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Spin coefficients and gauge fixing in the Newman-Penrose formalism
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Since its introduction in 1962, the Newman-Penrose formalism has been widely used in analytical and
numerical studies of Einstein’s equations, like for example for the Teukolsky master equation, or as a
powerful wave extraction tool in numerical relativity. Despite the many applications, Einstein’s equations
in the Newman-Penrose formalism appear complicated and not easily applicable to general studies of
spacetimes, mainly because physical and gauge degrees of freedom are mixed in a nontrivial way. In this
paper we approach the whole formalism with the goal of expressing the spin coefficients as functions of
tetrad invariants once a particular tetrad is chosen. We show that it is possible to do so, and give for the
first time a general recipe for the task, as well as an indication of the quantities and identities that are

required.
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I. INTRODUCTION

In 1962 Newman and Penrose [1] presented a new
tetrad approach to Einstein’s equations based on null
tetrad vectors. The relevant equations, namely the Bianchi
and Ricci identities were determined, together with an
alternative demonstration of the Goldberg-Sachs [2]
theorem and the study of the asymptotic behaviour of
the Riemann tensor for asymptotically flat spacetimes in
vacuum.

Since its introduction the Newman-Penrose (NP) for-
malism proved to be a powerful approach to Einstein’s
equations studied in several areas of general relativity. In
1973 Teukolsky [3] formulated his famous master equation
based on the NP formalism giving decoupled perturbation
equations for two Weyl scalars ¥, and ¥,. This strength-
ened the idea of these scalar fields being associated with
the gravitational waves degrees of freedom, respectively
ingoing and outgoing, a result that had been already
anticipated by Newman and Penrose in their seminal paper.

With the advent of numerical relativity the NP formalism
found another important application: a tool for gravitational
wave extraction in numerical simulations (for an exhaustive
review on wave extraction methods see [4]). Given its tight
association to the gravitational wave degrees of freedom
and its coordinate invariant properties, the calculation of ¥,
in a numerical grid seemed to be the most natural candidate
for a rigorous wave extraction methodology. However, the
freedom in the choice of tetrads constitutes a possible
source of undesired gauge effects, which led to a series of
papers on the topic aimed at finding the most rigorous
approach. The main motivation underlying these works was
to define a gauge invariant quantity associated with
gravitational waves. Beetle and Burko [5] published a
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paper in 2002 identifying a radiation scalar with interesting
properties for wave extraction, following a previous work
by Baker and Campanelli [6] which proposed that a certain
function of curvature invariants, the speciality index, could
be studied as an invariant measure of distortions of space-
times. These works were soon followed by a series of
papers in the field aiming to identify an optimal tetrad in
which to calculate ¥, (or ¥, for ingoing waves). This
special choice was named the “quasi-Kinnersley” tetrad
[7-10] because of its natural property of converging to the
Kinnersley tetrad [11] in the single black hole limit. This
tetrad was found to be part of a particular set of tetrads that
were dubbed “transverse” tetrads, namely those in which
¥, = ¥; = 0. Incidentally this definition corresponds to
the “canonical” frame previously introduced by Edgar,
Brans and Bonanos [12-14].

The concept of a quasi-Kinnersley tetrad has been
implemented in numerical simulations [15] and as a tool
to invariantly characterise numerically evolved spacetimes
[16]. However, its definition suffers from the indetermina-
tion of the spin/boost parameter. The reason is simple: the
Kinnersley tetrad for a Kerr black hole was derived by
imposing a specific condition on one spin coefficient,
namely ¢ = 0. In order to enforce this condition in a
numerical spacetime, i.e., for a generic Petrov type I
spacetime, one needs a well-defined expression for all
the spin coefficients in transverse frames. Some more
recent works [17] gave a first attempt to solve this problem,
however limited to the case of Petrov type D spacetimes.
The present paper solves the problem for a general Petrov
type I spacetime and gives a recipe to express all of the
spin coefficients as functions of tetrad invariants when
transverse tetrads are considered.

The possible applications of the results found in this
paper go well beyond the problem of wave extraction in
numerical relativity. For example, it can give new insights
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for numerical studies of Einstein’s equations using tetrad
approaches, for which there is already extensive literature,
see e.g. [18-21], as the problem of gauge fixing within
these approaches has not been faced in detail before. The
successes of numerical relativity [22—-24] together with the
recent exciting direct detection of gravitational waves [25],
operated by the Laser Interferometer Gravitational Wave
Observatory, now motivates the study of new and more
refined methodologies to obtain accurate gravitational
wave templates, and tetrad approaches are certainly among
those. Moreover, it can provide new ideas for solving open
problems in the generalisation of Einstein’s equations to
higher dimensions [26-29], like the study of perturbations 4
la Teukolsky [30,31].

The work presented here is to be considered the first of
two steps aimed at expressing all of the relevant quantities
in the NP formalism as functions of tetrad invariants, i.e.,
quantities that are not affected by any tetrad transforma-
tions and can be calculated in any coordinate system,
making them appealing for numerical calculations. The two
curvature invariants / and J are obvious examples of tetrad
invariant quantities. If all of the gauge degrees of freedom
are removed from a tetrad formalism, all of the remaining
relevant quantities must be functions of tetrad invariants.
Removing the gauge freedom in the NP formalism leads to
the main result of this paper given by Eq. (61) where the
spin coefficients are obtained as functions of the curvature
invariants V,I and V,J plus an additional tetrad invariant
vector S,,. The second step of our work will be presented in
a follow-up paper and will give a more rigorous character-
isation of the vector S, by studying in detail Eq. (49) which
is key to Eq. (61). The applications to numerical relativity
and to the problem of wave extraction will be discussed in
the conclusions.

The paper is organized as follows: In Sec. II the NP
formalism in transverse frames is presented. It is shown that
the Bianchi identities can be written in a compact way as
was already found by Bonanos [13]. The Bianchi identities
are however not enough to express all the spin coefficients
as functions of tetrad invariants. In order to find the missing
relations, in Sec. III an approach to the NP formalism based
on self-dual forms is introduced. In Sec. IV the curvature
will be analysed within the self-dual form approach, in
particular introducing the Laplacian of the self-dual Weyl
tensor. In Secs. V and VI it will be shown that the
information on the divergences of the Weyl tensor and
its Laplacian give a well-posed system to express all the
spin coefficients as functions of tetrad invariants. The
calculation will be then performed in Sec. VII where the
final expression for the spin coefficients will be given.
Finally the Petrov type D limit is presented in Sec. VIII to
prove the consistency of this new approach.

Throughout the paper a four-dimensional Lorentzian
manifold is considered where tensor components are labeled
with latin indices, and where V, is the standard covariant
derivative associated to the Levi-Civita connection.
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II. THE NP FORMALISM IN TRANSVERSE
TETRADS

A. Weyl scalars and curvature invariants

The relevant variables in the NP formalism are the Weyl
scalars representing the curvature and the spin coefficients
representing the connection. Weyl scalars are obtained by
contracting the Weyl tensor along different combinations of
the null tetrad vectors £¢, n¢, m* and m“, according to

Yy = —CpealmPem?, (1a)
W, = —Cpealntcm?, (1b)
W, = —Cpealmbmn?, (1c)
Wy = —C oy nintn, (1d)
W, = —Cpean®mPncimd. (le)

The tetrad vectors satisfy the contraction identities £“n, =
—1 and m“m, =1. The spin coefficients are twelve
complex scalar quantities that can be divided in the three
groups {p,u,7,x}, {1,0,v,«k} and {e,7,p,a}. It will be
shown in Sec. III B that each group can be expressed as
projections along the tetrad vectors of a suitable vector.
Each spin coefficient is associated with important features
of the tetrad vectors (see [32] for details), so for example if
the £* vector is geodesic, € = 0 guarantees that it is also
affinely parametrized, which is the main reason for impos-
ing this condition in the Kinnersley tetrad.

The relevant equations in the NP formalism are the Ricci
and Bianchi identities written in terms of Weyl scalars and
spin coefficients. Tetrad vectors can be gauged under the
Lorentz group of vector transformations. Given an alge-
braically general spacetime (Petrov type I), it is always
possible to choose a tetrad where the two Weyl scalars ¥,
and W5 vanish [33]. This tetrad is not unique, and a detailed
description of the properties of tetrads satisfying ¥; =
W5 =0 has been given in [8]. In particular, it has been
shown that there are three infinite sets of transverse tetrads
(transverse frames). W, and ¥, share the property of
converging to zero in all of the tetrads constituting one
the three different transverse frames; for this reason this
specific frame has been dubbed quasi-Kinnersley, because
it must include the Kinnersley tetrad [11] in the Petrov
type D limit.

What makes each frame an infinite number of tetrads is
the remaining choice of the spin/boost parameter that
leaves the condition ¥; = ¥; = 0 unchanged. A simple
additional condition that removes this degeneracy is
Yy = W¥,. Assuming that the quasi-Kinnersley frame is
considered, it is worth reminding that such a condition does
not correspond to the Kinnersley tetrad in the type D limit,
nevertheless it is an interesting condition due to its
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simplicity, and we will adopt it for the calculations in this
paper. This explains why we will be forced to reintroduce
the spin/boost parameter in Sec. VIII when we will
compare our results for the spin coefficients with the
already known values in the Kinnersley tetrad for a Kerr
spacetime.

Setting ¥, = ¥5; = 0 and ¥, = ¥, completely fixes the
tetrad up to vector exchanges £, <> n, and m, <> m, that
leave these conditions unaltered. This additional freedom
will not be removed in this work, but we will make sure that
only variables that are not affected by it are considered.

Under such assumptions, the only remaining degrees of
freedom in the Wey scalars are W, and W,,. Their expression is
given by ¥, = —2]—\@‘1J , and ¥y = —{W_, having defined

2aik _2mik

¥, =[(eT0+e 70, (2)

and © = \/3PI2, P =[] +/J* — (1/3)3]%. I and J are

the two curvature invariants defined as

1

I'=35Cle ,Crabed, (3a)
1 * wxcd «abef

J = 5z CineaC' oy €171, (3b)

and k is an integer number that spans the interval [0, 1, 2]
identifying the three different transverse frames (see [8] for
further details). In this study we consider the quasi-Kinnersley
frame, i.e., the only one in which W_ — 0 in the Petrov type D
limit. In Eq. (3) C;, ., is the self-dual form of the Weyl tensor
studied more in detail in Sec. III.

Eq. (2) shows that fixing completely the tetrad allows to
write the relevant remaining quantities as functions of
tetrad invariants. As the equation clearly states, this is true
for the Weyl scalars. The work of this paper aims at finding
an analogous result for the spin coefficients.

The curvature invariants / and J can be expressed in
terms of the Weyl scalars, and within the specific tetrad
choice considered here, they are given by

1

1= (%3 -¥2), (4a)
lIl+ 2 2
= —24ﬁ(qf+ +392), (4b)

An alternative expression for the curvature invariant J as a
function of / and © that will be used in Sec. VII is
J—-L (@16 (5)
=6/ .

Finally, it is useful to highlight an important function of
curvature invariants given by S = I’ — 27J7. This function
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plays an important role in the study of the Petrov type D
limit as it tends to zero for a Kerr spacetime. Such a
property becomes more evident when S is expressed as
function of / and ©, namely

13
4

S=-"(0 -0, (6)

and remembering that ® — 1 in the Kerr limit.
B. Bianchi identities

With the choice of transverse tetrad adopted here, the
Bianchi identities simplify to

DY, = iV/31¥_ - 3p¥,, (7a)
DY_ = —iV/3A¥, + (4¢ —p)¥_, (7b)
AY, = —iV36¥_ + 3u¥_, (7c)
AY_ = iV36¥, — (4y — p)¥_, (7d)
SY, = iV3LW_ - 3%, (7e)

SY_ = —iV3W, + (48 —1)¥_, (7f)
S, = —iV3k¥_ + 3%, (79)
SY_ = iV3kY, — (da—7)¥_, (7h)

having defined the directional derivatives D = £V,
A =n°vV, §=m*V, and & = m*V, along the tetrad
vectors.

Equation (7) shows that the Bianchi identities can be
considered as a linear system to obtain the spin coefficients
as functions of derivatives of the two tetrad invariants ¥,
and W_. Such a system is however underdetermined as it
consists of eight relations for twelve unknowns, a result that
was already found by Bonanos [13] in his paper on
integrability of the NP equations. This raises the question
whether it is possible to find other relations to close the
system. To answer this question, the NP formalism will be
presented in the next section using self-dual forms: this will
lead to major simplifications in the formalism and allow an
easier characterisation of the missing relations.

III. SELF-DUAL FORMS IN THE NP FORMALISM

A. Self-dual forms and gravitational field

As is well known (see for example [33]) it is possible to
introduce the following two-forms as functions of the NP
tetrad vectors

Zab = 2f[anb] - Zm[arhb], (88_)
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Zjb = ZK[amb], (Sb)
Z;b = 2n[aﬁ1b]. (80)

T, =, and X, are self-dual, ie., they satisfy the
condition X, =%€,,°"Z 4, €4pcq being the Levi-Civita
tensor, and can be thought as an alternative way of
expressing the gravitational field. The metric of the system

is given by
Yab = _fanb - nafb + mamb + mamb' (9)

Throughout this paper several calculations with contrac-
tions between X, X! and X, will appear. Such con-
tractions are just a consequence of the scalar products
among NP tetrad vectors and can be summarized by the
following set of relations:

Zaczcb = Yab> (103)

25h = -5t (10b)

22, =2, (10c)

Siesh =0, (10d)
+eoy— 1

Z:a Zch = 5 (gab - Zab)? (106)

X2, =0. (10f)

In particular, if the remaining free indices are also con-
tracted, the only nonvanishing relations are given by

Yaby = —4, 11a
ab

Thraby- = -2 (11b)
Hereafter we will refer to X,, X/, and X, as the
gravitational field self-dual forms.

B. Spin coefficients

The three groups of spin coefficients introduced in
Sec. II B can be expressed in a simplified way as projec-
tions of three fundamental vectors along the four tetrad
vectors. To do so, the covariant derivatives of the gravi-
tational field self-dual forms introduced in the previous
section will be considered:

Vazhc =2 (TLJZFZ;C - T;Z;c) (123)
VaZZC = —TaZ;C —TIZ,.. (12b)
V.2, =T % +T,%,., (12¢)
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where the vectors T, T} and T, are given by

T, = n’V,t, + mV,in,, (13a)
T+ = PV, m,, (13b)
T; = nbvaﬁ’lb. (13C)

The vectors T,, T} and T, constitute a compact way to
express the NP spin coefficients, as the latter can be derived
projecting the former along the tetrad vectors, resulting in
twelve independent scalars as expected. However, the
choice of T,, T} and T, is not the most suitable one to
write them as functions of tetrad invariants, which is the
main motivation underlying this work. This is because,
as already pointed out, the conditions ¥; = W53 = 0 and
Y, =Y, fix the tetrad up to the exchange operation
7% <> n? and m® < m“. Unfortunately the vectors intro-
duced in Eq. (13) are sensitive to the exchange operation
and transform according to

T,— -T,. (14a)
T - T, (14b)
T, - T}. (14c)

Being sensitive to a tetrad change that does not affect the
transverse conditions, they cannot be expressed as func-
tions of tetrad invariants. However, since the gravitational
field self-dual forms transform under the same exchange
operation as

Zuh g _Zub’ (153)
Zop = Zap (15b)
X, > X, (15¢)

it is possible to construct a set of three derived vectors,
namely

A, =3T3, T, (16a)
B, =X, Tt + 3, T, (16b)
C,=ZX,T°, (16c)

which are now invariant under the exchange transforma-
tion, thus representing good candidates to be expressed as
functions of tetrad invariants.The original NP spin coef-
ficients are then given simply as

064012-4



SPIN COEFFICIENTS AND GAUGE FIXING IN THE ...

p="7rA,, A= -C"B,, €= %K“CW
u=—-nA,, c=nB,, Y= —%n“C‘,,
T =m4A,, v=-m'B,, p= %m“Ca,
T =—-m'A,, Kk = m“B,, a= —%ﬁi“Ca.

Hereafter we will refer to the three vectors A,, B, and C,,
as connection vectors. With these definitions of the spin
coefficients, the Bianchi identities given in Eq. (7) can be
rewritten in the compact form

V¥, = —iV3¥_B, - 3A,%,, (17a)

V., ¥_ =iV3¥, B, + (2C, —A,)¥_.  (17b)

C. Quadratic self-dual forms and curvature

We now turn to the curvature, and identify the relevant
quantities for our study. To do so, a useful set quadratic
self-dual tensors is introduced:

Zozbcd = Zabzcdv (188')
Toved = ZapZea + ZapZoas (18b)
Toved = ZapZoa T XXl (18c)

Of the three tensors introduced in Eq. (18) one, namely
Tt . is trace-free, meaning that g"/=/," = 0. It is then
possible to construct a linear combination of the remaining
two that is also trace-free:

i“abcd = z:abcd - ZZ—b_cd' (19)

The tensors defined in Egs. (18) and (19) can be used as a
basis to express relevant four rank tensors in this approach.
The first tensor to be considered is the identity operator
Iabcd = i(gacgbd — Yad9bc + i€abcd) which is given in this
basis by

1 _
Lipea = — Z (Zabcd + 22;zi_bcd)' (20)

The next step is to consider the curvature tensor. As only
spacetimes in a vacuum are being considered here, the Weyl
tensor is the relevant quantity to define the curvature, its
self-dual version being

i X
Covea = Capea + Eeabefcefcd = 2Iabefcefcd' (21)

The tensor C;, ., can be projected along the basis of three

self-dual forms given in Eq. (8), as shown e.g. in [33]. In
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transverse frames, where ¥, = W5 = 0 and ¥, = ¥, this
leads to the following simple expression:

. Y, -
Cipea = W EHE  +—EZapea- (22)

V3

For reasons that will be clearer in the following sections,
it is also important to introduce a tensor that has a quadratic
dependence on the self-dual Weyl tensor. The most
convenient choice for this purpose was found to be the
Laplacian of the self-dual Weyl tensor defined as

DZbcd = vﬂvMCZbcd' (23)

In Sec. IV it will be shown that D7, ., can be rewritten in
an alternative way in which the quadratic dependence on
the self-dual Weyl tensor appears more evident.

The two tensors C),., and D7, . share the same
symmetries and are both trace-free. They will be exten-
sively used in the next sections.

IV. BIANCHI IDENTITIES IN THE
SELF-DUAL APPROACH

The Bianchi identities are given in vacuum by
v[acbc]de =0 (24)

Because of the symmetries of the Weyl tensor, Eq. (24)
holds also for its self-dual version. The properties of self-
dual tensors can be used to write an alternative expression
of Eq. (24), namely

i :
v[aCZc]de = _geabcfng*gfde =0, (25)

so writing the Bianchi identities as V|, CZC] 4o =0 or
V,C* .. = 0 is completely equivalent.

It is possible to use the properties of the Weyl tensor
described so far to find a useful alternative expression for
the tensor D7, , introduced in Eq. (23). This is achieved by
writing

DZbcd = 2Iabghlcdilveng*ehil’ (26)

where the Bianchi identities on the indices {e, g, h} have
been enforced. Given that the term V,V,C*¢;; is vanishing
thanks to the Bianchi identities, one can replace the double
covariant derivative in Eq. (26) with its antisymmetrized
version, yielding

D*

abc

d = 4Iabghlcdilv[evg] C*pir- (27)

Replacing the antisymmetrized derivative with the Weyl
tensor gives
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Diypea =1 'l CdilC:gth*efil
+21gb9hlcd”C;*g,-fC*ehﬂ. (28)

There are several ways to simplify Eq. (28): one is to
antisymmetrize in a suitable way the indices of the Weyl
tensors and then use the first type Bianchi identities. The
other way is to perform the calculation in transverse tetrads
using Eq. (22) together with the contraction identities in
Eq. (10). Both ways lead to the final result

3
5 Caves € car (29)

DZbcd 2

1611 ,pcq —
which shows explicitly the dependence of D7, , on the
quadratic self-dual Weyl tensor.

Eq. (29) can be thought of as the self-dual version of the
Penrose wave equation already introduced in [34] and
originally given by

vyvﬂcabcd = Cabefcefcd - 4Caef[cced]£' (30)

Several works have already analyzed interesting proper-
ties of this equation, in particular in [35] it was shown that
the Teukolsky equation can be derived from Eq. (30). Here
the tensor D7, . will be considered as a fundamental new
variable.

In transverse frames, given Egs. (29), (22), (20) and the
contraction identities in Eq. (10), the tensor D7, ., takes the
form

Dipeg = =20V3¥, W E00 + (W3 +¥2) 200 (31)

The tensor D7, , shares the same symmetries with the
Weyl tensor, and is also trace-free, allowing it to be
expressed in the basis of the two trace-free tensors X/,

and Zabcd'

V. CURVATURE AND QUADRATIC SELF-DUAL
FORMS IN TRANSVERSE FRAMES

In the previous two sections the self-dual form approach
to the NP formalism has been presented. In summary the
following variables have been introduced to replace the
more familiar NP variables:

(i) The self-dual forms ,,, X, and X7, as primary
variables to characterise the gravitational field in-
stead of the usual NP tetrad vectors.

(i) The vectors A,, B, and C, to identify the con-
nection, having shown that the twelve spin coef-
ficients are the projections of these vectors along the
tetrad vectors.

(iii) The self-dual Weyl tensor C7, , together with its
Laplacian D}, , projected onto a suitable basis of
quadratic self-dual forms.

PHYSICAL REVIEW D 95, 064012 (2017)

Given the trace-free properties of C7, , and D}, . it is
useful to introduce an alternative more convenient basis
of quadratic trace-free self-dual forms given by the two
tensors

Xhed = iﬂz;btd + Zped: (32a)

abcd - l\/—zabcd + i“abcd- (32b)

+ — . . . .
The tensors X, . and X7, , are just a linear combinations

of )t and ,.4; it is therefore possible to use them as a

basis for C7, , and D?, , using Eq. (22) and (31) (valid in
transverse tetrads) together with the definition of ¥, and
W_ given in Eq. (2). The result is given in matricial fonn by

( Cthd ) —-U ( Zjhcd) (33)
Djzbcd Z(;bcd

U <3—%1%®
21072

where

3R
o ) (34)
210?2

Equation (33) can of course be inverted to give the two
tensors Za*bcd and X7, , as functions of C, , and D7, .,

yielding
s e
(Z”_b“l) =U-! ( o ) (35)
abed abed
where
vl V3 < 2107 —3—%1%@—1> (36)
21(03 —073) \ —2/072 3P )

As the primary motivation of this work is its application
to numerical relativity, it is important to understand how the
quantities introduced here behave in the Petrov type D
limit, in particular making sure that they are well defined.
As already mentioned, the Kerr spacetime is obtained when
© — 1. The expressions for X}, , and X7, , seem to be
diverging in the limit if Eq. (35) is taken into account. This
is however not the case as C}, , and D}, , cease to be
independent in the limit. Using Eq. (33) one can show that

Dj;bcd(('-D - 1) - 2\/_12Cabcd (37)

Given the degeneracy in the limit, it is important to
understand what happens in its neighbourhood by expand-
ing in powers of (@ — ©®~') the tensor D%, _,. This is done
by writing

D*

abce

d ~ 2\/§I%C2bcd + (G) - 6_1)(1) Zbcd’ (38)
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where

Dthd - 2\/§I%C2bcd

oD¥, . .
abced — lim 5 ®_1

Ops, .= 5@ 6T~ um

(39)

That the tensor (V) D¥, ., is well defined can be proved by
using the expressions for C7, , and D}, , in transverse

tetrads given by Eq. (22) and Eq. (31). It is easy to show
that

. DZ cd — zﬁﬁcz c .
lim = d@ Sy bed — _6i/3ITHE . (40)

In other words, for ® — 1, ('D?, . is proportional to the
tensor X'.' in transverse tetrads, therefore it is well
defined.

Using Eq. (35), (38) and (39) we conclude that in the
Kerr limit the two tensors X, , and X7, , are given by

V3 1

Z;rbcd(@ - 1) - ECZbcd - a(l)DZbcdv (41a)
- \/§ * 1 *
Zahcd(G) - 1) - Ecahcd + a(Ul)abcd7 (41b)

where all the diverging terms have been removed.

VI. A SUITABLE EXPRESSION FOR THE
CONNECTION VECTORS

Having shown that the two tensor 19, and X794
constitute an optimal basis for the Weyl tensor and its
Laplacian, it is important to relate the connection vectors
A,, B, and C, to this basis. It is possible to do this by
calculating the divergences of X4, and X9, ., using the
derivative identities given in Eq. (12), yielding
VZH e = 2V3T,(SH 5 - X7 5,)

= (i3T5 +3T8) (F T + T 2,)
+ (iIV3T§ +3T2) (24 Zeq + 2 2,),
(42a)

Vg = =2iV3T, (219,25, — 274,37
+ (iV3Tg = 3T8) (T Teq + Z437,)
— (V3T = 3T) (21, 2y + 24 ZY,).
(42b)
Expressing the vectors T, T4 and T, as functions of A,
B, and C, using Eq. (16) and simplifying using the

contraction identities given in Eq. (10) leads to the final
result

PHYSICAL REVIEW D 95, 064012 (2017)
2+a 2+a
va( _abcd> _Pa< _abcd)’ (43)
) bed )2 bed

P_< 24, - C,
“ \A,+C,-iV3B,

where

A +C. +iV3B
at “+l\[“). (44)
24, -C,

It is evident from Eq. (43) that the divergences of the two
tensors X, , and X7, . identify uniquely the three con-
nection vectors, as these can be determined using the
components P!, P1> and P2 of the matrix P,, namely

1
Ay = (PLl+ P2 + Py, (45a)
i
B, = ——= (P - P2, 45b
5 \/g( ) (45D)
1
Co =5 (P' + Pi? = Pg)). (45¢)

As shown in Eq. (35), it is possible to obtain the tensors
Xt .,and 7, in transverse tetrads as a linear combination
of tetrad invariant quantities like the self-dual Weyl tensor
and its Laplacian. Having related the three connection
vectors to the divergences of £, , and X, , by means of
Egs. (43) and (45), in the next section we will combine the
two results and derive the connection vectors in transverse
tetrads as a linear combination of the divergences of C;, ,
and D7, ..

VII. CONNECTION VECTORS IN
TRANSVERSE TETRADS

The linear relation between the quadratic self-dual basis
given by X', - and X7, , and the two tensors C%, , and
D, ., given by Eq. (33) can be used to obtain a suitable
expression for the divergences of the latter. Using Eqs. (33),
(43) and (35) this leads to the result written in matricial

form as
C*a c C*a ¢
va( *abd>_Qa< *abd)’ (46)
D bed D bed

Q. =V, (U)-U!'+u-pP,- UL (47)

where

Because of the Bianchi identities V,C*,.;, =0, the
matrix Q, must take the form

w0 0)
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implying that the divergence of the tensor D}, , satisfies a
relation of the type

val)*ubcd = SaC*abcd + TaD*ubcd’ (49)

where the two vectors S, and 7, must be tetrad indepen-
dent, as they are relating tetrad invariants. It is possible to
calculate their expression by contracting Eq. (49) with the
tensors C:2“? and D3¢ and using the contraction identities
given in Eq. (10), yielding

8IS, — 144JT ,,

CZbcdv D*ebcd (508.)

Dz, V. Db = —144)S, + 961°T .. (50b)
The term in the left hand side of Eq. (50a) is easily
simplified by integrating by parts and applying the Bianchi
identities on V,C?, ,, the result being —48V ,J. The same
trick cannot be used for the left hand side of Eq. (50b).
Upon defining

1

R
“7 96

DV e D, (51)

the system in Eq. (50) can be inverted to give

1

S, =5 (-1, + 18IR,). (52a)

T,= é (=9JV J +1IR,), (52b)
where S is the scalar curvature invariant defined in Eq. (6).
Given that S — 0 in the Petrov type D limit, Eq. (52) may
appear to diverge in this case. However, analogously to
what was done in Sec. V for £, , and X, ,, it is possible
to verify that S, and 7, are well defined in the Kerr limit.

Equation (50a) can be rewritten in the alternative form

T,=-8,+V,In[B(© + 073, (53)

where the expression for the curvature invariant J given in
Eq. (5) has been used together with the identity

- I
S, = W&" (54)

Assuming that the vector S, is well defined in the Petrov
type D limit, Eq. (53) ensures that 7, is also well defined
when ® — 1, meaning that it is only necessary to check the
behavior of S,. For this purpose Eq. (52a) has to be
analyzed more in detail, and in particular the expression for
R Given that the scalar S in the denominator of Eq. (52a)
has a singular term W it is important that no terms of
zero and first order in (® — ®~") appear in the numerator.
Expanding R, as

PHYSICAL REVIEW D 95, 064012 (2017)

R, ~*RY +(©-0"RY +(©-0"12RY, (55)

and considering Eq. (38) to express the tensor D7, . 1n
powers of (@ — ®~1), it is possible to obtain the terms Ru
and Rgl) given by

(56a)

(56b)

The term RE,O) eliminates the other zero order term in

Eq. (52a), keeping in mind that in the Kerr limit J = -3 \/-,

as obtained from Eq. (5). We conclude that only terms of
power (© —®~1)? appear in the numerator of Eq. (52a),
thus ensuring that S, is well defined in the Petrov
type D limit.

Having found that S, and 7, can be given as functions of
tetrad invariants, and having verified that these functions are
well behaved in the Petrov type D limit, it is now possible to
obtain an alternative expression for the matrix P, defined in
Eq. (43) only using tetrad invariants. The procedure is
identical to the one adopted to obtain Eq. (46), just applied in
the opposite direction: Eq. (35) is the starting point to
express X, . and X,  as functions of C*, , and D%, .,
then Eq. (46) to eliminate the divergences of the Weyl tensor
and its Laplacian, and finally Eq. (33) to rewrite everything
in function of £,  and X7, . The result is

P,=V,(UhH.-U+U'.Q,- L. (57)
Written explicitly in components, the matrix P, is
given by
Pl PP
P, - (Pgl P§2>, (58)
where
11 12
P, = —3 [S, + V,In(IK)], (59a)
12 _ Sl 2
P, T[S +V,In (0°K)], (59b)
0% -
P2 = > [S, + V,In (072K)], (59¢)
1 -
P2 = -5 (S, + V,In (IK)], (59d)
and
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3 @3
K= & (60)
(@ +073):

As expected from Eq. (44), the two components P! and
P22 coincide.

Putting together Eqs. (45), (58) and (59) gives the final
expression for the connection vectors in transverse tetrads:

Ex - K\l 1
Aa_ﬁ{sa_;-valn(a)] —gvalnl, (61a)
i€p [+ K
B, =2 |5 1v 1 , 61b
i)l e
A K\ 1
C, = < {Sa+va1n(gc>} +6Va1n1. (61c)

where £, = (0 -071)2, £, =0’ -072 and £ = O+
02 +1.

This completes the demonstration and shows that it is
possible to fix all the spin coefficients in the NP formalism
once the tetrad is unambiguously chosen. The additional
information on the divergence of a quadratic function of the
self-dual Weyl tensor was found to be crucial to solve the
system. It was shown that such a quantity naturally
introduces a third tetrad invariant vector (S,) that is
independent of the derivatives of the two curvature invar-
iants / and J. A more detailed study of the properties of S,
and of Eq. (49) using a coordinate based approach will be
given in a follow-up paper.

VIII. THE KERR LIMIT

An important aspect of our study is to verify how the
results found behave in the single black hole limit. The
value of the spin coefficients in the Kerr spacetime is well
known using the Kinnersley tetrad. As already mentioned
in Sec. Il A, we expect a spin/boost transformation between
the tetrad studied in this work and the Kinnersley tetrad in
the Petrov type D limit. Fortunately, as will be shown here,
only the connection vector C, is affected by this additional
spin/boost transformation.

Using Eq. (61) it is easy to show that for ® — 1 the
connection vectors are given by

1
Aa = —gva In/ (623.)
B, =0, (62b)
1
Cu = gva In/ + Z(u (62(:)

where Z, = % (S’a + V,InK) in the Petrov type D limit. It
is worth noticing that the vector V,InK is equal to
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V,In(® —07!) in the limit, therefore undefined at first
sight. That this term is indeed well defined and not
diverging in the Kerr limit is proved by the value of all
the spin coefficients already known in the Kinnersley
tetrad, having already shown that S, is also well defined.
This is however a point that requires further understanding.
By means of the equations studied so far, namely the
Bianchi identities and Eq. (49), it is not possible to gain
more information on this term, especially for what concerns
its Petrov type D limit. However, other equations have to be
considered within this simplified approach to have a
complete picture, like for example the Ricci identities.
We expect that a full understanding of all the equations that
play a relevant role in the formalism will help clarify this
specific point too. This is the subject of future work.

Some known results follow in a straightforward manner
from Eq. (62). For example, the Goldberg-Sachs theorem
[2] (or, more precisely, a corollary of it applied to type D
spacetimes) is summarized by Eq. (62b), implying that the
spin coefficients A, o, v and k vanish in the limit, which is
exactly what the theorem states. Any spin/boost trans-
formation does not alter this result which must continue to
hold in the Kinnersley tetrad as expected.

The next step is to verify Eq. (62) and the corresponding
spin coefficients. To do so, we consider the explicit
expression of the metric of a Kerr spacetime using
Boyer-Lindquist coordinates, i.e.,

2Mr 4AMarsin?6 >
I 2 =\ g2
ds® = (1 S )dl‘ + ( 3 )dtdgb—l— (F>dr

2 + a% + 2Marsin%6
b

+ 2d0* + sin2¢9< >d(/)2, (63)

where I' = r> —2Mr + a® (in the usual notation this
quantity is referred to as A, but here we changed notation
to avoid confusion with the derivative operator A),
=12+ a?cos?d, M is the black hole mass and a its
rotation parameter.

The expression for the Kinnersley tetrad vectors is

o = [-(r* +a*)/T,1,0,a/T], (64a)
nt = [—r2 —-a%,-T,0, al/(2%), (64b)
mt = [—iasin®,0,1,i/sind] - p*/V2,  (64c)
where p* = m
The curvature invariant / is given by
fo_ M (65)

(r—iacos)®’

Given Egs. (62) and (65), the components of the
connection vector A, are given by
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A, = 1 iasin@

> £ . N . 66
r—iacos@ r—iacos@ (66)

It is possible to show from Eq. (16) that a spin/boost
transformation does not affect the vector A,, therefore the
projection of A, along the four null vectors must give the
spin coefficients p, y, 7, and 7 as obtained in the Kinnersley
tetrad. A simple calculation yields

1 pl’

P Ziacoso’ =
_iapp*sin@ _ iap*sin@
T = \/z s T = — \/i 5

in agreement with the known values in the Kinnersley
tetrad.

The final calculation for the vector C,, is slightly more
complicated as this is the only vector that is affected by spin/
boost transformations. A spin/boost rotation with complex
parameter 3 affects the spin coefficients associated to C,, as

e:%f%Ca—VamBL (67a)
y:—%n%C¢+VamBL (67b)
ﬂ:%m%Ca—VamBL (67¢)
a= —%m”(Ca +V,InB). (67d)

The Kinnersley tetrad corresponds to € =0, giving the
condition for B,

£V, InB = £9C,. (68)

This condition only fixes the radial components of the
gradient of B as the vector £ only has nonvanishing
components along the ¢t and r direction, the ¢ direction
giving no contribution because of the stationarity of the
spacetime. If we considered Eq. (68) as a general identity
valid along all null vectors, i.e.,V,In 5 = C,, we would end
up with the spin coefficient f = 0. This is not the case, given
that the expression for £ in the Kinnersley tetrad is given by

p*cotl
2v2
Equation (69) is a clear sign that there is an additional
contribution to V, In B along the @ direction. It is very easy

to calculate this additional contribution from the expression
of f, leading to the final result,

p= (69)

V,nB=C,+V,Insin0. (70)

Having determined the spin/boost parameter, we can
substitute it into the remaining Egs. (67b) and (67d) to find
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their expression in the Kinnersley tetrad using Eq. (62c¢),
yielding

y=—u—-nZ,, (71a)

a=-n+p—mZ,. (71b)
Equation (71) must be compared with the values for y and «
in the Kinnersley tetrad given by

1
y=u+ En“Va InT, (72a)

a=rn-p". (72b)
We find that Eq. (72) is compatible with Eq. (71) if the
vector Z, is given by

Z, =—-V,In ([ sin ). (73)

Combining Eq. (73) with Eq. (62c) gives the actual value
of the C, vector in the Kerr limit:

C, ==V, In([[ssin0), (74)

while the spin/boost parameter B, using Eq. (70), is
given by

B = Byl l, (75)

with B, being an integration constant. Equation (75) is in
agreement with the result already found in [17] using a
slightly different approach. With a well defined expression
for the vector S, in a general Petrov type I spacetime, one
could have enforced the condition ¢ = 0 to obtain the spin/
boost parameter between the tetrad considered in this paper
and the quasi-Kinnersley tetrad. Lacking such an expres-
sion, we were only able to obtain S, by comparing the
values of the spin coefficients in the Petrov type D limit. As
a consequence of this, the spin/boost parameter that was
found depends on functions that are only defined in the
limit, like I', whose numerical implementation is compli-
cated, because they are defined in a specific coordinate
system. A follow-up paper will fill this gap and give a
general expression for S, by studying Eq. (49) in detail
using a standard coordinate based approach.

IX. CONCLUSIONS

Many years after its introduction, the Newman-Penrose
formalism continues to be employed in many applications
of Einstein’s equations, and its use is widely spread in the
fields of theoretical and numerical relativity. A certain
number of questions are nevertheless still open, in particu-
lar the possibility to simplify the formalism by removing all
of the gauge degrees of freedom and express all of the
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remaining quantities as functions of tetrad invariants. This
is certainly possible for the Weyl scalars as pointed out in
[14] and shown in Eq. (2) of this paper, but no equivalent
result for the spin coefficients was known, although a
similar argument must hold.

Motivated by this, the aim of this paper was to prove that
it is indeed possible to fix all of the spin coefficients as
functions of tetrad invariants once the gauge freedom has
been completely removed. While previous works had
already shown that the Bianchi identities could fix eight
of the twelve spin coefficients, the question on how to fix
the remaining four remained unanswered. Here it was
found that the divergence of the Laplacian of the Weyl
tensor, or more generally of a quadratic function of the
Weyl tensor, is crucial to give the missing information, as it
must satisfy a relation of the type

vaD*abcd = SaC*abcd + TaD*abcdv (76)

which uniquely identifies a third tetrad invariant vector (S,)
that cannot be obtained from the derivatives of the two
curvature invariants / and J. While it was possible to
identify this additional vector and relate the spin coeffi-
cients to it, a general expression for S, is still lacking, and
in particular, it is not yet known whether S, can be
expressed as the gradient of a third tetrad invariant scalar
function.

As Eq. (76) relates tetrad invariant quantities, it can be
obtained using standard coordinate based approaches. We
will explore this alternative approach in a forthcoming
paper, aiming to derive a general expression for the
vector S,,.

So how is this all relevant to numerical relativity? The
answer is simple: with a well defined expression for S, in a

PHYSICAL REVIEW D 95, 064012 (2017)

tetrad with ¥; = W3 =0 and ¥, = ¥,, it is possible to
enforce the condition € = 0 to find the spin/boost parameter
B between this tetrad and the quasi-Kinnersley tetrad. This
last information will allow us to write W, in the right quasi-
Kinnersley tetrad as

132
Pk — _iBy (77)
2
In other words it will be possible to have a scalar quantity
written as function of tetrad invariants and defined in a
general Petrov type I spacetime that naturally converges
to the specific ¥, studied in the perturbative regime
(Teukolsky equation) when the spacetime converges to
Kerr, making it an fundamental gauge invariant quantity for
numerical relativity and gravitational wave extraction.
Besides the numerical applications which constitute the
main motivation of this work, it is stressed here that this
methodology has great potentialities for a deeper under-
standing of tetrad approaches to Einstein’s equations, as the
number of relevant variables is reduced drastically. For this
reason, having already given a simplified expression for the
Bianchi identities [Eq. (17)], future work will focus on
studying the properties of the Ricci identities within this
same approach, thereby completing the picture of relevant
equations.
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