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It has been pointed out that nonsingular cosmological solutions in second-order scalar-tensor theories
generically suffer from gradient instabilities. We extend this no-go result to second-order gravitational
theories with an arbitrary number of interacting scalar fields. Our proof follows directly from the action of
generalized multi-Galileons, and thus is different from and complementary to that based on the effective
field theory approach. Several new terms for generalized multi-Galileons on a flat background were
proposed recently. We find a covariant completion of them and confirm that they do not participate in the
no-go argument.
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I. INTRODUCTION

Inflation [1–3] is an attractive scenario because it gives a
natural resolution of the horizon and flatness problems in
standard Big Bang cosmology and accounts for the origin
of density perturbations that are consistent with observa-
tions such as CMB. However, there are criticisms that even
inflation cannot resolve the initial singularity [4] and the
trans-Planckian problem for cosmological perturbations
[5]. Alternative scenarios such as bounces and Galilean
Genesis have therefore been explored by a number of
authors (see, e.g., Ref. [6] for a review).
To avoid the initial singularity, there must be a period in

which the Hubble parameter H is an increasing function of
time. This indicates a violation of the null energy condition
(NEC), possibly causing some kind of instability. It is easy
to show that NEC-violating cosmological solutions are
indeed unstable if the Universe is filled with a usual scalar
field or a perfect fluid. However, this is not the case if the
underlying Lagrangian depends on second derivatives of a
scalar field [7], and one can construct explicitly a stable
cosmological phase in which the NEC is violated in the
Galileon-type scalar-field theory [8–10].
Nevertheless, this does not mean that such nonsingular

cosmological solutions are stable at all times in the entire
history; it has been known that gradient instabilities occur
at some moment in many concrete examples (see, e.g.,
Refs. [11–17]), and in some cases the instabilities show up
even in the far future after the NEC-violating stage [18–20].
Recently, it was shown that this is a generic nature of
nonsingular cosmological solutions in the Horndeski/
generalized Galileon theory [21–23], i.e., in the most
general scalar-tensor theory having second-order field
equations, provided that graviton geodesics are complete
[24–26].

As the no-go result is obtained in the single-field
Horndeski theory, one could evade this by considering
theories with multiple scalar fields or higher derivative
theories beyond Horndeski. The latter way is indeed suc-
cessful within the Gleyzes-Langlois-Piazza-Vernizzi scalar-
tensor theory [27–29], as pointed out in Refs. [26,30] based
on the effective field theory (EFT) of cosmological pertur-
bations [31]. Gradient instabilities can also be cured if higher
spatial derivative terms arise in the action for curvature
perturbations [16,17,32]. This occurs in a more general
framework [33,34] than [27] including Hořava gravity
[35]. In some cases it is possible, even without such general
frameworks, that the strong coupling scale cuts off the
instabilities [36].
The purpose of the present paper is to show that, in

contrast to the case of the higher derivative extension, the
no-go theorem for nonsingular cosmologies still holds in
general multiscalar-tensor theories of gravity. In a subclass
of the generalized multi-Galileon theory [37], the same
conclusion as in the single-field case was obtained in [38].
It was found in [26] that the no-go theorem can also be
extended to the EFT of multifield models in which a
shift symmetry is assumed for the entropy mode [39].
(See Ref. [40] for the EFT of multifield inflation without
the shift symmetry.) In this paper, we provide a new proof
which follows directly from the full action of the gener-
alized multi-Galileon theory.
This paper is organized as follows. In the next section,

we give a brief review on the generalized multi-Galileon
theory and extend the proof of the no-go theorem for
nonsingular cosmologies to multifield models. Recently,
several new terms were found that are not included in the
generalized multi-Galileon theory but still yield second-
order field equations [41]. To keep the proof as general as
possible, we show in Sec. III that the main result is not
changed by the addition of these new terms. In doing so, we
find a covariant completion of the flat-space action of
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Ref. [41]. In Sec. IV we give a comment on the (in)
completeness of graviton geodesics viewed from the original
(non-Einstein) frame. We draw our conclusions in Sec. V.

II. NO-GO THEOREM IN GENERALIZED
MULTI-GALILEON THEORY

A. Generalized multi-Galileon theory

The most general single-scalar-tensor theory whose field
equations are of second order is given by the Horndeski
action [21]. To begin with, let us review briefly how the
same theory was rediscovered in a different way starting
from the Galileon theory. The Galileon theory is a scalar-
field theory on a fixed Minkowski background having the
Galilean shift symmetry, ∂μϕ → ∂μϕþ bμ, and second-
order field equations [42]. To make the metric dynamical
and consider an arbitrary spacetime, one can covariantize
the Galileon theory by replacing ∂μ with ∇μ, but this
procedure induces higher derivative terms in the field
equations due to the noncommutativity of the covariant
derivative. However, the resulting higher derivative terms
can be removed by introducing nonminimal derivative
coupling to the curvature. The covariant multi-Galileon
theory is thus obtained [43]. Now the Galilean shift
symmetry is lost and what is more important is the
second-order nature of the field equations, as it guarantees
the absence of Ostrogradski instabilities. One can further
generalize the covariant Galileon theory by promoting
X ≔ −gμν∂μϕ∂νϕ=2 in the action to arbitrary functions
ϕ and X while retaining the second-order field equations
[22]. This yields the Lagrangian

L ¼ G2ðX;ϕÞ −G3ðX;ϕÞ□ϕþG4ðX;ϕÞR

þ ∂G4

∂X ½ð□ϕÞ2 − ð∇μ∇νϕÞ2� þ G5ðX;ϕÞGμν∇μ∇νϕ

−
1

6

∂G5

∂X ½ð□ϕÞ3 − 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�;
ð1Þ

where R is the Ricci scalar and Gμν is the Einstein tensor.
Interestingly, it can be shown that this Lagrangian is
equivalent to the one obtained by Horndeski in an appa-
rently different form [23], and therefore is the most general
one having second-order field equations.
The multifield generalization can proceed in the follow-

ing way. In Refs. [44–49], the Galileons on a fixed
Minkowski background was generalized to multifield mod-
els, whose action is a functional of N scalar fields ϕI

(I ¼ 1; 2;…; N) and their derivatives of order up to two.
Covariantizing the multi-Galileons and introducing arbi-
trary functions of the scalar fields and their first derivatives
so that no higher derivative terms appear in the field
equations, one can arrive at the generalized multi-
Galileon theory, the Lagrangian of which is given in an
analogous form to Eq. (1) by [37]

L ¼ G2ðXIJ;ϕKÞ − G3LðXIJ;ϕKÞ□ϕL þ G4ðXIJ;ϕKÞR
þ G4;hIJið□ϕI

□ϕJ −∇μ∇νϕ
I∇μ∇νϕ

JÞ

þ G5LðXIJ;ϕKÞGμν∇μ∇νϕ
L −

1

6
G5I;hJKi

× ð□ϕI
□ϕJ

□ϕK − 3□ϕðI∇μ∇νϕ
J∇μ∇νϕKÞ

þ 2∇μ∇νϕ
I∇ν∇λϕJ∇λ∇μϕKÞ; ð2Þ

where

XIJ ≔ −
1

2
gμν∂μϕ

I∂νϕ
J; ð3Þ

G;hIJi ≔
1

2

� ∂G
∂XIJ þ

∂G
∂XJI

�
: ð4Þ

In order for the field equations to be of second order, it is
required that

G3IJK ≔ G3I;hJKi; G4IJKL ≔ G4;hIJi;hKLi; ð5Þ

G5IJK ≔ G5I;hJKi; G5IJKLM ≔ G5IJK;hLMi; ð6Þ
are symmetric in all of their indices I; J;…. In what follows
we will write G4;hIJi as G4IJ. It is obvious that G4IJ ¼ G4JI .
The multiscalar-tensor theory described by the

Lagrangian (2) seems very general and includes the earlier
works [50,51] and more recent ones [38,52–55] as specific
cases. However, in contrast to the case of the single Galileon,
it is not the most general multiscalar-tensor theory with
second-order field equations. Indeed, as demonstrated in
[56], the multi-Dirac-Born-Infeld (DBI) Galileon theory [57]
is not included in the above one. To date, no complete
multifield generalization of the Horndeski action has been
known. Taking the same approach as Horndeski did rather
than starting from the multi-Galileon theory, the authors of
Ref. [58] obtained the most general second-order field
equations of biscalar-tensor theories, but deducing the
corresponding action and extending the biscalar result to
the case of more than two scalars have not been successful so
far. We will come back to this issue in the next section in
light of the recent result reported in [41].
Although the generalizedmulti-Galileon theory is thus not

the most general one, it is definitely quite general and so we
choose to use the Lagrangian (2). This is one of the best
things one can do at this stage to draw some general
conclusions on the cosmology of multiple interacting scalar
fields, and is considered as complementary to the approach
based on the effective field theory ofmultifield inflation [26].

B. Stability of a nonsingular universe
in generalized multi-Galileon theory

We now show that the no-go theorem in [25] can be
extended to the case of the generalized multi-Galileon
theory.
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The quadratic actions for perturbations around a flat
Friedmann background have been calculated in [56]. For
tensor perturbations hijðt; ~xÞ we have

Sð2Þh ¼ 1

8

Z
dtd3xa3

�
GT

_h2ij −
F T

a2
ð ~∇hijÞ2

�
; ð7Þ

where

GT ≔ 2½G4 − 2XIJG4IJ − XIJðH _ϕKG5IJK − G5I;JÞ� ð8Þ
and

F T ≔ 2½G4 − XIJðϕ̈KG5IJK þ G5I;JÞ�: ð9Þ
Here we defined G;I ≔ ∂G=∂ϕI. Stability requires

GT > 0; F T > 0; ð10Þ
at any moment in the whole cosmological history.
To study scalar perturbations in multifield models, it is

convenient to use the spatially flat gauge. The quadratic
action for scalar perturbations is of the form [56]

Sð2ÞQ ¼ 1

2

Z
dtd3xa3

�
KIJ

_QI _QJ −
1

a2
DIJ

~∇QI · ~∇QJ

−MIJQIQJ þ 2ΩIJQI _QJ

�
; ð11Þ

where QI’s are the perturbations of the scalar fields
defined by

ϕI ¼ ϕ̄IðtÞ þQIðt; ~xÞ: ð12Þ
The explicit expressions for the matricesKIJ,MIJ, andΩIJ
can be found in [56], but are not necessary for the following
discussion. Since gradient instabilities manifest most sig-
nificantly at high frequencies, only the structure of the
matrixDIJ is crucial to our no-go argument. Wewill use the
fact that DIJ is given by [56]

DIJ ¼ CIJ −
J ðIBJÞ

Θ
þ 1

a
d
dt

�
aBIBJ

2Θ

�
; ð13Þ

where CIJ is the matrix satisfying the identity

CIJXIJ ¼ 2Hð _GT þHGTÞ − _Θ −HΘ −H2F T; ð14Þ
with

Θ ≔ − _ϕIXJKG3IJK þ 2HG4

− 8HXIJðG4IJ þ XKLG4IJKLÞ
þ 2 _ϕIXJKG4IJ;K þ _ϕIG4;I

−H2 _ϕIXJKð5G5IJK þ 2XLMG5IJKLMÞ
þ 2HXIJð3G5I;J þ 2XKLG5IJK;LÞ: ð15Þ

The explicit expressions for J I and BI in Eq. (13) are also
unimportant, but we will use the equation [56]

_ϕIJ I þ ϕ̈IBI þ 2 _HGT ¼ 0: ð16Þ
This follows from the background equations, and corre-
sponds in the minimally coupled single-field case to the
familiar equation

_ϕ2 þ 2M2
Pl
_H ¼ 0: ð17Þ

It is required for the stability of the scalar sector that the
matrices K ¼ ðKIJÞ and D ¼ ðDIJÞ must be positive
definite. Hence, a nonsingular cosmological solution is
free from gradient instabilities if, for every nonzero column
vector v,

vTDv > 0; ð18Þ
where vT is the transpose of v. Now, let v be

v ¼

0
BBBBB@

_ϕ1

_ϕ2

..

.

_ϕN

1
CCCCCA
: ð19Þ

Then, Eq. (18) reads

vTDv ¼ 2XIJDIJ > 0: ð20Þ
Using Eqs. (13), (14), and (16) and doing some manipu-
lation, one finds

XIJDIJ ¼ H2

�
1

a
dξ
dt

− F T

�
> 0; ð21Þ

where

ξ ≔
aG2

T

Θ
: ð22Þ

The remaining part of the proof is parallel to that in the
Horndeski case [25], because the structure of the inequality
(21) is identical to the single-field counterpart. In a non-
singular universe,Θ never diverges because it is composed of
H and ϕI as given in Eq. (15) and we require that the
functions G2, G3I , … in the underlying Lagrangian remain
finite in the entire cosmological history.1We also haveaG2

T >
0which comes from the stability of the tensor perturbations.2

Therefore, ξ cannot cross zero. From Eq. (21) we have

1Our postulate on this point is different from that adopted
in Ref. [20], in which singular functions are introduced in
the underlying Lagrangian to obtain nonsingular cosmological
solutions.

2Our postulate on this point is different from that adopted in
Ref. [59], in which all the coefficients in the quadratic action for
cosmological perturbations vanish at the same moment.
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dξ
dt

> aF T > 0; ð23Þ

indicating that ξ is a monotonically increasing function of t.
Integrating Eq. (23) from some ti to tf , we obtain

ξðtfÞ − ξðtiÞ >
Z

tf

ti

aF Tdt0: ð24Þ

(We admit that ξ diverges at some t� whereΘ ¼ 0 occurs. In
this case, ti and tf are taken to be such that ti < tf < t� or
t� < ti < tf .) If limt→−∞ξ ¼ const, we take ti → −∞ in
Eq. (24) and obtain

Z
tf

−∞
aF Tdt0 < ξðtfÞ − ξð−∞Þ < ∞: ð25Þ

Similarly, if limt→∞ξ ¼ const then we take tf → ∞ to get
Z

∞

ti

aF Tdt0 < ξð∞Þ − ξðtiÞ < ∞: ð26Þ

Thus, we conclude that a nonsingular cosmological solution
in the generalizedmulti-Galileon theory is stable in the entire
history provided that either

Z
t

−∞
aF Tdt0 or

Z
∞

t
aF Tdt0 ð27Þ

is convergent. (If Θ ¼ 0 occurs, both of the above integrals
must be convergent.) As is argued in Refs. [26,30] and also in
Sec. IV of the present paper, the convergence of the above
integrals signals some kind of pathology in the tensor
perturbations. If one prefers to avoid this pathology, all
nonsingular cosmological solutions in the generalized
multi-Galileon theory are inevitably plagued with gradient
instabilities.
One might expect naively that, in the presence of

multiple interacting scalar fields, a dominant field can
transfer its energy to another field or matter before the
instability of the former shows up, and thus the instability
can be eliminated. We have shown that this is not the case
in the generalized multi-Galileon theory.
The same conclusion was reached using the EFT of

multifield cosmologies, in which a shift symmetry is
assumed for the entropy mode [26]. Our proof is different
from, and complementary to, that based on the EFT. The
EFT approach amounts to writing all the terms allowed by
symmetry, which leads to the theory of cosmological
perturbations on a given background. Therefore, the adia-
batic and entropy modes are decomposed by construction
in the EFT. In contrast, our guiding principle is the second-
order nature of the field equations, and so we start from the
general action of second-order multiple scalar-tensor the-
ories that governs the perturbation evolution as well as the
background dynamics. It should be noticed that we have
not performed the adiabatic/entropy decomposition, as it is
unnecessary for our no-go argument. Although the relation

between the second-order theory and the EFT of cosmo-
logical perturbations has been clarified in the single-field
case [60], to date, it is not obvious how the EFT of
multifield cosmology is related to the generalized multi-
Galileon theory.

III. COVARIANTIZED NEW TERMS FOR
MULTI-GALILEON THEORY

Very recently, the author of Ref. [41] proposed new
terms for scalar multi-Galileon theory that are not included
in the existing multi-Galileon Lagrangian but give rise to a
second-order field equation. The Lagrangians for these
“extended” multi-Galileons are given by [41,44]

Lext1 ¼ A½IJ�½KL�Mδ
μ1μ2μ3
ν1ν2ν3 ∂μ1ϕ

I∂μ2ϕ
J∂ν1ϕK∂ν2ϕL

× ∂μ3∂ν3ϕM; ð28Þ
Lext2 ¼ A½IJ�½KL�ðMNÞδ

μ1μ2μ3μ4
ν1ν2ν3ν4 ∂μ1ϕ

I∂μ2ϕ
J

× ∂ν1ϕK∂ν2ϕL∂μ3∂ν3ϕM∂μ4∂ν4ϕN; ð29Þ
Lext3 ¼ A½IJK�½LMN�Oδ

μ1μ2μ3μ4
ν1ν2ν3ν4 ∂μ1ϕ

I∂μ2ϕ
J∂μ3ϕ

K

× ∂ν1ϕL∂ν2ϕM∂ν3ϕN∂μ4∂ν4ϕO; ð30Þ
where the coefficients A½IJ�½KL�M;… are arbitrary functions
of ϕI and XIJ. These coefficients are antisymmetric in
indices inside ½ � and symmetric in indices inside ( ). In
order for the field equations to be of second order, we
require that

A½IJ�½KL�M;hNOi; A½IJ�½KL�ðMNÞ;hOPi;

A½IJK�½LMN�O;hPQi; ð31Þ

are symmetric in underlined indices.
The Lagrangians (28)–(30) are those for scalar fields on

fixed Minkowski spacetime. Let us explore a covariant
completion of the above flat-space multiscalar theory.
To make the metric dynamical, we first promote ∂μ to
∇μ. It is easy to see that this procedure is sufficient for Lext1

and Lext3:

L0
ext1 ¼ A½IJ�½KL�Mδ

μ1μ2μ3
ν1ν2ν3 ∇μ1ϕ

I∇μ2ϕ
J∇ν1ϕK∇ν2ϕL

×∇μ3∇ν3ϕM; ð32Þ
L0
ext3 ¼ A½IJK�½LMN�Oδ

μ1μ2μ3μ4
ν1ν2ν3ν4 ∇μ1ϕ

I∇μ2ϕ
J∇μ3ϕ

K

×∇ν1ϕL∇ν2ϕM∇ν3ϕN∇μ4∇ν4ϕO; ð33Þ
have second-order equations of motion for the metric and
scalar fields. However, the simple covariantization of Lext2,

Lcext2 ¼ A½IJ�½KL�ðMNÞδ
μ1μ2μ3μ4
ν1ν2ν3ν4 ∇μ1ϕ

I∇μ2ϕ
J

×∇ν1ϕK∇ν2ϕL∇μ3∇ν3ϕM∇μ4∇ν4ϕN; ð34Þ
yields higher derivative terms in the field equations. To
cancel such terms, we add a counterterm, i.e., a coupling to

SHINGO AKAMA and TSUTOMU KOBAYASHI PHYSICAL REVIEW D 95, 064011 (2017)

064011-4



the curvature tensor Lcurv2. It turns out that the appropriate
Lagrangian is the following:

Lcurv2 ¼ B½IJ�½KL�δ
μ1μ2μ3μ4
ν1ν2ν3ν4

× Rν3ν4
μ3μ4∇μ1ϕ

I∇μ2ϕ
J∇ν1ϕK∇ν2ϕL; ð35Þ

where

B½IJ�½KL�;hMNi ¼
1

2
A½IJ�½KL�ðMNÞ ð36Þ

must be imposed. Thus, we find that the covariant com-
pletion of Lext2 is given by

L0
ext2 ¼ Lcurv2 þ Lcext2 ð37Þ

where A½IJ�½KL�ðMNÞ ¼ 2B½IJ�½KL�;hMNi and

B½IJ�½KL�MNOP ≔ B½IJ�½KL�;hMNi;hOPi ð38Þ
is symmetric in underlined indices.
One can check that the multi-DBI Galileon theory at

leading order in the XIJ expansion [56] is obtained by
taking

B½IJ�½KL� ¼ const × ðδIKδJL − δILδJKÞ; ð39Þ
though it seems extremely difficult to see explicitly that the
complete Lagrangian for the multi-DBI Galileons [57] can
be reproduced by choosing appropriately the functions in
the above Lagrangians.
Now the question is how the additional terms

Lext ≔ L0
ext1 þ L0

ext2 þ L0
ext3 ð40Þ

change the stability of cosmological solutions. Obviously,
Lext does not change the background equations due to
antisymmetry. We see that, in the quadratic actions for
scalar and tensor perturbations, only the CIJ coefficients are
modified as follows:

CIJ → CIJ þ CextIJ ; ð41Þ
with

CextIJ ≔ 32Hð−A½IK�½JL�MXKL _ϕM þ 2HB½IK�½JL�XKL

þ 4HB½IK�½JL�;hMNiXKLXMNÞ; ð42Þ
and no other terms are affected by the addition of Lext.
Since XIJCextIJ ¼ 0 due to antisymmetry, XIJDIJ remains the
same even if one adds Lext:

XIJDIJ → XIJDIJ: ð43Þ
Therefore, the new terms proposed in Ref. [41] do not
change the no-go argument.
The new term Lext vanishes for the homogeneous

background, which implies that Lext contributes only to

the entropy modes at the level of perturbations. This is
consistent with the result of [26], where it can be seen using
the EFT that the instability occurs in the adiabatic direction.

IV. GRAVITON GEODESICS

We have thus seen that within the multifield extension of
the generalized Galileons, nonsingular cosmological sol-
utions are possible only if either integral in Eq. (27) is
convergent, as in the single-field Horndeski case. In
Ref. [25], this fact was noticed and a numerical example
of a nonsingular cosmological solution with the convergent
integral was obtained for the first time in the single-field
context. Later, the authors of Ref. [61] followed Ref. [25]
and presented another example.
One can move to the “Einstein frame” for tensor

perturbations from the original frame (7) by performing
a disformal transformation [62]. This is because one has
two independent functions of t in performing a disformal
transformation which can be fitted to make F T and GT into
their standard forms: F T → M2

Pl, GT → M2
Pl. It is clearly

explained in Ref. [26] that because gravitons propagate
along null geodesics in the Einstein frame and the integral

Z
aF Tdt ð44Þ

is nothing but the affine parameter of the null geodesics in
the Einstein frame, the convergent integral (27) implies past
(future) incompleteness of graviton geodesics (see also
Ref. [30]). This may signal some kind of pathology in the
tensor perturbations, though it is not obvious whether the
incompleteness of null geodesics in a disformally related
frame causes actual problems.
Let us rephrase this potential pathology of gravitons

without invoking the disformal transformation. The equa-
tion of motion for the tensor perturbation hij derived from
the action (7) can be written in the form

ZμνDμDνhij ¼ 0; ð45Þ

where

Zμνdxμdxν ¼ −
F 3=2

T

G1=2
T

dt2 þ a2ðF TGTÞ1=2δijdxidxj; ð46Þ

and Dμ is the covariant derivative associated with the
“metric” Zμν. Equation (45) shows that graviton paths can
be interpreted as null geodesics in the effective geometry
defined by Zμν. It turns out that the affine parameter λ of
null geodesics in the metric Zμν is given by dλ ¼ aF Tdt.
Therefore, the incompleteness of graviton geodesics can be
made manifest even without working in the Einstein frame.
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V. SUMMARY

In this paper, we have shown that all nonsingular
cosmological solutions are plagued with gradient instabil-
ities in the multifield generalization of scalar-tensor theo-
ries, if the graviton geodesic completeness is required. This
extends the recent no-go arguments of Refs. [24,25,38]. We
have given a direct proof using the generalized multi-
Galileon action, so that our proof is different from and
complementary to that obtained from the effective field
theory of cosmological fluctuations [26]. Several new terms
for multi-Galileons on a flat background were found
recently [41]. We have covariantized these terms and

shown that the inclusion of them does not change the
no-go result.
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