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Using the covariant phase space formalism, we compute the conserved charges for a solution, describing
an accelerating and electrically charged Reissner-Nordstrom black hole. The metric is regular provided that
the acceleration is driven by an external electric field, in spite of the usual string of the standard C-metric.
The Smarr formula and the first law of black hole thermodynamics are fulfilled. The resulting mass has the
same form of the Christodoulou-Ruffini irreducible mass. On the basis of these results, we can extrapolate
the mass and thermodynamics of the rotating C-metric, which describes a Kerr-Newman-(A)dS black hole
accelerated by a pulling string.
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I. INTRODUCTION

The study of black hole thermodynamics has been a
fruitful area of research since the pioneering discoveries
of Bekenstein and Hawking [1,2], including the black
hole temperature, entropy and radiation. It provided a
first insight into the relation between gravity and quan-
tum mechanics. More specifically, some geometric fea-
tures of the event horizon, such as its area or surface
gravity, turn out to be linked to the thermodynamic
properties of the black hole, such as its entropy or
temperature. Given that thermal quantities of a physical
system are related to the statistical description of its
microstates, when we consider black hole thermodynam-
ics, we are addressing its underlying microscopic degrees
of freedom, possibly associated with some quantum
features of gravity [3].
The thermodynamics of several kinds of black holes

have been studied in the last decades in general relativity
and other gravitational theories. But only recently have
some attempts in the study of thermodynamics of
accelerating black holes have been made [4–6]. There
are basically two reasons for this. First of all, the
accelerating black holes are described by C-metrics
[7,8], which have an uncommon asymptotic behavior:
There is not a constant curvature background at infinity,
and moreover, depending on the range of the parameters
we are considering, an accelerating horizon may also
occur to complicate the asymptotic structure. In particu-
lar, the unconventional falloff of the metric at large radial
distances makes it difficult to identify the timelike Killing
vector necessary to compute the conserved charge asso-
ciated with the mass of the black hole. Since the mass
value enters in the laws of black hole thermodynamics, it
is fundamental to have some good criteria to select the
normalization of the above Killing vector.

The second reason, which makes the study of the
accelerating black hole thermodynamics unclear, is that
these C-metrics present at least one nonremovable conical
singularity on the azimuthal axis of symmetry, both in the
static and in the rotating case. It is not clear if the first law of
black hole thermodynamics still has to hold in the case of
singular black hole metrics.
Therefore, in this paper we pursue a slightly different

approach based on a variation, originally found by Ernst
[9], of the accelerating and magnetically charged black
hole, which consists in embedding the accelerating
Reissner-Nordstrom (RN) solution in an external magnetic
field. On the other hand, the metric we specifically study is
immersed in an external electric field, which is responsible
for the black hole acceleration instead of the usual singular
cosmic string (or strut). The presence of the external
electric or magnetic field makes it possible to remove all
the conical singularities [9]. Thus, the metric we focus on in
this paper is fully regular outside the event horizon.
The choice of working with a regular solution is

significant because it directly removes the second difficulty
mentioned above, about the study of accelerating black
hole thermodynamics.
Moreover, the regularity of the solution is an essential

ingredient in the covariant phase space methods [10–13] to
compute the conserved charges. These techniques are par-
ticularly useful in the case of unconventional asymptotic
behavior because they allow one to compute conserved
charges in a finite region surrounding the black hole, thus
bypassing the criticalities placed at very large distances from
the black hole.
This approach already turned out to be successful in the

study of similar spacetimes with nontrivial asymptotic
behavior, as shown in Ref. [14]. It has been confirmed
in the extremal case, with different methods, as the near
horizon analysis [15]. We would also like to extend these
results for accelerating black holes; this will be done in
Sec. III, while in Sec. II we introduce the accelerating black*marco.astorino@gmail.com
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hole immersed in an external electric field background, a
sort of dual of the Melvin magnetic universe.
Unfortunately, in the presence of the cosmological

constant, the solution generating methods to build the
electromagnetic background surrounding the black hole
is not available; thus, we cannot remove the conical
singularity from the accelerating solution in this way. In
that case the metric remains irregular, so we cannot proceed
with the covariant phase space formalism to compute
conserved charges. At most, extrapolating the results of
Sec. III, we can present, in the Appendix, a proposal to
generalize the mass and the thermodynamics of the rotating
C-metric in the presence of the cosmological constant.

II. ACCELERATING CHARGED BLACK HOLE
IN AN EXTERNAL ELECTRIC FIELD

The equations of motion for Einstein-Maxwell theory,
governed by the action

I½gμν; Aμ� ¼ −
1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p ðR − FμνFμνÞ; ð2:1Þ

are

Rμν −
R
2
gμν ¼ 2

�
FμρFν

ρ −
1

4
gμνFρσFρσ

�
; ð2:2Þ

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0: ð2:3Þ

We consider the following solution for these equations:

ds2 ¼ ½Λðr; xÞ�2
ð1þ ArxÞ2

�
−
GðrÞ
r2

dt2 þ r2dr2

GðrÞ þ
r2dx2

HðxÞ
�

þ r2HðxÞΔ2
φdφ2

ð1þ ArxÞ2½Λðr; xÞ�2 ; ð2:4Þ

Aμ ¼ ½At0 þ Atðr; xÞ; 0; 0; 0�; ð2:5Þ

where

GðrÞ ≔ ð1 − A2r2Þðr − rþÞðr − r−Þ; ð2:6Þ

HðxÞ ≔ ð1 − x2Þð1þ ArþxÞð1þ Ar−xÞ; ð2:7Þ

Λðr; xÞ ≔
�
1þ qEx

2

�
2

þ E2r2HðxÞ
4ð1þ ArxÞ2 ;

Atðr; xÞ ≔
2AErð2mr − q2Þ − 4A2qr2 þ E2q½ð2m − rÞr − q2ð1 − A2r2Þ�

4A2r3
þ EGðrÞ½2Arþ qEð1þ 2ArxÞ�

4A2r3ð1þ ArxÞ2 : ð2:8Þ

The electromagnetic gauge potential Aμ is related to
the electromagnetic field strength tensor, as usual, by
Fμν ¼ ∂μAν − ∂νAμ.
The solution (2.4)–(2.8) enjoys axial symmetry; therefore,

both the metric gμν and the gauge electromagnetic potential
Aμ depend explicitly on the ðr; xÞ coordinates only. The
physical parameters involved in the solution are A, E,m, and
q, respectively related to the acceleration, the intensity of the
external electric field, the mass, and the intrinsic electric
monopole charge of the black hole. We consider, without
loss of generality, the positive A branch; the A < 0 branch is
specular (and it is equivalent to inverting the range of the
polar angle). The interpretation of the parameter A as the
acceleration can be inferred by studying the weak field limit
of the above metric, i.e., when m ≪ A [7,16]. The radial
coordinate r is, of course, positive, and x ∈ ½−1; 1� since it
corresponds to the polar angle (of spherical coordinates)
through the relation x ¼ cos θ.
These kinds of solutions were first generated by Ernst in

[9] by applying a Harrison transformation to the charged
C-metric. We recall that C-metrics describes a pair of
casually disconnected black holes which accelerate away
from each other along opposite directions under the action

of forces due to the presence of cosmic strings or struts
represented by conical singularities. When the nodal
singularity is a deficit angle, the δ-like associated contri-
bution to the energy momentum tensor is interpreted as a
pulling string, while the excess angle is interpreted as a
pushing strut (for a recent review about C-metrics, see [7]).
Ernst found that it is possible to remove the conical
singularity from the charged and accelerating black hole,
described by the C-metric, because the Harrison trans-
formation introduces a background external magnetic
field.1 Therefore, there is no need for a cosmic string or
strut that provides the acceleration to the black hole. In
the Ernst solution the acceleration is furnished by the

1The Harrison transformation is a one-parameter element of
the symmetry group of the solution space of axisymmetric and
stationary spacetimes in Einstein general relativity (without a
cosmological constant) coupled with Maxwell electromagnetism,
SUð2; 1Þ. The parameter that the Harrison transformation is
introducing is represented by E, and it is directly related to
the intensity of the external electromagnetic field. Thus, when
E ¼ 0 the Harrison transformation reduces to the identity
element, and the seed solution remains unchanged; no additional
external electromagnetic field is added.

MARCO ASTORINO PHYSICAL REVIEW D 95, 064007 (2017)

064007-2



interaction between the monopole charge of the black hole
and the external electromagnetic field. In order to remove
the conical singularity, the external and intrinsic electro-
magnetic field of the solution have to be of the same kind.
Otherwise the extra conical singularity brought in by the
Lorentz-like interaction between the intrinsic black hole
charge and the electromagnetic background is not sufficient
to compensate the C-metric axial deficit (or excess) angle,
as shown in [17]. For this reason, originally a magnetically
charged accelerating RN black hole was considered in an
external magnetic field. In the case considered by Ernst, for
small values of the acceleration, the metric approaches the
Melvin magnetic universe [18].
On the other hand, in this paper we prefer to consider the

electromagnetic dual2 of the original Ernst solution because
its electromagnetic potential Aμ is better behaved on the
axial axes. In fact, the dual Ernst solution (2.4)–(2.8) has no
problems related to Dirac strings due to the presence of the
intrinsic magnetic monopole. Of course, the dual Ernst
solution asymptotically approaches the Melvin magnetic
universe dual, which is a cylindrical-symmetric electric
geon, with intensity proportional to the electric field
parameter E. Note that, since the presence of the external
electromagnetic field, codified by the function Λðr; xÞ in
the Ernst metric (and its dual), is factorized out from the
ðt; r; xÞ part of the metric, its Penrose diagram, and its
conformal structure remain the same as the standard
charged C-metric.
The good behavior of the dual Ernst metric makes it

suitable for analyzing its conserved charges with the
covariant phase space methods [10–12], which have
recently been revealed to be quite convenient in the case
of nonconstant curvature asymptotics [14,19]. This solution
have been useful (for instance, in [20,21]) to clarify some
issues related to the electric-magnetic duality at the (semi-
classical) quantum level.
The constant Δφ can be set to ensure the absence of a

conical singularity at one of the two poles. A four-
dimensional spacetime contains conical (or nodal) singu-
larities if the two-dimensional base manifold metric dŝ2,
obtained from the full metric fixing t and r to some

constant, cannot be cast around the poles in the form
dŝ2 ¼ dθ2 þ sin2θdφ2 when using spherical coordinates.
In ðx ¼ cos θ; rÞ coordinates this means that the two-
dimensional surface metric cannot be cast in the form

dŝ ¼ dx2

1 − x2
þ Δ2

φð1 − x2Þdφ2

with Δφ ¼ 1. Thus, the surface has a conical singularity at
the poles, with a deficit (or excess) in the azimuthal angle
given by 2πδ, where δ ¼ 1 − Δφ. Hence, for Δφ ¼ 1 there
are no nodal singularities. In practice, considering a small
circle around the x ¼ �1 axis, we can require regularity
with the following constraint:

circumference
radius

¼ lim
x→�1

2π

1 − x2

ffiffiffiffiffiffiffi
gφφ
gxx

r

¼ 32πΔφð1� 2Amþ A2q2Þ
ð2� qEÞ4 ¼ 2π: ð2:9Þ

Because of the asymmetry of the deficits (or excesses,
depending on the values of the parameters) angle at the
poles of the two hemispheres, just one of the two nodal
singularities can be simultaneously removed by fixing Δφ.
We choose, without loss of generality, to regularize the
north pole one (x ¼ þ1) by setting Δφ as follows:

Δ̄φ ¼ ð2þ qEÞ4
16ð1þ 2Amþ A2q2Þ : ð2:10Þ

Note that, as there is no dependence on the radial
coordinate, Eq. (2.10) removes the conical singularity from
the whole semiaxis defined by x ¼ 1. The second nodal
singularity, located on the southern semiaxis identified by
x ¼ −1, can be removed thanks to the presence of the
external electric field, imposing

16ð1 − 2Amþm2A2ÞΔ̄φ

ð2 − qEÞ4 ¼ 1: ð2:11Þ

Therefore, the acceleration parameter A is constrained in
terms of the other parameters of the metric m, q, E,

Ā�ðm; q; EÞ ¼ mð16þ 24E2q2 þ E4q4Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð16þ 24E2q2 þ E4q4Þ2 − 64q4E2ð4þ E2q2Þ2

p
8q3Eð4þ E2q2Þ ; ð2:12Þ

to ensure full regularity of the solution outside the event
horizon.3 Hence, from a physical point of view, the
acceleration is furnished by the interaction between the
electric charge of the black hole and the external electric
field, making the singular cosmic string unnecessary.

2In 4D the electromagnetic duality allows one to interchange
the role of the electric and magnetic fields. In particular, a given
solution of the Einstein-Maxwell equations (2.2) and (2.3)
(gμν; Fμν) can be mapped in another solution (gμν; �Fμν) of the
same equations of motion, where the Hodge dual of the
electromagnetic field Fμν is given by �Fμν ¼ 1

2
ϵμνσρFσρ.

3No scalar invariants are divergent nor are conical singularities
present outside the event horizon.
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From Eqs. (2.11) and (2.10), in the weak field limit
(for small values of the acceleration parameter A and electric
field parameter E) the classical Newtonian force of a charged
particle in a uniform electric field can be recovered,

mA ¼ qE: ð2:13Þ

The constant At0 is arbitrary, so it can be set such that the
gauge potential has a well-defined vanishing acceleration
limit. It can be done by an ad hoc prescription that cancels
the divergent term for A → 0, i.e., requiring that the lowest
order of the Laurent series in the A parameter is − E

2A, but of
course in this way At0 is not uniquely fixed. Indeed, all the
positive A powers in the series expansion remain basically
unconstrained.
Otherwise, At0 can be uniquely fixed by the integrability

condition of the mass, selecting the canonical frame, where
the Coulomb electrochemical potential Φint is null

4 on the
surface of integration. Remarkably, in that case the term
that avoids divergences naturally appears. More details are
elucidate in the next section. However, in both cases we
smoothly recover the Reissner-Nordstrom black hole
embedded in an external electric field for A → 0 or the
standard charged C-metric for B → 0.
The black hole described by the metric (2.4) has the same

conformal structure of the accelerating Reissner-Nordstrom
black hole because the contribution of the external electric
field to the conformal factor in front of the ðt; rÞ part of the
metric is not singular, within the accelerating horizon. In
fact, the black hole has an inner and an outer horizon r�,
which coincide with the RN ones, and an accelerating
horizon rA respectively located where GðrÞ ¼ 0:

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
; rA ¼ 1

A
: ð2:14Þ

The regularity constraint (2.12) can take two values, and
then the accelerating horizon can be located, as shown in
Fig. 1, with respect to the inner and outer horizons as
follows:

rAþ < r− < rþ < rA−
: ð2:15Þ

Therefore, two different pictures are possible from (2.12).
Taking Āþ the position of the accelerating horizon remains
inside the inner horizon of the black hole. On the other hand,
considering Ā− as a regularity constraint, the accelerating
horizon is located, more conventionally, outside the black
hole event horizon. It can be shown that for A ¼ Ā− some
quantities, such as the electric charge, have better-defined
limits in the case of a vanishing external magnetic field. This
case can also be considered the standard branch because in
the vanishing electric field limit, E → 0, the value of the
constrained acceleration Ā− goes to zero; thus, the regular
RN black hole is retrieved. Instead, the acceleration regu-
larity constraint (2.10) is divergent for Āþ, in the null electric
field limit. Henceforward, for these reasons, wewill consider
the value Ā− as the constrained acceleration andwewill omit,
for ease of notation, the—sign.
The external electric field strongly modifies the

geometry of the event horizon, which is stretched or
squashed in the axial direction, depending on the values
of the free physical parametersm, q, E. This can be inferred
by inspecting the equatorial circumference of the event
horizon embedded in the external electric field,

Ce ¼
Z

2π

0

ffiffiffiffiffiffiffi
gφφ

p
dφ ¼ 2πrþΔ̄φ

1þ E2

4
r2þ

: ð2:16Þ

FIG. 1. Positions of the Killing horizons for a fixed value of the mass parameter (m ¼ 5). The picture does not change qualitatively for
different values of m or range of E and q.

4Although it is sufficient to require a less restrictive property,
such that the electric potential is not singular.
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In fact, comparing Ce with the standard RN equatorial
circumference 2πrþ, we can appreciate, in Fig. 2, how the
variation of the parameters p and E (while m is considered
fixed in the plot) affects the size of the equatorial circum-
ference. Thus, in the presence of acceleration, the deforma-
tion of the black hole event horizon is not just axially
stretched, as in the pure Melvin background [22].

III. MASS, ELECTRIC CHARGE,
AND THERMODYNAMICS

The area of the event horizon is modified, with respect to
the accelerating RN black hole, by the external magnetic
field only through the factor Δφ,

A ¼
Z

2π

0

dφ
Z

1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gφφgxx

p ¼ 4πΔφr2þ
1 − A2r2þ

: ð3:1Þ

The intrinsic electric and magnetic monopole charges can
be computed for the regularized black hole. They are,
respectively,

Q ¼ 1

8π

Z
Σ
FμνdΣμν

¼ −
1

4π

Z
2π

0

d ~φ
Z

1

−1
dx

ffiffiffiffiffi
gΣ

p
nμσνFμν

¼ 4qΔ̄φ

4 − q2E2
; ð3:2Þ

P ¼ 1

4π

Z
Σ
Fμνdxμ ∧ dxν ¼ 0; ð3:3Þ

where dΣαβ ¼ −2n½ασβ�
ffiffiffiffiffi
gS

p
dφdx and

ffiffiffiffiffi
gΣ

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffigxxg ~φφ
p

defines the two-dimensional volume element of the surface
Σ which surrounds the horizon for fixed time and radial
distance. Note that nμ and σν identify two mutual

orthonormal vectors, respectively, timelike and spacelike,
which are normal also to the integrating surface Σ.
The Hawking temperature, in the units we are consid-

ering where c ¼ ℏ ¼ kB, is defined as usual in terms of the
surface gravity κs,

T ¼ κs
2π

: ð3:4Þ

Considering5 χ ¼ ∂t as the Killing vector generating the
event horizon, the surface gravity on that Killing horizon is
given by

κs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
∇μχν∇μχν

r ����
rþ

¼ rþ − r−
2r2þ

ð1 − A2r2þÞ: ð3:5Þ

The Coulomb electric potential on the event horizon is

Φrþ ≔−χμAμjr¼rþ ¼−At0 −
E
2A

þ q
rþ

�
1−

q2E2

4

�
: ð3:6Þ

Note that, also for this quantity, the good behavior of the
vanishing accelerating limit requires that the lowest order
term in the Laurent expansion of At0 coincides with − E

2A.
The calculation of the mass is not that direct, basically

because it is not clear which is the normalization of the
canonical generator associated with the conserved energy.
In fact the involved asymptotic structure of the solution
makes it hard to identify a global timelike Killing vector at
infinity. We proceed in an operational way, based on the
covariant phase space methods and integrability [10–13],
which was successfully pointed out in [14], for nonaccel-
erating black holes. We compute the infinitesimal energy

FIG. 2. Plot of the equatorial circumference of the RN event horizon ChRN ¼ 2πrþ versus the polar circumference Ce, for q ∈ ½2; 5�,
E ∈ ½0; 2� and for a fixed value of the mass parameter m ¼ 5. Depending on particular parametric values, the electrified equatorial
circumference can either shrink or expand with respect to the standard RN.

5This vector is defined up to a constant rescaling. For the
moment, we naively take the simple normalization characteristic
of asymptotically flat spacetimes, but we will see that, since the
nontrivial fields fall off, a proper rescaling will be necessary.
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change due to the variation of the independent solution
parameters (δm; δq; δE).6

Generically, the infinitesimal conserved surface charge
associated with the Killing symmetry ðξ; λÞ is given by

δQðξ;λÞ ¼
I
Σ
δkðξ;λÞ½δgμν; δAμ; gμν; Aμ�: ð3:7Þ

The conserved superpotential associated with the generic
symmetry parameter ðξ; λÞ is given, for Einstein-Maxwell
theory, by

δkðξ;λÞ½δgμν; δAμ; gμν; Aμ� ¼ −δKðξ;λÞ þ Kðδξ;δλÞ − ιξΘ;

ð3:8Þ

where

Kðξ;λÞ½gμν; Aμ� ¼
ffiffiffiffiffiffi−gp

16πG
ðdxn−2Þμν½∇μξν −∇νξμ

þ 4FμνðξσAσ þ λÞ�; ð3:9Þ
Θ½δgμν; δAμ; gμν; Aμ�

¼
ffiffiffiffiffiffi−gp

16πG
ðdxn−1Þμ½∇σδgμν −∇μgνν þ 4FσμδAσ�; ð3:10Þ

and

ðdxn−pÞμ1…μn−p
¼ 1

p!ðn − pÞ! ϵμ1…μndx
μn−pþ1 ∧ … ∧ dxμn :

ð3:11Þ

Here, ιξ ≔ ξμ ∂
∂dxμ defines the interior product between

differential forms.
In this formalism the electric charge (3.2) associated with

the symmetry ðξ ¼ 0; λ ¼ −1Þ can be written as

Q ¼
Z

gμν

ḡμν

Z
Aμ

Āμ

δQð0;−1Þ: ð3:12Þ

The integration is intended between the background fields
(which is Minkowski spacetime in this case, where the
physical parameters m, q, E are null) and the metric and
gauge potential of the solution (2.4)–(2.8). The integrability
property of the electric charge (3.12) ensures that it is well
defined; i.e., the result is independent on the parametric
path followed for the integration.
But, when dealing with the conserved energy, since we

have no good criteria to define a canonical generator
associated with the mass, the integrability of the charge
cannot be taken for granted. Therefore, it would be more
appropriate in (3.7), as done by some authors in the

literature, to use a notation that emphasizes this aspect,
such as δQð∂t;0Þ. The difficulties in defining a canonical
generator for the mass stem from the nontrivial asymptotic
behavior of the metric. In particular, in this static case, the
main problem is the normalization of the Killing vector ∂t.
As found in [14], the act of imposing the integrability
property on the mass charge Mðm; q; EÞ uniquely selects
its canonical generator. In the case under consideration, this
means that we can set the normalization of ∂t by an
integrating factor αðm; q; EÞ such that

δM ¼ α½δQð∂t;0Þ −ΦintδQ�: ð3:13Þ

The closeness of the one-form δM implies three partial
differential equations in ðm; q; EÞ. It is a nontrivial fact that
these three equations are fulfilled by just two functions, the
normalizing factor αðm; q; EÞ and the boundary electric
chemical potential Φintðm; q; EÞ, which remained undeter-
mined. Here, αðm; q; EÞ and Φintðm; q; EÞ, which satisfy
(3.14), are

α ¼ 4ð4þ q2E2Þ3=2
ð4 − q2E2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 4ĀEmqþ E2q2

p ; ð3:14Þ

Φint ¼ −At0 −
E
2Ā

þ EĀq2
4 − q2E2

4þ q2E2
: ð3:15Þ

Hence, the integrability property is able to completely
determine the canonical frame, setting a canonical time
coordinate tcan and furthermore setting the value of the
electric chemical potentialΦint. Of course, we can make use
of the gauge freedom to select a frame where Φint ¼ 0 by
just choosing

At0 ¼ −
E
2Ā

þ EĀq2
4 − q2E2

4þ q2E2
: ð3:16Þ

In this way At0 is uniquely fixed and, at the same time, this
gauge choice makes the limit to the (nonaccelerating)
Reissner-Nordstrom solution well defined.
It can be verified that the surface whereΦint ¼ 0 is inside

the acceleration horizon, at least for a large range of the
parameters ðm; q; EÞ.
Having fixed the canonical frame through (3.14)–(3.16),

we can integrate Eq. (3.13) to get the integrable mass for the
accelerating black hole under consideration,

M ¼ ð4 − q2E2Þ2r2þ þ 16q2Δ̄φð1 − Ā2r2þÞ
2ð4 − q2E2Þ2rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ā2r2þ

p ffiffiffiffiffiffi
Δ̄φ

q
: ð3:17Þ

We find it remarkable that this expression for the mass can
be cast in the form of the Christodoulou-Ruffini irreducible
mass formula [23]. In fact, the mass (3.17) can be expressed
in terms of the event horizon area A (3.1) and the intrinsic
black hole electric charge Q (3.2) as follows:

6Of course, the acceleration parameter A can be equivalently
considered instead of one of m, q or E, inverting the constraint
(2.12). We pursue this choice only for algebraic economy.
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M2 ¼ Q2

2
þ π

Q4

A
þ A
16π

: ð3:18Þ

Therefore, the validity of the Christodoulou-Ruffini mass
formula, even in the case where the black hole is drastically
deformed by both the presence of acceleration and an
external electromagnetic background, goes beyond its
original derivation, for the asymptotically flat Kerr-
Newman black hole. In view of the results of [14], this
suggests that this quantity encloses some fundamental
properties of more general black holes. Actually, in [24]
this feature was intuited for axisymmetric extremal black
holes, even when distorted by the presence of surrounding
matter in Einstein-Maxwell theory.
Considering that the entropy is a quarter of the area

S ≔ A=4, and rescaling the Killing generator of the black
hole horizon χ → χ̄ ¼ αχ, we can check that the first law of
black hole thermodynamics is fulfilled,

δM ¼ T̄δS þ Φ̄δQ: ð3:19Þ

Note that the rescaling of χ induces a dilatation of the
Hawking temperature T and the Coulomb potential at the
event horizon, according to the definitions (3.4)–(3.6),
respectively,7

T̄ ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
∇μχ̄ν∇μχ̄ν

r ����
rþ

¼ αT; ð3:20Þ

Φ̄ ¼ −χ̄μAμjr¼rþ ¼ αΦrþ : ð3:21Þ

Of course, this rescaling naturally selects a canonical time,
defined as tcan ¼ t=α. With this coordinate transformation,
the α-factor normalization of the canonical Killing vector,
which defines the event horizon, can be reabsorbed to
read χ̄ ¼ ∂tcan .
Moreover, it can be straightforwardly checked that the

canonical intensive quantities (constant everywhere on the
event horizon) T̄ and Φ̄ are in coherence with the usual
thermodynamic definitions

T̄ ¼ ∂M
∂S ¼ 1

8πM

�
1 −

π2Q4

S2

�
; ð3:22Þ

Φ̄ ¼ ∂M
∂Q ¼ Q

2MS
ðS þ πQ2Þ: ð3:23Þ

A further check of the relation—between the mass
M ¼ MðQ;SÞ, the extensive ðQ;SÞ, and the intensive
ðT̄; Φ̄Þ thermodynamic quantities computed above—is
easily given by verifying the Smarr formula

M ¼ 2T̄S þ Φ̄Q: ð3:24Þ

Note that the mass (3.17) or (3.24) is meaningful, provided
there is regularity of the spacetime; therefore, the limits for
the null electric field E have to be taken carefully. The
acceleration constraint in the E → 0 limit reduces to
Ā− ¼ 0; in fact, from a physical point of view, when there
is no electric field, the only possibility for a regular
spacetime is given by imposing null acceleration, too.
Hence, taking the limit in the mass formula (3.17) for
vanishing acceleration and electric field (or, equivalently,
commuting the limit order), we get the expected mass value
M ¼ m, which coherently corresponds to the mass of the
limiting spacetime, the Reissner-Nordstrom black hole.
In case one is interested in the mass and thermodynamics

of accelerating black holes, without the presence of a
regularizing electric or magnetic field background, the phase
space method is not applicable anymore, precisely because
of the conical singularity. However, one might extrapolate
the results we have found for the regular case in this section
and in [14,25]. In fact, assuming that, also in the nonregular
case, the mass fits into the Christodoulou-Ruffini formula, it
is possible to fulfill the first law of black hole thermody-
namics. Although with a different approach, the mass and
thermodynamics for the accelerating Kerr-Newman black
hole were presented in [25]. It is also possible to generalize
these results in the presence of the cosmological constant. Of
course, the validity of the first law for irregular spacetimes
should not be taken for granted; therefore, we discuss this
mass proposal in the Appendix.

IV. COMMENTS AND CONCLUSIONS

In this paper we have analyzed the conserved charges
and the thermodynamics of an accelerating Reissner-
Nordstrom black hole, embedded in an external electric
field background to ensure the regularity of the solution
(outside the horizon).
While the electric charge is not problematic, to compute

the mass we make use of the phase space technique, which
has the peculiarity to select a canonical time coordinate,
and thus a canonical timelike Killing vector associated with
energy by requiring the integrability of the conserved
charge.
The resulting mass satisfies both the standard first law of

thermodynamics and the Smarr formula.Moreover, thismass
fulfills the Christodoulou-Ruffini irreducible mass formula,
originally derived for the Kerr-Newman black hole.
Relying on this outcome we propose an analogous

behavior in the presence of the cosmological constant. In
this case the solution presents irremovable conical singular-
ities because it is not known how to embed these asymp-
totically (A)dS spacetimes in an external electromagnetic
background, which is able to regularize the metric.
Nevertheless, taking advantage of the Christodoulou-
Ruffini formula for the Kerr-Newman-AdS black hole, it

7Here we are considering the gauge choice (3.16); otherwise Φ̄
should be defined as αðΦrþ −ΦintÞ.
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is possible to find a well-defined mass charge which fulfills
the standard first law of thermodynamics, without the need
for extra ad hoc constraints on the physical parameters, as
was proposed in previous literature.
More generically, it would be interesting to further

investigate the effectiveness of the Christodoulou-Ruffini
irreducible mass formula because it has also been shown to
work well in the case of drastic deformation of the Kerr-
Newman black hole. Perhaps it contains some significant
information about black holes, which remains undisclosed at
the moment. Finally, it would beworth exploring its range of
applicability, also outside the realm of general relativity.
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APPENDIX: MASS OF THE ACCELERATING
KERR-NEWMAN-ADS BLACK HOLE

Accelerating (and rotating) black holes can be generalized
in the presence of the cosmological constant8 (Λ). But,
unfortunately, the Harrison transformation needed to embed
these solutions in an external magnetic field does not work in
this case because some symmetries of the Einstein-Maxwell
action are broken whenΛ is not null [26]. Therefore, it is not
possible to simultaneously eliminate both conical singular-
ities from the rotating C-metric. This means that, physically,
we still have at least one cosmological string (or strut).
Thanks to a negative cosmological constant, it is possible

to select a parametric range where the inconvenient accel-
erating horizon [27] is absent, obtaining the so-called
“slowly accelerating” black holes.
The rotating and accelerating C-metric that we consider,

in spherical coordinates (x ≔ cos θ), is

ds2¼ 1

ð1þAxrÞ2
�
fðrÞþa2hðxÞ
r2þa2x2

dt2−
r2þa2x2

fðrÞ dr2

þ r2þa2x2

hðxÞ dx2þa2Δ2
φð1−x2Þ2fðrÞþða2þ r2Þ2hðxÞ

r2þa2x2

×dφ2þ2
að1−x2ÞfðrÞþaða2þ r2ÞhðxÞ

r2þa2x2
Δφdtdφ

�
;

ðA1Þ
where

fðrÞ ≔ ðA2r2 − 1Þðr − rþÞðr − r−Þ þ
Λ
3

�
r4 þ a2

A2

�
;

ðA2Þ

hðxÞ ≔ð1 − x2Þð1þ AxrþÞð1þ Axr−Þ: ðA3Þ

Its associated electromagnetic field is the same as the Kerr-
Newman solution,

Aμ ¼
�
−
qrþ pax
r2 þ a2x2

; 0; 0;−
−qrað1 − x2Þ − pxðr2 þ a2Þ

r2 þ a2x2

�
:

ðA4Þ

In fact, the (A)dS-Kerr-Newman metric can be recovered in
the vanishing accelerating limit.9 Note that in the presence
of the cosmological constant, the positions of the inner (ri)
and event horizons (rh) are no longer located at r− and rþ;
rather, they are more algebraically involved. They corre-
spond to the real roots of the quartic equation fðrÞ ¼ 0. In
[28] the following parametrization is proposed:

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2 − p2 − a2

�
1þ Λ

2A2

�s
: ðA5Þ

However, in order to fulfill the Einstein equation of motion,
a constraint on r− is sufficient, as follows:

r− ¼ 3A2ðq2 þ p2Þ þ a2ð3A2 þ ΛÞ
3A2rþ

: ðA6Þ

To remove the conical singularity, as done in Sec. II, from
the north pole we have to set the constant Δφ to a specific
value.

Δ̄φ ¼ 1

ð1þ ArþÞð1þ Ar−Þ
: ðA7Þ

Alternatively, it is possible to fix Δφ to remove the conical
singularity from the south pole. Henceforward, the mag-
netic charge p will be considered null to ensure regularity
of the electromagnetic field on the axis of symmetry, i.e., to
avoid Dirac strings.
The event horizon area

A ¼
Z

2π

0

dφ
Z

1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gφφgxx

p ¼ 4πΔφðr2h þ a2Þ
1 − A2r2h

ðA8Þ

is, as usual, related to the black hole entropy by

S ¼ A
4
: ðA9Þ

The electric charge and angular momentum are respectively
given by

8Which is better to think of as negative to avoid issues related
to the presence of the cosmological horizon.

9Just a little care in rescaling the time and radial coordinates is
needed before taking the A → 0 limit.
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Q ¼ 1

8π

Z
Σ
FμνdΣμν ¼ qΔφ; ðA10Þ

J ¼ 1

16π

Z
Σ
½∇αξβðφÞ þ 2FαβξμðφÞAμ�dΣαβ ¼ amΔ2

φ; ðA11Þ

where ξμðφÞ represents the rotational Killing vector ∂φ.
In the chosen gauge (A1) the Coulomb electric potential

Φe and the angular velocity at the horizon Ωh are

Φe ≔ −χμAμjr¼rh ¼
qrh

r2h þ a2
; ðA12Þ

Ωh ≔ −
gtφ
gφφ

����
r¼rh

¼ −
a

ðr2h þ a2ÞΔφ
: ðA13Þ

Defining the Killing generator of the horizon as
χ ¼ ∂t þ Ωh∂φ, we get the temperature of the black hole
event horizon from the surface gravity κs,

T ¼ κs
2π

≔
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
∇μχν∇μχν

r ����
rh

¼ −3a2 − 2q2 þ 3mðrh þ A2r3hÞ þ r4hð3A2 þ ΛÞ
6πrhða2 þ r2hÞ

:

ðA14Þ
In Sec. II and in [14] we have found that, also in the
presence of atypical asymptotics such as the accelerating
and the magnetized ones, when the black hole is regular, the
mass obeys the Christodoulou-Ruffini mass formula [23].
Assuming that this behavior also holds in the presence of a
conical singularity, we can write a mass formula for the
accelerating (A)dS-black hole, which obeys the standard
first law of black hole thermodynamics,10

δM ¼ T̄δS þ Ω̄δJ þ Φ̄δQ; ðA15Þ

where, as done in [14] and coherently with Sec. III, T̄; Ω̄,
and Φ̄ are defined as follows:

T̄ ¼ αT; Ω̄ ¼ αðΩh − ΩintÞ; Φ ¼ αðΦh −ΦintÞ:
ðA16Þ

Actually, in the absence of the cosmological constant, we
have already verified in [25] that, when the first law is
imposed to find the mass, it gives an expression which
exactly coincides with the Christodoulou-Ruffini mass
formula. But that path is technically more difficult to
pursue when the cosmological constant is present.
Nevertheless, the generalization of the Christodoulou-
Ruffini mass formula is available [29], and it is given by

M2ðS;J ;QÞ ¼ S
4π

þQ2

2
þ πðQ4 þ 4J 2Þ

4S

−
Λ
3

S
2π

�
Q2 þ S

π
−
Λ
3

S2

2π2

�
: ðA17Þ

Finally, substituting in (A17) the values of the extensive
quantities S, Q, J , (A8)–(A11), we get the mass for the
accelerating AdS-Kerr-Newman black hole, in terms of the
metric parameters (m, a, q, A).
Note that α;Ωint, andΦint can be uniquely inferred by the

thermodynamic intensive parameters conjugate to S;J ,
and Q, as found in [29],

T̄ ¼ ∂M
∂S

����
JQ

¼ 1

8πM

�
1 −

π2

S2
ð4J 2 þQ4Þ

−
2Λ
3

�
Q2 þ 2S

π

�
þ Λ2

3

S2

π2

�
; ðA18Þ

Ω̄ ¼ ∂M
∂J

����
SQ

¼ πJ
MS

�
1 −

ΛS
3π

�
; ðA19Þ

Φ̄ ¼ ∂M
∂Q

����
SJ

¼ πQ
2MS

�
Q2 þ S

π
−
Λ
3

S2

π2

�
: ðA20Þ

Note the conceptual difference with respect to the case
without the cosmological constant, as in Sec. III or in [14],
where, since the metric was regular, it was possible to
directly compute δM and derive α, Φint (and Ωint) from the
mass integrability requirement. Only afterwards was the
agreement with the thermodynamic quantities verified. But
in this case, where the metric is irregular due to the
presence of the cosmological constant, α;Ωint, and Φint
can be determined by assuming the validity of the thermo-
dynamic relations (A18)–(A20).
Instead of interpreting the mass, from a thermodynamic

point of view, as the energy of the black hole, it can be
interpreted as enthalpy [30,31]. In this case the cosmo-
logical constant is not considered fixed anymore, but it is
allowed to fluctuate. From the cosmological constant
it is possible to define a pressure term, P ¼ − Λ

8π, which
is treated as a thermodynamic state variable, while the
thermodynamic variable conjugated to P is given by the
volume of the black hole,

V≔
∂M
∂P

����
ðS;J ;QÞ

¼ 1

M

�
4π

3
J 2þ2S

3

�
Q2þS

π

�
þ16

9
PS3

�
:

ðA21Þ

In this setting an extra term in the first law of black hole
thermodynamics has to be included as follows:

δM ¼ T̄δS þ VδP þ Ω̄δJ þ Φ̄δQ: ðA22Þ
10For some values of α;Ωint, andΦint, as it is explained in [14].

Note that Ωint and Φint depend on the gauge choice; they can be
null for a suitable observer.
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The new term VδP refers to the change of enthalpy of the
system for a pressure fluctuation δP, at constant volume.
Remarkably, theChristodoulou-Ruffinimass formula (A17)

satisfies not only the first laws (A15) and (A22), but also the
Smarr formula

M ¼ 2T̄S − 2VP þ 2Ω̄J þ Φ̄Q ðA23Þ

¼ 2T̄Sþ2Ω̄J þ Φ̄Q−
4SP
3

�
Φ̄S
πQ

þ Ω̄J
1þ8PS=3

�
:

ðA24Þ
We stress that, in this approach, no ad hoc assumptions,
boundary conditions, or constraints on the parametric space are
needed to satisfy the first laws and the Smarr formula. It
strongly relies on the assumption of the validity of the
Christodoulou-Ruffini irreducible mass formula for the accel-
erating and singular C-metrics we are considering in this
appendix.
To give an example, we explicitly work out the non-

rotating case, i.e., a ¼ 0 and J ¼ 0. Thus, we consider an
accelerating Reissner-Nordstrom-AdS black hole.
From (A18) and (A20) we find, making use of (A12),

(A13) and (A16), α and Φint, respectively,

α¼ 3r4hΔφΛ−3ð1−A2r2hÞ½r2h−q2ð1−A2r2hÞΔφ�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−A2r2h

p ffiffiffiffiffiffi
Δφ

p ½3q2−3mðrhþA2r3hÞþr4hð3A2þΛÞ� ;

ðA25Þ

Φint¼
q
αrh

�
α−

ffiffiffiffiffiffi
Δφ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−A2r2h

q 	
: ðA26Þ

These quantities exactly reduce to the ones found in [25] in
the case of a null cosmological constant. Finally, the mass,
using the parametrization (A5) for r�, reads

Mja¼0 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Arh

ð1 − ArhÞð1þ 2mAþ q2A2Þ3
s

: ðA27Þ

This value for the mass is in coherence with the special case
treated in [25], and in the null accelerating limit, it goes to
m, the mass of the Reissner-Nordstrom-AdS black hole, as
expected. However, the mass (A27) does not coincide with
other values in the literature, as in [6]. Therefore, the
thermodynamic analysis is also different. The main differ-
ence lies in the normalization of the timelike Killing vector,
which we choose according to our previous results based on
the covariant phase space methods [14], and Sec. III, in
agreement with the Christodoulou-Ruffini irreducible mass
formula. In our opinion this proposal seems more well
grounded than the previous one because, without extra
ad hoc assumptions on the black hole physical parameters,
the first law of black hole thermodynamics—both in the
standard case, where the mass is considered as the internal
energy of the thermodynamic system, and in the case where
the mass is associated with the enthalpy—is fulfilled.
Moreover, it is in coherence with the phase space tech-
niques, when the cosmological constant vanishes.
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