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Quintessential dark energy with pressure p and density p is related by equation of state p = wp with the
state parameter —1 < w < —1/3. The cosmological dark energy influence on black hole spacetime is
interesting and important. In this paper, we study the Kerr-Newman-AdS solutions of the Einstein-Maxwell
equation in quintessence field around a black hole by Newman-Janis algorithm and complex computations.
From the horizon structure equation, we obtain the expression between quintessence parameter a and
cosmological constant A if the black hole exists two cosmological horizon r, and r, when @ = —2/3, the
result is different from rotational black hole in quintessence matter situation. Through analysis we find that
the black hole charge cannot change the value of @. But the black hole spin and cosmological constant
are opposite. The black hole spin and cosmological constant make the maximum value of a small. The
existence of four horizon leads seven types of extremal black holes to constrain the parameter a. With the
state parameter @ ranging from —1 to —1/3, the maximum value of « changes from A to 1. When w — —1,
the quintessential dark energy likes cosmological constant. The singularity of the black holes is the same
with that of Kerr black hole. We also discuss the rotation velocity of the black holes on the equatorial plane
for w = —=2/3, —1/2 and —1/3. For small value of a, the rotation velocity on the equatorial plane is

asymptotically flat and it can explain the rotation curves in spiral galaxies.
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I. INTRODUCTION

In recent years, cosmological observations found that the
universe is accelerating expansion, demanding the exist-
ence of dark energy [1-3]. The recent measurements of
cosmic microwave background (CMB) anisotropy by
PLANCK also confirmed this results [4]. Cosmological
tests indicate that the dark energy accounts for 70% of
energy content in the universe. The state equation of the
dark energy is very close to the cosmological constant or
vacuum energy. Besides the cosmological constant, an
important dark energy model is called quintessence [1].

The dark energy content such as the cosmological
constant or quintessence changes the spacetime structure
of black hole. For the case of the cosmological constant, the
asymptotic structure of black hole becomes the asymptoti-
cal de Sitter spacetime [5,6], in which a cosmological
horizon exists. For the black hole in quintessence field, the
cosmological horizon also exists [7].

The importance of cosmological constant in high energy
astrophysical objects, such as active galactic nuclei and
supermassive black holes, has been discussed ([8]). The
spherically symmetric spacetime influenced by A term is
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described by the vacuum Schwarzschild-de Sitter spacetime
(SdS) [5]. When the spacetime metric satisfies the axially
symmetric case, the vacuum spacetime is described by
Kerr-de Sitter spacetime (KdS) [9]. In these spacetimes, the
motion of test particles or photons have been discussed by
many authors [10—19]. For the spherically symmetric black
hole in quintessence field, its spacetime solution has been
discussed by [7]. The universe accelerating expansion
demands the state parameter to be in range —1 <
@ < —1/3. The recent works generalized this result to
Kerr black hole by the Janis-Newman algorithm [20,21],
and the spacetime metric was studied [22-24]. Following
these works, we generalize Kerr black hole solutions to
Kerr-Newman black hole solutions in quintessential dark
energy. Following we extend the Kerr-Newman solution to
the cosmological constant presented case of quintessential
dark energy.

In this paper, we want to seek for Kerr-Newman-AdS
solution in the quintessence by Janis-Newman algorithm
and complex computations, we also discuss the properties
of a black hole solution. The outline of the paper is as
follows. In Sec. II, we introduce the Reissner-Nordstrom
black hole in quintessence matter and derive the Kerr-
Newman solution through the Janis-Newman algorithm.
Later we extend quintessence Kerr-Newman black hole to

© 2017 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.95.064015
http://dx.doi.org/10.1103/PhysRevD.95.064015
http://dx.doi.org/10.1103/PhysRevD.95.064015
http://dx.doi.org/10.1103/PhysRevD.95.064015

ZHAOYI XU and JJANCHENG WANG

the case of existing cosmological constant. In Sec. III, we
study the horizon structure, stationary limit surfaces and
singularity of the black hole in Boyer-Lindquist coordi-
nates. In Sec. IV, we calculate the circular geodesics on the
equatorial plane. Summaries are drawn in Sec. V.

II. KERR-NEWMAN-ADS BLACK HOLE
SOLUTION IN QUINTESSENCE

From spherically symmetric Reissner-Nordstrom black
hole metric in the quintessence matter, we use the Newman-
Janis algorithm to get the Kerr-Newman black hole metric
around by quintessential dark energy. Because the
Newman-Janis algorithm does not include a cosmological
constant, we obtain the Kerr-Newman-AdS solution around
by quintessential dark energy through direct computations.

A. Reissner-Nordstrom black hole
in the quintessence

For the Reissner-Nordstrom black hole in the quintes-
sence, the line element is expressed by

1
ds®> = —f(r)dt* + —dr* + r*dQ?, 1
(ar*+ -2 (1)

where f(r) and ¢(r) are given by [7]

f(r)=g(r)= IR e (2)
In this spacetime formalism, M is the black hole mass and «
is the quintessence parameter that represents the intensity
of the quintessence field related to the black hole. The
parameter @ describes the equation of state with w = p/p,
where p and p are the pressure and energy density of the
quintessence respectively, in which @ will not equal
0,1/3,—-1 if —1 <@ < —1/3 can explain the universe
accelerating expansion. Thus we have a general form of the
Reissner-Nordstrom spacetime metric for the Einstein-
Maxwell equation representing charge black hole in
quintessential field. The parameter @ determines the
property of spacetime metric. If —1/3 < w < 0, the space-
time has the asymptotically flat solution. If —1 < <
—1/3, the spacetime has de Sitter horizon, causing the
universe acceleration, and reduces to the Reissner-
Nordstrom black hole for the a = 0.

B. Newman-Janis algorithm and Kerr-Newman
solution in quintessence matter

Now we derive a Kerr-Newman black hole solution in a
quintessential field via the Newman-Janis algorithm.
Following the Newman-Janis algorithm [25-27] and more
general discussion [28], we get the coordinate trans-
formation as
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dr

du = dt — , 3
1 _¥+%2—,3#‘+1 e
and Eq. (1) is written as
2M 2
ds? = — (1 MLl %) du? = 2dudr + PdQ2.
r r r®

(4)
Using the null tetrad, we write the metric matrix as
g = —=lrn¥ — Pn* + mFm® + m*mH, (5)

where the corresponding components are

" =4,
1 2M  Q? a
=G —— 1 —-"—F+ = ——— |
n op 2< . +r2 r3w+1)6’
mt = ! S+ i &
\ﬁr 0 V2rsin@ ¢
1 i
mt = & — 5. 6
V2r 0 \V2rsin@ ¢ ( )

For any point in the spacetime, we choose the tetrad in the
following manner: /# is the outward null vector tangent to
the light cone, and n* is the inward null vector. /¥ and n*
are real vectors. /m* indicates the complex conjugate of
m#, and m* is a complex vector. In the null tetrad, they
satisfy [, l* = n,n* =m,m' =0, [n" =-m,m" =1,
[,m" =n,m' =0. Making the complex coordinate
transformations on the (u,r) plane as u — u — iacos®0,
r — r—iacosf, and following the changes of f(r) —
F(r,a,0), g(r) > G(r,a,0) and £* = r> + a’cos’0, we
write the null tetrad in a new coordinate system as

=8,
= \/%6’6 —%Fé’,’,

m :é@ﬂama(ag—af:”ﬁﬁ;),

i —é(é‘é—iasin@(éﬁ—&’ﬁ) -ﬁaf;). (7)

Using Eq. (5), we can get the metric tensor ¢* in
Eddington-Finkelstein coordinates. The covariant compo-
nents of the metric tenser are given by
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uu = —F,
22

G
9ru =\ &

Gpp = sin*0 <22 +a (2

Gup = Ypu = a( \/7) sin’¢
2
rg pr — as]n 9
Irp = 94 \/;

Finally, we make the coordinate transformations from
the Eddington-Finkelstein coordinates (u,r,0,¢) to the
Boyer-Lindquist coordinates (7,0, ¢) as

Joo =

Gur =

CD'TJ

Ql =

(8)

du = dt + A(r)dr

dp = dp + h(r)dr )
where
0=
h(r) = - rzg(rc)l—i— a*’
2 7 612 2
F(r.0) = G(r,0) = 9 T a7cos0 )

22

In the Boyer-Lindquist coordinates (z,r, 0, ¢), the Kerr-
Newman metric in the Kiselev quintessence is
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2 1-3
_<1 _2Mr—Q 2—|—ar “’>dl2
>

+2_2dr2 _ 2aSin29(2Mr -0’ + arl—3w)

A, 2

ds?=

depdt + 2d6>

30
) dep?,

(11)

Mr—QZ—i—arl_
22

2
+sinZ6 <r2 + a? 4 a%sin?0

where

A, =r*=2Mr+a* + Q* —ar'=3®. (12)
Through calculating R, and T ,,, Azreg-Ainou [28] found
that this spacetime metric satisfies the Einstein equation.
When the quintessence does not exist or a =0, the
spacetime metric reduces to the Kerr-Newman black hole
[26]. If Q = 0, the spacetime metric reduces to the rota-
tional situation in the Kiselev quintessence black hole [21].

C. Kerr-Newman-AdS solution
in quintessence matter

Now we extend the Kerr-Newman solution to the Kerr-
Newman-AdS case of quintessential dark energy. First we
rewrite the Kerr-Newman metric in quintessence matter as

12

29 (adt — (r* + a®)dg)?

22
ds? = J-dr? + 3246 + >

r

A
~ 57 (di — asin’dp)’. (13)

Using the formula G,, =R, — %Rgﬂ,,, we derive the
Einstein tenser by Mathematica package RGTC as

2[r* = 2rp + a*r* — a*sin*Ocos*0)p’  ra’sin’6p” 2r2p
Gy = 36 - >4 ) G, = _ZZ—A,
2a*cos*6p’ B 2asin®0[(r* + a®)(a*cos?*d — r?))p’  ra’sin®0(r* + a?)p”
Gp=-——5— " Gy= ; - 3 :
z z z
a*sin®0(r* + a®)(a® + (2r* + a*) cos 20) + 2r3sin’dp)|p’  rsin?0(r* + a*)*p"
G¢¢ == 26 - 24 ’ (14)

where 2p = ar™3” + 2M — Q72 For Q = 0, these Einstein
tensors have been obtained [21]. Using Einstein equation
with a cosmological constant and Maxwell equation

1
Gﬂu = R/w - ERg/w + Aglw - SﬂTﬂU’ (15)
Fif =0; P4 pras g Fasv =0, (16)

where F* is the Faraday tensor, we obtain the Kerr-
Newman-AdS solution in quintessential dark energy.

Considering the cosmological constant, we guess the
solution of Einstein-Maxwell equation in quintessence
matter given by

32 32 Aysin?@ [ dt dp\2
"sz:xdr”xd@”%(a;—<r2+a2>—£”)

A, (dt ,d

—g <— — asin —¢> (17)

where
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A
A, =r>=2Mr + a® + Q? —grz(r2 +a?) —ar'73e,

A
Ap=1+ gazcoszé

A
E=1+=d

3

Calculating by Mathematica package RGTC, we also get the Einstein tenser as

2[r* = 2r3p + a*r? — a*sin®Ocos?lp’  ra’sin’6p” a’sin’0 — A,
G = 6 - T TA 2 ’
z z z
2r2p/ 22
G, = =
= Tyia AR
2a*cos*6p’
Gop = RS rp” 4+ AZ*G,y
2asin®0|(r* + a®)(a*cos?0 — r?)]p’
ra*sin?0(r* + a*)p” asin?9[A, — r? — a?]
- z A P2 ’
a*sin?0[(r* + a?)(a® + (2r* + a?) cos 20) + 2r3sin’bp)]p’  rsin?0(r* + a*)?p" sin?@[(r? + a?)? — a*A,)
Gyp=— - A .
b 26 24 22
(19)
By calculation, we find that the above metric satisfies the g =0, (20)

Einstein-Maxwell equation in quintessence matter includ-
ing the cosmological constant.

ITII. KERR-NEWMAN-ADS BLACK HOLE
IN QUINTESSENCE

A. Horizon structures

In order to know the properties of the black hole, we
calculate the horizon structure of the black hole. From the
definition of the horizon

6 0=-0.5

a=0,

a2+Q%-A
N

-2t

-3

FIG. 1.

we find that the horizon satisfies the following equation

A
A, =r*=2Mr+ a* + Q? —grz(r2 +a?) —ar'73* =0,

(21)
which depends on «, a, Q, A and w. It is very interesting

and different from the Kerr black hole. a, a, Q, A and @ will
determine the horizon number.

Two pictures show the behavior of a> + Q% — A, with r for fixed M = 1, in which for different w, a will satisfy different

value when the cosmological horizon exists. Due to the small value of the cosmological constant, there always exists the cosmological

horizon r..
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FIG. 2. The shape of ergosphere of the Kerr-Newman-AdS black hole in quintessence for different a, O(= ¢), @ and ® = —2/3. The
blue lines represent event horizons and red lines represent stationary limit surfaces. The region between event horizon and stationary
limit surface is the ergosphere. Because the cosmological constant is small, its influence can be ignored. Here A = 1.3 x 1075¢ cm™2.

It is very convenient to analyze the properties of the
black hole if we make (21) to become the following form

A
a’>+ Q* = —r* 4+ 2Mr + ar' 73 —|—§r2(r2 +a?). (22

For general w(—1 < @ < —1/3) situation, four horizons
exist, including Cauchy horizon ry, (r_), event horizon
Fou(r:) and two cosmological horizon r, and r., where
r, is the cosmological horizon determined by quintessential
dark energy and r,. is the cosmological horizon determined
by the cosmological constant. When the cosmological
constant is zero, using the method of [21], if the cosmological
horizon r, exists, we find that the parameter a will satisfy

2
a<—8%,

(1 -3w) (23)

For w = —2/3, we get a < 1/6 from Eq. (23), which is the
same with the rotational black hole in quintessence matter. For
w = —1/2, we obtain a < 1/2/5. These results imply that
black hole charge cannot change the value of parameter a.

In Fig. 1, we show the behavior of a*> + Q> — A, with r
for fixed M =1, in which « satisfy different values for
different @ when the cosmological horizon r, exists. Far
away from black hole such as cosmological scale, another
cosmological horizon r, exists.

For A # 0, the equation exists four roots. If we consider
the case of w = —2/3, the horizon equation becomes

-

this fourth order algebra equation can be expressed as

1”24—6—Mr—3
A

3a
4 3
r+—r + A

2 2\
A (a +Q)_O’

(24)
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FIG. 3.
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/M

The behavior of rotation velocity v with r in the equatorial plane of the Kerr-Newman-AdS black hole in quintessential dark

energy for two examples @ = —1/2 and @ = —2/3. The top panels show the curves for different parameter a: solid line a = 0, dashed
line a = 0.3, dot-dashed line a = 0.6 and dotted line a = 0.9. The bottom panels present the curves for different parameter Q: solid line
Q0 =0, dashed line Q = 0.3, dot-dashed line Q = 0.6 and dotted line Q = 0.9. Here A = 10™°cm=2 and a = 0.0005.

rq)(r —r.) =0. (25)

(r_ rin)(r_rout)(r_

The existence of cosmological horizon r, will change the
parameter . Through analyzing the equation, we find that

a satisfies
27¢° 3a (a®> 3 3IM\ 2
<64A3_8A<2_2A)+4A>
a> 1 9a*\3
* <6_2A_16A2> <0

From the above equation, we find that the cosmological
constant make the value of a to become small.

The extremal black holes have seven types. For the first
type, the inner horizon r_ and the outer horizon r, are

(26)

equal. For the second type, the outer horizon r, and the
cosmological horizon r, are equal. For the third type,
the cosmological horizon r, equals to the cosmological
horizon r.. For the fourth type, ri, = ry, = r,. For the fifth
type, rou =71, =r.. For the sixth type, ri, = rou =
rq = r.. For the seventh type, ri, =rq, and r, =r,.
For the different types of extremal black hole, the maxi-
mum value of a is also different.

Through analyzing these extremal black holes, we find
that when @ — —1, the quintessential dark energy will be
like the cosmological constant and a is close to the
cosmological constant. For @ — —1/3, the cosmological
horizon determined by quintessence will be close to outer
horizon and «a satisfies @ < 1. From these analyses, we find
that the black hole spin and cosmological constant will lead
the value of a to become small. With the state parameter @
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FIG. 4. The behavior of rotation velocity v with r in the equatorial plane of the Kerr-Newman-AdS black hole in quintessential dark
energy for two examples @ = —1/2 and @ = —2/3. The top panels show the curves for different parameter a: solid line a = 0, dashed
line @ = 0.3, dot-dashed line a = 0.6 and dotted line @ = 0.9. The bottom panels present the curves for different parameter Q: solid line
Q0 = 0, dashed line Q = 0.3, dot-dashed line Q = 0.6 and dotted line Q = 0.9. Here A = 10™° cm™? and a = 5 x 1071°.

ranging from —1 to —1/3, the maximum value of @ changes
from A to 1.

B. Stationary limit surfaces

The stationary limit surfaces of the Kerr black hole have
interesting properties and are defined by g,, = 0. From the
metric (11), g, = 0 becomes the following equation

9y = ﬁ (d2Sin26Ag - Ar) =0. (27)
Following the similar equation (22), we make this equation
to become

A
Q? + a*cos’0 = —r* + 2Mr + ar' 3 + §a4sin2900s29

A
+§r2(r2+a2). (28)

There are two surfaces, e.g., out event horizon and
static limit surface. They meet the poles and exist a
region between horizon and static limit surface, called
the ergosphere. The shape of the ergosphere is determined
by the parameters a, w, ¢, @, A and 0, and is shown
in Fig. 2.

C. Singularities

It is interesting to study the singularity of the black hole.
By calculating the scale curvature R in the metric (11) given
by R = R*"’°R,,,, we can study the singularity of the
black hole. The black hole is determined by w, for general
® we obtain

4H 79’ 9 b 2
R = R/wpolepa _ (I" Zlaz a, Q )’

(29)

064015-7



ZHAOYI XU and JJANCHENG WANG

0.3 T T T T T T T T T
a=5*10""°,0=0.3,w=-1/3

0.25

0.2

> 0.15

0.1

0.05

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

/M

FIG. 5.

PHYSICAL REVIEW D 95, 064015 (2017)

0.3 T T T T T T T T T
a=5*10"0 a=0.3,1=-1/3

0.25

0.2

> 0.15

0.1

0.05

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

r/M

The behavior of rotation velocity v with r in the equatorial plane of the Kerr-Newman-AdS black hole in quintessential dark

energy. The left picture show the curves for different parameter a: solid line @ = 0, dashed line a = 0.3, dot-dashed line a = 0.6 and
dotted line a = 0.9. The right picture present the curves for different parameter Q: solid line Q = 0, dashed line Q = 0.3, dot-dashed
line Q = 0.6 and dotted line Q = 0.9. Here A = 10™° cm™2 and o = —1/3.

where H are polynomial function about r, 8 and a.
The function also includes a, Q, @w and A.

We find that only X? = r* + a’cos’d = 0, the real
singularity exists and is given by

and sz.

—0
d 2

(30)
Here, we calculate the scale curvature R in Boyer-Lindquist
coordinates, that > = r? 4 a’cos’6 = 0 represent a ring at
the equatorial plane with the radius a, centered on the

symmetry axis of this black Hole. It is the same with one in
Kerr black hole [29].

IV. ROTATION VELOCITY IN THE EQUATORIAL
PLANE APPLICATION TO DARK MATTER

We derive the relation between the space-time metric
components and the rotation velocity. For simplicity, we
focus on the rotation motion near the equatorial plane with
0=r/2 and%:o.

We describe the rotation curves in four-dimensional
space-time formalism. The observer is in the ZAMO (zero
angular momentum observers), the four-velocity satisfies
the normalized condition

(31)

and here we consider the space-time with rotational
symmetry. There are two conserved quantities as

Gutu’ = —1,

P& =L,E. (32)

Using the expressions of u* and u”, we rewrite the
normalized condition equation as

dr\?2 dt dgb A2 dr\?
P e N
I <d1> T 290 G g I <d¢> + Ger <dr>
(33)

Using the Egs. (32) and (33), we get the following
equation

dt d¢ dr\?
dr * dt + (dr) (34)
Through calculating, we obtain the equation
<dr>2 L owE 4204 EL0ul”
de Grr (G = 9u9p) Grr
(35)
The stable circular orbit satisfies two conditions
dr 0 av? _0 (36)
dr dr
Solving the Egs. (36) and (35), we obtain [23,30]
E—+ 9 + gul;gd; ,
\/ —9u — 29:45945 - 9¢¢942,5
Q
[N T (37)

\/ ~Gi = 291p 2 — 99952

where the angular velocity is defined by
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—Gipr T+ \/(gt¢.r)2 ~ Gur9p¢.r

Q, = (38)
7
Ypo.r

The rotation velocity for any w is given by the following

equation

L 1 Gigp + g¢¢9¢

v = = s

(39)

where the parameter @ dominates the circular orbits. The
rotation velocities on the equatorial plane are shown in
Fig. 3 and Fig. 4 for two examples w = —2/3 and
w = —1/2, they are different from those in Kerr black
hole. At the same time, @ have large influence on circular
orbits. When w is close to —1/3 and a is close to 0, the
rotation velocity on the equatorial plane is more asymp-
totically flat. We take different charge Q to draw the
rotation velocities, we find that Q has weak influence on
the rotation velocities in the equatorial plane. Because the
cosmological constant is small, its influence on rotation
velocity can be ignored.

Comparing Fig. 3, Fig. 4, and Fig. 5, we find that when
the parameter a is very small, the rotation velocities on
the equatorial plane will be asymptotically flat in large
distance r. Kiselev suggests that when quintessential dark
energy work, the rotation curves in spiral galaxies will be
asymptotically flat with distance r [31]. In their paper, they
study the rotation velocities in spherically symmetric black
hole in quintessential dark energy. Here we generalize their
results to the Kerr-Newman-AdS black hole around by
quintessential dark energy.

V. SUMMARY

Using the Newman-Janis algorithm, we obtain Kerr-
Newman solutions in quintessential dark energy. Because
the Newman-Janis algorithm does not include the cosmo-
logical constant, we cannot use this method to derive the
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Kerr-Newman-AdS solution around by quintessential
dark energy. Through direct complex computation, we
extend the Kerr-Newman solution to Kerr-Newman-AdS
in quintessential dark energy. By analyzing the horizon

equation, we obtain the value of a for v = -2/3,—1/2.
When A = 0, we find that a < v/2/5 for @ = —1/2 and
a < 1/6 for w = —2/3 which is the same with one given by

[21] in quintessential dark energy, showing that the black
hole charge cannot change the value of . When A # 0 and
four horizons especially r, exist, we obtain the constraint
equation on «, implying that the black hole spin and
cosmological constant make the maximum value of a to
become more small. With the state parameter w ranging
from —1 to —1/3, the maximum value of @ change A to 1. If
@ — —1, r, arrives at r. and a is close to the cosmological
constant. For all Kerr-Newman-AdS solutions in quintes-
sential dark energy, the naked singularity appears when
¥? = 0. Finally, we calculate the geodetic motion on
equatorial plane for three situations of w = —-2/3,—-1/2
and —1/3. We find that the parameters Q, a, A have small
influence on rotation velocity, while the parameters « and w
have large influence on rotation velocity. For small value of
a, the rotation velocity on the equatorial plane is asymp-
totically flat and it can explain the rotation curves in spiral
galaxies.

The Kerr-Newman-AdS solution around by quintessen-
tial dark energy maybe useful in astrophysics. In the future
we want to study the effects of rotation and charge in a
more thorough manner, and the influence of quintessential
dark energy on Blandford-Znajek mechanism and black
hole accretion disk.
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