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Thermodynamic fluctuation metrics in Ruppeiner’s formalism are worked out for Kerr-AdS black holes
in the extended state space. The implications of constraints upon the state space geometry and their
correspondence with thermodynamical ensembles are explicitly worked out in the most general setting. The
state space scalar curvature for a given ensemble is found to be sensitive to the instabilities or phase
transitions therein. In particular, it is found that the appropriate Ruppeiner scalar curvature does encode
critical phenomena in the Kerr-AdS black holes. A detailed study is undertaken of the curvature contour of
the state space of the 4D Kerr-AdS black hole, and suitable inferences are drawn. In particular,
thermodynamic geometry suggests an instability in the Schwarzschild-AdS limit for all the ensembles
except the pressure ensemble, which is equivalent to the unextended state space of the Kerr-AdS black
holes. The extrinsic geometry of the ensemble hypersurfaces is introduced, and its relevance to constrained
thermodynamic fluctuations is discussed. A new interpretation for the thermodynamic curvature of black
hole systems is suggested.
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I. INTRODUCTION

It was first proposed by Bekenstein that black holes are
genuine thermodynamic objects with an entropy which is a
measure of all the information concerning the black hole
interior that is lost to the outside world [1]. Drawing on the
well-known analogy with the laws of black hole mechanics,
he conjectured that the black hole entropy S is a constant
factor of order unity times the horizon area AH in Planck
units. Subsequently, in a seminal work Hawking was able
to show via a semiclassical calculation that black holes emit
thermal radiation with a blackbody spectrum at a temper-
ature proportional to their surface gravity, while the precise
expression for the entropy worked out to S ¼ AH=4 in
Planck units [2].
The large entropy of black holes implies a very large

degeneracy eS of underlying microstates and has inspired a
determined quest to seek its microscopic origin.
Remarkable progress has been made in this endeavor by
workers in quantum theories of gravity, especially for black
hole solutions in string theory [3,4].1 In particular, over the
past decade the AdS=CFT correspondence, a remarkable
realization of the gauge-gravity duality conjecture in string
theory, has significantly enriched our perspective on black
hole thermodynamics and phase transitions via the descrip-
tion of boundary field theory [6–8]. Thus, the Hawking-
Page transition in the AdS black holes was shown to be the
confinement-deconfinement phase transition in boundary
gauge theory [9].

In a different context, pioneering efforts by Ruppeiner
and others have shown that the equilibrium state space of a
thermodynamic system can be uplifted to a Riemannian
geometry via the Gaussian fluctuation moments which
constitute the metric [10]. Thermodynamic geometry has
been investigated for a variety of systems ranging from
fluids and magnetic systems to various black hole systems,
and significant information has been revealed through the
invariants of the geometry, like the geodesics or the
curvature scalar [10–15]. Thermodynamic geometry forms
a remarkable connection from the thermodynamic descrip-
tion to the underlying statistical description. Thus, the
magnitude of the scalar curvature invariant R turns out to be
proportional to the correlation volume of ordinary thermo-
dynamic systems, while its sign is an indicator of the
attractive or repulsive nature of the underlying statistical
interactions. Further, it has been shown that apart from
representing the critical point through its singularity, the
scalar curvature also encodes first order phase transitions in
simple fluids, uniquely determines the Widom line in
different regimes, and identifies the experimentally deter-
mined solidlike patches in the liquid phases [16,17].
The program of black hole thermodynamic geometry

aims to infer details of the underlying microscopic descrip-
tion of the black hole system starting from its thermody-
namics. The geometrical view is important to pursue since,
despite some remarkable achievements, the microscopic
description of the thermodynamics and phase structure of
black holes is a work in progress. Starting with the work of
[18], in recent years there has been an upsurge of interest in
the geometric approaches to black hole thermodynamics,
most of them employing either the Ruppeiner (Weinhold)
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formalism, wherein the metric is the Hessian of the entropy
(energy), or the more recent Quevedo “geometrothermo-
dynamics” [19], which makes use of the contact structure of
the phase space to obtain Legendre invariant thermody-
namic metrics. Thermodynamic geometry has been inves-
tigated for various black holes in spacetimes with differing
asymptotics and for different theories of gravity [20–51],
where it has been shown that the state space scalar
curvature R is an effective probe for investigating insta-
bilities and phase transitions. Of particular interest to a
geometric analysis are the black holes in asymptotically
anti–de Siter space (AdS black holes) with their dual
description in terms of boundary gauge theory via the
AdS=CFT duality. With the AdS space acting like a box,
the canonical ensemble of AdS black holes is stable, as
opposed to the asymptotically flat case, and their phase
structure is analogous to ordinary systems like the van der
Waals fluid [52,53]. In fact, the analogy with the phase
structure of fluids becomes precise for the extended state
space thermodynamics of AdS black holes, the subject of
this work. In this scenario the cosmological constant Λ is
treated as a thermodynamic variable and acts like a pressure
term, with its conjugate being the “thermodynamic vol-
ume” of the black hole [54–57]. The thermodynamics and
phase behavior in the extended state space have been
investigated recently [58–63], and interesting phenomena
like reentrant phase transitions have been reported. The
state space geometry of AdS black holes has been widely
investigated, and recently the geometric analysis has been
applied to dual gauge theory [64,65] and, in particular, to
strongly coupled field theories like holographic super-
conductors [66]. The thermodynamic geometry of extended
phase space has been investigated in [64,65,67–69].
The consensus seems to be that Ruppeiner’s scalar

curvature R does not always encode all the phase tran-
sitions or instabilities in a given black hole system. Thus,
for example, it is known that R does not encode the van der
Waals-like critical point in the Kerr-Newman-AdS black
holes [45,46], and it was noticed in [67] that even the
extended state space scalar curvature does not become
singular at the critical points of the Kerr-Newman-AdS
black holes. In [40–42] efforts made at generalizing
Ruppeiner’s metric by including the Hessian of thermody-
namic potentials apart from entropy or energy resulted in
scalar curvatures that captured different instabilities not
encoded by R. While the alternative approaches are very
promising, we nevertheless restrict ourselves to an analysis
of the Ruppeiner geometry, which has a well-understood
physical meaning from thermodynamic fluctuation theory.
In general, therefore, it is not clear a priori whether or not
the state space geometry is sensitive to the instabilities in a
particular ensemble of the black hole system. We try to
address this issue here. To this end we undertake a
systematic study of the intrinsic and extrinsic geometry
of hypersurfaces in the equilibrium state space and discuss

their role in describing the thermodynamic processes and
phase structures in a given ensemble. It turns out that phase
transitions and instabilities in a given ensemble are cap-
tured by the geometry of the relevant hypersurface. We then
explicitly work out Ruppeiner’s geometry for different
ensembles of the Kerr-AdS black hole in the extended
state space. We report that, contrary to the prevailing
viewpoint, the extended state space geometry correspond-
ing to the fixed angular momentum case becomes singular
at the van der Waals-like critical point of the 4D Kerr-AdS
black hole. Therefore, Ruppeiner’s geometry does encode
second order phase transitions in the Kerr-AdS black hole.
Furthermore, the geometry reveals an interesting “insta-
bility” in the extended state space in the Schwarzschild-
AdS limit (or J=M → 0) which is not captured by the usual
response coefficients. Namely, for all the ensembles in
which the fluctuations in the thermodynamic volume are
treated as independent, the state space scalar curvature
diverges to negative infinity in the zero angular momentum
limit. Indeed, it is only for the unextended state space,
namely, the constant pressure ensemble, that the geometry
remains regular in the Schwarzschild AdS limit. This has to
do with the fact that in the zero angular momentum limit,
the thermodynamic volume is no longer an independent
variable.
In this paper, we explicate the role of constrained

fluctuations in determining codimension-one hypersurfaces
in the (pseudo)Riemannian state space on which the black
hole thermodynamic system “lives.” Even though our
approach is quite general in its applicability, we restrict
our analysis to black hole systems and, in particular, to the
extended thermodynamics of AdS black holes. Indeed,
ensemble inequivalence of black hole systems helps us
transparently illustrate the main features of our general
approach. At the same time, the choice of the AdS black
holes in the extended phase space reflects a growing
interest in their thermodynamic properties and phase
behavior as discussed above, and we hope that our analysis
connects with efforts at placing them within the context of
AdS=CFT correspondence [70].
Before we delve into the details of our proposal and its

application to the Kerr-AdS black holes, we pause to sketch
our perspective on the physical meaning of R for black hole
systems. Indeed, there is a general agreement that R is a
measure of interaction strength for the black hole thermo-
dynamic system and that its divergence signals thermody-
namic instability and phase transitions, just as for ordinary
extensive systems. These general notions about the features
of R have been successfully tested for many black hole
systems. However, it appears difficult to borrow the
physical interpretation of R from ordinary extensive
thermodynamic systems for the case of black holes since
for the latter no notion of a correlation length exists. This
has to do with the nonextensivity of the black hole entropy
(similar to other self-gravitating systems [71]), with the
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added complication that, in the absence of any information
about its interior, the location of its microscopic degrees of
freedom is not understood. Not surprisingly, most of the
literature on the thermodynamic geometry of black holes
has largely restricted its focus to the ability of R to capture
thermodynamic instabilities. An exception is the work by
Ruppeiner [39,72–74], where he advances a quantum
gravity inspired proposition that R is a measure of the
number of correlated Planck-sized pixels at the horizon of
the black hole.
In an upcoming work we discuss an alternative interpre-

tation ofRwhich appears to be especially suited to the black
hole context and probably to other nonextensive statistical
systems aswell [75].We sketch it very briefly here. Thus, for
extensive systems, where the entropy is an order one
homogeneous function of extensive variables, it is well
known thatRextn has units of volume, and thatRextn ∼ ξd, the
correlation volume. Here, the subscript under R is for
extensive. Moreover, it relates to the singular part of the
free entropy density, namely, Rextn ∼ ψ s

−1. Now, especially
near the critical point, the singular part of the free entropy
counts the number of organized fluctuations in the system,
Ψs ¼ Ld

0ψ s ∼ Ld
0=ξ

d, and goes to zero at the critical point.
Therefore, a nondimensionless form of thermodynamic
curvature suggests itself, namely, R0 ¼ Rextn=Ld

0 ∼Ψ−1
s ,

where d is the spatial dimension of the system.
Therefore, this has the straightforward interpretation that
1=R0 counts the number of correlation volumes, or the
number of statistically independent domains in the system.
Now, as can be checked, near the critical point the non-
dimensionless scalar curvature R of the black hole scales as
the inverse of the singular part of the free entropy [46]. Thus,
based on the above we could think of the curvature length
scale l2R ¼ 1=jRj of the black hole system as a count of the
number of statistically independent domains. Of course, in
the black hole context, by domain we mean a collection of
correlated degrees of freedom for which we do not know the
distribution or location in space. Evidently, this approach is
similar in spirit to, but slightly different in emphasis from,
the aforementioned Ruppeiner’s approach. We defer the
details of our proposal to our forthcoming work [75], where
we also discuss thermodynamic curvature in an AdS=CFT
framework.
This paper is organized in two sections, as follows. In

Sec. II and its subsections we establish the connection
between thermodynamical ensembles, which we carefully
define, and the corresponding hypersurfaces living in the
ambient state space. In Sec. II Awe present a picture of the
Ruppeiner’s metric as a Mahalanobis norm for state space
fluctuations about equilibrium. In Sec. II B we work out the
thermodynamic metrics corresponding to restricted state
space fluctuations in a given thermodynamic ensemble.
Finally, in Sec. II C we discuss the extrinsic and intrinsic
geometry of the ensemble hypersurfaces. In Sec. III and its
subsections, we extensively apply the ideas developed in

the first part to explore the geometry of the extended state
space of 4D Kerr-AdS black holes. In Sec. IV we conclude
our discussion with brief comments and some key points.
For clarity and completeness, we sketch the development

of our ideas starting from the basic ingredients of thermo-
dynamic fluctuation geometry and differential geometry,
which to many might appear elementary in places. We take
that risk nevertheless since we feel that an understanding of
the program of geometrization of (restricted) fluctuations
requires us to engage with a few nuances at the heart of
the issue.

II. GEOMETRY OF CONSTRAINED
FLUCTUATIONS

In this section we work out our method for obtaining the
thermodynamic geometry corresponding to restricted fluc-
tuations in the state space.

A. Thermodynamic fluctuation metrics:
A view from scatter plot statistics

In the following we briefly review the setup of
Ruppeiner’s thermodynamic geometry before presenting
an active view of the state space Riemannian metric as a
measure of the spontaneous motion of the system in the
state space manifold around its equilibrium point. This
alternative viewpoint complements the static view of the
metric as a distance measure between nearby probability
distributions.
The thermodynamic fluctuation theory for black holes

envisages the black hole system and the reservoir in a
mutual equilibrium, which together form a microcanonical
system with a conserved and additive set, X0 ¼ X þ Xr, of
charges with the exception of the entropy, Stot ¼ Sþ Sr,
which is additive but not conserved. Unlike the black hole,
the reservoir is an extensive system and is weakly coupled
to the black hole so that their respective charges remain
additive [27,28]. The thermodynamic state of the reservoir,
which is fixed by definition and is labeled by its (entropic)
intensive variables or “potentials” θr, fixes the equilibrium
point X̄ of the black hole in its equilibrium state space.2 At
any other point X in its state space, while the black hole
remains in an internal equilibrium; it is no longer in mutual
equilibrium with the reservoir θr. The probability distribu-
tion of a spontaneous fluctuation of the black hole state
from the above mentioned equilibrium point X̄ to a point X
in its state space is determined by the entropy of the overall
microcanonical system,

pðX; θÞdnX ¼ C exp½StotðX; θÞ�dnX ð1Þ

2Tuning the reservoir potentials is formally equivalent to
equilibrating the black hole with a succession of reservoirs
whose states θr differ incrementally from each other [76].
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where

StotðX; θÞ ¼ SðXÞ þ Sr;θðX0 − XÞ ≤ StotðX̄; θÞ: ð2Þ
On Taylor expanding the total entropy around its

maximum value at equilibrium, we get

StotðX; θÞ ¼ StotðX̄; θÞ þ
1

2
d2Sþ � � � : ð3Þ

The second term in the expansion above is the second
order change in the black hole entropy, and it must be
negative for a stable equilibrium between the black hole
and the reservoir,

d2S ¼ ∂2S
∂Xμ∂Xν ðX̄μ − XμÞðX̄ν − XνÞ ¼ −gμνΔXμΔXν ð4Þ

where the indices μ, ν run across all the extensive charges.
In the small fluctuation approximation only the quadratic

term is retained, and the normalized probability distribution
becomes

PðX̄ þ ΔXÞdnX ¼ 1

ð2πÞn=2 exp
�
−
1

2
gμνΔXμΔXν

�

×
ffiffiffiffiffiffiffiffiffiffi
gðX̄Þ

q
dnX; ð5Þ

where gðX̄Þ is the determinant of the “metric” gμν at X̄.
For a stable equilibrium gμν is positive definite and

transforms as a covariant tensor of second rank under a
general coordinate transformation Xμ → X0μ, while ΔXμ’s
transform contravariantly, as can be easily checked [10].
This renders the expression inside the exponential invariant
under coordinate changes and supplies a natural definition
of an invariant distance between equilibrium points. Unlike
the full probability distribution in Eq. (1), the Gaussian
approximation above becomes covariant since, besides the
line element, the expression outside the exponential is
invariant, too.
The Massieu function Ψ, or the free entropy, is obtained

from the entropy via a Legendre transformation as3

Ψ ¼ S − θμXμ ð6Þ
where the entropic intensive variables are θμ ¼ ∂S=∂Xμ

and their infinitesimal changes dθμ transform covariantly,

−dθμ ¼ −
∂θμ
∂Xν dX

ν ¼ gμνdXν: ð7Þ

The extensive variables are similarly obtained from the
Massieu function as Xμ ¼ −∂Ψ=∂θμ. The first law of
thermodynamics can be equivalently expressed by infini-
tesimal changes in S or Ψ,

dS ¼ θμdXμ and dΨ ¼ −Xμdθμ: ð8Þ
The second order change in Ψ and that in S are of

opposite sign and give the thermodynamic line element,

d2Ψ ¼ −d2S ¼ −dθμdXμ: ð9Þ
Equation (9) above is a useful starting point for express-

ing the line element in terms of the available black hole
parameters. It is straightforward to check that the thermo-
dynamic metric

gμν ¼ −
∂2S

∂Xμ∂Xν ð10Þ

has its inverse in the Hessian of Ψ,

gμν ¼ ∂2Ψ
∂θμ∂θν : ð11Þ

Thus,

gανgνβ ¼
∂Xν

∂θα
∂θβ
∂Xν

¼ δαβ: ð12Þ
The metric and its inverse have a clear meaning in terms

of the second moment of thermodynamic fluctuations.
The inverse metric equals

gμν ¼ hΔXμΔXνi; ð13Þ
while the Hessian metric equals

gμν ¼ hΔθμΔθνi: ð14Þ
In this paper we do not privilege the extensive variables

over the intensive ones as regards fluctuations, in as much
as both are thermodynamic properties of the black hole. In
some treatments an asymmetry is introduced between the
extensive and intensive variables so that the latter represent
the potentials of the reservoir, which has a fixed thermo-
dynamic state. In the present work, however, following
Einstein’s fluctuation theory the microcanonical intensive
variables θ ¼ ∂S=∂X fluctuate about their mean value θr
fixed by the reservoir [10]. Simply put, in a given ensemble,
any of the parameters of the black hole—like the horizon
radius rh, the angular momentum parameter a, the charge
parameter q, or even the AdS length scale l in the extended
state space scenario—might fluctuate about their given
values. Therefore, all the quantities that are dependent on
them, whether the mass or the temperature, would undergo
ensemble-dependent spontaneous fluctuations. From
Eq. (14) above we can calculate the second fluctuation
moments of intensive variables like T, Φ etc.
In the following, while we discuss the entropic metric in

(10) as the “Hessian metric,” we sometimes refer to its
inverse in Eq. (11) as the “covariance metric” Σ for obvious

3Note hthat the extensive and intensive variables, Xμ and θν,
respectively, are not themselves vector quantities. The suggestive
placement of indices against these could be confusing but should
be kept in mind [10].
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reasons. The covariance metric relates directly to the
information geometry of equilibrium thermodynamics
and is the Fisher-Rao metric on the statistical manifold
parametrized by the variables θ. Thus, the line element
between two nearby equilibrium points in the state space is
equivalently interpreted as the distance measure between
two nearby probability distributions in the parameter
manifold. In Fig. 1 above we indicate the equilibrium state
space of the black hole as E. We also depict the parameter
space M in the figure wherein each point θ labels the state
of the reservoir and hence fixes a point X̄ in E where the
black hole equilibrates with the reservoir at θ.4 More
precisely, a point θ1 in the parameter space induces a
unique probability distribution pðX; θ1Þ on the state space
E given by Eq. (1) which could informally be viewed as a
“scatter plot” with its “center” at X̄1. Similarly, θ2 induces a
scatter plot on E determined by pðX; θ2Þ and centered
around X2, etc. Therefore, a state space point X1 could
either be the center X̄1 of a fixed distribution pðX; θ1Þ or
serve as a random sample vector for any other distribution,
say, pðX; θ2Þ. This reflects in the two related interpretations
of the Hessian matrix, Eq. (10), at a point on the state space.
As discussed above, on the one hand, it provides a distance
measure from the center X1 to a nearby center X2, or,
equivalently, between two probability distributions θ1 and
θ2, thus rendering the state space into a Riemannian

manifold, fE; gμνg → E, or, equivalently, the parameter
space into a parameter manifold, fM; gμνg → M. At the
same time, given a probability pðX; θ1Þ on E centered
around the mean X̄1, the matrix, Eq. (10), is the
Mahalanobis norm [77] for any other state space “sample
vector” X − X̄, assuming that the scatter is Gaussian. A
sample-statistic definition of the Mahalanobis distance in
the context of state space is given as

d2MðX; X̄Þ ¼ ðX − X̄ÞTΣ−1ðX − X̄Þ ð15Þ

where Σ−1 is simply the Hessian metric, Eq. (10). It is a
scale-invariant distance measure and counts the number of
(multivariate) standard deviations a sample point happens
to be from the mean. For a state space vector close to the
mean in Eq. ([77]), the Mahalanobis distance is identical to
the line element in Eq. (4), where ΔXμ is a tangent space
vector.
Therefore, informally, one could picture the tangent

space TX associated with a point X in the state space
manifold E as being spanned by the spontaneous fluc-
tuation vectors ΔXμ around the equilibrium state at X. This
could be thought of as a kinematic view of the state space
wherein the thermodynamic system continuously scans the
tangent space around its equilibrium point X̄1 with the
probability distribution function PðX̄1 þ XÞ, Eq. (5). In this
respect, the foregoing discussion simply (semi)formalizes
our intuition for the state space metric. The eigenvectors
associated with the covariance metric specify the directions
of statistically independent equilibrium fluctuations around
a state space point, and the square root of its eigenvalues is
the variance along the respective independent directions.
As a result, the square root of its determinant is proportional
to the “covariance ellipsoid” around a point and could be
thought of as a measure of the statistical distinguishability
of two nearby distributions.

B. Fluctuations, constraints,
and the ensemble hypersurface

In the following we set up the connection between
ensembles and hypersurfaces. In order to fix some of the
notions to be developed in this section, we take as our
reference black hole system the asymptotically AdS 4D
Kerr-Newman (KN-AdS) black hole. This is the most
general black hole solution of Einstein-Maxwell’s equation
in four dimensions and is characterized by its ADM mass
and angular momentum, M and J, respectively, and its
electric charge Q. In the following general discussion, we
do not require the exact Smarr formula for our black hole,
and it suffices that there exists a fundamental relation for
the entropy in terms of extensive variables, S≡ SðM;Q; JÞ.
The three-dimensional (unextended) state space of the KN-
AdS black hole may be described by any three independent
coordinates as long as the Jacobian of transformation is
nonzero, which will be the case in a locally stable region.

FIG. 1. The state space manifold along with the parameter
manifold. Each point on the parameter manifold M fixes an
equilibrium point on E about which there is a distribution of state
space fluctuations.

4A one-to-one mapping between the set X and its conjugate set
θ exists as long as the Jacobian matrix, Eq. (7), between the two is
invertible, implying that the system is locally stable. At the same
time, two locally stable equilibrium branches could coexist for a
range of values of θ, in which case Fig. 1 refers to a specific
branch.
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Thus, for example, the set Ω, T, Φ could equivalently serve
as the state space coordinates.
Any given path in the state space manifold, considered as

a set of equilibrium points, has fluctuations around all its
points in the sense discussed in the last subsection. Now,
along a given path, if some variables, like Q or Ω, are held
to constant values, such curves will lie on hypersurfaces of
constant Q, Ω, etc. in the state space manifold. However,
the constancy of Q or Ω does not preclude spontaneous
equilibrium fluctuations in their values. At a point on the
hypersurface, whether the equilibrium fluctuations are
restricted to the tangent space of the hypersurface or they
extend to the full tangent space of the embedding manifold
is to be determined by the nature of the constraint imposed.5

Physically, it could be that fluctuations in some modes of
the black hole system are very slow compared to others, in
which case one could entirely neglect the slower modes as a
first approximation.
A general case is one where the path lies entirely on a

hypersurface given by some function,

fðE;Q; JÞ ¼ f0: ð16Þ

If that function is, say, the electric potential Φ, then the
path corresponds to an isopotential process. Once again, the
nature of the constraint determines whether the potential Φ
is strictly constant or constant in the mean along the
isopotential path. We define an f constraint to be a strict
restriction to an f hypersurface of the overall state space
motion of the black hole system which includes its
equilibrium fluctuations.
The set of allowed fluctuations therefore determines the

nature of the ambient state space in which the path exists,
or, in other words, it determines the ensemble in which the
thermodynamic process takes place. In this respect, ther-
modynamical ensembles are shorthand for the quantities
we treat as thermodynamic variables as opposed to the ones
we fix as parameters [78]. In this paper’s terminology we
reserve the term grand canonical for the ensemble wherein
there is no restriction on the fluctuations in all the state
space variables and the black hole is in full thermodynamic
contact with the reservoir with all its charges freely
participating in the exchange. On the other hand, when
there is an f constraint present, as defined above, then we
refer to the ensemble as f canonical. Thus, if the angular
momentum J of the KN-AdS black hole is held strictly
constant, then it is referred to as being in the J-canonical
ensemble, or, for brevity, simply the J-ensemble. Similarly,
it could be in an Ω-ensemble, and so forth. The most
restrictive case in which the only mode of energy exchange

is in the form of heat will be referred to simply as the
canonical ensemble.
We now discuss the relation between thermodynamic

fluctuation metrics and ensembles. In Eq. (3) the entropy of
a nearby fluctuation was obtained via a Taylor expansion
around the equilibrium state without any constraint
imposed on the charges. Such unconstrained fluctuations
in all the charges of a system are a defining feature of the
grand canonical ensemble, as discussed above. Thus, for N
extensive charges the grand canonical metric, or the
“grand” metric, would be N dimensional. In the presence
of a constraint the thermodynamic metric is no longer N
dimensional. As discussed earlier, an f constraint restricts
the thermodynamic motion of a black hole system, includ-
ing its spontaneous fluctuations, to a codimension-one
hypersurface in its state space. The metric corresponding
to the restricted fluctuations is naturally the one induced on
the f hypersurface from the grand metric. We term such a
metric the f canonical metric, or simply the f-metric.
Before we discuss some geometrical aspects of ensemble

hypersurfaces in the next subsection, we briefly implement
the discussion above in the context of the KN-AdS black
hole. The infinitesimal change in the KN-AdS black hole
entropy is given by the first law of thermodynamics,

dS ¼ 1

T
dE −

Φ
T
dQ −

Ω
T
dJ; ð17Þ

and the line element between nearby equilibrium states is
obtained as

−dl2 ¼ dθμdXμ ¼ d

�
1

T

�
dEþ d

�
−
Φ
T

�
dQþ d

�
−
Ω
T

�
dJ:

ð18Þ
The inverse grand metric is obtained from the following
Massieu function,

Ψ ¼ S −
E
T
þΦ

T
Qþ Ω

T
J: ð19Þ

In the presence of constraints the full three-dimensional
grand metric will induce a metric on the relevant hyper-
surface. For most of the physically meaningful constraints,
the induced metric can be obtained from the grand metric
by a direct observation. Thus, for the ensemble in which
one or more of the charges (or extensive variables) are
constrained, the induced metric is simply obtained by
dropping off the terms containing the variation of those
charges in Eq. (18). For a fixed angular momentum
hypersurface, or the J-ensemble, for example, the induced
metric is obtained by a simple truncation of the line element
of Eq. (18),

−dl2J ¼ d

�
1

T

�
dEþ d

�
−
Φ
T

�
dQ: ð20Þ

5Note that compared to the intensive variables, it might appear
more natural to constrain the extensive variables, or the charges,
by means of “walls.” However, we shall not concern ourselves
with such questions.
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The relevant Massieu function is obtained by the partial
Legendre transform of the entropy,

ΨJ

�
1

T
;−

Φ
T

�
¼ S −

1

T
EþΦ

T
Q: ð21Þ

We could also freeze the fluctuations in an intensive
variable like the angular velocity so that on the Ω hyper-
surface the variations in J,Q, E are related by the condition
δΩðJ;Q; EÞ ¼ 0, thus reducing the number of uncon-
strained statistical variations to two. The metric for this
Ω ensemble is similarly written down by an observation
from Eq. (18),

−dl2Ω ¼ d

�
1

T

�
dðE − ΩJÞ þ d

�
−
Φ
T

�
dQ: ð22Þ

A suitable choice of extensive variables is suggested
from the form of the metric above, namely, W ¼ E −ΩJ
and Q, so that the first law is rewritten as

dS ¼ 1

T
dW þΦ

T
dQ: ð23Þ

Thus, the black hole could be thought of as exchanging
the independent extensive variables W and Q with the
reservoir. The fluctuations in the Ω ensemble give rise to
the covariance metric which is obtained from the following
Massieu function,

ΨΩ

�
1

T
;
−Φ
T

�
¼ S −

1

T
W þΦ

T
Q: ð24Þ

The metric induced on the Ω surface now records fluctua-
tions in W and Q,

hijΩ ¼ hΔYiΔYji; ð25Þ
where fY1; Y2g≡ fW;Qg.
We note that our prescription for obtaining the geom-

etries associated with restricted fluctuations could be
viewed as a generalization of Ruppeiner’s approach in [27].

C. Extrinsic and intrinsic geometry of the
ensemble hypersurface

To fix our discussion we could think of the KN-AdS
black hole once again. Thus, in the three-dimensional state
space of the KN-AdS black hole, let there be a hypersurface
given by Eq. (16). The unit normal vector to the f
hypersurface is proportional to its gradient and has the
standard expression

nμ ¼ ϵ
∂μfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgμν∂μf∂νfj

p ð26Þ

where gμν is the grand metric of the state space while ϵ is the
sign of the norm of nμ and is negative when it is “timelike.”
If the normal vector nμ is timelike at a point, then that point

is unstable to fluctuations along nμ since such a variation
results in an increase in the entropy. Therefore, the
suppression of fluctuations along nμ carves out a slice of
stability in a state space region which is otherwise unstable
to unrestricted fluctuations.
We now briefly discuss a geometrical method of

obtaining constrained fluctuation moments in a given
ensemble alluded to earlier. The metric on the hypersurface
is induced from the ambient metric by projecting out the
directions associated with the normal vector,

gμνðfÞ ¼ gμν − ϵnμnν: ð27Þ

The “projection metric” introduced above is the same as the
induced metric discussed previously. In the current repre-
sentation the indices run over the full set of state space
coordinates as opposed to the hypersurface specific repre-
sentation wherein the constraints have been explicitly taken
into account. The two are of course related as follows,

hðfÞij ¼ gðfÞμν
∂Xμ

∂Yi

∂Xν

∂Yj ð28Þ

where the Yi’s are coordinates specific to the hypersurface.
In a straightforward manner, the projection metric

represents the second order moments of the constrained
fluctuations in the entropic intensive variables and the
charges,

gðfÞμν ¼ hΔθμθνif ð29Þ

and

gμνðfÞ ¼ hΔXμΔXνif: ð30Þ

Keeping in mind the Ω ensemble of the KNAdS black
hole in order to fix the ideas, we find that the projection
metric in Eq. (27) and the induced metric in Eq. (25) play
complementary roles in describing fluctuations. Thus, the
Q fluctuations in theΩ ensemble are equally well described
by the induced metric and the projection metric through
their respective components:

hΔQÞ2iΩ ¼ hQQ
ðΩÞ ≡ gQQ

ðΩÞ ¼ gQQ − ϵnQnQ ð31Þ

where the normal vector is orthogonal to the Ω hypersur-
face. On the other hand, the constrained fluctuations in M
and J are naturally described via the projection metric,

hðΔMÞ2iΩ ¼ gMM
ðΩÞ ; ð32Þ

hðΔJÞ2iΩ ¼ gJJðΩÞ; ð33Þ

and
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hΔMΔJiΩ ¼ gMJ
ðΩÞ: ð34Þ

The induced metric Eq. (25) gives the constant Ω
fluctuations in the quantity W ¼ M − ΩJ mentioned
earlier,

hðΔWÞ2iΩ ¼ hWW
ðΩÞ ð35Þ

which can be related to the constrained fluctuations inM, J
via the projection metric,

hðΔWÞ2iΩ ¼ hðΔMÞ2iΩ þ Ω2hðΔJÞ2iΩ
− 2ΩhΔMΔJiΩ: ð36Þ

Thus we see that the geometrical prescription offers a
direct means to calculate fluctuations in the presence of
very general constraints. Finally, we extend the aforemen-
tioned method to include fluctuations in the presence of
multiple constraints. Thus, let f1ðXμÞ ¼ C1 and f2ðXμÞ ¼
C2 be two constraints present in s state space of dimension
greater than 2. Then the constrained fluctuations in the
charges Xμ can be represented as

hΔXμΔXνif1;f2 ¼ gμν − ϵ1n
μ
ð1Þn

ν
ð1Þ − ϵ2n

μ
ð12Þn

ν
ð12Þ

¼ gμνð1Þ − ϵ2n
μ
ð12Þn

ν
ð12Þ ð37Þ

where

nμð1Þ ¼ ϵ1
gμν∂μf1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgαβ∂αf1∂βf1j
q ; ð38Þ

while

nμð12Þ ¼ ϵ2
gμνð1Þ∂μf2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgαβð1Þ∂αf2∂βf2j
q ; ð39Þ

with ϵ1 and ϵ2 being the signatures of the norms of nð1Þ and
nð12Þ in the metrics gμν and gð1Þμν, respectively.
When the total thermodynamic motion of the black hole

system, including its spontaneous fluctuations, is restricted
to an f hypersurface, then, expectedly, the projection upon
the hypersurface of the full scalar curvature R gives its
intrinsic scalar curvature Rf. Now the scalar curvature Rf

obtained from the induced metric hðfÞij is related to the
grand curvature R via the Gauss-Codazzi relation

Rð3Þ ¼ Rð2Þ
f þ ϵðnμ;μnν;ν − nμ;νnν;μÞ þ 2ϵðnμ;νnν − nμnν;νÞ;μ

¼ Rð2Þ
f þ ϵðK2 − KμνKμνÞ þ 2ϵðnμ;νnν − nμnν;νÞ;μ:

Note that, just for this equation, we use superscripts on R
and Rf to explicitly indicate their dimensions. Here, the

covariant derivative is with respect to the grand metric gμν,
and the quantity K ¼ nμ;μ is the trace of the extrinsic
curvature Kμν which is the projection upon the hypersur-
face of the derivative nμ;ν. The extrinsic curvature, or the
second fundamental form, gives information about the
embedding of the hypersurface in the ambient state space
and is written as [79]

Kμν ¼ gμαðfÞg
νβ
ðfÞnα;β

¼ 1

2
gμαðfÞg

νβ
ðfÞLngαβ

¼ 1

2
Lng

μν
ðfÞ; ð40Þ

where the last equality can be interpreted, using the identity
in Eq. (30), as the Lie derivative of the constrained
fluctuations. It is generally the case that the intrinsic
curvature Rf of the f hypersurface might become singular
at a point but not the grand scalar curvature R of the
ambient space at that point and vice versa. Thus, for
example, at the critical point of the Q ensemble in the
KN-AdS black hole, while the curvature RQ diverges the
full curvature R remains regular [45,46]. The latter would
therefore remain insensitive to theQ-ensemble instabilities.
We stress this point here since it has often led to confusion
in the literature.
Recently, a work appeared that is related to extrinsic

curvatures in state space [80].

III. ADS BLACK HOLES AND EXTENDED STATE
SPACE THERMODYNAMICS

Recently, there has been active interest in exploring the
outcome of treating the cosmological constant of black hole
spacetimes as a thermodynamic variable [58–64,67–69]. It
was demonstrated in [54] by utilizing Komar integrals and
Killing potentials in static AdS spacetimes, that Θ, the
conjugate to Λ in the first law of thermodynamics, has the
dimensions of volume. In fact, the quantity Θ was dem-
onstrated to be the negative of the volume excluded by the
black hole in spacetime. This fit well with the natural
interpretation of Λ as a pressure term. As a result, the ADM
mass of M of the black hole was reinterpreted as the
enthalpy of the black hole, while its internal energy E was
obtainable as a Legendre transform of the enthalpy. Thus,
for the four-dimensional spacetime

EðS; V;Q; JÞ ¼ MðS; P;Q; JÞ − PV; ð41Þ

where the pressure is related to Λ as P ¼ −Λ=8π and the
thermodynamic volume is given as V ¼ −8πΘ, where
Newton’s constant G4 has been set to unity. The geomet-
rical derivation was further completed and elaborated upon
for more general charged and rotating black holes in [55]
for a negative cosmological constant. While for static
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solutions the thermodynamic volume matched the naive
interpretation of the volume as an integral from the
singularity to the horizon, for the rotating case there was
an additional term proportional to the angular momenta.
In this work we deal with extended state space for black

holes in the anti–de Sitter spacetime. The first law of
thermodynamics for the KN-AdS black hole is now given as

dS ¼ 1

T
dEþ P

T
dV −

Ω
T
dJ −

Φ
T
dQ; ð42Þ

while the line element in the extended state space is

−dl2 ¼ d

�
1

T

�
dEþ d

�
P
T

�
dV

þ d

�
−
Φ
T

�
dQþ d

�
−
Ω
T

�
dJ ð43Þ

where E refers to the internal energy of the black hole from
Eq. (41). The thermodynamic volumeV is now an extensive
variable which can be exchanged with the environment.
Thus, V, as well as P, is now subject to thermodynamic
fluctuations around their mean equilibrium values. To recall
our discussion relating to the fluctuations, the pressure P
could be held constant in two ways, either strictly or in the
mean. The former case gives the nonextended thermody-
namics wherein we have frozen out theP fluctuations. More
explicitly, we have

PðE; V;Q; JÞ ¼ P0 ð44Þ
so we are strictly restricted to the P surface in the four-
dimensional extended state space. In this P ensemble the
number of independent variables is reduced to three because
of the above constraint. The induced line element can be
obtained from the grand line element, Eq. (43), by a simple
rearrangement,

−dl2P ¼ d

�
1

T

�
dðEþ PVÞ

þ d

�
−
Φ
T

�
dQþ d

�
−
Ω
T

�
dJ ð45Þ

where now the three independent extensivevariables that the
black hole exchangeswith the environment are conveniently
given byQ, J and the enthalpyM ¼ Eþ PV. The first law,
Eq. (42), is similarly modified.
It turns out that the extended state space of the RN-AdS

black hole is not that useful from the point of view of
thermodynamic geometry. This is because the thermody-
namic volume of the RN-AdS black hole, as for any static
AdS spacetime, is a monotonic function of the entropy and
hence does not undergo an independent fluctuation.6 While

we could address the more general case of charged rotating
AdS black holes in arbitrary dimensions, for the sake of
simplicity, we restrict ourselves to the extended state space
geometries belonging to the 4D Kerr-AdS black hole since
it already exhibits interesting critical phenomena.

A. Extended fluctuation geometries for the 4D-Kerr
AdS black holes: The grand ensemble

The 4D Kerr-AdS black hole is described by three
independent parameters in the Boyer-Lindquist coordinate
frame. These are the horizon radius r, the angular momen-
tum parameter a, and the AdS length scale lwhich is related
to the pressure via the relation jΛj ¼ 3=l2. Note that in this
article we denote the horizon radius by r instead of the
standard notation rh. In terms of these parameters the
extensive variables in the extended state space are given as

M ¼ J
a
¼ l2ða2 þ r2Þðl2 þ r2Þ

2ða − lÞ2ðaþ lÞ2r ; ð46Þ

S ¼ πða2 þ r2Þ
1 − a2

l2
; ð47Þ

V ¼
�∂M
∂P

�
S;J

¼ 2l2πða2 þ r2Þða2l2 − a2r2 þ 2l2r2Þ
3ða − lÞ2ðaþ lÞ2r ;

ð48Þ
and

E ¼ M − PV ¼ ða2 þ r2Þð2l4aþ2 r2 − a2l2Þ
4ða − lÞ2ðaþ lÞ2r ; ð49Þ

while the intensive variables are

T ¼ a2ð−l2 þ r2Þ þ r2ðl2 þ 3r2Þ
4l2πrða2 þ r2Þ ; ð50Þ

P ¼ 3

8πl2
; ð51Þ

and

Ω ¼ aðl2 þ r2Þ
l2ða2 þ r2Þ : ð52Þ

Note that the angular velocity Ω above is the difference
between the horizon angular velocity ΩH and the velocity
of the Boyer-Lindquist frame at infinity, which is
Ω∞ ¼ −a=l2. It is the same as the velocity of the rotating
Einstein universe at the boundary of AdS space on which
the dual gauge theory lives as per the AdS=CFT corre-
spondence [53]. For angular velocity Ω < 1=l the black
hole can be in equilibrium with a corotating heat bath filling
up the AdS space up to infinity, while forΩ > 1=l the black
hole develops superradiant instabilities and the Einstein
universe spins faster than light.

6At the same time this property of V for static AdS spacetimes
turns out to be very useful in the realization of holographic heat
engines [62].
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The temperature goes to zero at the zero of the extremal
polynomial,

N ex ¼ a2ð−l2 þ r2Þ þ r2ðl2 þ 3r2Þ: ð53Þ

From the expression for entropy, it is clear that a ≤ l.
The extended first law of thermodynamics in this

ensemble includes the variations in all the extensive
variables,

dS ¼ 1

T
dEþ P

T
dV −

Ω
T
dJ: ð54Þ

The grand metric gμν is given by the line element

−dl2 ¼ d

�
1

T

�
dEþ d

�
P
T

�
dV þ d

�
−
Ω
T

�
dJ: ð55Þ

In this paper we order the state space coordinates as
fX1; X2; X3g≡ fE; V; Jg and fθ1; θ2; θ3g≡ f1=T; P=T;
−Ω=Tg.
The covariance metric can be obtained via the following

grand Massieu potential: Ψð1=T; P=T;−Ω=TÞ ¼

−
l2πðl2 − r2Þða2 þ r2Þ2

ða2 − l2Þða2ðl2 − r2Þ − r2ðl2 þ 3r2ÞÞ ð56Þ

with its determinant D given as

D ¼ a4l2ðl2 þ r2Þða2ðl2 − r2Þ − r2ðl2 þ 3r2ÞÞ5
288ða2 − l2Þ6πr6ðr2ðl2 − 3r2Þ þ a2ðl2 þ r2ÞÞ : ð57Þ

Note that the determinantD vanishes in the limit where a
goes to zero. The reason the covariance metric becomes
degenerate in this limit is because, for a ¼ 0, the thermo-
dynamic volume V becomes a function of E and hence its
fluctuations are no longer independent of E.
The maximum number of independent thermodynamic

response functions relevant to the ensemble can be neatly
obtained from the six second partial derivatives of the
Gibbs free energy with respect to its natural parameters,

GðT; P;ΩÞ ¼ −TΨ ¼ E − TSþ PV −ΩJ: ð58Þ

They are the heat capacity CPΩ ¼ Tð∂S∂TÞPΩ,

CPΩ ¼ 2l2πr2ða2ð−l2 þ r2Þ þ r2ðl2 þ 3r2ÞÞ
ða2 − l2Þðr2ðl2 − 3r2Þ þ a2ðl2 þ r2ÞÞ ; ð59Þ

the expansivity αPΩ ¼ 1
V ð∂V∂TÞPΩ ¼

−
4l2πrð6l2r4þ 3a2r2ðl2− r2Þþa4ðl2þ r2ÞÞ

ð2l2r2þa2ðl2− r2ÞÞðr2ðl2− 3r2Þþa2ðl2þ r2ÞÞ ; ð60Þ

�∂J
∂T

�
PΩ

¼−
2al4πðl2þr2Þða4þ4a2r2þ3r4Þ

ða2− l2Þ2ðr2ðl2−3r2Þþa2ðl2þr2ÞÞ ; ð61Þ

the compressibility κTΩ ¼ − 1
V ð∂V∂PÞT;Ω ¼

16l2πð9l4r6 þ 9a2l2r4ðl2 − r2Þ þ a6ðl4 − r4Þ þ a4ð5l4r2 − l2r4 þ 3r6ÞÞ
3ða2 − l2Þð2l2r2 þ a2ðl2 − r2ÞÞðr2ðl2 − 3r2Þ þ a2ðl2 þ r2ÞÞ ; ð62Þ

the moment of inertia IPT ¼ ð∂J∂ΩÞP;T ¼

l4ða2 þ r2Þð−l4r4 þ 3l2r6 þ a6ðl2 þ r2Þ þ a4ð3l4 þ 13l2r2 þ 6r4Þ þ a2ð6l4r2 þ 23l2r4 þ 9r6ÞÞ
2ða2 − l2Þ3rðr2ðl2 − 3r2Þ þ a2ðl2 þ r2ÞÞ ; ð63Þ

and

�∂J
∂P

�
TΩ

¼ −
4al4πða2 þ r2Þðl2 þ r2Þð9l2r4 þ a4ð2l2 þ r2Þ þ a2ð7l2r2 − 3r4ÞÞ

3ða2 − l2Þ3rðr2ðl2 − 3r2Þ þ a2ðl2 þ r2ÞÞ : ð64Þ

These functions carry the same information as the grand
metric, and any other response function can be obtained
from these six using the Maxwell relations [81].
Expectedly, the divergence of these response functions
follows that of the covariance determinant in Eq. (57)
above. In the state space parametrized by the variables r, l,
and a, the divergence occurs on the hypersurface, which is
the zero of the following polynomial:

N ¼ r2ðl2 − 3r2Þ þ a2ðl2 þ r2Þ ¼ 0: ð65Þ

We name this hypersurface the Davies surface.
Following the previous discussion, in this ensemble all
the extensive variables E, V, and J of the black hole
fluctuate around their mean values fixed by the environ-
ment. The second moments of their fluctuations are given
by the corresponding components of gμν as discussed
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previously. Similarly, the second moments of the standard
intensive quantities, namely, T, P, and Ω, can be obtained
from the components of gμν which produce the moments of
the θi’s. We list the simple relations between variations of
the entropic intensive variables and those of the standard
intensive ones,

ΔT ¼ −
1

θ21
Δθ1; ð66Þ

ΔP ¼ 1

θ1
Δθ2 −

θ2
θ21

Δθ1; ð67Þ

ΔΩ ¼ −
1

θ1
Δθ3 þ

θ3
θ21

Δθ1: ð68Þ

These equations, in conjunction with Eq. (14), can be
used to obtain the second moments of fluctuations in P, T,
etc. Thus, for example, the second moment of Ω fluctua-
tions may be obtained from above as

hðΔΩÞ2i ¼ θ−21 g33 þ θ23θ
−4
1 g11 − 2θ3θ

−3
1 g13

¼ ða2 − l2Þ2N ex

2l6πða2 þ r2Þ3 : ð69Þ

Similarly, the fluctuations in T and P can be obtained as

hðΔTÞ2i ¼ ðl2 − a2Þð18a2l4r4 þ 9l4r6 þ a6ðl4 − r4Þ þ a4ð5l4r2 − 10l2r4 − 6r6ÞÞN ex

8a4l6π3r2ða2 þ r2Þ3ðl2 þ r2Þ ð70Þ

and

hðΔPÞ2i ¼ 9ðl2 − a2Þ2N ex

32a4l4π3ða2 þ r2Þ2ðl2 þ r2Þ : ð71Þ

Interestingly, while the Ω fluctuations in the grand
ensemble remain finite in the Schwarzschild-AdS limit,
a ¼ J=M ¼ 0, the T and P fluctuations diverge in the same
limit. The above equations indicate that there is a price for
maintaining the volume fluctuation as an independent
mode in the limit J=M → 0. The price is an increase in
the spontaneous fluctuations of the surface gravity on the
black hole horizon. Note that the aforementioned six
response coefficients which represent standard deviations
of extensive variables are all finite in this limit. However,
presumably, higher moments would be needed to describe
the distribution of fluctuations where its temperature and
pressure are strongly fluctuating. We expect the thermo-
dynamic curvature R to be able to describe the situation
since it is an invariant measure of the validity of the
Gaussian approximation. In fact, as we will see in the
following, it clearly does so.
The state space scalar curvature in the grand ensemble

was calculated in [67], and we express it in our coordinates
below:

R ¼ −
P1

a4l2πða2 þ r2Þ2ðl2 þ r2Þ2
1

N 2N ex
ð72Þ

where the polynomial P1 is given in the Appendix
[Eq. (A1)].
Clearly, the grand scalar curvature diverges to negative

infinity along the Davies surface,N , and hence encodes the
Davies phase transition in the grand ensemble. It also
diverges to positive infinity at extremality, as usual for all

black hole systems. Furthermore, R becomes singular in the
limit a goes to zero. This is expected from the behavior
of the determinant D in Eq. (57) since the state space
geometry degenerates to a two-dimensional one at a ¼ 0.
This also connects with the diverging fluctuations in T and
P in the a ¼ 0 limit as pointed out in Eqs. (70) and (71) and
the subsequent discussion. Therefore, it appears that
thermodynamic geometry confirms the fact that when
fluctuations in V are independent of E and J, as in the
grand ensemble of the extended state space here, the a ¼ 0

limit is untenable, and moreover, it becomes more and more
difficult to sustain the grand ensemble for small a. We
discuss this more towards the end of this section.
In Fig. 2 we plot, in the three-dimensional state space,

the blue colored Davies surface, with R diverging to
negative infinity on it. The red colored surface is the
extremal surface at which T ¼ 0 and R diverges to positive
infinity on it. As far as the AdS black holes are concerned,
in this work we focus mostly on the locally stable regions of
the state space. Indeed, this is not to say that the geometry
of the locally unstable regions is ill defined. For instance,
the asymptotically flat black holes have negative heat
capacity and a well-defined thermodynamic curvature
[12]. In the case of black hole systems, a local instability,
as reflected in the wrong sign of some response functions,
might not be as catastrophic as for an ordinary extensive
system. In the latter case a negative specific heat, for
example, would mean that its parts become unstable to
exchange of heat amongst themselves causing a thermal
runaway within the system. For the black hole system a
negative heat capacity does not cause an internal disruption
other than rendering it unstable in the (grand) canonical
ensembles, which implicitly assume the system to be in
contact with an infinite bath. Furthermore, the statement
that the wrong sign of the response functions implies a
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negative mean squared fluctuation of extensive charges and
hence is a no-go for even the existence of, say, negative
specific heat states is true only for extensive systems, which
the black holes are not [71]. In any case, the geometry of
such regions helps one identify trends of instability and
slices of stability in them, as we will see in the following.
Viewed geometrically, the state space is equipped with a

thermal metric of varying signature. The scalar curvature in
a specified ensemble diverges whenever one of the eigen-
values of the ensemble metric becomes zero. The locus of
all degenerate points in the state space is thus a set of
surfaces separating regions with a metric of different
signature. In the full state space geometry corresponding
to the grand canonical ensemble, the 3D metric has a
signature (3,0) in the stable region, while in the unstable
region it has a signature of (2,1) throughout, up to zero
temperature, and hence is timelike there. Across the Davies
surface one of the eigenvalues of the metric changes sign by
passing through zero, while the other two remain unaf-
fected. Across the extremal surface and into the forbidden
negative temperature region, the metric has signature (1,2).
In Fig. 3 we show some standard thermodynamic curves on
a constant P slice of the state space. Note that the curves
Ω ≥ 1 always lie in the thermodynamically unstable region
of the grand ensemble. Also note the change in sign of R
from negative to positive at low temperatures. We remind
ourselves that in the grand ensemble, at all points on each of

the curves, there exist fluctuations in every possible
direction, including the ones away from the P surface. It
is only to the right of the dotted blue surface that the
equilibrium states become fully locally stable under any
fluctuation. Finally, global stability vis-à-vis AdS space is
achieved only to the right of the dotted green curve, which
marks the zero of the Gibbs free energy.
We now make the observation that when moving away

from the singular Davies surface into the locally stable part
of state space, the grand curvature R does not always
diminish. In Fig. 4 we plot R against the horizon radius r
for a fixed J and P. Note that J and P are fixed only in the
mean since in the grand ensemble all fluctuations are
unconstrained. Clearly, as opposed to general intuition, R
does not decay to zero everywhere in the locally stable
region. While R decays to zero in the northeast direction, in
Fig. 3 it grows to large negative values in the southeast
direction where the geometry becomes singular at the
a ¼ 0 edge of this region. A more detailed picture of
the landscape is offered by Fig. 5, which plots contours of R
in the r-a plane with l ¼ 1. From the figure we infer that
while R decays along curves of constant T and Ω, it
increases in magnitude, after it briefly falls away from the
Davies line, along curves of constant E, J, and V.
As mentioned earlier, R is not the only measure of

curvature in the 3D state space manifold of the Kerr-AdS
discussed in previously. We defer a detailed discussion of

FIG. 2. Plot showing the hypersurface of the R singularity in the
state space parametrized by r, a, and l. The blue colored singular
surface, on which R has a negative divergence, partitions the state
space in the grand canonical ensemble into a locally thermody-
namically stable region below it and a locally unstable region
behind it. The red colored singular surface is the extremal surface
at which T ¼ 0 and R has a positive divergence.
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FIG. 3. A projection of Fig. 2 on a constant P surface at l ¼ 1,
with the dotted red and dotted blue curves being, respectively, the
intersection of the extremal surface and the surface of R’s
negative divergence. R is zero on the black curve and negative
to its right. Gibbs free energy is zero on the green dotted curve
and negative to the right. Some thermodynamic processes that are
shown are purple colored constant J curves (J ¼ 0.02, 0.4 from
below to above) and brown colored constant Ω curves (Ω ¼ 1.2,
1, 0.8 from left to right).
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the implications of the full curvature tensor to a
future work.

B. The J canonical ensemble: Critical phenomena

In this ensemble the angular momentum is fixed and its
fluctuations are frozen, so the black hole’s thermodynamic
motion is strictly restricted to a J hypersurface in its three-
dimensional state space. The Kerr-AdS black hole exhibits a
rich phase structure in the J ensemble, with phase transitions
of both first order and second order occurring between the
small and large black holes,with critical exponents known to
have mean field values [45,53,67]. The phase structure is
further enriched in the higher-dimensional Kerr-AdS black
holes, which display reentrant phase transitions, among
other interesting phenomena [58,60]. As explained in [78]
the region of stability increases with constraints, so the
locally stable region of the grand canonical ensemble is
always a subset of that for any canonical ensemble.
Following the discussion in the previous section, there is
a simple geometrical way to understand this. Thus, we stated
earlier that for the grand ensemble, the region of instability
(behind the blue colored Davies surface in Fig. 2) is
characterized by a negative sign of any one of the eigen-
values of the grand metric in Eq. (55), which has a signature
of (2,1) there. Indeed, while any hypersurface inherits all the
locally stable regions of the ambient state space, it could
continue to remain stable even in the locally unstable region
of the ambient space if the unstable direction of the grand
metric there remains parallel to the hypersurface normal.
Thus, the ensemble hypersurfaces can carve out slices of
stability in regions which are otherwise unstable under the
full set of fluctuations. At the same time, the unstable
eigendirection of the grand metric need not align with the
hypersurface normal everywhere, so the ensemble hyper-
surface will become locally unstable too wherever the two
directions are not parallel.
For the J ensemble the full line element, Eq. (55),

reduces to

−dl2J ¼ d
�
1

T

�
dEþ d

�
P
T

�
dV; ð73Þ

while the Massieu function becomes

ΨJð1=T; P=TÞ ¼ S −
1

T
E −

P
T
V: ð74Þ

This gives rise to a two-dimensional covariance metric
whose determinant is

DJ ¼
a4ðl2 þ r2ÞðN exÞ4
36ðl2 − a2Þ3r4N J

; ð75Þ

where the zeros of the polynomial N J determine the
hypersurface on which the determinant DJ diverges,

0.6 0.8 1.0 1.2 1.4

0.1

0.2

0.3
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FIG. 5. A plot of contours of the grand scalar curvature R,
shown as the dotted blue lines, in the constant P plane. The thick
black curve is the Davies curve where R is singular. The dashed
red and magenta curves have, respectively, T and Ω constant,
while the dashed green, purple, and orange curves have, respec-
tively, E, J, and V constant.
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r

–5000

5000
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FIG. 4. A plot of the grand scalar curvature R vs the horizon
radius r in the grand ensemble along a path with J ¼ 0.2 and
l ¼ 1. The left arm corresponds to the locally unstable phase.
Along the locally stable right arm, R rises again after climbing
down from a divergence at the Davies point.
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N J ¼ ð−l4r4 þ 3l2r6 þ a6ðl2 þ r2Þ
þ a4ð3l4 þ 13l2r2 þ 6r4Þ
þ a2ð6l4r2 þ 23l2r4 þ 9r6ÞÞ: ð76Þ

Note that, similar to the grand determinantD in Eq. (57),
the determinant DJ goes to zero in the Schwarzschild-AdS
limit a ¼ 0. The independent response functions in this

ensemble, namely, CJP, κJT , and αJP, are obtained from the
three second partial derivatives of the Gibbs free energy
GJðT; PÞ ¼ −TΨJ. They are as follows:

CJP ¼ 2l4πða2 þ r2Þ2N ex

ðl2 − a2ÞN J
; ð77Þ

κTJ ¼
16l2πða2 þ r2Þð18a2l4r4 þ 9l4r6 þ a6ðl4 − r4Þ þ a4ð5l4r2 − 10l2r4 − 6r6ÞÞ

3ð2l2r2 þ a2ðl2 − r2ÞÞN J
; ð78Þ

and

αJP ¼ ð4l2ða2 − l2Þπrða2 þ r2Þð6l2r4 þ a4ðl2 þ r2Þ þ 3a2ð3l2r2 þ r4ÞÞÞ
ð2l2r2 þ a2ðl2 − r2ÞÞN J

: ð79Þ

The normal vector to the J surface points along the
direction of increasing angular momentum and is hence
easily expressed in the standard state space coordinates,
which represent the extensive variables. Thus,

nðJÞμ ¼ Signðg33Þ δ3μffiffiffiffiffiffiffiffiffi
jg33j

p ;

nμðJÞ ¼ Signðg33Þ g3μffiffiffiffiffiffiffiffiffi
jg33j

p : ð80Þ

The normal vector nðJÞ can be used to construct the
projection metric as in Eq. (27). Given that J is a coordinate
function on the state space, the contravariant form of the
projection metric gμνðJÞ does not supply any additional

information compared to the explicitly two-dimensional
induced metric from Eq. (73). However, in its covariant
form it does provide additional information about con-
strained fluctuations in the intensive variables. For exam-
ple, the microcanonical fluctuations in Ω on a J surface can
be evaluated via a modification of Eq. (69),

hðΔΩÞ2iJ ¼ θ−21 gðJÞ33 þ θ23θ
−4
1 gðJÞ11 − 2θ3θ

−3
1 gðJÞ13

¼ 2a2ða2 − l2Þ2ðl2 þ r2Þð2l2r2 þ 3r4 þ a2ðl2 þ 2r2ÞÞN ex

l6πða2 þ r2Þ3N J
ð81Þ

where

gðJÞμν ¼ gμν − ϵnðJÞμnðJÞν: ð82Þ
Note that unlike the case of the grand ensemble in Eq. (69),
the Ω fluctuations for the J ensemble approach zero in the
AdS-Schwarzschild limit a ¼ 0. Moreover, since the Ω
fluctuations diverge along the spinodal line, it becomes
increasingly meaningless to talk about angular velocity in
the critical region. At the same time, this does not reflect
any difficulty in thermodynamic progress as alluded to
earlier since, in the J ensemble, there is no fixed Ωr of the
reservoir as a reference. The fluctuations in T and P, given
by Eqs. (70) and (71), respectively, are finite in the critical
region but diverge in the limit a ¼ 0. Therefore, the J
ensemble becomes increasingly difficult to sustain in the
Schwarzschild-AdS limit, too. We expect that the interest-
ing thermodynamics in the J ensemble would be reflected
by the scalar curvature, which we now discuss.

The scalar curvature in the J ensemble is found to be

RJ ¼
P2

a4πðl2 þ r2Þ2ðN exÞðN JÞ2
ð83Þ

where the polynomial P2 is given in the Appendix
[Eq. (A2)]. Evidently, RJ encodes the thermodynamic
instabilities of the J ensemble, including its critical point,
as can be seen from the presence of the polynomial N J in
its denominator. This is significant since, contrary to the
current opinion, we see that Ruppeiner’s geometry does
encode critical phenomena in Kerr-AdS black holes.
We reemphasize that even though it is defined every-

where in the state space, RJ is not a scalar curvature of the
three-dimensional ambient space but an intrinsic curvature
of the J-hypersurface family. Therefore, for a given
thermodynamic process represented by a curve in the J
surface, RJ will not necessarily be the correct invariant. It is
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only when the J fluctuations are completely suppressed in
the thermodynamic process that its instabilities are repre-
sented by RJ. Similar to the grand curvature R in Eq. (72),
the J ensemble curvature RJ also diverges in the a ¼ 0
limit. Therefore, once again, geometry informs us that it is
increasingly difficult to evolve a thermodynamic process,
say, along an isotherm in the J-canonical ensemble of the
extended state space once the ratio J=M becomes small.
In Figs. 6 and 7, respectively, we plot the P − v and

P − r curves for the van der Waals (vdW) gas and the J

ensemble, respectively. The similarities of the extended
phase space structure of the Kerr-AdS black hole with the
vdW gas are well known, as can be observed from the two
adjacent figures. Thus, similar to the vdW case the black
hole is characterized by the coexistence of the small and
large black hole phases which culminates in a critical point
that has mean field exponents for both. However, there is a
noticeable difference between the two state space geom-
etries in the way their respective scalar curvatures fall off
away from the spinodal line. For the vdW gas the fall off is
standard, implying that the fluctuations become more and
more Gaussian away from the spinodal line. On the other
hand, in accordance with the discussion in the preceding
paragraph, RJ tends to grow, after a brief fall off, away from
the spinodal line along standard curves, like the isotherm
represented in Fig. 7.
The scalar curvature RJ may also be obtained from the

grand curvature R via the Gauss-Codazzi relations,
Eq. (40), which highlights aspects of embedding of the
J surface in the 3D state space. The trace KJ of the extrinsic
curvature of the J surface is found to be

KJ ¼ Signðg33Þ P3ðl2 −a2Þ12
alða2þ r2Þðl2þ r2Þ

Nex

NNJ

���� 2N
πNexNJ

����
1
2 ð84Þ

where the polynomial P3 is expressed in the Appendix
[Eq. (A3)].
From the expression above we see that KJ encodes the

instabilities intrinsic to the ensemble hypersurface as well
as those of the ambient space. Furthermore, it vanishes at
extremality. We defer a detailed study of the extrinsic
curvature to a future investigation.

C. The P canonical ensemble

In this ensemble the fluctuations in the pressure P are
frozen out, so it corresponds to a strict restriction of the
black hole thermodynamic motion to a constant P hyper-
surface in its state space,

PðE;V; JÞ ¼ P0; ð85Þ

as we discussed previously in Eq. (45). The P ensemble
gives the unextended phase space thermodynamics of the
Kerr-AdS black hole, with its natural choice of extensive
variables being fY1; Y2g ¼ fM; Jg. Indeed, the P ensem-
ble corresponds to the grand canonical ensemble of
unextended state space of the Kerr-AdS black holes, and
its thermodynamics, phase structure, and thermodynamic
geometry have been thoroughly discussed in many works
[45,46,53]. In this section we approach the state space
geometry using the new insights developed in the present
work. The metric induced on the ensemble gives the line
element

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

FIG. 6. A plot of contours of R for the van der Waals gas in the
P-v plane. We use expressions from [16] for the universal vdW
equation. The red dotted line is an isotherm.

FIG. 7. A plot of contours of RJ in the P-r plane on the j ¼
0.02 hypersurface. Note the difference in contours of scalar
curvature.
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−dl2P ¼ −hðPÞijdYidYj ¼ d

�
1

T

�
dM − d

�
Ω
T

�
dJ: ð86Þ

The inverse metric hμνðPÞ, i.e., the covariance metric, can be
obtained from the second partial derivatives of the Massieu
function,

ΨPð1=T;−Ω=TÞ ¼ S −
M
T
þΩJ

T
ð87Þ

with its determinant given as

DP ¼ l2N 4
ex

64ða2 − l2Þ4π2r4N : ð88Þ

Unlike the previous two cases the determinant remains
finite in the limit of a going to zero. The three independent
response functions obtained as second partial derivatives
of the free energy GPðT;ΩÞ ¼ −TΨP are CPΩ, IPT , and
ð∂J=∂TÞPΩ obtained in Eqs. (59), (63), and (61), respec-
tively, so it shares the instabilities of the grand ensemble.
The projection metric on the P hypersurface is

gμνðPÞ ¼ gμν − ϵnμðPÞn
ν
ðPÞ ð89Þ

where

nμðPÞ ¼ ϵ
gμν∂νPðXÞ

jgαβ∂αP∂βPj12
ð90Þ

and

ϵ ¼ Signðgαβ∂αP∂βPÞ: ð91Þ
The components of the induced metric inverse hijðPÞ

represent the constant pressure fluctuations in the enthalpy
M and the angular momentum J,

h11ðPÞ ¼ hðΔMÞ2iP;
h22ðPÞ ¼ hðΔJÞ2iP;
h12ðPÞ ¼ hðΔJΔMÞiP: ð92Þ

Additionally, the components of the projection metric
represent the constrained fluctuations in E and V,

g11ðPÞ ¼ hðΔEÞ2iP; g22ðPÞ ¼ hðΔVÞ2iP; etc:; ð93Þ
which bear a simple relation to the enthalpy fluctuations,

hðΔMÞ2iP ¼ hðΔEÞ2iP þ P2hðΔVÞ2iP þ 2PhΔVΔEiP:
ð94Þ

The fluctuations in T and Ω are obtained as

hðΔTÞ2iP ¼ ðl2 − a2ÞN exN J

32l8π3r2ða2 þ r2Þ4 ; ð95Þ

hðΔΩÞ2iP ¼ ðl2 − a2Þ3r2N ex

2l8πða2 þ r2Þ4 : ð96Þ

We note that unlike the previous cases, the T fluctuations
do not diverge in the a ¼ 0 limit.
The scalar curvature in the P ensemble can be obtained

directly from the induced metric Eq. (86) or, equivalently,
from the grand curvature R, Eq. (72), via the Gauss-
Codazzi relation, Eq. (40). The scalar curvature was found
in [46] as

RP ¼ −
ðl2 − a2Þr2P4

l2πN 2N ex
ð97Þ

where P4 is given in Eq. (A4). Unlike the curvature for the
grand ensemble, Eq. (72), and the J ensemble, Eq. (83), the
curvature for the P ensemble remains finite in the AdS-
Schwarzschild limit a ¼ 0. This fits well with the finiteness
of the determinant DP in Eq. (88) and the temperature
fluctuations in Eq. (95). Indeed, in this ensemble the V
fluctuations are already subsumed under the fluctuations in
enthalpy M, so in the limit a ¼ 0 the geometry is still two
dimensional. We therefore infer from the geometry that the
P ensemble remains “feasible” for small a and has a
smooth Schwarzschild-AdS limit, unlike the previous two
cases discussed. In Fig. 8 we plot contours of RP in the
r − a plane with l ¼ 1. It is apparent that R decays along all
thermodynamic processes marked by the colored dashed
curves.
Just like for the J hypersurface, the extrinsic curvature

KP encodes the instabilities of the ambient state space as
well as those of the P hypersurface.
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FIG. 8. A plot of contours of the P ensemble scalar curvature
RP as the dotted blue lines in the constant P plane. The thick
black curve is the Davies curve where RP is singular. The dashed
red and the magenta curves have respectively T and Ω constant
while the dashed green and purple curves have respectively M
and J constant. Notice that now the curvature decays uniformly
away from the Davies line. Compare with Fig. 5.
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KP ¼ r2ðl2 − a2Þð9l2r4ðl2 − r2Þ þ a6ð5l2 − r2Þ þ a4ð11l4 þ 5l2r2Þ þ 3a2ð4l4r2 − 3l2r4 þ 3r6ÞÞ
a2l2ða2 þ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðr2 þ l2Þ

p
NN 1=2

ex

: ð98Þ

The geometry of other ensembles like the fixed volume
or the fixed Ω ensemble can also be similarly investigated.
For all of these the state space scalar curvature becomes
singular in the AdS-Schwarzschild limit.

IV. CONCLUSION

In this paper we have developed a prescription for
studying the state space geometry in the presence of general
constraints. The set of allowed macroscopic fluctuations
constitutes a thermodynamic ensemble which corresponds
to a hypersurface in the equilibrium state space. The
intrinsic scalar curvature of a given ensemble hypersurface,
which can also be obtained from the ambient scalar
curvature via the Gauss-Codazzi relations, always encodes
the thermodynamic instabilities in the given ensemble. The
extrinsic geometry of the ensemble hypersurface provides
useful information through its normal vector and extrinsic
curvature. Thus, while the projection metric on the hyper-
surface gives the second moments of constrained fluctua-
tions, the trace of the extrinsic curvature is the Lie
derivative of the constrained moments along the normal
vector. We then applied our prescription to the extended
state space geometry for the Kerr-AdS black holes. We
studied in detail the geometry of the grand ensemble and
two other ensembles, one with fixed angular momentum J
and the other with fixed pressure P. The grand scalar
curvature R is singular at the Davies transition point and
also in the Schwarzschild-AdS limit. This indicates that in
the grand ensemble of the extended state space, which
includes fluctuations in all the extensive state variables—
namely, energy, thermodynamic volume, and angular
momentum—the limit of zero angular momentum is an
instability. In the ensemble with fixed angular momentum,
the scalar curvature RJ becomes singular along the spinodal
line and hence also at the critical point. This goes to show
that, contrary to the prevailing view, thermodynamic

curvature encodes critical behavior in Kerr-AdS black
holes. Much like the grand ensemble, the J ensemble is
also unstable in the AdS-Schwarzschild limit. On the other
hand, the scalar curvature for the fixed pressure ensemble
RP is singular along the Davies point but remains finite in
the limit a ¼ 0. This indicates that the Kerr-AdS black hole
in a fixed pressure ensemble, which is the same as the
unextended state space, has a well-defined Schwarzschild-
AdS limit. Even though in this paper we have focused on
black hole systems, our method is quite general and will be
useful for studying the thermodynamic geometry of multi-
parameter systems.
Finally, we mention that in this work we have focused

exclusively on the thermodynamic instabilities and phase
transitions in black hole systems, whose geometric treat-
ment is characterized essentially by the Hessian of the
entropy. Indeed, there are more general dynamical insta-
bilities of black holes, especially for higher-dimensional
objects like black branes and black strings, which might or
might not coincide with the thermodynamical ones. In the
latter case a more general characterization of instabilities is
possible in terms of a canonical energy [82], which could
be further interpreted as quantum Fisher information [83].
It would be interesting to investigate the information
geometry of the canonical energy and, in particular, imple-
ment our proposal for constrained fluctuations in the
context of dynamical instabilities.
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APPENDIX: FORMULAS

P1 ¼ −ða2 − l2Þr2ð2a12r2ðl2 − r2Þðl2 þ r2Þ2 − 27l4r10ðl6 − 9l4r2 þ 3l2r4 − 3r6Þ
þ a2l2r8ð−203l8 þ 729l6r2 − 423l4r4 þ 243l2r6 − 162r8Þ
− 3a6r4ð151l10 − 117l8r2 þ 40l6r4 − 252l4r6 þ 89l2r8 þ 9r10Þ
þ a10ð−36l10 − 44l8r2 − 9l6r4 þ 81l4r6 þ 73l2r8 þ 23r10Þ
− a4r6ð395l10 − 1061l8r2 þ 142l6r4 − 798l4r6 þ 351l2r8 þ 27r10Þ
− a8r2ð206l10þ 76l8r2 þ 203l6r4 − 71l4r6 þ 195l2r8 þ 39r10Þ; ðA1Þ

RESTRICTED THERMODYNAMIC FLUCTUATIONS AND THE … PHYSICAL REVIEW D 95, 064002 (2017)

064002-17



P2 ¼ −ð8ð−18l12r14 þ 3a16l4r4ðl2 þ r2Þ − 9a2l8r10ðl6 þ 2l4r2 − 22l2r4 − 9r6Þ
− a4l4r8ð22l10 − 100l8r2 − 512l6r4 þ 312l4r6 þ 405l2r8 þ 81r10Þ
þ a12l2ðl12 − 23l10r2 − 226l8r4 − 518l6r6 − 208l4r8 − 50l2r10 − 32r12Þ
þ a14ð−l12 − 11l10r2 − 28l8r4 þ 13l6r6 þ 11l4r8 þ l2r10 þ 3r12Þ
þ a6l2r6ð149l12 þ 1241l10r2 þ 2929l8r4 þ 2119l6r6 þ 1776l4r8 þ 1107l2r10 þ 243r12Þ
− a10r2ð−34l14 − 140l12r2 þ 362l10r4 þ 1726l8r6 þ 1307l6r8 þ 736l4r10 þ 390l2r12 þ 81r14Þ
− a8r4ð−111l14 − 715l12r2 − 704l10r4 þ 1664l8r6 þ 1848l6r8 þ 1254l4r10 þ 702l2r12 þ 162r14ÞÞÞ; ðA2Þ

P3 ¼ −l4r8ðl2 − 3r2Þ2 þ a2l2r6ð9l6 þ 10l4r2 − 81l2r4 − 18r6Þ
þ a10ð3l4r2 þ 4l2r4 þ r6Þ þ a8ð−6l8 − 30l6r2 − 35l4r4 þ 8l2r6 þ 3r8Þ
− a6r2ð33l8 þ 170l6r2 þ 274l4r4 þ 82l2r6 þ 9r8Þ
− a4r4ð33l8 þ 200l6r2 þ 404l4r4 þ 168l2r6 þ 27r8Þ; ðA3Þ

P4 ¼ a6ð3l2 þ r2Þ þ l2r2ðl4 − 3l2r2 − 54r4Þ þ 3a4ð2l4 þ 7l2r2 − r4Þ þ 3a2ðl6 þ 7l4r2 − 2l2r4 − 18r6Þ: ðA4Þ
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