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Since its introduction in 1962, the Newman-Penrose formalism has been widely used in analytical and
numerical studies of Einstein’s equations, like for example for the Teukolsky master equation, or as a
powerful wave extraction tool in numerical relativity. Despite the many applications, Einstein’s equations
in the Newman-Penrose formalism appear complicated and not easily applicable to general studies of
spacetimes, mainly because physical and gauge degrees of freedom are mixed in a nontrivial way. In this
paper we approach the whole formalism with the goal of expressing the spin coefficients as functions of
tetrad invariants once a particular tetrad is chosen. We show that it is possible to do so, and give for the
first time a general recipe for the task, as well as an indication of the quantities and identities that are
required.
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I. INTRODUCTION

In 1962 Newman and Penrose [1] presented a new
tetrad approach to Einstein’s equations based on null
tetrad vectors. The relevant equations, namely the Bianchi
and Ricci identities were determined, together with an
alternative demonstration of the Goldberg-Sachs [2]
theorem and the study of the asymptotic behaviour of
the Riemann tensor for asymptotically flat spacetimes in
vacuum.
Since its introduction the Newman-Penrose (NP) for-

malism proved to be a powerful approach to Einstein’s
equations studied in several areas of general relativity. In
1973 Teukolsky [3] formulated his famous master equation
based on the NP formalism giving decoupled perturbation
equations for two Weyl scalars Ψ0 and Ψ4. This strength-
ened the idea of these scalar fields being associated with
the gravitational waves degrees of freedom, respectively
ingoing and outgoing, a result that had been already
anticipated by Newman and Penrose in their seminal paper.
With the advent of numerical relativity the NP formalism

found another important application: a tool for gravitational
wave extraction in numerical simulations (for an exhaustive
review on wave extraction methods see [4]). Given its tight
association to the gravitational wave degrees of freedom
and its coordinate invariant properties, the calculation ofΨ4

in a numerical grid seemed to be the most natural candidate
for a rigorous wave extraction methodology. However, the
freedom in the choice of tetrads constitutes a possible
source of undesired gauge effects, which led to a series of
papers on the topic aimed at finding the most rigorous
approach. The main motivation underlying these works was
to define a gauge invariant quantity associated with
gravitational waves. Beetle and Burko [5] published a

paper in 2002 identifying a radiation scalar with interesting
properties for wave extraction, following a previous work
by Baker and Campanelli [6] which proposed that a certain
function of curvature invariants, the speciality index, could
be studied as an invariant measure of distortions of space-
times. These works were soon followed by a series of
papers in the field aiming to identify an optimal tetrad in
which to calculate Ψ4 (or Ψ0 for ingoing waves). This
special choice was named the “quasi-Kinnersley” tetrad
[7–10] because of its natural property of converging to the
Kinnersley tetrad [11] in the single black hole limit. This
tetrad was found to be part of a particular set of tetrads that
were dubbed “transverse” tetrads, namely those in which
Ψ1 ¼ Ψ3 ¼ 0. Incidentally this definition corresponds to
the “canonical” frame previously introduced by Edgar,
Brans and Bonanos [12–14].
The concept of a quasi-Kinnersley tetrad has been

implemented in numerical simulations [15] and as a tool
to invariantly characterise numerically evolved spacetimes
[16]. However, its definition suffers from the indetermina-
tion of the spin/boost parameter. The reason is simple: the
Kinnersley tetrad for a Kerr black hole was derived by
imposing a specific condition on one spin coefficient,
namely ϵ ¼ 0. In order to enforce this condition in a
numerical spacetime, i.e., for a generic Petrov type I
spacetime, one needs a well-defined expression for all
the spin coefficients in transverse frames. Some more
recent works [17] gave a first attempt to solve this problem,
however limited to the case of Petrov type D spacetimes.
The present paper solves the problem for a general Petrov
type I spacetime and gives a recipe to express all of the
spin coefficients as functions of tetrad invariants when
transverse tetrads are considered.
The possible applications of the results found in this

paper go well beyond the problem of wave extraction in
numerical relativity. For example, it can give new insights*andrea.nerozzi@ist.utl.pt
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for numerical studies of Einstein’s equations using tetrad
approaches, for which there is already extensive literature,
see e.g. [18–21], as the problem of gauge fixing within
these approaches has not been faced in detail before. The
successes of numerical relativity [22–24] together with the
recent exciting direct detection of gravitational waves [25],
operated by the Laser Interferometer Gravitational Wave
Observatory, now motivates the study of new and more
refined methodologies to obtain accurate gravitational
wave templates, and tetrad approaches are certainly among
those. Moreover, it can provide new ideas for solving open
problems in the generalisation of Einstein’s equations to
higher dimensions [26–29], like the study of perturbations á
la Teukolsky [30,31].
The work presented here is to be considered the first of

two steps aimed at expressing all of the relevant quantities
in the NP formalism as functions of tetrad invariants, i.e.,
quantities that are not affected by any tetrad transforma-
tions and can be calculated in any coordinate system,
making them appealing for numerical calculations. The two
curvature invariants I and J are obvious examples of tetrad
invariant quantities. If all of the gauge degrees of freedom
are removed from a tetrad formalism, all of the remaining
relevant quantities must be functions of tetrad invariants.
Removing the gauge freedom in the NP formalism leads to
the main result of this paper given by Eq. (61) where the
spin coefficients are obtained as functions of the curvature
invariants ∇aI and ∇aJ plus an additional tetrad invariant
vector Sa. The second step of our work will be presented in
a follow-up paper and will give a more rigorous character-
isation of the vector Sa by studying in detail Eq. (49) which
is key to Eq. (61). The applications to numerical relativity
and to the problem of wave extraction will be discussed in
the conclusions.
The paper is organized as follows: In Sec. II the NP

formalism in transverse frames is presented. It is shown that
the Bianchi identities can be written in a compact way as
was already found by Bonanos [13]. The Bianchi identities
are however not enough to express all the spin coefficients
as functions of tetrad invariants. In order to find the missing
relations, in Sec. III an approach to the NP formalism based
on self-dual forms is introduced. In Sec. IV the curvature
will be analysed within the self-dual form approach, in
particular introducing the Laplacian of the self-dual Weyl
tensor. In Secs. V and VI it will be shown that the
information on the divergences of the Weyl tensor and
its Laplacian give a well-posed system to express all the
spin coefficients as functions of tetrad invariants. The
calculation will be then performed in Sec. VII where the
final expression for the spin coefficients will be given.
Finally the Petrov type D limit is presented in Sec. VIII to
prove the consistency of this new approach.
Throughout the paper a four-dimensional Lorentzian

manifold is consideredwhere tensor components are labeled
with latin indices, and where ∇a is the standard covariant
derivative associated to the Levi-Civita connection.

II. THE NP FORMALISM IN TRANSVERSE
TETRADS

A. Weyl scalars and curvature invariants

The relevant variables in the NP formalism are the Weyl
scalars representing the curvature and the spin coefficients
representing the connection. Weyl scalars are obtained by
contracting the Weyl tensor along different combinations of
the null tetrad vectors la, na, ma and m̄a, according to

Ψ0 ¼ −Cabcdlamblcmd; ð1aÞ

Ψ1 ¼ −Cabcdlanblcmd; ð1bÞ

Ψ2 ¼ −Cabcdlambm̄cnd; ð1cÞ

Ψ3 ¼ −Cabcdlanbm̄cnd; ð1dÞ

Ψ4 ¼ −Cabcdnam̄bncm̄d: ð1eÞ

The tetrad vectors satisfy the contraction identities lana ¼
−1 and mam̄a ¼ 1. The spin coefficients are twelve
complex scalar quantities that can be divided in the three
groups fρ; μ; τ; πg, fλ; σ; ν; κg and fϵ; γ; β; αg. It will be
shown in Sec. III B that each group can be expressed as
projections along the tetrad vectors of a suitable vector.
Each spin coefficient is associated with important features
of the tetrad vectors (see [32] for details), so for example if
the la vector is geodesic, ϵ ¼ 0 guarantees that it is also
affinely parametrized, which is the main reason for impos-
ing this condition in the Kinnersley tetrad.
The relevant equations in the NP formalism are the Ricci

and Bianchi identities written in terms of Weyl scalars and
spin coefficients. Tetrad vectors can be gauged under the
Lorentz group of vector transformations. Given an alge-
braically general spacetime (Petrov type I), it is always
possible to choose a tetrad where the two Weyl scalars Ψ1

andΨ3 vanish [33]. This tetrad is not unique, and a detailed
description of the properties of tetrads satisfying Ψ1 ¼
Ψ3 ¼ 0 has been given in [8]. In particular, it has been
shown that there are three infinite sets of transverse tetrads
(transverse frames). Ψ0 and Ψ4 share the property of
converging to zero in all of the tetrads constituting one
the three different transverse frames; for this reason this
specific frame has been dubbed quasi-Kinnersley, because
it must include the Kinnersley tetrad [11] in the Petrov
type D limit.
What makes each frame an infinite number of tetrads is

the remaining choice of the spin/boost parameter that
leaves the condition Ψ1 ¼ Ψ3 ¼ 0 unchanged. A simple
additional condition that removes this degeneracy is
Ψ0 ¼ Ψ4. Assuming that the quasi-Kinnersley frame is
considered, it is worth reminding that such a condition does
not correspond to the Kinnersley tetrad in the type D limit,
nevertheless it is an interesting condition due to its
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simplicity, and we will adopt it for the calculations in this
paper. This explains why we will be forced to reintroduce
the spin/boost parameter in Sec. VIII when we will
compare our results for the spin coefficients with the
already known values in the Kinnersley tetrad for a Kerr
spacetime.
Setting Ψ1 ¼ Ψ3 ¼ 0 and Ψ0 ¼ Ψ4 completely fixes the

tetrad up to vector exchanges la ↔ na and ma ↔ m̄a that
leave these conditions unaltered. This additional freedom
will not be removed in this work, but we will make sure that
only variables that are not affected by it are considered.
Under such assumptions, the only remaining degrees of

freedom in theWey scalars areΨ2 andΨ4. Their expression is
given by Ψ2 ¼ − 1

2
ffiffi
3

p Ψþ and Ψ4 ¼ − i
2
Ψ−, having defined

Ψ� ¼ I
1
2ðe2πik

3 Θ� e−
2πik
3 Θ−1Þ; ð2Þ

and Θ ¼ ffiffiffi
3

p
PI−

1
2, P ¼ ½−J þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − ðI=3Þ3

p
�13. I and J are

the two curvature invariants defined as

I ¼ 1

32
C�
abcdC

�abcd; ð3aÞ

J ¼ 1

384
C�
abcdC

�cd
efC�abef; ð3bÞ

and k is an integer number that spans the interval [0, 1, 2]
identifying the three different transverse frames (see [8] for
further details). In this studywe consider thequasi-Kinnersley
frame, i.e., the only one inwhichΨ− → 0 in the Petrov typeD
limit. In Eq. (3)C�

abcd is the self-dual form of theWeyl tensor
studied more in detail in Sec. III.
Eq. (2) shows that fixing completely the tetrad allows to

write the relevant remaining quantities as functions of
tetrad invariants. As the equation clearly states, this is true
for the Weyl scalars. The work of this paper aims at finding
an analogous result for the spin coefficients.
The curvature invariants I and J can be expressed in

terms of the Weyl scalars, and within the specific tetrad
choice considered here, they are given by

I ¼ 1

4
ðΨ2þ − Ψ2

−Þ; ð4aÞ

J ¼ −
Ψþ
24

ffiffiffi
3

p ðΨ2þ þ 3Ψ2
−Þ: ð4bÞ

An alternative expression for the curvature invariant J as a
function of I and Θ that will be used in Sec. VII is

J ¼ −
I
3
2

6
ffiffiffi
3

p ðΘ3 þ Θ−3Þ: ð5Þ

Finally, it is useful to highlight an important function of
curvature invariants given by S ¼ I3 − 27J2. This function

plays an important role in the study of the Petrov type D
limit as it tends to zero for a Kerr spacetime. Such a
property becomes more evident when S is expressed as
function of I and Θ, namely

S ¼ −
I3

4
ðΘ3 − Θ−3Þ2; ð6Þ

and remembering that Θ → 1 in the Kerr limit.

B. Bianchi identities

With the choice of transverse tetrad adopted here, the
Bianchi identities simplify to

DΨþ ¼ i
ffiffiffi
3

p
λΨ− − 3ρΨþ; ð7aÞ

DΨ− ¼ −i
ffiffiffi
3

p
λΨþ þ ð4ϵ − ρÞΨ−; ð7bÞ

ΔΨþ ¼ −i
ffiffiffi
3

p
σΨ− þ 3μΨþ; ð7cÞ

ΔΨ− ¼ i
ffiffiffi
3

p
σΨþ − ð4γ − μÞΨ−; ð7dÞ

δΨþ ¼ i
ffiffiffi
3

p
νΨ− − 3τΨþ; ð7eÞ

δΨ− ¼ −i
ffiffiffi
3

p
νΨþ þ ð4β − τÞΨ−; ð7fÞ

δ�Ψþ ¼ −i
ffiffiffi
3

p
κΨ− þ 3πΨþ; ð7gÞ

δ�Ψ− ¼ i
ffiffiffi
3

p
κΨþ − ð4α − πÞΨ−; ð7hÞ

having defined the directional derivatives D ¼ la∇a,
Δ ¼ na∇a, δ ¼ ma∇a and δ� ¼ m̄a∇a along the tetrad
vectors.
Equation (7) shows that the Bianchi identities can be

considered as a linear system to obtain the spin coefficients
as functions of derivatives of the two tetrad invariants Ψþ
and Ψ−. Such a system is however underdetermined as it
consists of eight relations for twelve unknowns, a result that
was already found by Bonanos [13] in his paper on
integrability of the NP equations. This raises the question
whether it is possible to find other relations to close the
system. To answer this question, the NP formalism will be
presented in the next section using self-dual forms: this will
lead to major simplifications in the formalism and allow an
easier characterisation of the missing relations.

III. SELF-DUAL FORMS IN THE NP FORMALISM

A. Self-dual forms and gravitational field

As is well known (see for example [33]) it is possible to
introduce the following two-forms as functions of the NP
tetrad vectors

Σab ¼ 2l½anb� − 2m½am̄b�; ð8aÞ
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Σþ
ab ¼ 2l½amb�; ð8bÞ

Σ−
ab ¼ 2n½am̄b�: ð8cÞ

Σab, Σþ
ab and Σ−

ab are self-dual, i.e., they satisfy the
condition Σab ¼ i

2
ϵab

cdΣcd, ϵabcd being the Levi-Civita
tensor, and can be thought as an alternative way of
expressing the gravitational field. The metric of the system
is given by

gab ¼ −lanb − nalb þmam̄b þ m̄amb: ð9Þ

Throughout this paper several calculations with contrac-
tions between Σab, Σþ

ab and Σ−
ab will appear. Such con-

tractions are just a consequence of the scalar products
among NP tetrad vectors and can be summarized by the
following set of relations:

Σa
cΣcb ¼ gab; ð10aÞ

Σa
cΣþ

cb ¼ −Σþ
ab; ð10bÞ

Σa
cΣ−

cb ¼ Σ−
ab; ð10cÞ

Σþ
a
cΣþ

cb ¼ 0; ð10dÞ

Σþ
a
cΣ−

cb ¼
1

2
ðgab − ΣabÞ; ð10eÞ

Σ−
a
cΣ−

cb ¼ 0: ð10fÞ

In particular, if the remaining free indices are also con-
tracted, the only nonvanishing relations are given by

ΣabΣab ¼ −4; ð11aÞ

ΣþabΣ−
ab ¼ −2: ð11bÞ

Hereafter we will refer to Σab, Σþ
ab and Σ−

ab as the
gravitational field self-dual forms.

B. Spin coefficients

The three groups of spin coefficients introduced in
Sec. II B can be expressed in a simplified way as projec-
tions of three fundamental vectors along the four tetrad
vectors. To do so, the covariant derivatives of the gravi-
tational field self-dual forms introduced in the previous
section will be considered:

∇aΣbc ¼ 2 · ðTþ
a Σ−

bc − T−
aΣþ

bcÞ ð12aÞ

∇aΣþ
bc ¼ −TaΣþ

bc − Tþ
a Σbc; ð12bÞ

∇aΣ−
bc ¼ T−

aΣbc þ TaΣ−
bc; ð12cÞ

where the vectors Ta, Tþ
a and T−

a are given by

Ta ¼ nb∇alb þmb∇am̄b; ð13aÞ

Tþ
a ¼ lb∇amb; ð13bÞ

T−
a ¼ nb∇am̄b: ð13cÞ

The vectors Ta, Tþ
a and T−

a constitute a compact way to
express the NP spin coefficients, as the latter can be derived
projecting the former along the tetrad vectors, resulting in
twelve independent scalars as expected. However, the
choice of Ta, Tþ

a and T−
a is not the most suitable one to

write them as functions of tetrad invariants, which is the
main motivation underlying this work. This is because,
as already pointed out, the conditions Ψ1 ¼ Ψ3 ¼ 0 and
Ψ0 ¼ Ψ4 fix the tetrad up to the exchange operation
la ↔ na and ma ↔ m̄a. Unfortunately the vectors intro-
duced in Eq. (13) are sensitive to the exchange operation
and transform according to

Ta → −Ta; ð14aÞ

Tþ
a → T−

a ; ð14bÞ

T−
a → Tþ

a : ð14cÞ

Being sensitive to a tetrad change that does not affect the
transverse conditions, they cannot be expressed as func-
tions of tetrad invariants. However, since the gravitational
field self-dual forms transform under the same exchange
operation as

Σab → −Σab; ð15aÞ

Σþ
ab → Σ−

ab; ð15bÞ

Σ−
ab → Σþ

ab; ð15cÞ

it is possible to construct a set of three derived vectors,
namely

Aa ¼ Σþ
abT

−b þ Σ−
abT

þb; ð16aÞ

Ba ¼ Σþ
abT

þb þ Σ−
abT

−b; ð16bÞ

Ca ¼ ΣabTb; ð16cÞ

which are now invariant under the exchange transforma-
tion, thus representing good candidates to be expressed as
functions of tetrad invariants.The original NP spin coef-
ficients are then given simply as
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ρ ¼ laAa; λ ¼ −laBa; ϵ ¼ 1

2
laCa;

μ ¼ −naAa; σ ¼ naBa; γ ¼ −
1

2
naCa;

τ ¼ maAa; ν ¼ −maBa; β ¼ 1

2
maCa;

π ¼ −m̄aAa; κ ¼ m̄aBa; α ¼ −
1

2
m̄aCa:

Hereafter we will refer to the three vectors Aa, Ba and Ca
as connection vectors. With these definitions of the spin
coefficients, the Bianchi identities given in Eq. (7) can be
rewritten in the compact form

∇aΨþ ¼ −i
ffiffiffi
3

p
Ψ−Ba − 3AaΨþ; ð17aÞ

∇aΨ− ¼ i
ffiffiffi
3

p
ΨþBa þ ð2Ca − AaÞΨ−: ð17bÞ

C. Quadratic self-dual forms and curvature

We now turn to the curvature, and identify the relevant
quantities for our study. To do so, a useful set quadratic
self-dual tensors is introduced:

Σabcd ¼ ΣabΣcd; ð18aÞ

Σþþ
abcd ¼ Σþ

abΣ
þ
cd þ Σ−

abΣ−
cd; ð18bÞ

Σþ−
abcd ¼ Σþ

abΣ−
cd þ Σ−

abΣ
þ
cd: ð18cÞ

Of the three tensors introduced in Eq. (18) one, namely
Σþþ
abcd, is trace-free, meaning that gbdΣþþ

abcd ¼ 0. It is then
possible to construct a linear combination of the remaining
two that is also trace-free:

~Σabcd ¼ Σabcd − Σþ−
abcd: ð19Þ

The tensors defined in Eqs. (18) and (19) can be used as a
basis to express relevant four rank tensors in this approach.
The first tensor to be considered is the identity operator
Iabcd ¼ 1

4
ðgacgbd − gadgbc þ iϵabcdÞ which is given in this

basis by

Iabcd ¼ −
1

4
ðΣabcd þ 2Σþ−

abcdÞ: ð20Þ

The next step is to consider the curvature tensor. As only
spacetimes in a vacuum are being considered here, theWeyl
tensor is the relevant quantity to define the curvature, its
self-dual version being

C�
abcd ¼ Cabcd þ

i
2
ϵab

efCefcd ¼ 2IabefCefcd: ð21Þ

The tensorC�
abcd can be projected along the basis of three

self-dual forms given in Eq. (8), as shown e.g. in [33]. In

transverse frames, where Ψ1 ¼ Ψ3 ¼ 0 and Ψ0 ¼ Ψ4, this
leads to the following simple expression:

C�
abcd ¼ iΨ−Σþþ

abcd þ
Ψþffiffiffi
3

p ~Σabcd: ð22Þ

For reasons that will be clearer in the following sections,
it is also important to introduce a tensor that has a quadratic
dependence on the self-dual Weyl tensor. The most
convenient choice for this purpose was found to be the
Laplacian of the self-dual Weyl tensor defined as

D�
abcd ¼ ∇μ∇μC�

abcd: ð23Þ

In Sec. IV it will be shown that D�
abcd can be rewritten in

an alternative way in which the quadratic dependence on
the self-dual Weyl tensor appears more evident.
The two tensors C�

abcd and D�
abcd share the same

symmetries and are both trace-free. They will be exten-
sively used in the next sections.

IV. BIANCHI IDENTITIES IN THE
SELF-DUAL APPROACH

The Bianchi identities are given in vacuum by

∇½aCbc�de ¼ 0 ð24Þ

Because of the symmetries of the Weyl tensor, Eq. (24)
holds also for its self-dual version. The properties of self-
dual tensors can be used to write an alternative expression
of Eq. (24), namely

∇½aC�
bc�de ¼ −

i
3
ϵabc

f∇gC�g
fde ¼ 0; ð25Þ

so writing the Bianchi identities as ∇½aC�
bc�de ¼ 0 or

∇aC�a
bcd ¼ 0 is completely equivalent.

It is possible to use the properties of the Weyl tensor
described so far to find a useful alternative expression for
the tensorD�

abcd introduced in Eq. (23). This is achieved by
writing

D�
abcd ¼ 2IabghIcdil∇e∇gC�e

hil; ð26Þ

where the Bianchi identities on the indices fe; g; hg have
been enforced. Given that the term ∇g∇eC�e

hil is vanishing
thanks to the Bianchi identities, one can replace the double
covariant derivative in Eq. (26) with its antisymmetrized
version, yielding

D�
abcd ¼ 4IabghIcdil∇½e∇g�C�e

hil: ð27Þ

Replacing the antisymmetrized derivative with the Weyl
tensor gives
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D�
abcd ¼ IabghIcdilC�

egh
fC�e

fil

þ2IabghIcdilC�
egi

fC�e
hfl: ð28Þ

There are several ways to simplify Eq. (28): one is to
antisymmetrize in a suitable way the indices of the Weyl
tensors and then use the first type Bianchi identities. The
other way is to perform the calculation in transverse tetrads
using Eq. (22) together with the contraction identities in
Eq. (10). Both ways lead to the final result

D�
abcd ¼ 16IIabcd −

3

2
C�
abefC

�ef
cd; ð29Þ

which shows explicitly the dependence of D�
abcd on the

quadratic self-dual Weyl tensor.
Eq. (29) can be thought of as the self-dual version of the

Penrose wave equation already introduced in [34] and
originally given by

∇μ∇μCabcd ¼ Cab
efCefcd − 4Caef½cCe

d�
f
b: ð30Þ

Several works have already analyzed interesting proper-
ties of this equation, in particular in [35] it was shown that
the Teukolsky equation can be derived from Eq. (30). Here
the tensor D�

abcd will be considered as a fundamental new
variable.
In transverse frames, given Eqs. (29), (22), (20) and the

contraction identities in Eq. (10), the tensor D�
abcd takes the

form

D�
abcd ¼ −2i

ffiffiffi
3

p
ΨþΨ−Σþþ

abcd þ ðΨ2þ þ Ψ2
−Þ ~Σabcd: ð31Þ

The tensor D�
abcd shares the same symmetries with the

Weyl tensor, and is also trace-free, allowing it to be
expressed in the basis of the two trace-free tensors Σþþ

abcd

and ~Σabcd.

V. CURVATURE AND QUADRATIC SELF-DUAL
FORMS IN TRANSVERSE FRAMES

In the previous two sections the self-dual form approach
to the NP formalism has been presented. In summary the
following variables have been introduced to replace the
more familiar NP variables:

(i) The self-dual forms Σab, Σþ
ab and Σ−

ab as primary
variables to characterise the gravitational field in-
stead of the usual NP tetrad vectors.

(ii) The vectors Aa, Ba and Ca to identify the con-
nection, having shown that the twelve spin coef-
ficients are the projections of these vectors along the
tetrad vectors.

(iii) The self-dual Weyl tensor C�
abcd together with its

Laplacian D�
abcd projected onto a suitable basis of

quadratic self-dual forms.

Given the trace-free properties of C�
abcd and D�

abcd it is
useful to introduce an alternative more convenient basis
of quadratic trace-free self-dual forms given by the two
tensors

Σþ
abcd ¼ i

ffiffiffi
3

p
Σþþ
abcd þ ~Σabcd; ð32aÞ

Σ−
abcd ¼ −i

ffiffiffi
3

p
Σþþ
abcd þ ~Σabcd: ð32bÞ

The tensors Σþ
abcd and Σ−

abcd are just a linear combinations
of Σþþ

abcd and ~Σabcd; it is therefore possible to use them as a
basis for C�

abcd and D�
abcd using Eq. (22) and (31) (valid in

transverse tetrads) together with the definition of Ψþ and
Ψ− given in Eq. (2). The result is given in matricial form by

�
C�
abcd

D�
abcd

�
¼ U

�
Σþ
abcd

Σ−
abcd

�
; ð33Þ

where

U ¼
�
3−

1
2I

1
2Θ 3−

1
2I

1
2Θ−1

2IΘ−2 2IΘ2

�
: ð34Þ

Equation (33) can of course be inverted to give the two
tensors Σþ

abcd and Σ−
abcd as functions of C�

abcd and D�
abcd,

yielding

�
Σþ
abcd

Σ−
abcd

�
¼ U−1

�
C�
abcd

D�
abcd

�
; ð35Þ

where

U−1 ¼
ffiffiffi
3

p

2I
3
2ðΘ3 − Θ−3Þ

�
2IΘ2 −3−1

2I
1
2Θ−1

−2IΘ−2 3−
1
2I

1
2Θ

�
: ð36Þ

As the primary motivation of this work is its application
to numerical relativity, it is important to understand how the
quantities introduced here behave in the Petrov type D
limit, in particular making sure that they are well defined.
As already mentioned, the Kerr spacetime is obtained when
Θ → 1. The expressions for Σþ

abcd and Σ−
abcd seem to be

diverging in the limit if Eq. (35) is taken into account. This
is however not the case as C�

abcd and D�
abcd cease to be

independent in the limit. Using Eq. (33) one can show that

D�
abcdðΘ → 1Þ → 2

ffiffiffi
3

p
I
1
2C�

abcd: ð37Þ

Given the degeneracy in the limit, it is important to
understand what happens in its neighbourhood by expand-
ing in powers of (Θ − Θ−1) the tensor D�

abcd. This is done
by writing

D�
abcd ≈ 2

ffiffiffi
3

p
I
1
2C�

abcd þ ðΘ − Θ−1Þð1ÞD�
abcd; ð38Þ
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where

ð1ÞD�
abcd ¼

∂D�
abcd

∂ðΘ − Θ−1Þ ¼ lim
Θ→1

D�
abcd − 2

ffiffiffi
3

p
I
1
2C�

abcd

Θ − Θ−1 : ð39Þ

That the tensor ð1ÞD�
abcd is well defined can be proved by

using the expressions for C�
abcd and D�

abcd in transverse
tetrads given by Eq. (22) and Eq. (31). It is easy to show
that

lim
Θ→1

D�
abcd − 2

ffiffiffi
3

p
I
1
2C�

abcd

Θ − Θ−1 ¼ −6i
ffiffiffi
3

p
IΣþþ

abcd: ð40Þ

In other words, for Θ → 1, ð1ÞD�
abcd is proportional to the

tensor Σþþ
abcd in transverse tetrads, therefore it is well

defined.
Using Eq. (35), (38) and (39) we conclude that in the

Kerr limit the two tensors Σþ
abcd and Σ−

abcd are given by

Σþ
abcdðΘ → 1Þ →

ffiffiffi
3

p

2I
1
2

C�
abcd −

1

6I
ð1ÞD�

abcd; ð41aÞ

Σ−
abcdðΘ → 1Þ →

ffiffiffi
3

p

2I
1
2

C�
abcd þ

1

6I
ð1ÞD�

abcd; ð41bÞ

where all the diverging terms have been removed.

VI. A SUITABLE EXPRESSION FOR THE
CONNECTION VECTORS

Having shown that the two tensor Σþa
bcd and Σ−a

bcd
constitute an optimal basis for the Weyl tensor and its
Laplacian, it is important to relate the connection vectors
Aa, Ba and Ca to this basis. It is possible to do this by
calculating the divergences of Σþa

bcd and Σ−a
bcd using the

derivative identities given in Eq. (12), yielding

∇aΣþa
bcd ¼ 2i

ffiffiffi
3

p
TaðΣþa

bΣþ
cd − Σ−a

bΣ−
cdÞ

− ði
ffiffiffi
3

p
T−
a þ 3Tþ

a ÞðΣ−a
bΣcd þ Σa

bΣ−
cdÞ

þ ði
ffiffiffi
3

p
Tþ
a þ 3T−

a ÞðΣþa
bΣcd þ Σa

bΣþ
cdÞ;

ð42aÞ

∇aΣ−a
bcd ¼ −2i

ffiffiffi
3

p
TaðΣþa

bΣþ
cd − Σ−a

bΣ−
cdÞ

þ ði
ffiffiffi
3

p
T−
a − 3Tþ

a ÞðΣ−a
bΣcd þ Σa

bΣ−
cdÞ

− ði
ffiffiffi
3

p
Tþ
a − 3T−

a ÞðΣþa
bΣcd þ Σa

bΣþ
cdÞ:

ð42bÞ

Expressing the vectors Ta, Tþ
a and T−

a as functions of Aa,
Ba and Ca using Eq. (16) and simplifying using the
contraction identities given in Eq. (10) leads to the final
result

∇a

�Σþa
bcd

Σ−a
bcd

�
¼ Pa

�Σþa
bcd

Σ−a
bcd

�
; ð43Þ

where

Pa ¼
�

2Aa − Ca Aa þ Ca þ i
ffiffiffi
3

p
Ba

Aa þ Ca − i
ffiffiffi
3

p
Ba 2Aa − Ca

�
: ð44Þ

It is evident from Eq. (43) that the divergences of the two
tensors Σþ

abcd and Σ−
abcd identify uniquely the three con-

nection vectors, as these can be determined using the
components P11

a , P12
a and P21

a of the matrix Pa, namely

Aa ¼
1

6
ðP21

a þ P12
a þ P11

a Þ; ð45aÞ

Ba ¼
i

2
ffiffiffi
3

p ðP21
a − P12

a Þ; ð45bÞ

Ca ¼
1

3
ðP21

a þ P12
a − P11

a Þ: ð45cÞ

As shown in Eq. (35), it is possible to obtain the tensors
Σþ
abcd and Σ−

abcd in transverse tetrads as a linear combination
of tetrad invariant quantities like the self-dual Weyl tensor
and its Laplacian. Having related the three connection
vectors to the divergences of Σþ

abcd and Σ−
abcd by means of

Eqs. (43) and (45), in the next section we will combine the
two results and derive the connection vectors in transverse
tetrads as a linear combination of the divergences of C�

abcd
and D�

abcd.

VII. CONNECTION VECTORS IN
TRANSVERSE TETRADS

The linear relation between the quadratic self-dual basis
given by Σþ

abcd and Σ−
abcd and the two tensors C�

abcd and
D�

abcd given by Eq. (33) can be used to obtain a suitable
expression for the divergences of the latter. Using Eqs. (33),
(43) and (35) this leads to the result written in matricial
form as

∇a

�
C�a

bcd

D�a
bcd

�
¼ Qa

�
C�a

bcd

D�a
bcd

�
; ð46Þ

where

Qa ¼ ∇aðUÞ · U−1 þ U · Pa · U−1: ð47Þ

Because of the Bianchi identities ∇aC�a
bcd ¼ 0, the

matrix Qa must take the form

Qa ¼
�

0 0

Sa T a

�
; ð48Þ
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implying that the divergence of the tensor D�
abcd satisfies a

relation of the type

∇aD�a
bcd ¼ SaC�a

bcd þ T aD�a
bcd; ð49Þ

where the two vectors Sa and T a must be tetrad indepen-
dent, as they are relating tetrad invariants. It is possible to
calculate their expression by contracting Eq. (49) with the
tensors C�

e
bcd andD�

e
bcd and using the contraction identities

given in Eq. (10), yielding

C�
abcd∇eD�ebcd ¼ 8ISa − 144JT a; ð50aÞ

D�
abcd∇eD�ebcd ¼ −144JSa þ 96I2T a: ð50bÞ

The term in the left hand side of Eq. (50a) is easily
simplified by integrating by parts and applying the Bianchi
identities on ∇eC�

abcd, the result being −48∇aJ. The same
trick cannot be used for the left hand side of Eq. (50b).
Upon defining

Ra ¼
1

96
D�

abcd∇eD�ebcd; ð51Þ

the system in Eq. (50) can be inverted to give

Sa ¼
1

S
ð−6I2∇aJ þ 18JRaÞ; ð52aÞ

T a ¼
1

S
ð−9J∇aJ þ IRaÞ; ð52bÞ

where S is the scalar curvature invariant defined in Eq. (6).
Given that S → 0 in the Petrov type D limit, Eq. (52) may
appear to diverge in this case. However, analogously to
what was done in Sec. V for Σþ

abcd and Σ−
abcd, it is possible

to verify that Sa and T a are well defined in the Kerr limit.
Equation (50a) can be rewritten in the alternative form

T a ¼ − ~Sa þ∇a ln ½I12ðΘ3 þ Θ−3Þ13�; ð53Þ

where the expression for the curvature invariant J given in
Eq. (5) has been used together with the identity

~Sa ¼
I−

1
2ffiffiffi

3
p ðΘ3 þ Θ−3ÞSa: ð54Þ

Assuming that the vector Sa is well defined in the Petrov
type D limit, Eq. (53) ensures that T a is also well defined
when Θ → 1, meaning that it is only necessary to check the
behavior of Sa. For this purpose Eq. (52a) has to be
analyzed more in detail, and in particular the expression for
Ra. Given that the scalar S in the denominator of Eq. (52a)
has a singular term 1

ðΘ−Θ−1Þ2 it is important that no terms of

zero and first order in (Θ − Θ−1) appear in the numerator.
Expanding Ra as

Ra ≈Rð0Þ
a þ ðΘ − Θ−1ÞRð1Þ

a þ ðΘ − Θ−1Þ2Rð2Þ
a ; ð55Þ

and considering Eq. (38) to express the tensor D�
abcd in

powers of (Θ − Θ−1), it is possible to obtain the terms Rð0Þ
a

and Rð1Þ
a given by

Rð0Þ
a ¼ 1

2
I∇aI; ð56aÞ

Rð1Þ
a ¼ 0: ð56bÞ

The term Rð0Þ
a eliminates the other zero order term in

Eq. (52a), keeping in mind that in the Kerr limit J ¼ − I
3
2

3
ffiffi
3

p ,

as obtained from Eq. (5). We conclude that only terms of
power ðΘ − Θ−1Þ2 appear in the numerator of Eq. (52a),
thus ensuring that Sa is well defined in the Petrov
type D limit.
Having found that Sa and T a can be given as functions of

tetrad invariants, and having verified that these functions are
well behaved in the Petrov type D limit, it is now possible to
obtain an alternative expression for the matrix Pa defined in
Eq. (43) only using tetrad invariants. The procedure is
identical to the one adopted to obtain Eq. (46), just applied in
the opposite direction: Eq. (35) is the starting point to
express Σþ

abcd and Σ−
abcd as functions of C�

abcd and D�
abcd,

then Eq. (46) to eliminate the divergences of theWeyl tensor
and its Laplacian, and finally Eq. (33) to rewrite everything
in function of Σþ

abcd and Σ−
abcd. The result is

Pa ¼ ∇aðU−1Þ · Uþ U−1 ·Qa · U: ð57Þ

Written explicitly in components, the matrix Pa is
given by

Pa ¼
�
P11
a P12

a

P21
a P22

a

�
; ð58Þ

where

P11
a ¼ −

1

2
½ ~Sa þ∇a ln ðIKÞ�; ð59aÞ

P12
a ¼ Θ−2

2
½ ~Sa þ∇a ln ðΘ2KÞ�; ð59bÞ

P21
a ¼ Θ2

2
½ ~Sa þ∇a ln ðΘ−2KÞ�; ð59cÞ

P22
a ¼ −

1

2
½ ~Sa þ∇a ln ðIKÞ�; ð59dÞ

and

ANDREA NEROZZI PHYSICAL REVIEW D 95, 064012 (2017)

064012-8



K ¼ Θ3 − Θ−3

ðΘ3 þ Θ−3Þ13 : ð60Þ

As expected from Eq. (44), the two components P11
a and

P22
a coincide.
Putting together Eqs. (45), (58) and (59) gives the final

expression for the connection vectors in transverse tetrads:

Aa ¼
EA

12

�
~Sa þ∇a ln

�
K
EA

��
−
1

6
∇a ln I; ð61aÞ

Ba ¼
iEB

4
ffiffiffi
3

p
�
~Sa þ∇a ln

�
K
EB

��
; ð61bÞ

Ca ¼
EC

6

�
~Sa þ∇a ln

�
K
EC

��
þ 1

6
∇a ln I: ð61cÞ

where EA ¼ ðΘ − Θ−1Þ2, EB ¼ Θ2 − Θ−2 and EC ¼ Θ2þ
Θ−2 þ 1.
This completes the demonstration and shows that it is

possible to fix all the spin coefficients in the NP formalism
once the tetrad is unambiguously chosen. The additional
information on the divergence of a quadratic function of the
self-dual Weyl tensor was found to be crucial to solve the
system. It was shown that such a quantity naturally
introduces a third tetrad invariant vector (Sa) that is
independent of the derivatives of the two curvature invar-
iants I and J. A more detailed study of the properties of Sa
and of Eq. (49) using a coordinate based approach will be
given in a follow-up paper.

VIII. THE KERR LIMIT

An important aspect of our study is to verify how the
results found behave in the single black hole limit. The
value of the spin coefficients in the Kerr spacetime is well
known using the Kinnersley tetrad. As already mentioned
in Sec. II A, we expect a spin/boost transformation between
the tetrad studied in this work and the Kinnersley tetrad in
the Petrov type D limit. Fortunately, as will be shown here,
only the connection vector Ca is affected by this additional
spin/boost transformation.
Using Eq. (61) it is easy to show that for Θ → 1 the

connection vectors are given by

Aa ¼ −
1

6
∇a ln I ð62aÞ

Ba ¼ 0; ð62bÞ

Ca ¼
1

6
∇a ln I þ Za; ð62cÞ

where Za ¼ 1
2
ð ~Sa þ∇a lnKÞ in the Petrov type D limit. It

is worth noticing that the vector ∇a lnK is equal to

∇a ln ðΘ − Θ−1Þ in the limit, therefore undefined at first
sight. That this term is indeed well defined and not
diverging in the Kerr limit is proved by the value of all
the spin coefficients already known in the Kinnersley
tetrad, having already shown that Sa is also well defined.
This is however a point that requires further understanding.
By means of the equations studied so far, namely the
Bianchi identities and Eq. (49), it is not possible to gain
more information on this term, especially for what concerns
its Petrov type D limit. However, other equations have to be
considered within this simplified approach to have a
complete picture, like for example the Ricci identities.
We expect that a full understanding of all the equations that
play a relevant role in the formalism will help clarify this
specific point too. This is the subject of future work.
Some known results follow in a straightforward manner

from Eq. (62). For example, the Goldberg-Sachs theorem
[2] (or, more precisely, a corollary of it applied to type D
spacetimes) is summarized by Eq. (62b), implying that the
spin coefficients λ, σ, ν and κ vanish in the limit, which is
exactly what the theorem states. Any spin/boost trans-
formation does not alter this result which must continue to
hold in the Kinnersley tetrad as expected.
The next step is to verify Eq. (62) and the corresponding

spin coefficients. To do so, we consider the explicit
expression of the metric of a Kerr spacetime using
Boyer-Lindquist coordinates, i.e.,

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ

�
4Marsin2θ

Σ

�
dtdϕþ

�
Σ
Γ

�
dr2

þ Σdθ2 þ sin2θ

�
r2 þ a2 þ 2Marsin2θ

Σ

�
dϕ2; ð63Þ

where Γ ¼ r2 − 2Mrþ a2 (in the usual notation this
quantity is referred to as Δ, but here we changed notation
to avoid confusion with the derivative operator Δ),
Σ ¼ r2 þ a2 cos2 θ, M is the black hole mass and a its
rotation parameter.
The expression for the Kinnersley tetrad vectors is

lμ ¼ ½−ðr2 þ a2Þ=Γ; 1; 0; a=Γ�; ð64aÞ

nμ ¼ ½−r2 − a2;−Γ; 0; a�=ð2ΣÞ; ð64bÞ

mμ ¼ ½−ia sin θ; 0; 1; i= sin θ� · ρ�=
ffiffiffi
2

p
; ð64cÞ

where ρ� ¼ 1
rþia cos θ.

The curvature invariant I is given by

I ¼ 3M2

ðr − ia cos θÞ6 : ð65Þ

Given Eqs. (62) and (65), the components of the
connection vector Aa are given by
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Aa ¼
�
0;

1

r − ia cos θ
;

ia sin θ
r − ia cos θ

; 0

�
: ð66Þ

It is possible to show from Eq. (16) that a spin/boost
transformation does not affect the vector Aa, therefore the
projection of Aa along the four null vectors must give the
spin coefficients ρ, μ, τ, and π as obtained in the Kinnersley
tetrad. A simple calculation yields

ρ ¼ 1

r − ia cos θ
; μ ¼ ρΓ

2Σ
;

τ ¼ iaρρ� sin θffiffiffi
2

p ; π ¼ −
iaρ2 sin θffiffiffi

2
p ;

in agreement with the known values in the Kinnersley
tetrad.
The final calculation for the vector Ca is slightly more

complicated as this is the only vector that is affected by spin/
boost transformations. A spin/boost rotation with complex
parameter B affects the spin coefficients associated to Ca as

ϵ ¼ 1

2
laðCa −∇a lnBÞ; ð67aÞ

γ ¼ −
1

2
naðCa þ∇a lnBÞ; ð67bÞ

β ¼ 1

2
maðCa −∇a lnBÞ; ð67cÞ

α ¼ −
1

2
m̄aðCa þ∇a lnBÞ: ð67dÞ

The Kinnersley tetrad corresponds to ϵ ¼ 0, giving the
condition for B,

la∇a lnB ¼ laCa: ð68Þ
This condition only fixes the radial components of the

gradient of B as the vector la only has nonvanishing
components along the t and r direction, the t direction
giving no contribution because of the stationarity of the
spacetime. If we considered Eq. (68) as a general identity
valid along all null vectors, i.e.,∇a lnB ¼ Ca, wewould end
upwith the spin coefficient β ¼ 0. This is not the case, given
that the expression for β in the Kinnersley tetrad is given by

β ¼ −
ρ� cot θ
2

ffiffiffi
2

p : ð69Þ

Equation (69) is a clear sign that there is an additional
contribution to ∇a lnB along the θ direction. It is very easy
to calculate this additional contribution from the expression
of β, leading to the final result,

∇a lnB ¼ Ca þ∇a ln sin θ: ð70Þ
Having determined the spin/boost parameter, we can

substitute it into the remaining Eqs. (67b) and (67d) to find

their expression in the Kinnersley tetrad using Eq. (62c),
yielding

γ ¼ −μ − naZa; ð71aÞ

α ¼ −π þ β� − m̄aZa: ð71bÞ

Equation (71) must be compared with the values for γ and α
in the Kinnersley tetrad given by

γ ¼ μþ 1

2
na∇a lnΓ; ð72aÞ

α ¼ π − β�: ð72bÞ

We find that Eq. (72) is compatible with Eq. (71) if the
vector Za is given by

Za ¼ −∇a ln ðΓ1
2I

1
3 sin θÞ: ð73Þ

Combining Eq. (73) with Eq. (62c) gives the actual value
of the Ca vector in the Kerr limit:

Ca ¼ −∇a ln ðΓ1
2I

1
6 sin θÞ; ð74Þ

while the spin/boost parameter B, using Eq. (70), is
given by

B ¼ B0I−
1
6Γ−1

2; ð75Þ

with B0 being an integration constant. Equation (75) is in
agreement with the result already found in [17] using a
slightly different approach. With a well defined expression
for the vector Sa in a general Petrov type I spacetime, one
could have enforced the condition ϵ ¼ 0 to obtain the spin/
boost parameter between the tetrad considered in this paper
and the quasi-Kinnersley tetrad. Lacking such an expres-
sion, we were only able to obtain Sa by comparing the
values of the spin coefficients in the Petrov type D limit. As
a consequence of this, the spin/boost parameter that was
found depends on functions that are only defined in the
limit, like Γ, whose numerical implementation is compli-
cated, because they are defined in a specific coordinate
system. A follow-up paper will fill this gap and give a
general expression for Sa by studying Eq. (49) in detail
using a standard coordinate based approach.

IX. CONCLUSIONS

Many years after its introduction, the Newman-Penrose
formalism continues to be employed in many applications
of Einstein’s equations, and its use is widely spread in the
fields of theoretical and numerical relativity. A certain
number of questions are nevertheless still open, in particu-
lar the possibility to simplify the formalism by removing all
of the gauge degrees of freedom and express all of the
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remaining quantities as functions of tetrad invariants. This
is certainly possible for the Weyl scalars as pointed out in
[14] and shown in Eq. (2) of this paper, but no equivalent
result for the spin coefficients was known, although a
similar argument must hold.
Motivated by this, the aim of this paper was to prove that

it is indeed possible to fix all of the spin coefficients as
functions of tetrad invariants once the gauge freedom has
been completely removed. While previous works had
already shown that the Bianchi identities could fix eight
of the twelve spin coefficients, the question on how to fix
the remaining four remained unanswered. Here it was
found that the divergence of the Laplacian of the Weyl
tensor, or more generally of a quadratic function of the
Weyl tensor, is crucial to give the missing information, as it
must satisfy a relation of the type

∇aD�a
bcd ¼ SaC�a

bcd þ T aD�a
bcd; ð76Þ

which uniquely identifies a third tetrad invariant vector (Sa)
that cannot be obtained from the derivatives of the two
curvature invariants I and J. While it was possible to
identify this additional vector and relate the spin coeffi-
cients to it, a general expression for Sa is still lacking, and
in particular, it is not yet known whether Sa can be
expressed as the gradient of a third tetrad invariant scalar
function.
As Eq. (76) relates tetrad invariant quantities, it can be

obtained using standard coordinate based approaches. We
will explore this alternative approach in a forthcoming
paper, aiming to derive a general expression for the
vector Sa.
So how is this all relevant to numerical relativity? The

answer is simple: with a well defined expression for Sa in a

tetrad with Ψ1 ¼ Ψ3 ¼ 0 and Ψ0 ¼ Ψ4, it is possible to
enforce the condition ϵ ¼ 0 to find the spin/boost parameter
B between this tetrad and the quasi-Kinnersley tetrad. This
last information will allow us to write Ψ4 in the right quasi-
Kinnersley tetrad as

ΨQKT
4 ¼ −

iB2

2
Ψ−: ð77Þ

In other words it will be possible to have a scalar quantity
written as function of tetrad invariants and defined in a
general Petrov type I spacetime that naturally converges
to the specific Ψ4 studied in the perturbative regime
(Teukolsky equation) when the spacetime converges to
Kerr, making it an fundamental gauge invariant quantity for
numerical relativity and gravitational wave extraction.
Besides the numerical applications which constitute the

main motivation of this work, it is stressed here that this
methodology has great potentialities for a deeper under-
standing of tetrad approaches to Einstein’s equations, as the
number of relevant variables is reduced drastically. For this
reason, having already given a simplified expression for the
Bianchi identities [Eq. (17)], future work will focus on
studying the properties of the Ricci identities within this
same approach, thereby completing the picture of relevant
equations.
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