and black hole angular
frequencies, denoted by ωS and ΩH, respectively, we
may use an adiabatic approximation, i.e. treat the source
as fixed in computing the outcome of a scattering process.
Since the boundary conditions for the scattering problem

are posed far away from the black hole, we may use a flat
space approximation to determine the multipolar decom-
position of an incident plane wave. Let us first consider
the simpler electromagnetic case, where the electric and
magnetic fields for a generic plane wave of frequency ω can
be written as

E ¼ 1

2
e−iωtþik·r½ϵ1eð1Þ þ ϵ2eð2Þ� þ c:c:;

B ¼ n ×E; ð28Þ

where n ¼ ðsin θ0 cosϕ0; sin θ0 sinϕ0; cos θ0Þt denotes the
unit 3-vector in the direction of propagation and k ¼ ωn.
We can obtain the polarization vectors by starting with a
plane wave traveling along the z direction and performing
two rotations, first about the x axis by an angle θ0 and then
by an angle ϕ0 − π=2 about the z axis. The unit vectors
along the x and y axes then become

eð1Þ ¼ ðsinϕ0;− cosϕ0; 0Þt;
eð2Þ ¼ ðcos θ0 cosϕ0; cos θ0 sinϕ0;− sin θ0Þt: ð29Þ

Note that the electric and magnetic fields are real quantities,
but the polarization amplitudes ϵ1 and ϵ2 are in general
complex. One can also see in Eq. (28) that because of the
reality condition a plane electromagnetic wave will include
modes with time dependence e−iωt and eiωt, i.e. positive
and negative frequencies according to the definition given
above. As we have seen in the previous section, these
behave differently in a scattering process in the Kerr space-
time, which is why we have separated their contributions in
the form of the electric and magnetic fields. This is also true
for gravitational waves as we discuss below.
As we have seen above, to study the scattering problem it

is convenient to use the NP formalism and compute the NP
scalars associated with the electromagnetic field above. It is
easy to show, in particular, that

ϕ2 ¼ −
2πi
3

½ϵRe−iωtþik·r þ ϵ�Le
iωt−ik·r�

×
Xþ1

m¼−1
−1Y

�
1;mðθ0;ϕ0Þ−1Y1;mðθ;ϕÞ; ð30Þ

where ϵL;R ¼ ðϵ1 � iϵ2Þ=
ffiffiffi
2

p
are the circular polarization

factors and sYlmðθ;ϕÞ are spin-weighted spherical harmon-
ics, in this case for s ¼ −1. A similar expression can be
obtained for ϕ0 with s ¼ þ1 spherical harmonics. We
provide in Appendix A a list of the lowest order spin-s
spherical harmonics for s ¼ �1 and s ¼ �2.
From Eq. (30) it would seem that the wave corresponds

to a superposition of only l ¼ 1 angular modes, but one
must take into account the angular dependence included in
the factor eik·r, which has the well-known decomposition in
terms of scalar spherical harmonics:

eik·r ¼ 4π
X
l;m

ilY�
lmðθ0;ϕ0ÞYlmðθ;ϕÞjlðkrÞ; ð31Þ

where jlðxÞ are spherical Bessel functions of integer order
and k ¼ jkj ¼ ω in natural units. The NP scalar thus
corresponds to a superposition of products of spin-1 and
spin-0 spherical harmonics, and one can use the Clebsch-
Gordan coefficients given in Appendix B to show that, at
large distances, kr ≫ 1, one has

ϕ2 ≃ −2πiϵRe−iωt
X
lm

�
aðinÞ1l

e−ikr

ðkrÞ3 þ aðoutÞ1l
eikr

kr

�

× −1Y�
lmðθ0;ϕ0Þ−1Ylmðθ;ϕÞ

þ ðω ↔ −ω; ϵR ↔ ϵ�LÞ; ð32Þ

where aðinÞ1l ¼ ð−1Þllðlþ 1Þ=8 and aðoutÞ1l ¼ −i=2. Hence, at
large distances from the black hole (compared to the
wavelength of the radiation), the NP scalar is a super-
position of s ¼ −1 harmonics, each with an incoming and
an outgoing component. The amplitude of each multipole is
given by the corresponding harmonic in the direction
of propagation, −1Y�

lmðθ0;ϕ0Þ. One also sees that positive
and negative frequency modes have the same multipolar
decomposition but with a generically different overall
amplitude, proportional to the right and left circular
polarization factors, respectively.
We can then use Eq. (16) to compute the incoming part

of the energy flux in the plane wave for each mode, which
yields the boundary condition for the scattering problem.
Integrating over the solid angle, we thus obtain the
remarkably simple expression:

dEðl;mÞ
in

dt
¼ π2

ω2
jϵR;Lj2j−1Ylmðθ0;ϕ0Þj2: ð33Þ

We can proceed in an analogous fashion for plane
gravitational waves, which in the transverse-traceless gauge
can generically be written in the form:
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hij ¼
1

2
e−iωtþik·r½hþeþij þ h×e×ij� þ c:c:; ð34Þ

where i, j denote spatial components. The “plus” and
“cross” polarization tensors associated with a wave propa-
gating in the direction of the unit vector n given above can
be obtained by rotating the corresponding tensors for a
wave propagating along the z direction, as described above
in the electromagnetic case, being given by

eþij ¼

0
BB@

s2ϕ0
− c2θ0c

2
ϕ0

−ð1þ c2θ0Þcϕ0
sϕ sθ0cθ0cϕ0

−ð1þ c2θ0Þcϕ0
sϕ0

c2ϕ0
− c2θ0s

2
ϕ0

sθ0cθ0sϕ0

sθ0cθ0cϕ0
sθ0cθ0sϕ0

−s2θ0

1
CCA;

e×ij ¼

0
B@

cθ0s2ϕ0
−cθ0c2ϕ0

−sθ0sϕ0

−cθ0c2ϕ0
−cθ0s2ϕ0

sθ0cϕ0

−sθ0sϕ0
sθ0cϕ0

0

1
CA; ð35Þ

where cα ≡ cos α and sα ≡ sin α. These tensors satisfy the
transversality and orthogonality relations eþijnj ¼ e×ijnj ¼
eþije

×
ji ¼ 0.

We may then compute the NP scalar ψ4 for this plane
wave in flat space, yielding

ψ4 ¼
ffiffiffi
2

p
π

5
ω2½hRe−iωtþik·r þ h�Le

iωt−ik·r�

×
Xþ2

m¼−2
−2Y

�
2;mðθ0;ϕ0Þ−2Y2;mðθ;ϕÞ: ð36Þ

This is similar to what we obtained for the electromagnetic
case but with s ¼ −2 spherical harmonics, and with the
circular polarization factors defined as hL;R ¼ ðhþ � ih×Þ=ffiffiffi
2

p
. As above, using the scalar multipolar decomposition

(31) and the Clebsh-Gordan coefficients given in
Appendix B, we obtain at large distances:

ψ4 ≃
ffiffiffi
2

p
πhRω2e−iωt

X
lm

�
aðinÞ2l

e−ikr

ðkrÞ5 þ aðoutÞ2l
eikr

kr

�

× −2Y�
lmðθ0;ϕ0Þ−2Ylmðθ;ϕÞ

þ ðω ↔ −ω; hR ↔ h�LÞ; ð37Þ

where aðinÞ2l ¼ ð−1Þlðl − 1Þlðlþ 1Þðlþ 2Þ=32 and aðoutÞ2l ¼
−i=2. We thus find an analogous result for plane electro-
magnetic and gravitational waves, with the latter being
given by a superposition of s ¼ −2 spherical harmonics
with amplitude modulated by the corresponding harmonic
in the direction of propagation, each multipole with an
incoming and an outgoing radial component. We can then
use Eq. (17) to compute the incident energy carried by each
mode, yielding the simple formula:

dEðl;mÞ
in

dt
¼ π2

4
jhR;Lj2j−2Ylmðθ0;ϕ0Þj2; ð38Þ

with, as above, the right (left) polarization corresponding to
positive (negative) frequency modes. We note that for both
types of radiation the incoming and outgoing fluxes are equal,
but the latter would correspond to an unscattered wave.
We thus see that in both cases one obtains a simple

formula for the incoming energy flux at infinity for each
ðω; l; mÞ multipole in a plane wave. This leads us to two
important conclusions. Firstly, the energy flux for different
multipoles is proportional to the square modulus of the
corresponding spin-weighted spherical harmonic in the
propagation direction, implying in particular that different
m modes will be dominant for different directions. We
illustrate this in Fig. 2, where we plot the relevant functions
for the lowest multipoles, l ¼ 1 and l ¼ 2, in the electro-
magnetic and gravitational cases, respectively.
The behavior illustrated in this figure is generic for

higher multipoles, and we see that positive (negative) m
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FIG. 2. The square modulus of the spin-weighted spherical
harmonics jsYlmðθ0;ϕ0Þj2 for (s ¼ −1, l ¼ 1) and (s ¼ −2,
l ¼ 2) as a function of the angular direction θ0 of an electro-
magnetic and gravitational plane wave, respectively.
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modes are dominant at small (large) angles, whereas close
to the equatorial plane they carry a comparable amount of
the incoming flux, with the m ¼ 0 modes dominating in
this case. Hence, for positive (negative) frequencies, super-
radiant modes will dominate at small (large) angles.
Secondly, the relative abundance of positive and negative

frequency modes in the plane wave may also be different,
since independently of the multipole ðl; mÞ their amplitude
is given by the generically distinct right and left polar-
izations, respectively. This is crucial for an overall ampli-
fication of the wave. Consider, for example, the case of
linearly polarized waves where jϵRj ¼ jϵLj or jhRj ¼ jhLj,
such that both positive and negative frequency modes have
the same amplitude. If e.g. a wave propagates in the θ0 ¼ 0
direction, it will be composed only of m > 0 modes. The
positive frequency modes will then be amplified, while the
negative frequency modes will be attenuated. We have seen
in the previous section that gain/loss factors for super-
radiant modes can be slightly above unity for the lowest
multipoles in the gravitational case, but that for similar
frequencies most nonsuperradiant modes are maximally
attenuated. Hence, one cannot get an overall amplification
of the wave in this case, as shown in [36] for gravitational
waves, and it is not difficult to convince oneself that the
same reasoning applies for other incidence angles θ0.
To obtain an overall amplification of a plane wave, we

thus need chiral waves, in the sense that the right and left
polarization factors must be distinct. Since superradiant
modes have either ω > 0 and m > 0 or ω < 0 and m < 0,
we must furthermore require that the right polarization
(positive frequency) dominates at small incidence angles,
or that the left polarization (negative frequency) dominates
at large angles. It is also clear that for incidence angles close
to θ0 ¼ π=2 (i.e. along the black hole’s equatorial plane) it
will be very hard to get an overall amplification, since
positive and negative m modes have similar amplitudes.
In summary, and given that superradiant amplification

factors are larger for the lowest multipoles, an overall
amplification of plane electromagnetic or gravitational
waves requires the following conditions to be satisfied:
(1) low-frequency waves with ω≲ ΩH;
(2) sufficiently large or small incidence angles θ0;
(3) right/left circular polarizations dominating at small/

large incidence angles.
Regarding the first condition, we note that the horizon’s

angular velocity for a Kerr black hole is given by

ΩH ¼ ac
r2þ þ a2

¼ c3

2GM

�
~a

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~a2

p
�

≃ 102 kHz

�
M⊙
M

��
~a

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~a2

p
�
; ð39Þ

where we have defined the dimensionless spin parameter
~a ¼ Jc=GM2. On the one hand, astrophysical black holes
in the stellar mass range, i.e. withOð10–100Þ solar masses,

have angular velocities of at most a few kHz. On the other
hand, supermassive black holes, which are thought to exist
in the center of most active galaxies, have masses in the
range 106M⊙–109M⊙ and hence angular velocities in the
range 10−4–10−1 Hz. Thus, any astrophysical source of
electromagnetic or gravitational radiation that is amplified
by a black hole companion must emit in these frequency
ranges (for near-extremal black holes) or at lower frequen-
cies. We thus need to look for very low-frequency sources
of electromagnetic and gravitational waves satisfying con-
ditions (2) and (3).
The second condition is essentially a constraint on the

type of orbit followed by the source around its black hole
companion. On the one hand, if the orbital plane is not
sufficiently inclined with respect to the black hole’s
equatorial plane, one cannot expect an overall amplification
of the radiation to occur anywhere in the orbit. For orbits
with a large inclination, on the other hand, amplification
may occur at least in some points in the orbit where the
incidence angle deviates sufficiently from π=2.
The third condition is perhaps the least obvious in an

astrophysical context, since the wave polarization must
be related to the incidence angle in a particular way. It
nevertheless points towards spinning sources, which emit
radiation that is not linearly polarized. We will see in the
next section in analyzing particular sources that the
simplest cases satisfying this condition are spinning mag-
netic/electric dipoles and mass quadrupoles whose spins
are aligned with the black hole’s rotation axis.
We note that these conditions only apply to massless

waves with a nonzero spin. The scattering of putative scalar
waves can be analyzed in a similar fashion, and it is easy
to conclude that, since the scalar spherical harmonics
Yl;�mðθ;ϕÞ have the same θ dependence, modes with
opposite m will always be on equal footing independently
of the incidence angle. Superradiant modes can thus never
dominate over nonsuperradiant modes in the incident flux,
and a plane scalar wave will always be attenuated in the
Kerr space-time, in agreement with [37].

IV. ASTROPHYSICAL SOURCES EXHIBITING
SUPERRADIANT AMPLIFICATION

Having determined the generic conditions under which
plane waves can be amplified by a spinning black hole, we
will now discuss particular examples of astrophysical sys-
tems where superradiance may occur. We will consider two
examples: a pulsar-black hole binary system and a triple
system composed of a compact binary orbiting a central
supermassive blackhole. The first casewas alreadydiscussed
in [28] and is relevant for black holes in the stellarmass range.
Here we will give more details of the analysis performed in
[28] and put them in the context of the general framework
discussed in the previous section. The second case is a new
proposal relevant for supermassive black holes, which
require sources of much lower frequency radiation than that
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emitted by known pulsars. We will see that the basic
principles of the analysis are common to both examples,
paving the way to find other potential examples of astro-
physical sources that may exhibit superradiant behavior
when orbiting a black hole companion.
The generic configuration of the systems that we will

analyze is shown in Fig. 3, where we give the coordinates of
the source (taken as fixed in the adiabatic approximation
discussed above) in the black hole’s frame and its relevant
geometrical properties.
Since we are interested in the case of large orbital

distances, L ≫ λ, rþ, RS, we will take the source to be
in flat space as the leading approximation, consistently with
the analysis of the previous section.

A. Pulsar-black hole binaries

Pulsars are spinning neutron stars that are believed to
result from supernova explosions. They emit electromag-
netic radiation, typically in the radio band, in a narrow
beam along their magnetic axis, which does not typically
coincide with the rotation axis, producing a “lighthouse”
effect such that a pulsar is observed as a periodic source.
These periodic pulses can be timed with high accuracy,
making pulsars one of the most precise clocks known in
the Universe and ideal for astrophysical tests of general
relativity [38]. Neutron stars are typically highly magnet-
ized, as a consequence of magnetic flux conservation
during the collapse of the parent star, and are believed
to primarily lose (rotational) energy through the emission
of magnetic dipole radiation at its rotation frequency.
Millisecond pulsars would thus emit electromagnetic radi-
ation in the right frequency range to undergo superradiant

scattering off a stellar mass black hole companion, although
as we will discuss later on this radiation may interact with
surrounding plasmas, making it difficult for this process to
occur in realistic systems. In fact, we cannot observe the
magnetic dipole radiation emitted by a pulsar from the
Earth, since its frequency is generically below the average
plasma frequency in the atmosphere. The observable radio
emission is actually the result of charge acceleration in the
pulsar’s magnetosphere.
However, neutron stars should also typically exhibit a

nonvanishing mass quadrupole moment, due to small
deviations from axial symmetry arising from a variety of
possible sources that we discuss below. Hence, they also
emit gravitational waves at (twice) its rotation frequency,
again in the right range for superradiant scattering with
stellar mass Kerr black holes. We discuss below the
properties of both the electromagnetic and gravitational
radiation emitted by a pulsar in the frame of the black hole
companion and analyze the prospects for observing the
effects of superradiance in realistic systems.

1. Magnetic dipole radiation

Although a neutron star’s magnetosphere can be rather
complex, its main properties are, to leading order, well
approximated by a magnetic dipole precessing about its
rotational axis, which is known as the oblique-rotator
model [39,40].
Considering that the magnetic dipole moment of the

neutron star μS ¼ mP makes an angle α with its rotation
axis, which we assume to be aligned with the ẑ direction,
and rotates about it with the pulsar’s rotational frequency,
ωS ¼ ωP, we have

mP ¼
�
m0

2
sin αe−iωSt½x̂� iŷ� þ c:c:

�
þm0 cos αẑ; ð40Þ

where m0 denotes the absolute magnitude of the dipole and
the upper (lower) sign corresponds to a pulsar co-(counter-)
rotating with the black hole. Hence, for α ≠ 0, the trans-
verse components of the dipole will oscillate sinusoidally
in time. Since the neutron star’s radius is typically much
smaller than the wavelength of the emitted radiation, i.e.
well within the near zone for electromagnetic radiation
emission, we can write the surface magnetic field as

B ¼ μ0
4π

3ðmP · n0Þn0 −mP

R3
P

; ð41Þ

where RP is the pulsar radius and n0 denotes the unit vector
along the radial direction from the center of the star. The
magnitude of the surface magnetic field thus reaches a
maximum at the poles, where n0 is aligned with the dipole
moment, yielding

FIG. 3. Generic configuration of a source (blue circle) orbiting
a central black hole (black circle at the origin) at position rS ¼
ðL; θS;ϕSÞ in Boyer-Lindquist coordinates. The black hole and
source are spinning with frequencies ΩH and ωS, respectively,
and their rotation axes are aligned with the z direction (we will
also discuss the antialigned configuration). The blue arrow
indicates the relevant source moment (magnetic dipole, mass
quadrupole), which generically makes an angle αS with the spin
axis.
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Bmax ¼
μ0
4π

2m0

R3
P
: ð42Þ

Away from the pulsar, in the far region, the electric and
magnetic fields have the standard dipole form:

B ¼ −
μ0
4π

eikjr−rS j
jr − rSj

ðn × m̈PÞ × n;

E ¼ μ0c
4π

eikjr−rS j
jr − rSj

ðn × m̈PÞ; ð43Þ

where n ¼ ðr − rSÞ=jr − rSj is the distance from the source
and k ¼ ωP=c. Taking the limit where the pulsar is far away
from the black hole, L ≫ jrj, we have

eikjr−rSj

jr − rSj
≃ eikL

L
eik·r; ð44Þ

and the electromagnetic field can then be written in the
plane-wave form given in Eq. (28) with frequency ω ¼ ωS,
direction −r̂S and polarization factors:

ϵ1 ¼
μ0cm0 sin αω2

S

4πL
eikLeiϕS cos θS;

ϵ2 ¼∓ i
μ0cm0 sin αω2

S

4πL
eikLeiϕS ; ð45Þ

such that

jϵRj ¼
μ0cm0 sin αω2

Sffiffiffiffiffiffi
6π

p
L

j−1Y1;�1ðθ0;ϕ0Þj;

jϵLj ¼
μ0cm0 sin αω2

Sffiffiffiffiffiffi
6π

p
L

j−1Y1;∓1ðθ0;ϕ0Þj; ð46Þ

where we note that the wave’s angular direction is θ0 ¼
π − θS and ϕ0 ¼ π þ ϕS, i.e. opposite to the pulsar’s
position vector. We thus see that the magnetic dipole
radiation emitted by the spinning neutron star can have a
chiral polarization in the sense defined above, and that the
polarization depends on the wave direction and the direc-
tion of the pulsar’s spin. That the polarization factors ϵR;L
are proportional to the spin-weighted spherical harmonics

−1Y1;�1ðθ0;ϕ0Þ is a direct consequence of the dipolar
nature of the source. Furthermore, when the pulsar coro-
tates with the black hole, we see that the positive (negative)
frequency modes in the plane wave will be dominant for
small (large) angles, coinciding with the dominance of
positive (negative) m modes as we had seen earlier. Thus,
when the pulsar’s angular position deviates sufficiently
from the equatorial plane, its radiation will be dominantly
amplified. The opposite occurs when the pulsar and black
hole spins are antialigned, and the dominant modes are
never superradiant in this case.

To quantify this effect, we may first use the electromag-
netic field in Eq. (43) at large r to compute the associated
NP scalar ϕ2 and the expression for the outgoing energy
flux in Eq. (16) (including missing constants) to obtain the
total pulsar’s luminosity in the absence of the black hole,
yielding the well-known magnetic dipole formula:

PEM ¼ ω4
pμ0

6πc3
m2

0sin
2α

≃ 2.5 × 109
�
1 ms
TP

�
4
�
Bmaxsα
108T

�
2
�

RP

10 km

�
6

L⊙;

ð47Þ
where we have considered the typical properties of a
milisecond pulsar, with TP denoting the rotational period
and L⊙ the solar luminosity, showing that a pulsar emits a
large amount of energy in magnetic dipole radiation.
Combining the results above with the expression for

the incoming energy flux in each multipole obtained in
Eq. (33), we find

dEðl;mÞ
in

dt
¼ π

λ2

L2
j−1Y1;�1ðθ0;ϕ0Þj2j−1Ylmðθ0;ϕ0Þj2PEM

ð48Þ
for the positive frequency modes and an analogous
expression for the negative frequency modes with
� →∓. This expression yields the boundary condition
for each multipole in our scattering problem. We may then
multiply this by the gain/loss factor in Eq. (18) to obtain the
outgoing flux upon scattering off the rotating black hole
companion, or equivalently the energy flux through the
black hole horizon. The pulsar’s luminosity will then
correspond to the one computed in the absence of the
black hole subtracted of the energy flux through the black
hole’s horizon, which may yield an increase or a decrease
in the pulsar’s luminosity, depending on whether energy is
extracted from the black hole or not, respectively.
In Fig. 4 we show an example of this effect for a near-

extremal black hole with ~a ¼ 0.999 and a pulsar source
with ωS ≃ 0.94ΩH for which one obtains the maximal
amplification for the l ¼ m ¼ 1 multipole, which is the
most amplified mode. We take the pulsar to be at a distance
L ¼ 10λ from the black hole so as to be within the plane-
wave limit. We show the quantity ΔPEM=PEM correspond-
ing to the fractional variation of the pulsar’s luminosity due
to the presence of the black hole, computed using the l ¼ 1,
2, 3 multipoles, with higher multipoles yielding a negli-
gible contribution.
As one can observe in this figure, an overall amplifica-

tion of the pulsar’s luminosity can only occur in the case
where the pulsar and the black hole rotate in the same
direction and when the pulsar is sufficiently far away from
the equatorial plane (at θS ¼ π=2), in particular with
angular deviations from the equator exceeding ∼76.5°.
Even at these angular positions, the amplification effect is
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very small, specifically about one part in 104 in this
example. The smallness of this effect is a combination
of the large orbital distance taken to be within the plane-
wave limit, which decreases the fraction of the pulsar’s
luminosity that effectively undergoes scattering, and the
small value of the maximal gain factor for the superradiant
modes, which dominate close to θS ¼ 0, π. When the pulsar
is away from the poles, and also for all angles in the
counterrotating case, nonsuperradiant modes are dominant
in the incoming flux, such that the pulsar’s luminosity is
attenuated.
For comparison, we also include in Fig. 4 the results

for ~a ¼ 0.9 and ωS ¼ 0.87ΩH, which again correspond to
the frequency that yields the maximum gain factor for the
l ¼ m ¼ 1 mode for this black hole spin parameter. The
results are analogous, but the variation of the pulsar’s
luminosity is a much smaller effect, with a maximum
amplification of only one part in 105. This is a generic
trend, i.e. for smaller black hole spins the effects of
superradiance are less pronounced and the pulsar’s lumi-
nosity will present a smaller angular variation.

2. Gravitational radiation

As mentioned above, neutron stars are expected to exhibit
at least small deviations from a spherical shape, and
particularly from axial symmetry. These could be due to
their solid crust that supports anisotropic stresses, in con-
junction with a possibly liquid interior, magnetic distortions
when there is a misalignment of the magnetic and rotation
axes and other nonaxisymmetric instabilities that have been
discussed in the literature (see e.g. [41] and references
therein). Deviations from axial symmetry will then lead to
the emission of gravitational waves due to the nontrivial
variation of the neutron star’s mass quadrupole moment.

We will follow here the formalism developed in [41] to
describe a pulsar as a spinning ellipsoid whose principal axis
of inertia is misaligned with its rotation axis. The gravita-
tional radiation produced by a source in flat space can be
obtained via the well-known quadrupole formula, giving for
the metric perturbation components in the TT gauge:

hij ¼
2G=c4

jr − rSj
�
Pi

kPj
l −

1

2
PijPkl

�
Q̈jk

�
t −

jr − rSj
c

�
;

ð49Þ
where in Cartesian coordinates Pij ¼ δij − ninj is the trans-
verse projection operator, with ni denoting the unit vector
along the direction of the neutron star and Qij the pulsar’s
mass quadrupole moment. The latter is defined in terms of
the quadrupolar part of the 1=r3 term in the large radius
expansion of the metric coefficient g00 in an asymptotically
Cartesian and mass centered coordinate system. For a non-
relativistic source with a weak gravitational field, this can be
expressed in terms of the trace-free part of the moment of
inertia tensor Iij:

Qij ¼ −Iij þ
1

3
Ikkδij;

Iij ¼
Z

d3xρðxkxkδij − xixjÞ: ð50Þ
For small deformations of the neutron star, this can be
decomposed into a term due to rotation and a term due to
deformation. If the pulsar does not precess, which will be the
case if most of the star is in a liquid phase as modern dense
matter calculations have shown, only the latter term will
contribute to the emission of gravity waves and we may
therefore discard the former. If we assume that, whatever
their origin, deformations of the neutron star induce a
preferred direction and rotate with the pulsar, there will be
a Cartesian coordinate system in the weak field near zone
where the quadrupole moment takes the form:

Qî ĵ ¼

0
B@

−Qẑ ẑ=2 0 0

0 −Qẑ ẑ=2 0

0 0 Qẑ ẑ

1
CA: ð51Þ

To obtain the quadrupole moment in the frame where the
pulsar is rotating we simply have to rotate the tensor above.
If the star is rotating about the z axis (the black hole’s spin
axis), whichmakes a fixed angle βwith the preferred axis eẑ,
this yields

Q̈ij ¼
3

2
Qẑẑω

2
Ssβ

×

0
BB@
2sβ cosð2ωStÞ 2sβ sinð2ωStÞ cβ sinðωStÞ
2sβ sinð2ωStÞ −2sβ cosð2ωStÞ −cβ sinðωStÞ
cβ sinðωStÞ −cβ cosðωStÞ 0

1
CCA;

ð52Þ
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FIG. 4. Fractional variation of the pulsar’s total magnetic dipole
luminosity due to a near-extremal black hole companion with
~a ¼ 0.999, for a pulsar rotational frequency ωS ≃ 0.94ΩH (solid
curves) and for ~a ¼ 0.9, ωS ≃ 0.87ΩH (dashed curves). The blue
(green) curves correspond to a corotating (counterrotating) binary
system, and in all cases the orbital distance was taken to be
L ¼ 10λ.
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where sβ ≡ sin β and cβ ≡ cos β. From this we immediately
conclude that the pulsar will emit gravitational radiation at
frequencies ωS and 2ωS, the former being favored if
the distortion axis is quasialigned with the rotation axis
(β≃ 0, π) and the latter when these axes are perpendicular
(β ¼ π=2). Note that for exact alignment no gravitational
radiation is produced, since the quadrupole moment is static
in this case. It is useful to decompose the quadrupolemoment
in its two frequency modes and write it in the form:

Q̈ij ¼
3

2
Qẑ ẑω

2
Ssβ½−cβe−iωStTð1Þ

ij þ 2sβe−2iωStTð2Þ
ij � þ c:c:

ð53Þ

where

Tð1Þ
ij ¼

0
B@

0 0 ∓ i

0 0 1

∓ i 1 0

1
CA; Tð2Þ

ij ¼

0
B@

1 �i 0

�i −1 0

0 0 0

1
CA:

ð54Þ

Note that here we have considered both an alignment and an
antialignment between the pulsar and black hole’s spins,
corresponding to the upper and lower signs in the above
expressions, respectively.
By replacing this into the quadrupole formula (49), we

may then compute the NP scalar ψ4 via Eq. (5) associated
with the gravitational radiation emitted by the spinning
neutron star. When the pulsar is far away from the black
hole, L ≫ jrj, we obtain the plane-wave form in Eq. (36)
with circular polarization factors:

jhð1ÞR j ¼ 4
ffiffiffi
π

p
GϵIω2

Ssβcβ
5c4L

j−2Y2;�1ðθ0;ϕ0Þj;

jhð1ÞL j ¼ 4
ffiffiffi
π

p
GϵIω2

Ssβcβ
5c4L

j−2Y2;∓1ðθ0;ϕ0Þj;

jhð2ÞR j ¼ 8
ffiffiffi
π

p
GϵIω2

Ss
2
β

5c4L
j−2Y2;�2ðθ0;ϕ0Þj;

jhð2ÞL j ¼ 8
ffiffiffi
π

p
GϵIω2

Ss
2
β

5c4L
j−2Y2;∓2ðθ0;ϕ0Þj; ð55Þ

where we have defined the pulsar’s ellipticity as

ϵ≡ −
3

2

Qẑ ẑ

I
; ð56Þ

with I denoting its moment of inertia with respect to the
rotation axis. Hence, as for the magnetic dipole emission,
we find that the polarization of the gravitational waves
emitted by the neutron star depends on its angular position
and that they can be chirally polarized both for the single
and double frequency emission. The circular polarization
components are, in particular, given by s ¼ −2 spherical
harmonics with l ¼ 2, which is a direct consequence of the

quadrupolar nature of the source. We note also that the
azimuthal number characterizing these spin-weighted har-
monics is �1 (�2) for emission at (twice) the pulsar’s
rotation frequency.
If instead of taking the limit of large orbital radius we

take r → þ∞ in computing ψ4, we can use Eq. (17) to
determine the total luminosity of the pulsar in gravity
waves, yielding for the two frequency channels:

Pð1Þ
GW ¼ c2βPGW; Pð2Þ

GW ¼ 64s2βPGW; ð57Þ
where

PGW ¼ 2

5

Gω6
SI

2ϵ2

c5
s2β

≃ 2 × 109s2β

�
1 ms
TP

�
6
�

MP

1.4 M⊙

�
2
�

RP

10 km

�
4

×

�
ϵ

10−5

�
2

L⊙; ð58Þ

where MP is the pulsar’s mass and we have chosen typical
values for neutron star parameters. Comparing with the
result given above for the power emitted in magnetic dipole
radiation (for comparable inclination factors), we see that
gravitational waves can yield a significant contribution to
the pulsar’s spin-down rate for ellipticities ϵ≳ 10−6, which
are already being probed by Advanced LIGO [42,43].
Conversely, the observed spin-down rates for the known
pulsars can then be used to place upper limits on the
ellipticity, which for typical milisecond pulsars will be of
this order.
Using the above total luminosities in each channel and

Eq. (38), we may then write the incident flux in each
gravitational wave multipole in the simple form:

dEðl;mÞ
in

dt
¼ π

λ2

L2
j−2Y2;�ð1;2Þðθ0;ϕ0Þj2j−2Ylmðθ0;ϕ0Þj2Pð1;2Þ

GW

ð59Þ
for the positive frequency modes, while for the negative
frequency modes we obtain an analogous result with
� →∓. This is completely analogous to the electromag-
netic case, with the difference that in the gravitational case
the incoming energy is modulated by s ¼ −2 and l ¼ 2
harmonics. This justifies the generic expression for the
incident flux in each pulsar mode first given in [28]:

dEðl;mÞ
in

dt
¼ π

λ2

L2
j−sYs;�mP

ðθ0;ϕ0Þj2j−sYlmðθ0;ϕ0Þj2Ps

ð60Þ
with s ¼ 1 for the electromagnetic and s ¼ 2 for the
gravitational wave emission, with mP ¼ ω=ωS for the
emission frequency ω and Ps the total pulsar luminosity
in the corresponding channel.
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We may then proceed as for the electromagnetic case to
determine the output of the scattering process for gravita-
tional waves, and in particular the relative changes in the
pulsar luminosity for different angles θ0. Let us focus on
the double frequency mode, which dominates for β ∼ π=2,
i.e. when the pulsar’s spin axis and principal axis of inertia
are nearly perpendicular.
In Fig. 5 we show an example with a nearly extremal

black hole, ~a ¼ 0.999 and a pulsar with angular velocity
ωS ≃ 0.98ΩH, such that the l ¼ m ¼ 2 superradiant mode
is maximally amplified. As in the electromagnetic case, we
take L ¼ 10λ to ensure the plane wave approximation’s
validity. We show the fractional variation of the pulsar’s
luminosity ΔPGW=PGW for this case and also for an
example with a smaller black hole spin, ~a ¼ 0.9, and
ωS ≃ 0.93ΩH, again maximizing the l ¼ m ¼ 2 mode
amplification. We note that an accurate computation of
this quantity requires considering the multipoles of
l ¼ 2 − 6, while the contribution of higher multipoles
can be safely neglected.4

As for the pulsar’s magnetic dipole radiation, the pulsar’s
gravitational luminosity depends on the incidence angle,
and hence on the pulsar’s angular position. The effect is
very similar in both the electromagnetic and gravitational
cases, but with the latter exhibiting significantly larger
variations, namely as a consequence of the larger ampli-
fication factors of the superradiant modes, which dominate

in the corotating case when the pulsar is located close to
the black hole’s spin axis. The minimal angular deviation
from the equatorial plane required for an overall amplifi-
cation of the plane gravitational waves is of 65.6° for the
near-extremal example, increasing to 75° for ~a ¼ 0.9.
Superradiant modes never dominate in a counterrotating
system (antialigned pulsar and black hole spins) and the
angular modulation of the pulsar’s luminosity is naturally
more pronounced for larger black hole spins, potentially
reaching percent level differences for a near-extremal black
hole and about an order of magnitude less for ~a ¼ 0.9.
We note that in both the electromagnetic and gravita-

tional cases one may achieve the maximal amplification
effects for milisecond pulsars orbiting stellar mass black
holes. For example, with the shortest pulsar period
observed of 1.4 ms, we have ωS ≃ 4.5 kHz, such that
ωS ∼ΩH for a nearly extremal Kerr black hole of about
23 M⊙ according to Eq. (39), which is close to the mass
range inferred from the black hole merger events recently
observed with Advanced LIGO [29]. We thus conclude that
potentially observable signals may occur in realistic sys-
tems, even though a black hole neutron star binary has yet
to be detected. We note that finding such systems is one
of the particular science goals proposed for the Square
Kilometer Array observatory [44].

B. Compact binary–supermassive black
hole systems

Binary systems are the canonical textbook example of
gravitational wave sources. The radiation is emitted at a
frequency of (twice) the orbital frequency of the system,
and hence generically at much lower frequencies than the
pulsar radiation considered above. On the one hand, this
means that this radiation may be within the superradiant
regime for stellar mass black holes, but with ωS ≪ ΩH and
hence very small amplification factors as we have seen
earlier. On the other hand, for a binary system which is itself
orbiting a supermassive black hole (SMBH), we may be
able to attain ωS ∼ΩH. For example, the SMBH that is
believed to reside at the center of our Galaxy, Sagittarius A⋆,
has an inferred mass of 4.6 × 106 M⊙, such that ΩH <
0.02 Hz depending on its still poorly constrained spin. Other
SMBH candidates may attain even larger masses, with for
instance theone in theM87galaxyhaving an inferredmass of
6.6 × 109 M⊙, which gives ΩH ≲ 10−5 Hz (see e.g. [45]).
This means that binary systems with periods ranging from a
few minutes to a few hours may emit gravitational radiation
that may be maximally amplified by a supermassive black
hole. Such small periods require binary separations of the
order of 10−3–10−1 AU, thus requiring compact binary
systems involving e.g. neutron stars and stellar mass black
holes. For example, the well-known Hulse-Taylor double
neutron star system has a period of 7.75 hours [46].
It is very easy to apply the formalism developed in the

previous section to see that the gravitational radiation
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FIG. 5. Fractional variation of the pulsar’s total gravitational
wave luminosity due to a near-extremal black hole companion
with ~a ¼ 0.999, for a pulsar rotational frequency ωS ≃ 0.98ΩH
(solid curves) and for ~a ¼ 0.9, ωS ≃ 0.93ΩH (dashed curves).
The blue (green) curves correspond to a corotating (counter-
rotating) binary system, and in all cases the orbital distance was
taken to be L ¼ 10λ.

4We had neglected the contributions of the l > 3 modes in
[28], but this was due to an accuracy issue in the numerical
calculations that has now been overcome. The l ¼ 4 − 6
modes do not, however, change the magnitude of the effect
significantly.
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emitted by a binary system can be amplified by a SMBH
companion if the binary and SMBH rotation axes are
aligned. Let us consider the simplest (and canonical) case
of a system of two stars with equal mass M in a circular
orbit of radius R and angular frequency ωS (in the slow
inspiral phase, well before coalescence). Let us also assume
for simplicity that the orbital plane coincides with the
SMBH’s equatorial plane. In this case, we have for the mass
density in a Cartesian frame with origin at the binary center
of mass:

ρ ¼ MδðzÞ½δðx − R cosðωStÞÞδðy − R sinðωStÞÞ
þ δðxþ R cosðωStÞÞδðyþ R sinðωStÞÞ�: ð61Þ

Plugging this into Eq. (50), it is easy to obtain

Q̈ij ¼ −4MR2ω2
S

0
BB@

2 cosð2ωStÞ sinð2ωStÞ 0

sinð2ωStÞ − cosð2ωStÞ 0

0 0 0

1
CCA;

¼ −2MR2ω2
Se

−2iωStTð2Þ
ij þ c:c:; ð62Þ

where Tð2Þ
ij was defined in Eq. (54). Hence, the quadrupole

moment for the compact binary has the same tensor
structure as the double frequency mode of the rotating
ellipsoid model used for the pulsar example, so that apart
from the overall constants one obtains essentially the same
result for the circular polarization of the emitted gravity
waves, namely that

jhð2ÞR j ¼ 8
ffiffiffi
π

p
GMR2ω2

S

5c4L
j−2Y2;�2ðθ0;ϕ0Þj;

jhð2ÞL j ¼ 8
ffiffiffi
π

p
GMR2ω2

S

5c4L
j−2Y2;∓2ðθ0;ϕ0Þj: ð63Þ

If we consider an inclined orbit for the compact binary we
also obtain a single frequency mode with the same tensor
structure as in the pulsar case. Hence, the neutron star and
the compact binary lead to essentially the same results apart
from the overall amplitude of the waves and the different
frequency range, but one will obtain exactly the same
variation of the compact binary luminosity as its angular
position changes with respect to the SMBH’s spin axis. In
particular, when the binary corotates with the supermassive
black hole, superradiant modes will be dominant when the
binary is parametrically close to the SMBH’s axis, as
shown in Fig. 5.
There is already a significant number of SMBHcandidates

in AGN observations with very large spin parameters, which
would of course be ideal for superradiant amplification of the
gravitational radiation emitted by a binary companion [47].
This includes at least three candidates with spins ≥ 0.98
and masses in the 5 × 106 M⊙ − 107 M⊙ range. Large

amplification factors (potentially just below the percent as
shown for the analogous pulsar-BH system) could then be
obtained if a compact binary with angular frequency ωS ≃
ΩH ∼ 10−2 Hz is orbiting such a SMBH at sufficiently small
radius and in a sufficiently inclined orbit with respect to the
SMBH equatorial plane. Interestingly, such gravitational
wave frequencies are within the range of the eLISA mission
(see e.g. [48]), so that one may hope that in the near future
one could be able to detect the effects of a nearby spinning
SMBH on the gravitational radiation emitted by an inspiral-
ing binary.

C. Orbital modulation of the source luminosity

We have seen above two examples of sources that emit
radiation which, in the plane-wave limit, can be amplified
by a nearby spinning black hole, depending on the source’s
angular position in the black hole’s reference frame.
Amplification requires the source to rotate in the same
direction as the black hole and to be located away from
the equatorial plane, either towards thenorth or the south pole
of the black hole. Orbits in the Kerr space-time can have a
complex evolution, with variations both in the radial and
angular Boyer-Lindquist coordinates (see e.g. [49]). While
we plan to perform a more thorough study of superradiance
effects for different orbits of the source, herewewill focus on
the simplest case of Keplerian orbits, which are a good
approximation to realistic orbits if the source is sufficiently
far away from the black hole.We note that this is, in any case,
required by the plane-wave approximation considered.
Let us first consider circular orbits, such that jrSj ¼ L is

constant. Orbits in the equatorial plane have θ0 ¼ π=2, for
which the source’s radiation is mostly absorbed by the
black hole, as we have seen above. Since this angle is
constant for these orbits (in the Keplerian limit), the source
luminosity will be constant and no interesting effects will
arise in this case. We thus need orbits with a significant
inclination with respect to the black hole’s equatorial plane,
such that jθ0 − π=2j exceeds the amplification thresholds
computed above.
To obtain the source’s angular position as a function of

time for a circular orbit, we may rotate an equatorial orbit
ðx; y; zÞ ¼ ðL cosð2πt=TÞ; L sinð2πt=TÞ; 0Þ by e.g. an
angle γ about the x axis to obtain:

x ¼ L cosð2πt=TÞ;
y ¼ L cos γ sinð2πt=TÞ;
z ¼ L sin γ sinð2πt=TÞ: ð64Þ

This gives for the source’s angular position:

θ0ðtÞ ¼ π − arccosðz=LÞ
¼ π − arccos ðsin γ sinð2πt=TÞÞ; ð65Þ
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which we may substitute in Eq. (60) to compute the
incident energy in each multipole as a function of time
and, multiplying by the corresponding gain/loss factors,
obtain the time variation of the source’s luminosity.
In Fig. 6 we show the orbital modulation of the

gravitational luminosity of a source (either a pulsar or a
compact binary) with ωS ≃ 0.98ΩH orbiting a near-
extremal black hole, ~a ¼ 0.999, in a circular orbit of radius
L ¼ 10λ and different inclination angles. The top (bottom)
plot shows the results for the case where the source and
black hole spins are (anti-)aligned.
As one can see in this figure, in the corotating case orbits

with a small inclination yield only a small variation of the
luminosity, since the polar angle θ0 exhibits smaller orbital
variations and never reaches large enough or small enough
values for superradiant modes to dominate. One observes
only a simple modulation of the pulsar’s luminosity at the
orbital frequency for the smaller inclination angles. As one
increases the inclination, a secondary modulation starts
appearing, with peaks at the largest and smallest angular

values, where superradiant modes are dominant. For
inclinations exceeding 65.6° the luminosity is effectively
amplified at these peaks, with the largest effect observed for
the polar orbit where the source passes right above and
below the north and south poles, respectively. A distinctive
signature of superradiance is thus a double luminosity
modulation for large orbital inclinations in a corotating
system.
When the source and black hole spins are antialigned

one always observes a single modulation of the luminosity,
and an overall amplification is never attained, since super-
radiant modes never dominate in this configuration.
Eccentric orbits can also yield distinctive modulation

patterns. For an orbit of eccentricity e and semimajor axis
L, we have jrSj ¼ L=ð1þ e cosϕÞ, where ϕ denotes the
azimuthal angle in the orbital plane. For an inclined orbit
we then obtain

x ¼ L
1þ e cosϕ

cosϕ;

y ¼ L
1þ e cosϕ

cos γ sinϕ;

z ¼ L
1þ e cosϕ

sin γ sinϕ; ð66Þ

such that

θ0ðϕÞ ¼ π − arccosðz=jrSjÞ
¼ π − arccos ðsin γ sinϕÞ: ð67Þ

In Fig. 7 we compare the modulation of the gravitational
luminosity of the source considered in Fig. 6 for a circular
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FIG. 6. Orbital modulation of the source’s total gravitational
wave luminosity due to a near-extremal black hole companion
with ~a ¼ 0.999, for ωS ≃ 0.98ΩH and circular orbits of radius
L ¼ 10λ and different inclination γ. The top (bottom) plot
corresponds to the case where the source and black hole spins
are aligned (antialigned). The diagrams at the bottom of the
figures illustrate the source’s orbital position in the case of a polar
orbit (γ ¼ π=2).
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FIG. 7. Orbital modulation of the source’s total gravitational
wave luminosity due to a near-extremal black hole companion
with ~a ¼ 0.999, for ωS ≃ 0.98ΩH for a polar orbit with eccen-
tricity e ¼ 0.5 and periastron at jrSj ¼ 10λ coinciding with the
passage below the black hole’s south pole (solid curve). For
comparison we include the results for a circular orbit of radius
L ¼ 10λ (dashed curve). The diagrams at the bottom of the figure
illustrate the source’s orbital position.
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and an eccentric polar orbit in the corotating case. We
consider a configuration where the periastron occurs when
the source is above the black hole north pole. Naturally, the
variation of the luminosity is larger when the source is
closer to the black hole, and for the configuration chosen
this enhances one of the peaks corresponding to super-
radiant amplification, attenuating the effect in the remain-
der of the orbit. If, however, the periastron does not
coincide with the source’s passage close to one of the
poles, the effects of superradiance will be attenuated.
Nevertheless, if a configuration such as the one shown
in Fig. 7 can be found in nature, one may hope to more
easily identify the effects of superradiance.
In the examples shown above, integrating the luminosity

variation over an orbital period yields a negative result,
implying that overall the wave deposits more energy and
spin into the black hole than it extracts from the latter. While
we cannot discard the possibility that in more complicated
orbits there is a net energy and spin extraction, it is unlikely
that this results in any measurable effect. Since only a small
fraction of the source’s energy flux effectively interacts with
the black hole, the time required for extracting a significant
amount of mass and spin from the latter will necessarily
exceed the source’s lifetime. In particular, a pulsar will lose
its rotational energy much faster than it spins down a black
hole companion and a compact binary will alsomerge before
having any significant effect on a supermassive black hole.
We thus expect the modulation of the source’s luminosity
to be the leading observational effect of the presence of a
spinning Kerr black hole.
Another issue to note is the fact that the orbital motion of

the quadrupolar source, either the pulsar or the compact
binary in the examples studied above, will itself lead to the
generation of gravitational waves at (twice) the orbital
frequency. The adiabatic approximation that we have used
is justified for orbital frequencies Ωorb ≪ ωS, but this only
means that we may take the source as approximately fixed
in analyzing the gravity waves produced by the intrinsic
rotation of the source. It is thus important to estimate the
effect of the orbital component. Let us consider, for
example, the case of a pulsar-black hole binary. In this
case, the typical strain amplitude of the gravity waves
produced by the orbital motion in the inspiral regime can be
written as

horb0 ¼ 4G=c4

r
GMPMBH

L
; ð68Þ

for a circular orbit of radius L and angular frequency
Ωorb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðMBH þMPÞ=L3

p
. Now, the typical strain

amplitude corresponding to the gravity waves emitted by
the pulsar due to rotation at ω ¼ 2ωS is

hspin0 ¼ 4G=c4
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S; ð69Þ

so that we obtain
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Hence, the amplitude of the gravitational waves due to the
orbital motion may largely exceed the rotational component
for small ellipticities. This could pose a challenge for the
observation of the rotational component and its modulation
due to scattering off the black hole companion, which
encodes the effects of superradiance. However, we note that,
for the parameters chosen above, Ωorb∼ few Hz, while ωS∼
fewkHz, so that there is a clear frequency separation thatmay
allow one to isolate the smaller rotation component in a
Fourier decomposition using filtering techniques. The fact
that the amplitude of the latter should be modulated at the
orbital frequency, as our analysis of the total luminosity
suggests, does not constitute a problem, since in Fourier
space the signal modulation only introduces spectral com-
ponents at frequencies 2ðωS � ΩorbÞ ≫ Ωorb, so that e.g.
applying a high-pass filter should eliminate the orbital
componentwhile preserving themodulated rotational signal.

V. CONCLUSION

In this work we have shown that there are realistic
astrophysical systems where superradiant amplification of
electromagnetic and gravitational radiation by a spinning
black hole may occur, with potential astrophysical signa-
tures. We started by analyzing the generic conditions under
which plane electromagnetic or gravitational waves can be
amplified by a Kerr black hole, corresponding to the limit
where the radiation source is far away from the latter. We
concluded that plane waves must satisfy three necessary
conditions: (i) have a sufficiently low frequency ω≲ΩH,
(ii) the incidence angle must be parametrically close to
the black hole’s rotation axis and (iii) the right/left polar-
izations of the wave must be dominant at small/large
incidence angles.
We have then considered potential astrophysical sources

of low-frequency radiation, namely a spinning neutron star
or pulsar, which emits both magnetic dipole and quad-
rupolar gravitational radiation, and a compact binary
system, where only the latter is emitted. We have shown
that in both cases the third condition for amplification can
be satisfied when the source corotates with the black hole.
Superradiance can, in these cases, lead to a characteristic
double modulation of the source’s total luminosity as it
orbits the black hole, which is more pronounced for larger
black hole spins and orbital inclinations, and the closer
the source’s angular frequency is to the horizon’s angular
velocity (which maximizes the amplification factors of the
leading superradiant modes). Our results for gravitational
radiation are completely analogous for the pulsar and the
compact binary, and in fact the same luminosity modulation
should occur for any spinning quadrupolar source, and in
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the electromagnetic case our results should apply to any
spinning dipole, whether magnetic or electric in nature.
Since we have considered the plane-wave limit of the

incident radiation, also performing the corresponding mode
decomposition in the flat space limit, our results are limited
to orbital distances that are large compared to the wave-
length of the radiation and the horizon radius. Naturally, the
effects of superradiance are larger the closer the source is to
the black hole, which motivates a further study of this
process beyond the plane-wave approximation. In the
corotating case, at least, we may expect that the relative
fraction of superradiant modes in the incident wave
becomes larger as the source approaches the black hole,
thus enhancing the effects of superradiance, although this
requires a more detailed analysis that we hope to perform in
the future.
The pulsar-binary black hole system is quite appealing

from the observational perspective, since one could hope
for observational effects of superradiance in both the
electromagnetic and the gravitational channels. In fact,
amplification factors are largest in both channels when the
pulsar’s angular frequency ωS ≃ΩH (noting that gravita-
tional radiation is emitted also at frequency 2ωS ∼ 2ΩH).
However, the low-frequency magnetic dipole radiation
emitted by a spinning neutron star poses considerable
challenges. Firstly, the pulsar’s magnetosphere is thought
to be filled with an ionized plasma, since the strong electric
field associated with the magnetic dipole radiation pulls
charged particles from the neutron star’s surface, thus
creating a plasma in its vicinity. These particles are then
accelerated along the magnetic field lines (the “pulsar
wind”) and produce the beamed radio emission that we
observe from the Earth.
It is widely believed that most of the energy of the

magnetic dipole radiation, which cannot propagate below
the plasma frequency, is efficiently converted into accel-
erating these particles and generating higher frequency
radiation, in which case it may not even reach the black
hole and scatter in the way we have analyzed. There are
nevertheless examples of pulsars where this plasma may be
absent at least for limited periods. For example, the pulsar
B1931+24 is only radio active for periods of 5–10 days,
remaining quiet for periods of 25–35 days. Measurements
of the spin-down rate in these two phases are consistent
with a main energy loss mechanism through pulsar wind in
the active phase and through magnetic dipole radiation in
the quiet phase [50]. It would then be possible for the
magnetic dipole radiation to scatter of a black hole
companion in these quiet phases.
A further challenge for electromagnetic signals is that

the scattered waves will necessarily interact with different
ionized plasmas as they travel towards the Earth. The
Earth’s atmosphere is itself opaque to electromagnetic
radiation with frequencies below ∼10 MHz and the
Moon may have an ionosphere with plasma frequency in

the few hundred kHz range. This would imply that to detect
radio waves with only a few kHz one would need to go into
the outer Solar System, with the Voyager spacecrafts
having detected radiation down to 2–3 kHz. The interstellar
and intergalactic medium are also filled with ionized
plasma, with plasma frequencies of a few kHz and a few
Hz (at small redshifts), respectively. Although this could
allow for the propagation of magnetic dipole radiation from
a milisecond pulsar, low-frequency waves are significantly
affected by free-free absorption and other opacity sources
and are mostly converted into heat [51].
This suggests that low-frequency electromagnetic radi-

ation may only be observed indirectly through the way it
heats up intervening gas clouds along the line of sight. In
this case, the luminosity modulation due to the pulsar’s
orbit around the spinning black hole may potentially be
indirectly inferred through the consequent modulation of
the temperature of a known gas cloud. The known
periodicity of this effect could in principle make it easier
to distinguish it from other astrophysical sources but this is,
of course, a challenging task.
Gravitational waves yield a much more promising

channel for observing the effects of black hole super-
radiance. Not only are amplification factors larger than in
the electromagnetic case but they also hardly interact with
astrophysical plasmas or other sources that could poten-
tially mask the effects of superradiance. Of course this
makes them more difficult to detect, but the recent results
of the LIGO and VIRGO Collaborations have shown that
gravitational wave astronomy is a reality [29], and better
sensitivities will be reached in the near future.
The analysis performed in this work is not yet fully

realistic in the sense that spinning neutron stars are more
complex objects than precessing mass quadrupoles (or
magnetic dipoles as discussed above). The emission of
gravity waves by pulsars can have a variety of sources other
than rotation (see e.g. [52,53]) and one must investigate
whether these other components can also undergo super-
radiant scattering or if the component due to rotation can
be observationally disentangled from other low-frequency
modes. Similarly, the waves emitted by an inspiraling
compact binary also change in frequency and shape as
the system approaches coalescence, although within the
range of validity of the plane-wave approximation our
results should yield a good approximation.
Furthermore, we have focused on the effects of super-

radiance on the total luminosity of a source orbiting a Kerr
black hole, and observationally one can only measure the
luminosity along a particular line of sight. In addition,
in the case of gravitational waves, current detector tech-
nology is sensitive to strain rather than luminosity. Since
the power in gravitational waves is quadratic in the strain
amplitude, one may expect a larger relative modulation of
the latter and potentially signals that are easier to observe,
but this requires a careful analysis that, along with the
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above-mentioned line-of-sight effects, we plan to perform
in the future. We will also extend our analysis to more
general spin and orbital configurations.
Nevertheless, the results in this work point towards the

existence of realistic systems where superradiance may
induce nontrivial effects in the radiation emitted by realistic
sources orbiting both stellar mass and supermassive black
holes, with a magnitude potentially large enough to be
observed in a not too distant future. Of course one must
hope that nature provides us with systems with the right
properties—a highly spinning black hole orbited by a
corotating pulsar/compact binary with an angular fre-
quency ω ∼ΩH, in a sufficiently inclined orbit. There is
considerable evidence for the existence of these individual
components, and in principle they may exist in binary
systems as well. Hence, observing black hole superradiance
may become a reality in the future and certainly constitute a
very important test of general relativity and of the nature of
compact astrophysical bodies.
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APPENDIX A: SPIN-WEIGHTED
SPHERICAL HARMONICS

Spin-s spherical harmonics sYlmðθ;ϕÞ, l ≥ jsj, can be
obtained from the spherical harmonic functions Ylmðθ;ϕÞ≡
0Ylmðθ;ϕÞ by applying the spin raising and lowering
differential operators [54]:

ðsYlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − sðsþ 1Þ

p
sþ1Ylm;

ð̄sYlm ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − sðs − 1Þ

p
s−1Ylm; ðA1Þ

where

ðη ¼ −
�
∂θ þ

i
sin θ

∂ϕ − s cot θ

�
η;

ð̄η ¼ −
�
∂θ −

i
sin θ

∂ϕ þ s cot θ

�
η; ðA2Þ

with η denoting an arbitrary spin-weight s function, and the
normalization was chosen such thatZ

2π

0

dϕ
Z

π

0

dθ sin θsY
�
lmsY

�
l0m0 ¼ δll0δmm0 : ðA3Þ

The spin-s spherical harmonics satisfy sY
�
lm ¼

ð−1Þmþs
−sYlm. We list below the lowest spherical harmon-

ics with spin weight s ¼ −1:

−1Y10 ¼ −
ffiffiffiffiffiffi
3

8π

r
sin θ;

−1Y1�1 ¼ −
ffiffiffiffiffiffiffiffi
3

16π

r
ðcos θ � 1Þe�iϕ;

−1Y20 ¼ −
ffiffiffiffiffiffi
15

8π

r
sin θ cos θ;

−1Y2�1 ¼ −
ffiffiffiffiffiffiffiffi
5

16π

r
ðcos 2θ � cos θÞe�iϕ;

−1Y2�2 ¼
ffiffiffiffiffiffiffiffi
5

16π

r
sin θð1� cos θÞe�2iϕ; ðA4Þ

and s ¼ −2:

−2Y20 ¼
ffiffiffiffiffiffiffiffi
15

32π

r
sin2θ;

−2Y2�1 ¼
ffiffiffiffiffiffiffiffi
5

16π

r
sin θðcos θ � 1Þe�iϕ;

−2Y2�2 ¼ −
ffiffiffiffiffiffiffiffi
5

64π

r
ð1� cos θÞ2e�2iϕ;

−2Y30 ¼
ffiffiffiffiffiffiffiffi
105

32π

r
sin2θ cos θ;

−2Y3�1 ¼
ffiffiffiffiffiffiffiffiffiffi
35

128π

r
sin θðcos θ � 1Þð3 cos θ ∓ 1Þe�iϕ;

−2Y3�2 ¼ −
ffiffiffiffiffiffiffiffiffiffi
21

128π

r
sin θðcos θ � 1Þ2e�3iϕ: ðA5Þ

APPENDIX B: MULTIPOLAR
DE COMPOSITION

As shown above, the NP scalars for electromagnetic and
gravitational plane waves ϕ2 (s ¼ 1) and ψ4 (s ¼ 2) in flat
space can be written in the generic form:

ϒs ¼ AsðγRe−iωtþik·r þ γLeiωt−ik·rÞ
×
X
ms

−sY�
sms

ðk̂Þ−sYsms
ðr̂Þ; ðB1Þ

with k̂ ¼ ðθ0;ϕ0Þ and r̂ ¼ ðθ;ϕÞ. We may then use the
scalar plane-wave multipolar decomposition in Eq. (31) to
obtain, for the positive frequency part:

ϒþ
s ¼ 4πAsγRe−iωt

X
l;ml;ms

iljlðkrÞY�
lml

ðk̂Þ−sY�
sms

ðk̂Þ

× Ylml
ðr̂Þ−sYsms

ðr̂Þ: ðB2Þ
Products of spin-weighted spherical harmonics admit a
Clebsch-Gordan decomposition of the form:

s1Yl1m1s2Yl2m2
¼

X
jm

AjmsYjm; ðB3Þ

SUPERRADIANCE IN THE SKY PHYSICAL REVIEW D 95, 064017 (2017)

064017-19



with jl1 − l2j ≤ j ≤ l1 þ l2 and Clebsch-Gordan coeffi-
cients:

Ajm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þ

4πð2jþ 1Þ

s
hl1; s1; l2; s2jj; si

× hl1; m1; l2; m2jj; miδm;m1þm2
δs;s1þs2 : ðB4Þ

We may then use this to write the NP scalars as

ϒþ
s ¼ ð2sþ 1ÞAsγRe−iωt

X
l;ml;ms

X
j;m;j0;m0

ilð2lþ 1ÞjlðkrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1ð2j0 þ 1Þp

× hl; 0; s;−sjj;−sihl; ml; s;msjj; mi
× hl; 0; s;−sjj0;−si�hl; ml; s;msjj0; m0i�
× −sY

�
j0m0 ðk̂Þ−sYjmðr̂Þ: ðB5Þ

The sum over ml and ms can be performed using the
Clebsch-Gordan identity:

X
m1;m2

hl1; m1; l2; m2jj; mihj0; m0jl1; m1; l2; m2i ¼ δjj0δmm0

ðB6Þ
which then gives

ϒþ
s ¼ ð2sþ 1ÞAsγRe−iωt

X
l;j;m

iljlðkrÞ
2lþ 1

2jþ 1

× jhl; 0; s;−sjj;−sij2−sY�
jmðk̂Þ−sYjmðr̂Þ: ðB7Þ

To obtain the large distance form of the NP scalars in
Eqs. (32) and (37) we can use that

jhl; 0; s;−sjj;−sij2 ¼ ð2jþ 1Þð2sÞ!
ðlþ s − jÞ!ðlþ sþ jþ 1Þ!

×
ðjþ sÞ!ðjþ l − sÞ!
ðj − sÞ!ðj − lþ sÞ! ðB8Þ

to perform the sum over l of the spherical Bessel functions
in the limit kr≫1, which can be easily done e.g. using
Mathematica. An analogous procedure can then be used
to obtain the asymptotic expansion for the negative
frequency modes.
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