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Theories of gravity in the beyond Horndeski class encompass a wide range of scalar-tensor theories that
will be tested on cosmological scales over the coming decade. In this work, we investigate the possibility of
testing them in the strong field regime by looking at the properties of compact objects—neutron, hyperon,
and quark stars—embedded in an asymptotically de Sitter space-time, for a specific subclass of theories.
We extend previous works to include slow rotation and find a relation between the dimensionless moment
of inertia (I = Ic?>/GyM?) and the compactness C = GyM/Rc? (an I — C relation), independent of the
equation of state, that is reminiscent of but distinct from the general relativity prediction. Several of our
equations of state contain hyperons and free quarks, allowing us to revisit the hyperon puzzle. We find that
the maximum mass of hyperon stars can be larger than 2 M, for small values of the beyond Horndeski
parameter, thus providing a resolution of the hyperon puzzle based on modified gravity. Moreover, stable
quark stars exist when hyperonic stars are unstable, which means that the phase transition from hyperon to
quark stars is predicted just as in general relativity (GR), albeit with larger quark star masses. Two
important and potentially observable consequences of some of the theories we consider are the existence of
neutron stars in a range of masses significantly higher than in GR and I — C relations that differ from their
GR counterparts. In the former case, we find objects that, if observed, could not be accounted for in GR
because they violate the usual GR causality condition. We end by discussing several difficult technical
issues that remain to be addressed in order to reach more realistic predictions that may be tested using

gravitational wave searches or neutron star observations.
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I. INTRODUCTION

Since its inception over a century ago, general relativity
(GR) has proved a phenomenal success, passing tests with
ever-increasing precision in a variety of different environ-
ments [1] from the Solar System [2] to the laboratory [3],
and, recently, gravitational waves consistent with its
predictions have been observed [4,5]. Despite this, there
are relatively few tests of gravity in the strong field regime."
Indeed, while the recent LIGO observations are consistent
with GR’s predictions, the experiment is not yet able to
distinguish between GR and non-GR polarizations i.e.
scalar and vector modes [7] and, similarly, constraints
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lAlthough see [6] and references therein for some tests of
conformal scalar-tensor theories.
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on alternative theories of gravity are not possible due to
some limitations of theoretical predictions. In particular,
since the detected events correspond to a black hole binary
coalescing, one major obstacle is the powerful no-hair
theorem [8,9] (see [10-13], and references therein for some
notable exceptions), stating that black holes are fully
described by their mass, charge, and angular momentum
and therefore behave in an identical manner to GR.”
Neutron stars (and other more speculative compact
objects such as hyperon stars, quark stars, and boson stars)
are another promising avenue for testing gravity in the
strong field regime since the no-hair theorems apply strictly
to vacuum solutions. Neutron star solutions have been
obtained for several different alternative gravity theories
(see [15] and references therein). Unfortunately, tests of

*This is somewhat of a generalization; it may be that the
solutions for the metric are identical but different dynamics lead
to different gravitational wave signals. The lack of numerical
simulations is the limiting factor in this case, although some
progress has been made, e.g. [14].
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gravity using these objects are highly degenerate with
baryonic physics due to large theoretical uncertainties in
the nuclear equation of state (EOS) [16]. Universal (or
approximately universal) relations between different com-
pact star properties (such as the I-Love-Q relation) have
been found [17], and, just recently, [18] have identified a
similar relation between the dimensionless moment of
inertia (I = Ic*/G*M?) and the compactness C = GM/
Rc?. Such relations are useful for testing gravity precisely
because any observed deviation cannot be attributed to the
equation of state, and, furthermore, alternative theories that
predict different relations can be constrained by their
measurement.

One of the main drivers of modified gravity research is
the cosmological constant problem and the elusive nature
of dark energy [19-23]. The modern approach to scalar-
tensor theories relies on the framework of beyond
Horndeski theories [24,25] (see also [26-28]). This refers
to a very broad class of models that are free from the
Ostrogradski ghost instability and are therefore seen as
healthy cosmological theories, although they may not be
effective field theories in the quantum field theory sense.
Note that beyond Horndeski theories are included in a more
general class of scalar-tensor theories that have higher-
order equations of motion and contain at most three
propagating degrees of freedom [29-36].

Beyond Horndeski theories are cosmological competi-
tors to the ACDM model (GR and a cosmological con-
stant); they admit late-time de Sitter attractors without the
need for a cosmological constant.” Furthermore they make
novel predictions for astrophysical objects such as stars and
galaxies [37—-44], and, somewhat amazingly, the parameters
that control said effects are precisely those that control the
linear cosmology of the theories that will be probed by
upcoming missions. Small-scale tests of the theory there-
fore have the power to constrain cosmological modifica-
tions of gravity, which has motivated a recent effort focused
on understanding the strong field regime of this theory.

In a previous paper [45], we have made some progress
towards this using a simple model where the deviations
from GR are characterized by a single dimensionless
parameter Y. We performed a preliminary investigation
into the properties of neutron stars by deriving the modified
Tolman-Oppenheimer-Volkoff (mTOV) system of equa-
tions governing the static equilibrium structure and solved
them for two realistic equations of state to find the mass-
radius relation. The purpose of this work is to build on this
in an effort to identify potential observables and, more
importantly, to demonstrate that compact objects can show
significant deviations from the GR predictions. To this end,
we extend our previous formalism to the case of slow

*Like most alternative gravity theories, one must still explain
why the contribution from the cosmological constant is zero from
the outset.
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rotation and integrate the equations for 32 equations of
state. These equations of state have all been computed
using different calculational methods such as Hartree-Fock,
relativistic mean field theory, Skyrme models, etc., and
cover the full spectrum of formalisms used in the literature;
we describe them in detail in Appendix A. We use these
equations of state to compute the I — C relation and make
general statements about neutron star properties. We also
investigate compact stars containing hyperons and quarks.
Our findings can be summarized as follows.

(i) We generically find neutron stars with masses larger
than 2 M, when T < —0.03 and masses of order
3 M or larger are typically found for the stiffer
equations of state favored currently. The largest
mass neutron star thus far observed has a mass
2.01 £0.04 M [46].

(ii)) We find a universal I —C relation which has a
similar shape to that found in GR. The differences
between GR and beyond Horndeski theory is larger
than the scatter due to different equations of state
when T < —0.03, indicating that a measurement of
this relation could discriminate between different
theories. Such a measurement may be possible
within the next decade.

(iii) Hyperon stars with masses 22 M, can be obtained
for beyond Horndeski parameters not yet con-
strained by observations, thereby providing a new
solution to the hyperon puzzle.

(iv) Massive hyperon stars can transition into quark stars
with masses in excess of 2 M.

One important difference between GR and beyond
Horndeski theories is that the asymptotics are important
in determining the small-scale physics. Indeed, if the
cosmological time derivative of the scalar is zero, then
the resultant compact objects are identical to those pre-
dicted by GR. In order to account for this in a fully
relativistic manner it has been necessary to pick a simple
subset of beyond Horndeski theories that admit exact de
Sitter solutions and consider compact objects embedded in
such space-times.* We elucidate the technical difficulties
involved in going beyond these simple models and discuss
various approaches one could take to address these in future
studies; such studies lie outside the scope of the present
work. Having demonstrated here that large deviations from
GR can be found in these theories, a study extending the
results presented here is clearly warranted before experi-
ments such as the LIGO/Virgo Collaboration can begin to
search for signatures of beyond Horndeski theories [47].
We end this paper by discussing how one might go about
performing such calculations.

“The simplest model includes a cosmological constant [45] but
in this work we present a more general class of models that does
not require such a term and is therefore more natural from a
theoretical point of view.
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This paper is organized as follows: In Sec. II we briefly
review the pertinent aspects of beyond Horndeski theories
and introduce the specific model we will study. The
derivation of the mTOV equations as well as the equation
governing slow rotation is long and technical, and, for this
reason, we present their derivation in Appendix B. In
Sec. III we study neutron and more exotic stars. We discuss
the maximum neutron star mass, present the modified I — C
relations, and examine the hyperon puzzle. In Sec. IV we
discuss our findings in the context of testing GR; we also
discuss the technical challenges associated with construct-
ing more realistic models, placing emphasis on the hurdles
future studies would need to focus on overcoming. We
conclude in Sec. V.

II. BEYOND HORNDESKI THEORIES

Beyond Horndeski theories [24,25] are a very broad
class of scalar-tensor theories that exhibit interesting
properties that make them perfect paragons for alternative
gravity theories. The effects of modified gravity are hidden,
or screened, in the Solar System by the Vainshtein
mechanism [48] and so classical tests of gravity based
on the parameterized post-Newtonian (PPN) framework are
automatically satisfied’ but novel deviations from GR,
often referred to as Vainshtein breaking, are seen inside
astrophysical bodies so that the equations of motion for the
weak field metric potentials defined by

ds? = —(1 +20)d2 + (1 - 2¥)5;;dxidn/ (1)

are modified to [37-39,43]

dg_ GNM(V) T]GNdZM(I") (2)
dar 4 drr
d¥ o GNM(T‘) 5T2GN dM(r) (3)

dr r 4r dr

The dimensionless parameters T; characterize deviations
from GR of the beyond Horndeski type. They are directly
related to the parameters appearing in the effective descrip-
tion of dark energy that controls the linear cosmology of
beyond Horndeski theories [50-52] via [39,43]

This is the case for most Vainshtein screened theories
although it has yet to be shown in full generality. In particular,
it has not been investigated for theories that exhibit Vainshtein
breaking with the exception of the Eddington light bending
parameter y (in all theories [37,38]) and f (only simple theories
such as the one presented in [45] and extended here or those
which admit exact Schwarzschild—de Sitter solutions such as
theories in the three graces class [49]). See the discussion in
Sec. V.
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4 2
T = /1 and
cr(l+ag)—ay -1
4 -
Y, = ay(ay —ap) (4)

5(cz(1+ag) —ay — 1)

The coefficients «; (see [52] for their definitions) will be
constrained by future cosmological surveys aimed at testing
the structure of gravity on large scales [53] and so any
constraints from small-scale probes are complementary to
these and may provide orthogonal bounds. When ay = 0,
as is the case in GR but also in Horndeski theories, the
parameters Y; vanish. Currently, T'; is constrained to lie in
the range —0.48 < 1| < 0.027 [40-42,44] using stellar
tests while Y, is only weakly constrained by galaxy cluster
tests [43]. This is partly due to the need for relativistic
systems that probe ¥ and so the strong field regime is
perfect for placing more stringent constraints. The upper
bound on Y is free of the technical ambiguities related to
the strong field regime (nonrelativistic stars are used) and
so, for this reason, we focus exclusively on the case Y| < 0
in this work.

A. Model

The specific action we will consider is

S = / d*x\/=g {Mf)l (g - k0A> - L+ f4£4.bH:| )

with
_ ¢y
L= kX 45X, (6)
£4,bH = _X[(Dd))z - (¢;w)2] + 2¢;¢¢y [qspw':ld) - ¢;m¢g]9

(7)

with X = ¢,¢*; A is a (positive) cosmological constant and
ks, ¢, f4, and kg are constant coefficients. The above action
belongs to the family of the beyond Horndeski theory
(“three graces”), which admits exact Schwarzschild—de
Sitter outside a star, with a time-dependent scalar field
[49].6 Our previous model [45] had ky = 1 and { = O butin
order to have a model that does not contain a bare
cosmological constant we will instead set ky = 0. This
action is by no means the most general beyond Horndeski
action but contains simple models that exhibit Vainshtein
breaking. The £,y term corresponds to a covariantization
of the quartic Galileon.

The derivation of the mTOV equations, which follows
the procedure set out in [45], is rather long and technical, as
is the derivation of the new differential equation we will

®Exact Schwarzschild—de Sitter solutions with a time-dependent
scalar field also exist in the Horndeski theory [54,55].
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solve in this work. For this reason, the main details can be
found in Appendix B but here we will outline the important
points briefly. We will follow the method of Hartle and
Thorne [56,57] and write the metric as

ds? = —e*"ds? 4 e*dr? + r?(d6* + sin’0dep?)
—2&(Q — w(r))r’sin’0dtde. (8)

This describes the geometry of a space-time containing a
slowly rotating star with angular velocity Q. The slow
rotation is enforced by using a small dimensionless book-
keeping parameter £ < 1.

At zeroth order, i.e. for € = 0, the metric is static and
spherically symmetric. It is convenient to decompose each
metric potential, as well as the scalar field, into a cosmo-
logical contribution, corresponding to the de Sitter solution
(in Schwarzschild coordinates), and a contribution sourced
by the star [45]:

v=1In(1-H*r*)+8u(r), 9)
A=—In(1-H*r?)+ 64, (10)
¢ = uor+2”—l(;1n<1 — H2) + o(r). (11)

The constant vy = (;5 is the time derivative of the cosmo-
logical scalar field that satisfies the Friedmann equations.
Substituting all this into the equations of motion with the
star described by a perfect fluid, and eliminating the scalar
@ in the subhorizon limit (see [45] for the details), one
obtains a system of differential equations for év and 64 (the
mTOV system) that can be solved given an equation of
state. These equations, which are given in Appendix B, are
identical to those derived in [45]. By comparing these
equations with (2), one finds that

(12)

where { = 6MpH*(1 —5)/v; (see Appendix B).
At order O(e), we obtain an additional equation for the
extra metric function w, of the form

@ = K,(P,p,64,6v, V)0 + Koy(P,p,84,6v, T)w, (13)

where K, and K, are complicated functions given in
Appendix B. Once the mTOV equations for v and 4
have been solved, one can use them as inputs to solve this
equation for @w. As shown in Appendix B, outside the star
the equation for @ reduces to the one predicted by GR so
that

(14)
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outside the star [56]. Here, J is the angular momentum
from which one can extract the moment of inertia
I = J/Q. Note that at large distances one has w — Q
so that the space-time is asymptotically de Sitter.
Equation (14) implies that

_ R o' (R)/o(R)
23+ Ro'(R)/o(R)’

(15)

where R is the radius of the star. Equation (13) is
homogeneous and so once a solution is found, one is free
to rescale @ by a constant factor to find another solution.
The expression (15) for I is invariant under such a rescaling
and so we can set the central value w(0) = w, = 1 without
loss of generality. Furthermore, spherical symmetry
imposes that @'(0) = 0. We solve Eq. (13) with these
boundary conditions at the center and find w(R) and
@'(R) at the surface of the star. We then compute [ using
Eq. (15).

III. COMPACT OBJECTS

In our previous paper [45], we used two equations of
state to investigate the properties of neutron stars in beyond
Horndeski theories. In this work, we use 32 equations of
state that have been proposed in the literature; similar
investigations have been performed for other modified
gravity theories using some of these equations of state
[58-60]. In computing the I — C relations we do not use
equations of state containing quarks or hyperons, nor do we
use particularly soft ones such as PAL2.

A. Neutron stars

We begin by examining the properties of neutron stars.

1. Maximum mass

Previously [45], we found that the maximum mass for
neutron stars can be larger than 2 M, and may be larger
than 3 M. The two equations of state we used in [45] can
hardly be considered generic and so in Fig. 1 we plot the
maximum mass for each equation of state. Each equation of
state is described in Appendix A and we remind the reader
that they are a faithful representation of those used in the
literature. Note that we do not include hyperonic or quark
equations of state. Clearly, the trend of increasing maxi-
mum mass is ubiquitous and masses in the range 2 M, <
M <3 M are typical for T < —0.03. For GR, this is more
like 1.5 M, < M <2 M. Interestingly, equations of state
that are excluded in GR because they cannot account for
the observed neutron star of 2 M could be revived by
modifying gravity.

The maximum mass in GR is limited by a causality
condition i.e. the condition that the sound speed should be
dP/dp < 1 (see [61-63]), and so the observation of neutron
stars with masses and radii that violate this may then point
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FIG. 1. The maximum mass for each equation of state for

values of Y indicated in the figure.

to alternative gravity theories since such objects cannot be
accounted for in GR. In Fig. 2 we plot the maximum mass
and radius for each EOS, and, evidently, the majority
indeed violate the GR causality condition when T < —0.03.
It would be interesting to calculate the equivalent condition
in beyond Horndeski theories but this lies well beyond the
scope of the present work.”

2. I — C relations

As mentioned in the introduction, [18] have found an
approximately universal relation between the dimension-
less moment of inertia I = I¢?/GyM? and the compactness
C = GyM/R of the form

I1=a,C" +a,C? +a3C3 + a,C*. (16)

In what follows, we will fit our modified gravity models to
a relation of this form. In the upper left panel of Fig. 3 we
plot the I — C relation for individual stellar models for GR
and show the best-fitting relation found by [18] and our
own, whose coefficients are given in Table I. One can see

"The calculation in beyond Horndeski theories is not as
straightforward as repeating the GR calculation using the mTOV
equations. The scalar degree of freedom and matter are kinetically
mixed, and so one must find the speed of scalar and density waves
by diagonalizing perturbations about the equilibrium structure
(this is similar to what must be done to derive the speed of
cosmological perturbations [25]). Furthermore, the GR condition
is derived by conjecturing that the equation of state P = p — p,
for which dP/dp = 1, produces maximally compact stars. It is
not clear that this remains the case in beyond Horndeski theories
since the mTOV equations contain new terms that depend on the
derivative of the density. Such terms are absent in GR. Finding
the maximally compact EOS would require a detailed numerical
study similar to [64,65].
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FIG. 2. The maximum mass and radius for each equation of
state. The values of Y are the same as in Fig. 1. The light gray
shaded region shows the condition for causality in GR i.e. the
condition for the sound speed to be <1 and assumes that the
heaviest observed neutron star has a mass of 2.01 M. The dark
gray region corresponds to objects that would be more compact
than black holes i.e. R < 2GyM.

that our relation agrees well with that of [18].% In the upper
right panel we show the residuals AT/T = (I, —1)/1; one
can see that these are less than 10% and that there is no
clear correlation with C. We plot the equivalent figures for
T = —0.03 and T = —0.05 in the middle and lower panels
of Fig. 3 and give the coefficients for the fitting functions in
Table 1. Evidently, a similar (approximately) universal
relation holds in both cases.

The coefficients in the table by themselves are not
particularly illuminating and a cursory glance does not
reveal whether the differences between the relations for the
different theories are significant or not. This is partly
because the fitting function typically used is phenomeno-
logical and it is not clear how much degeneracy there is
between the free parameters. For this reason, we have
plotted two figures better suited to show that the differences
between the GR and beyond Horndeski theories is signifi-
cant. In Fig. 4 we plot all three relations on the same axes.
Evidently, there is a marked difference between the three.
To quantify this, in Fig. 5 we plot the quantity
A(Y,C) = (Iy(C) = Igr(C))/Igr(C), where Igg is our
best-fitting I — C relation for GR and I+ is the equivalent
relation for a beyond Horndeski theory with parameter Y.

We also plot the quantity Agg = (Igr — Igr)/Igr. Where
7GR is the best-fit relation found by [18]. We also plot
the scatter in the best-fitting relation for all three theories.

¥We have not shown their best-fitting coefficients for clarity
reasons but if one compares the two, one finds small differences.
This is to be expected since we use different equations of state
and a different code to calculate the stellar models. What is
important is that the two curves match very closely in the region
[0.05, 0.40].
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FIG. 3. Left panels: The 7 — C relations for GR (upper), T = —0.03 (middle), and T = —0.05 (lower). The black solid line is the best

fit of [18] (upper panel only) and the black dashed line is our best fit. Right panels: Al/I as a function of the compactness for GR
(upper), T = —0.03 (middle), and Y = —0.05 (lower). Each individual stellar model is represented by a purple dot in all cases.

TABLE 1. Coefficients for the fitting relation (16).
Theory a a as ay
GR 0.573221 0.297835 —7.56094 x 10~3 7.92444 % 1075

T=-0.03 0.366024 0.277797 —7.62076x 1073 8.64847x 107>
T=-0.05 0.327218 0.237928 —5.99316x 107> 5.89305x 107>

The difference between the GR relations is commensurate
with the scatter in the best-fitting relations whereas the
difference between the GR and beyond Horndeski relations
is far greater than this (Z15%). Therefore a precise
measurement of this relation has the power to discriminate
between different theories. We note that many alternative
theories of gravity, such as massless scalars coupled to
matter and Einstein-dilaton-Gauss-Bonnet, predict similar
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FIG. 4. The I—C relation for GR (black solid curve) and
beyond Horndeski theories with Y = —0.03 (blue, dashed curve)
and T = —0.05 (red, dotted curve).

relations to GR [59,660] and therefore cannot be probed
using the I — C relation.

B. Hyperon and quark stars

Stars containing particles such as hyperons, kaons, or
quarks in a color-deconfined phase have been posited to
exist, their study is an active and ongoing area of research,
and several of the equations of state we have used contain
such particles. In this section we briefly discuss hyperonic
and quark stars in beyond Horndeski theories, focusing on
the hyperon puzzle and the transition from hyperon to
quark stars. The former phenomenon can be solved by
beyond Horndeski theories, while the latter remains a
feature of theory, just as in GR. We note that our equations
of state containing quarks are of the strange quark matter
(SQM) form and are based on the MIT bag model [67]; they
do not contain nucleons. Thus, when we refer to quark stars
we refer to objects composed solely of SQM rather than
neutron stars with quark cores.

1. The hyperon puzzle and quark stars

The hyperon problem (see [68—71] for reviews) is a long-
standing one in both the nuclear physics and neutron star
communities. Nuclear theories predict that hyperons (bary-
ons with nonzero strangeness), in particular the lowest mass
J =1/2 baryon octet {n,p,T* 2% 5% 5= A}, should
appear at high densities. It is therefore inevitable that
hyperons should contribute to the structure of neutron stars
since densities far in excess of the hyperon threshold
density can be reached in the core. Equations of state that
include hyperons are substantially softer than pure nucle-
onic ones (see [71], Fig. IT), which has the consequence that
the resulting maximum mass of neutron stars is signifi-
cantly lower than stars containing nucleons only. In
particular, the maximum mass predicted by realistic hyper-
onic equations of state [72—74] lies well below the heaviest
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FIG. 5. The fractional difference between the best-fitting 7 — C

relations [(T+(C) — Igr(C))/Igr(C)] for T = —0.03 (blue, solid
curve) and T = —0.05 (red, dashed curve). We also show the
fractional difference between our GR relation and the one found
by [18] (black, dotted curve) as well as the scatter in all three best-
fitting relations (light red dots).

presently observed neutron star mass of 2.01 & 0.04 M
[46]. This apparent tension between nuclear physics and
neutron star astronomy constitutes the so-called hyperon
puzzle, and several potential resolutions within the realm of
nuclear physics have been proposed.

The simplest explanation is our lack of understanding of
hypernuclear physics. Hyperon interactions are poorly
understood due in part to calculational difficulties and a
lack of experimental data. Hyperon-nucleon and hyperon-
hyperon interactions can be repulsive and can produce the
additional pressure needed to support stars as heavy as
2 M, (see [75], for example) although the values of the
coupling constants in the theory are not presently known
and are typically chosen in order to achieve the requisite
2 M. Similarly, one can scan the parameter space of
effective theories including hyperons and find parameter
choices that give 2 M, stars [76]. In a similar vein, three-
body interactions (TBIs) are expected to be repulsive and
may stiffen the EOS sufficiently to resolve the puzzle (see
[68,71], and references therein). TBIs may also raise the
density threshold for the appearance of hyperons so that
they are simply not present in the cores of neutron stars
[77]. Again, there is a lack of experimental data pertaining
to TBIs and so whether they can resolve the puzzle remains
to be seen.

A more exotic solution is the presence of deconfined
quark matter at high densities (see [78—80], and references
therein). In this scenario, there are two classes of compact
stars: quark stars and hyperon stars, the latter being unstable
above a threshold mass [81-90]. Above this mass, a first-
order phase transition to deconfined quark matter [91]
occurs in the core and the EOS becomes stiffer, resulting
in stars of similar mass but smaller radii. The transition
liberates a large amount of energy (10>* erg), which may be
the source for gamma ray bursts. The reader is reminded that,
in what follows, we model this transition using a pure SQM
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FIG. 6. The mass-radius relation for hyperon (GM2NPH) stars (black) and quark (SQM?2) stars (red) for general relativity (left panel)
and beyond Horndeski theories with T = —0.05 (right panel). The region between the gray dashed lines corresponds to the 1o region for
the heaviest mass object observed [46]. Note that the axes have different scales.

model only so that our quark star models contain no
nucleons.

2. Hyperon and quark stars in beyond Horndeski theories

In Fig. 6 we plot the mass-radius relation for an equation
of state containing hyperons, GN2NPH, and an equation of
state containing quarks only, SQM2, for both general
relativity and beyond Horndeski with T = —0.05.
Focusing on the left panel (GR), one sees that the maximum
mass is around 1.5 M, (one finds similar results for more
modern equations of state [74]), well below the mass of the
heaviest compact object presently observed [46]. This is
one manifestation of the hyperon problem. One can see that
stable quark stars with masses compatible with this exist in
the region where hyperon stars are unstable and so one
resolution in GR is that stars with masses 1.6 M, contain
quark matter in a color-deconfined state. The right panel
shows the same curves but for beyond Horndeski theories
with T = —0.05. One can see that the maximum mass for
hyperon stars is compatible with the observations of [46],
and therefore there is no hyperon puzzle in these theories.
Interestingly, the situation with quark stars is similar in that
more massive stable objects can exist in the region where
hyperonic stars are unstable. This theory therefore predicts
stable quark stars with masses in excess of ~2 M.
Numerically, we find that the hyperon puzzle is resolved
when YT < —0.04, although the precise value depends
slightly on the equation of state. We show the maximum
masses for hyperon (GM equations of state) and quark stars
(SS and SQM equations of state) in GR and beyond
Horndeski theories in Fig. 7. One can see that the hyperon
puzzle is more readily resolved in beyond Horndeski
theories.

A similar result is found for a restricted class of f(R)
theories [92].

Given the large uncertainty in the hyperon equation of
state, it is important to look for falsifiable predictions that
can distinguish our resolution from other more conven-
tional propositions. One promising test of these parameters
is the I — C discussed above since parameters that resolve
the hyperon puzzle show clear deviations in their I —C
from the GR prediction. It would be interesting to examine
this in more detail using more realistic equations of state
but the lack of analytic fits for such models precludes this
possibility for now.'”

IV. DISCUSSION

In this section we discuss our findings above. We begin
by summarizing the main points before discussing the
generalization to more realistic models.

A. Summary of results

Our main results can be summarized as follows.

(i) We have generically found that beyond Horndeski
theories can give neutron star masses larger than
2 M, for small beyond Horndeski parameters
T <0 that are not constrained elsewhere; the
maximum mass can be as large as 3 M or even
larger for more extreme parameter choices.

The I — C relation persists in these theories and the
difference from the GR relation is larger than the
scatter due to different equations of state when
T < —0.03. This relation therefore provides a robust
equation-of-state-independent test of the theory
provided that it persists in more realistic models.
We will argue that this is likely to be the case below.

(i)

'"The appearance of dP/dp and similar terms in the mTOV
equations mandates the use of analytic fits rather than tabulated
results. See [45].
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FIG. 7. The maximum masses of hyperonic and quark stars in
GR (black dots) and beyond Horndeski theories with T = —0.03
(blue dots) and T = —0.05 (red dots). The upper and lower
bounds on the mass of the heaviest observed neutron star
presently observed (2.01 +0.04 M, [46]) are shown using the
gray dashed lines.

(iii) The hyperon puzzle is resolved in these theories
because the maximum mass is enhanced by mod-
ifications of the TOV equation. Our proposed res-
olution can be falsified using other probes of the
theory, for example, cosmological constraints on the
EFT parameters a; or tests of the I — C relation.

(iv) Quark stars are stable but should have masses in
excess of 2 M.

B. Measurements of the 7 — C relation

Measurements of the I — C relation are difficult because
in order to find the moment of inertia one needs to measure
the contribution of the (post-Newtonian) spin-orbit cou-
pling to the precession of the periastron of the orbit of
neutron star binaries, and so one requires a highly relativ-
istic system. A few such systems exist, and much attention
has been paid to the double pulsar PSR J0737-3039A
[93,94], for which the masses have already been measured
to high precision using the properties of binary orbits. The
spin-orbit coupling may be measured to ~10% accuracy
[95] in the future and, accounting for the latest develop-
ments in the next generation of radio telescopes, it is
possible that this measurement can be made in the next
decade [96]. The Vainshtein mechanism is fully operative
outside of the neutron stars and so the dynamics of this
system are unchanged in beyond Horndeski theories.

An alternative method of measuring the moment of
inertia is to extract the tidal polarizability from the
gravitational wave signal of neutron star—neutron star or
neutron star—black hole mergers [17]. Such a measurement
should be possible with advanced LIGO [97,98], although
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the merger rate for such systems is currently unclear [99].
In this case, one may need to account for the varying speed
of tensors predicted generically in beyond Horndeski
theories [100].

Finally, one also needs to measure the neutron star radius
in order to calculate the compactness. This can be achieved
using x-ray observations [101] or by using universal
I — M — R relations [95].""

C. Technical considerations

The two main constituents of our formalism were

(i) the simple model presented in (5): a k-essence term

and the beyond Horndeski quartic Galileon, and

(i) asymptotic de Sitter space-time.

The combination of both constituents resulted in an exact
Schwarzschild—de Sitter space-time outside the star and,
furthermore, gave analytic relations between the coeffi-
cients k,,{, f4, and H that come from the Friedman
equations because the scalar itself drives the asymptotic
de Sitter solution. We now proceed to discuss each
constituent in turn, focusing on how they may be relaxed
in future studies.

The first was simply an aesthetic choice made for
simplicity. Note that the model (5) is a subclass of the
more general “three graces” family of the beyond
Horndeski theory [49], which allows for exact
Schwarzschild—de  Sitter solution outside a star.
Therefore, it is not difficult to perform similar calculations
for the theories belonging to this three graces family (in
particular the work [58] studied another subclass of the
three graces family that includes the “John” term). On the
other hand, one should be able to extend this study also to
other beyond Horndeski action (outside of the three graces)
with little changing except the length of the resulting
equations of motion. The one technical complication that
may arise is the following: The metric potentials and @
have boundary conditions at the center and edge of the star
whereas the scalar has boundary conditions at the center
and at infinity. In this simple model, it was possible to
eliminate the scalar from the mTOV equations by solving
an algebraic equation for d¢/dr that was found by
integrating the equation of motion once. This is a result
of the shift symmetry ¢ — ¢ + ¢ which guarantees that the
equation of motion is in the form of a current conservation
V,j* =0. More general theories that break the shift
symmetry will not have such a structure and so the scalar’s
equation of motion must be solved in conjunction with the
other equations. While not a debilitating obstacle, this will
necessitate the use of more complicated numerical boun-
dary value techniques such as shooting or relaxation. One
would also need to check numerically that the PPN

"n the latter case one would need to derive such relations for
beyond Horndeski theories since the current relations are fit to
GR solutions.
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parameters satisfy y = f =1 since it is likely that the
Schwarzschild—de Sitter solution will be lost. Note that
when this is the case one can still self-consistently
determine the correct branch of solution using the tech-
nique outlined in [45], Appendix B.

The second constituent greatly simplified the computa-
tion because both H and ¢(= v,) were constant [see
Eq. (11)]. We do not live in an exact de Sitter universe
and so clearly future work should concentrate on deriving
the equations for more general Friedmann-Lemaitre-

Robertson-Walker (FLRW) backgrounds where H and gb
depend on cosmic time. This is not an insurmountable

challenge because it is not strictly necessary that H and ¢>
are constant in order to derive the mTOV equations. Indeed,
this has already been done in the weak field limit for
general FLRW backgrounds by [37,38]. Importantly, there
are some cosmological quantities that are not suppressed in
the quasistatic subhorizon limit."* In our model, these were
easy to identify because one has f4 ~ M2 /vj [see (B5)].

Noting that v ~H>M> /ky ~ H*M2.,” we also have
f4H*M3 ~O(1) and so quantities proportional to this
survive in the subhorizon limit. Indeed, these quantities
determine the value of Y. Moving to FLRW backgrounds,

one can introduce the dimensionless parameter g = f4qb4 /
M fﬂ, which is O(1) and therefore survives in the subhorizon
limit. In addition to this, one must make assumptions about
¢ and H. Either they are negligible compared with Hd)
and H?, respectively, or they are of the same order. In the
former case, one is left in a similar situation to that studied
in this work and so similar equations are expected. In the
latter case, there are new dimensionless parameters that
survive in the subhorizon limit, for example, f4H2g'z"JMp1~
g~ O(1). In this case, these can contribute to T and T, as
well as introduce new terms in the mTOV equations.
Relaxing the restriction to a de Sitter background does
not then render the derivation of the mTOV equations
impossible, but it certainly makes the resulting formulas
longer and more complicated.

Another potential issue with more general FLRW space-
times is potential strong bounds coming from the time
variation of Gy. When calculating the local value of Gy
measured in Cavendish-type experiments one finds that it is
a combination of the constant G = 1/ 87rM§] and the model

12By this, we mean that fields sourced by the star are time
independent. The existence of a subhorizon and quasistatic limit
is necessary to have sensible physics in the Solar System.
Schwarzschild—de Sitter space-time is static and so only the
subhorizon limit was important. The necessity of taking the
quasistatic limit is a new feature of more general FLRW back-
grounds.
Note that one can always absorb k, by performing a field
redefinition and so we can take k, ~O(1) without loss of
generality.
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parameters [see Eq. (B17)], in our case H. In the case of de
Sitter space-time, H is constant, but this is not the case for
general FLRW space-times, and one generically expects

Gy to depend on q’) and similar quantities so that it is time
varying on the order of the Hubble time. Since Galileon
theories self-accelerate by utilizing kinetic terms, the bound
on the time variation of Gy (Gy/Gy < 0.02H, [102])
typically places tight restrictions on the model parameters
[103,104], in contrast to quintessencelike models that
accelerate using a scalar potential [105-108]. A detailed
calculation of the resulting bound in beyond Horndeski
theories is beyond the scope of this work but should be part
of any analysis that attempts to move beyond de Sitter
asymptotics.

V. CONCLUSIONS

In this work we have studied slowly rotating relativistic
compact objects in beyond Horndeski theories using 32
equations of state for neutron, hyperon, and quark matter.
Our aim was to look for robust predictions that could be
used to test said theories in the strong field regime. To this
end, we considered a subset of beyond Horndeski theories
corresponding to a k-essence term and a covariant quartic
Galileon. The equations of motion are incredibly long and
complicated and so we restricted to the case where the
space-time was asymptotically de Sitter and driven by the
scalar. While this does not correspond to our present
Universe, such simplifying assumptions are needed in
order to make the problem tractable and, more importantly,
one should verify that pursuing more realistic models is
worthwhile. We have demonstrated here that it is. The
equations of state we use have been found using several
different calculational methods such as Hartree-Fock, mean
field theory, etc., and are therefore a representative sample
of the equations of state found in the literature (see
Appendix A for a description of each equation of state).

We have derived the equations governing slow rotation,
in particular, the coordinate angular velocity o(r), and have
solved them numerically to find the masses, radii, and
moments of inertia of the resultant stars. We have shown
that neutron stars with masses > 2 M, are predicted
ubiquitously when Y < —0.03 and that 3 M, can be
obtained for stiffer equations of state that are currently
favored."* One can find stellar models that violate the
causality limit in GR for certain equations of state. Such
objects are robust tests of gravity beyond GR because they
cannot be reproduced in GR while satisfying the GR
causality limit, no matter the equation of state. It would
be interesting to calculate the equivalent bound in beyond
Horndeski theories—which changes because it results from

“Note that for extreme parameter choices, which are not
currently ruled out, one can find even larger masses of order 5 or
6 M. See [45].
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solving the mTOV equations and an assumption about the
maximally compact EOS—in order to verify that they are
satisfied by our models, but we postpone such an analysis
for future work due to technical complications and uncer-
tainties about the maximally compact EOS in our theories.

Universal relations between the dimensionless moment
of inertia I = Ic?/GyM? and the compactness GyM /Rc?
that are independent of the equation of state have been
found in GR [18] and other modified gravity theories
[59,109], which give similar relations. Here, we have
shown that they are present in beyond Horndeski theories,
too. The beyond Horndeski relations are distinct from the
GR prediction and therefore they can be used to test gravity
in a manner that is independent of the equation of state and
is hence free of the degeneracies associated with the current
uncertainty in the nuclear equation of state. Measurements
of the I —C relation should be feasible within the next
decade.

We have also studied stars containing hyperons and
quarks. Interestingly, beyond Horndeski theories can
resolve the hyperon puzzle provided that T < —0.04, which
is currently allowed by experimental constraints. More
conventional resolutions focus on three-body interactions
(whose effects are largely unknown) or transitions to quark
stars at high masses and so we have discussed whether a
resolution in the form of beyond Horndeski theories is
falsifiable. A precise measurement of the I —C relation
could rule out parameters where the hyperon problem is not
present. Interestingly quark stars are still stable when the
hyperon problem is resolved and both stable hyperon and
quark stars can exist, the latter having masses 22 M.

We have ended by discussing our assumptions, paying
attention to the potential to generalize our models to more
realistic scenarios (general FLRW backgrounds) and
whether or not we expect large qualitative changes in
our results. We have argued that this is not the case. More
general models may lack an exact analytic solution but one
can still take an appropriate subhorizon and quasistatic
limit making reasonable assumptions about the model
parameters. In this case, the difference lies mainly in
how Y is related to more fundamental quantities. Our
results clearly indicate that a study of more general back-
grounds is warranted and such an investigation is left for
future work.

We have demonstrated here that a precise measurement
of the I — C relation could place tight constraints on this
very general class of alternative gravity models. Indeed,
such constraints would restrict possible cosmological
deviations from GR and may act as consistency checks
should nonzero values of ay be preferred by upcoming
cosmological surveys.
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APPENDIX A: DESCRIPTION OF THE
EQUATIONS OF STATE

In this Appendix we briefly describe the equations of
state we have used in this work. More detailed descriptions
can be found in [110]. The essential properties of each
equation of state are given in Table II.

APPENDIX B: DERIVATION OF THE MAIN
EQUATIONS

In what follows, we will follow the derivation of [45]
whereby we treat the star as a static, spherically symmetric
object embedded in de Sitter space. This allows us to
include the cosmological time dependence of the field on
small scales and simultaneously have complete analytic
control over the coordinate system without making any
approximations or assumptions. This is because de Sitter
space-time can be sliced in a Schwarzschild-like manner
whereas more general cosmological backgrounds cannot.
This property was vital to show that the Vainshtein break-
ing solution is indeed the physical one; i.e. it has the correct
asymptotics. The difference between the derivation here
and the one in [45] is that we use a different model (¢ = 0).

1. Cosmological solution

Since the theory is shift symmetric (¢p — ¢ + a for some
constant a), the equation of motion for the scalar takes the
form of a conservation equation for a conserved current J#
ie. V,J# = 0. Working in an FLRW space-time

TABLE II. The equations of state used in our analyses. When
one equation of state has several variants, e.g. APR1, APR2, etc.,
we denote them collectively by type, in this example, APR. K
refers to kaons, H to the hyperons {n, p, ¥+, 2% 2% =~ A}, and
Q to the three lightest quarks u, d, and s.

Name Particle content Calculational method
BSK n, p Skyrme
APR, WFF, FPS n, p Variational
PAL2, SLY4 n, p Potential
MS, PRAKDAT n, p Mean field theory
ENGVIK, PA1 n, p Hartree-Fock
PS n, 70 Mean field theory
SCHAF n, p, K Mean field theory
GMNPH n, p, K, H Mean field theory
PCLNPHQ n, p, H, Q Mean field theory
SQM, SS 0 MIT bag model
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ds? = —d7* + a*(7)(dr? + r’de%), (B1)

one finds that the only nonzero component is J° so that the

equation of motion is 8y (a>J°) implying that J° = 0." One
then finds the scalar and Friedmann equations

JO = —kyvo+ ({ = 12f4)v3 =0 and (B2)

M = kyd - 3 (g _10 f4H2> ot (B3)

which admit a de Sitter solution with a(z) = €** (with H
constant) and ¢ = v, constant, for which

202 H?
ky ==0¢ —— B4
2 ¢ 4zGvy’ (B4)

1 ¢
pu— e BS
J4 487G v} " 36m (B5)

These relations allow us to consistently relate the small-
scale equations to the asymptotic cosmological solution.
Note that we have defined Mgl = 1/8zG but G is not the
value of Newton’s constant Gy measured by Cavendish-
style experiments. G can be related to Gy by deriving the
weak field limit and matching to the 00 component of the
PPN metric; we will do this below.

2. Stellar structure equations
We now want to embed a static, spherically symmetric,
and slowly rotating object into this space-time whose
metric is given by

ds? = —e*")de? 4 4 dr? + r2d6? + rsin’0dg?

—2&(Q — w(r))r’sin’0drdg, (B6)

but we have the technical complication that (B1) does not
fit into this form. The coordinate transformation [45,111]

T= t—|—%ln(1 —H??) and r = \/%r (B7)
brings (B1) into the form (B6) with ¢ = 0 and

v(r) = =A(r) = In(1 — H*r?). (BS)
The cosmological solution ¢ = vyz becomes

¢ = y0z+2”—1011n(1 — H1?). (B9)

The object sources perturbations described by

"The solution with J° « a~3 decays rapidly.
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=In(1-H?*r?) + u(r) + O(?), (B10)
A=—=In(1=H>r?)+ 61+ O(e?), (B11)

—H?*r?) + o(r) + ep,(r) + O(e?),
(B12)

= Y0y
¢ = v0t+2H n(1

where the metric potentials v and 64 do not receive
corrections at O(e) and ¢, depends on r only since it is
a scalar under the rotation group. We therefore require that
the quantities ov, 64, ¢, and Q — w vanish at large r.
Next, we take the subhorizon limit Hr <« 1 as we did
previously for the model in [45]. The new feature here is the
new parameter ¢, which from Eq. (B3) scales as M}, H? /v

and so we define an O(1) variable s via

6M§1H2
! (1=1y), (B13)
0
so that Egs. (B4) and (B5) become, respectively,
H2
k 1-2 B14
2= 477.'G1)0 ( 5), ( )
fi= (2= 5) (B15)
= —s).
* 482G

Note that since k, « H> all k-essence vanish in the
subhorizon limit. This is identical to our previous model
(c = 1) [45] where k, < H? and

1 A

Ja 487[G1J3( o) 7= 3M2 H3'

(B16)
In both cases only the terms proportional to f, contribute to
the equations governing the structure of the object and the
terms proportional to k, set the cosmology. We therefore
have identical equations as our previous case with

6> — s — 1. In particular, one has

3G
- Y B17
NFe s (B17)
1
T] = Tz =7 = —3(2—5'), (BIS)

and one requires s > 7/5 in order for the Vainshtein
breaking solution to exist, which implies that T > —1/5.
Importantly, the mTOV equations are identical to those
given in Appendix C in [45] and so we do not repeat their
derivation here.

The mTOV equations describe the structure of static
objects and hence correspond to the parts of the equations
of motion with ¢ =0 or, alternatively, the O(¢) terms.
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The slow rotation is described by @, which appears at O(¢).
The O(e) part of the scalar equation is solved by ¢; = 0
and so the only change at this order is the new equation
coming from the t — ¢ tensor equation, which is of the form

Gy, + H), = 8zGTy, (B19)
where HY, represents the contribution of the f, term to the
tensor equation of motion. The energy-momentum tensor is
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2 SA—v SN 5 !
P ) (B22)
V5 41+ rov/)

where the negative sign must be taken for the square root
so that the space-time is asymptotically de Sitter [45],
into equation (B19) and rearranging, one finds the equation

o' = K(P,p,64,6v, L)' + Ko(P,p, 51, 6v, T)w,

(B23)
™ = (p + P)u'u + Pg, (B20)
where
and
uy Ug
L v Ky =— d Ky=— B24
u'=eF+0(2) and u? = eQe T+ O(2).  (B21) ' a 07 (B24)
Substituting the zeroth-order solution for ¢ [45], with
|
up = U4 (16€*% + 57,) + 8233 Y (8v'r + 1) — /313 (80e + 437))
+ 822 (T8U% 1% + 46U"'r? — 961 r — 20) — 4602 r* (84> + 81" r* Y| — 197)
+ 46U r(=92% + 350" Y| = 562 Y| + 2470 )) — 16(=8A"r? T = 562X + 8(e** + 1))
+ (833 (16e + 117) + 460/ r(12e*% + 84" r?(=Y}) + /' r* Y| = 27))
+4(4e® + 522 (=) — 95V P Y| + 247 )) + 82 (48e* — 537))), (B25)
vy = 2r(8Ur + 1)(8U"2 Y, + 6U%r2(16e* + Y |) + 26" r Y (6 r — 4)
+85U/r(4e* —Y\) + 16(e* + Y))), (B26)
uy = 256Gy (57, + 1)e? 2% (P + p)(rév +1)?, and (B27)
vo = AP + V%7 (16€% + Y1) + 264 rY (8 r — 4) + 86U/ r(4e* — Y))
+16(e? + 7). (B28)
We note that outside the star where P = p = 0 and the space-time is Schwarzschild—de Sitter we have
@'+~ =0, (B29)

which is the same equation one finds in GR [56].
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