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We explore the use of galaxy bispectra with the multitracer technique as a possible probe of primordial
non-Gaussianities. We forecast future constraints on non-linearity parameters, feqNL and forthNL , which,
respectively, characterize the equilateral- and orthogonal-type primordial bispectra, and show that the
multitracer analysis would be effective with reducing the cosmic-variance noise if the number density of
galaxies is high enough. We find that the measurement of the galaxy bispectrum by future galaxy surveys
can reach the constraints on the nonlocal-type primordial non-Gaussianities to the level more severe than
current one which has been obtained by cosmic microwave background observations.
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I. INTRODUCTION

Primordial non-Gaussianity (PNG), recently, has been
expected to be one of the most informative fingerprints of
inflation and brings insights into the fundamental physics
behind inflation. Since different shapes of higher-order
primordial spectra can be linked to a different mechanism
for generating non-Gaussian features of the primordial
fluctuations, it would be interesting to constrain various
types of PNG by precise cosmological measurements
such as the cosmic microwave background (CMB) and
large-scale structure (LSS).
The amplitudes in the various shapes of the primordial

bispectrum are basically characterized by three so-called
non-linearity parameters flocalNL , feqNL, and forthNL , which,
respectively, correspond to the amplitudes of the local
[1], equilateral [2], and orthogonal types [2]. These are
frequently considered as typical examples and are strongly
motivated by inflationary models. The current limits on
these parameters have been obtained from the CMB tem-
perature anisotropies and polarizations: flocalNL ¼ 0.8� 5.0,
feqNL ¼ −4� 43, and forthNL ¼ −26� 21 at 1σ statistical
significance, respectively [3,4]. Although such strict con-
straints on the non-linearity parameters have not been
obtained from the observational data of the LSS yet, the
spatial clustering behavior of the halos/galaxies on large
scales is believed to be a powerful tool to probe the PNG.
One of the most distinctive effects of the PNG on the
clustering of the galaxies is known as the scale-dependent
bias (see, e.g., Refs. [5,6]), which is due to the non-linear
coupling caused by PNG, and it is expected to have a
potential to reach σðflocalNL Þ ¼ Oð0.1–1Þ in future surveys.

It is, however, shown that the scale-dependent clustering
property due to PNG extracted from the galaxy power
spectrum is too weak to detect except for the local type,
implying that the scale-dependent clustering is irrelevant
for the nonlocal type PNG [7]. Then, the bispectrum of the
biased objects such as the halo/galaxy has been considered
as one of the useful observables to obtain constraints on the
nonlocal-type PNG. Although the halo/galaxy bispectrum
should be generated from the late-time non-linear gravita-
tional evolution of the density fluctuations, the contribution
from the nonlocal-type PNG would be dominant on larger
scales (see, e.g., Refs. [8–12]). We then expect that the
property of the scale dependence of the galaxy bispectrum
provides us the opportunity to probe not only the local- but
also nonlocal-type PNG with precise measurements of the
LSS in future. However, the clustering analysis at large
scales is limited due to cosmic variance (CV), because of
the lack of enough independent measurements. A possible
way to reduce the CV noise is the use of the multitracer
technique [13,14], in which the availability of multiple
tracers with different biases allows significant improve-
ments in the statistical errors. The clustering analysis with
the multitracer technique has been previously studied only
in the case of the power spectrum for future galaxy surveys
such as Euclid1 and SKA,2 and the effect turns out to be
indeed very effective, and we can reach σðflocalNL Þ ¼ Oð1Þ
[15–20] even when the horizon-scale effects are taken into
account [21–24]. However, the multitracer method for the
higher moments has not been discussed in the literature.
In this paper, thus, we consider the galaxy bispectrum as

the probe of the various types of PNG and derive the
formulas for the monopole mode of the bispectrum from
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the redshift-space distortion (RSD) generalized to multiple
tracers to apply the multitracer method. Based on the
derived analysis tool, we then calculate the expected galaxy
bispectrum, and the possibility to detect the PNG is
discussed.

II. BISPECTRUM WITH MULTIPLE TRACERS

The power spectrum, Pðg1g2ÞðkÞ, and bispectrum,
Bðg1g2g3Þðk1; k2; k3Þ, where we have used an index gi as a
label of the tracer objects such as galaxies, can be defined in
terms of the Fourier components of the number density
field of the tracer objects, δðgiÞðkÞ, as

hδðg1ÞðkÞδðg2Þðk0Þi ¼ ð2πÞ3δ3Dðkþ k0ÞPðg1g2ÞðkÞ; ð1Þ

hδðg1Þðk1Þδðg2Þðk2Þδðg3Þðk3Þi
¼ ð2πÞ3δ3Dðk1 þ k2 þ k3ÞBðg1g2g3Þðk1; k2; k3Þ; ð2Þ

where δ3D is a three-dimensional Dirac delta function. Even
if the initial condition for density fluctuations is assumed to
be Gaussian, the non-linear gravitational evolution natu-
rally induces the non-negligible non-Gaussianity. In the
large-scale limit where the scale of interest is much larger
than the typical scale of the collapsed objects, the bispec-
trum of the tracer objects can be decomposed into several
parts [9]. Hereafter, we focus on the dominant contributions
on large scales, and let us consider the contributions from
the gravitational evolution and the primordial bispectrum,
Bgrav and Bbis, which can be simply written as [8,9]

Bðg1g2g3Þ
grav ¼ 1

6
½bðg1Þ1 bðg2Þ1 ðbðg3Þ2 þ 2bðg3Þ1 F2ðk1; k2ÞÞ

þ ðgipermÞ�PLðk1ÞPLðk2Þ þ ðkipermÞ; ð3Þ

Bðg1g2g3Þ
bis ¼ bðg1Þ1 bðg2Þ1 bðg3Þ1 BLðk1; k2; k3Þ; ð4Þ

where PLðkÞ and BLðk1; k2; k3Þ are, respectively, a power
spectrum and a bispectrum for the linear density field, δL.
The linear density field can be related to the primordial
curvature perturbations Φ through the Poisson equation as
δLðk; zÞ ¼ Mðk; zÞΦðkÞ with Mðk; zÞ ¼ 2DþðzÞk2TðkÞ=
3H2

0Ωm;0, where DþðzÞ and TðkÞ represent the linear
growth rate and matter transfer function normalized to
unity at the large scale [25], respectively. Based on this
expression, we can rewrite PL and BL as PLðkÞ¼
M2ðkÞPΦðkÞ and BLðk1; k2; k3Þ ¼ Mðk1ÞMðk2ÞMðk3Þ×
BΦðk1; k2; k3Þ. Furthermore, F2 corresponds to the second-

order kernel of standard perturbation theory, and bðgiÞ1 and

bðgiÞ2 denote the linear and non-linear bias parameters for the
gith tracer object, respectively. We note that when deriving
the bispectrum shown above we have considered the
perturbative expansion up to the tree-level order. Here,
we simply neglect the higher-order loop contributions

because they are expected to be not so significant at large
scales [9].
The observed power spectra and bispectra from redshift

surveys are distorted by the radial motion of galaxies. In
order to consider the RSD, we assume that the higher-order
contributions are neglected. Then, the leading-order expres-
sion for the galaxy power-/bispectrum with the redshift-
space distortion is given by [26]

Pðg1g2Þ
s ¼ Zðg1Þ

1 ðkÞZðg2Þ
1 ðkÞPLðkÞ; ð5Þ

Bðg1g2g3Þ
grav;s ¼ 1

6
½2Zðg1Þ

1 ðk1ÞZðg2Þ
1 ðk2ÞZðg3Þ

2 ðk1; k2Þ
þ ðgipermÞ�PLðk1ÞPLðk2Þ þ ðkipermÞ; ð6Þ

Bðg1g2g3Þ
bis;s ¼ Zðg1Þ

1 ðk1ÞZðg2Þ
1 ðk2ÞZðg3Þ

1 ðk3ÞBLðk1; k2; k3Þ; ð7Þ

where the linear- and second-perturbation theory kernels

ZðgÞ
n are defined as

ZðgÞ
1 ðkÞ ¼ bðgÞ1 þ fμ2; ð8Þ

ZðgÞ
2 ðk1; k2Þ ¼

1

2
bðgÞ2 þ bðgÞ1 F2ðk1; k2Þ; ð9Þ

with μ being the cosine of the angle to the line of sight. We
have dropped the contributions from the second-order
velocity kernel and velocity dispersion. Since the distorted
spectra are rather complicated, we instead deal only with a
spherically averaged power spectrum and bispectrum in the
subsequent analysis, following Refs. [8,26,27]. To do so,
we first derive the monopole contributions from RSD
generalized to multiple tracers. By averaging over the
angle between k1 and k2 and dropping the angle-dependent
term, we find the averaged power spectra and bispectra in
redshift space are, respectively, given as

Pðg1g2Þ
0 ¼ aðg1g2Þ0;powP

ðg1g2Þ; ð10Þ

Bðg1g2g3Þ
grav;0 ¼ 1

6
½aðg1g2Þ0;bis bðg1Þ1 bðg2Þ1 ðbðg3Þ2 þ 2bðg3Þ1 F2ðk1; k2ÞÞ

þ ðgipermÞ�PLðk1ÞPLðk2Þ þ ðkipermÞ; ð11Þ

Bðg1g2g3Þ
bis;0 ¼ 1

6
ðaðg1g2Þ0;bis þ ðgipermÞÞBðg1g2g3Þ; ð12Þ

where the monopole redshift-space correction are

aðg1g2Þ0;pow ¼ 1þ 1

3
ðβðg1Þ þ βðg2ÞÞ þ 1

5
βðg1Þβðg2Þ; ð13Þ

aðg1g2Þ0;bis ¼
�
1þ 1

3
βðg1Þ

��
1þ 1

3
βðg2Þ

�
; ð14Þ

YAMAUCHI, YOKOYAMA, and TAKAHASHI PHYSICAL REVIEW D 95, 063530 (2017)

063530-2



with βðgiÞ ≔ f=bðgiÞ1 . The function f is the linear growth
rate, which is defined by the logarithmic derivative of the
linear density field with respect to the logarithmic of the
scale factor. The above expressions are the multitracer
generalization of the formula for the single tracer, given in
Refs. [8,26,27].
The galaxy bias parameters can be calculated from the

dark matter halo bias, if we assume that galaxies are formed
in dark matter halos. To evaluate the galaxy biases, we shall
use the halo bias parameters bhlðM; zÞ given in Ref. [28],
the Sheth-Tormen mass function dn=dM [29], and the mean
number of galaxies per halo of a given massM, namely the
halo occupation distributions hNiM [30] with fitting
parameters given in Ref. [31]. The explicit forms of the
linear and non-linear halo bias parameters bh1 and bh2 are
given by

bh1ðM; zÞ ¼ 1þ ϵ1 þ E1; ð15Þ

bh2ðM; zÞ ¼ 8

21
ðϵ1 þ E1Þ þ ϵ2 þ E2; ð16Þ

where

ϵ1 ¼
qν2 − 1

δc
; ϵ2 ¼

qν2

δc

qν2 − 3

δc
; ð17Þ

E1 ¼
2p=δc

1þ ðqν2Þp ;
E2

E1

¼ 1þ 2p
δc

þ 2ϵ1; ð18Þ

with ν ¼ δc=σðM; zÞ, δc ¼ 1.686, p ¼ 0.3, and q ¼ 0.707.
Moreover, we split whole galaxy samples into some mass-
divided subsamples for each redshift bin to apply the
multitracer technique. The averaged number density of
galaxies for the gith mass bin, MðgiÞ < M < Mðgiþ1Þ, is
given by

nðgiÞ ¼
Z
Mmin

dM
dn
dM

SðgiÞhNiM; ð19Þ

where SðgiÞ and Mmin represent the selection function and
the minimum mass above which we find a central galaxy in
the halo, respectively. In this paper, we will simply take
the top-hat form of the selection function as SðgiÞ ¼
ΘðM −MðgiÞÞΘðMðgiþ1Þ −MÞ. We find Mmin from the total
galaxy number density

ng ¼
Z
Mmin

dM
dn
dM

hNiM; ð20Þ

for a given ng. With these, we calculate the galaxy bias
parameters for the gith mass bin from the large-scale
expression

bðgiÞl ¼ 1

nðgiÞ

Z
Mmin

dM
dn
dM

SðgiÞb
h
lhNiMðl ¼ 1; 2Þ: ð21Þ

III. FISHER ANALYSIS

Before going into the detailed evaluation of the Fisher
matrix, we shall discuss the analytic understanding of the
merit of the multitracer technique in the galaxy bispectrum.
Just for simplicity, first, we focus only on the galaxy power
spectra and bispectra from a single mode with wavelength
k. Moreover, we drop the contributions of the galaxy
bispectrum of general triangle configurations except for
the equilateral one and the effect of RSD. Then, the Fisher
matrix for a given wavelength k is defined as

~FαβðkÞ ¼
∂Beq

∂θα · ½ ~C−1ðBeq;BeqÞ� · ∂B
eq

∂θβ ; ð22Þ

where Beq ≡ fBIðk; k; kÞg, I runs over the combination of
the mass bins, and θα are free parameters. Since we are
interested only in the asymptotic behavior of the Fisher
matrix, the covariance matrix we consider here is assumed
to be

~CIJ ¼
1

6
ðP̂ðg1g01ÞP̂ðg2g02ÞP̂ðg3g03Þ þ ðpermÞÞ; ð23Þ

with P̂ðgig0jÞ ≡ Pðgig0jÞ þ n−1ðgiÞδ
K
gig0j

denoting the galaxy power

spectrum including the shot-noise contamination. Here, δK

is a Kronecker delta function. Note that the equilateral limit
of the galaxy bispectrum can be reduced to the simple form

Bðg1g2g3Þðk; k; kÞ ¼ ðbðg1Þ1 bðg2Þ1
~bðg3Þ2 þ ðgipermÞÞP2

LðkÞ; ð24Þ

where we have introduced the effective non-linear bias
parameter including the contribution from PNG, which is

defined as ~bðgÞ2 ≔ ðbðgÞ2 þ 4
7
bðgÞ1 Þ þ bðgÞ1 fNL=M. We then

perform the Fisher analysis to forecast the future constraint
on the non-linearity parameter fNL. Since the explicit
form of the constraint on fNL is rather complicated, we
will instead evaluate the error on the relative effective
non-linear bias parameter. Let us assume two tracers
of underlying dark matter density field, that is, gi ¼ 1, 2.
In this case, I runs over four bins, namely I ¼
fð111Þ; ð112Þ; ð122Þ; ð222Þg. Introducing the relative

linear and non-linear bias parameters α≡ bð1Þ1 =bð2Þ1 and

γ ≡ ~bð1Þ2 = ~bð2Þ2 , we can rewrite the galaxy bispectrum as
Bð222Þ ≕ B, Bð111Þ ¼ α2γB, Bð112Þ ¼ ðα2 þ 2αγÞB=3, and
Bð122Þ ¼ ð2αþ γÞB=3. Furthermore, the covariance matrix
elements are also written in terms of the relative linear bias
α and the stochasticity parameter r as P̂ð22Þ ¼ Pð1þ X2Þ,
P̂ð11Þ ¼ Pðα2 þ X1Þ, and P̂ð12Þ ¼ rαP with Xgi ¼
1=ðnðgiÞPÞ. Assuming little stochasticity (r → 1) and
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computing the error on the parameter γ in the small shot-
noise limit (Xgi → 0), we obtain the leading-order term of
the unmarginalized 1σ error on the parameter γ in the noise/
power ratio for both tracers:

~σ2ðγÞ≡ ~F−1
γγ ≈

3P3

B2
fX1 þ α2X2 þ α2ð1 − r2Þg: ð25Þ

This implies that the error on the relative effective non-
linear bias γ from a single mode can be much less than unity
if there is little stochasticity and the field is oversampled.
Therefore, it is expected that with the multitracer technique
we could measure PNG via the galaxy bispectrum without
the CV noise, even if the type of PNG is nonlocal such as
the equilateral and orthogonal types.
Let us numerically investigate the expected constraint on

the non-linearity parameters with the multitracer technique,
based on the full Fisher analysis. In order to evaluate the
expected future constraints, we calculate the Fisher matrix
for the bispectrum, which is obtained by summing over all
possible triangular configurations. The explicit expression
is given by [32]

Fαβ ¼
Xkmax

k1;k2;k3¼kmin

∂B
∂θα · ½C

−1ðB;BÞ� · ∂B∂θβ ; ð26Þ

where B ¼ fBI
0ðk1; k2; k3Þg, I runs over the mass bins

ðg1g2g3Þ, and θα are free parameters to be determined by
observations. The marginalized expected 1σ error on
parameter θα from the Fisher matrix (26) is estimated
to be σðθαÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

p
. Assuming the Gaussian error

covariance, we obtain the covariance matrix for multiple
tracers as [8,27,32]

CIJ ¼
sBVsurvey

36Nt

× ½P̂ðg1g01Þ
0 ðk1ÞP̂ðg2g02Þ

0 ðk2ÞP̂ðg3g03Þ
0 ðk3Þ þ ðpermÞ�; ð27Þ

where sB is the symmetric factor describing the number of a
given bispectrum triangle (sB ¼ 6, 2, and 1 for equilateral,
isosceles, and general triangles, respectively) and the
quantity Nt ¼ VB=k6F denotes the total number of available

triangles with kF ¼ 2π=V1=3
survey and VB ¼ 8π2k1k2k3ðΔkÞ3

being the fundamental frequency and the volume of the
fundamental cell in Fourier space, respectively. Here,

P̂ðg1g2Þ
0 is the averaged redshift-space galaxy power spec-

trum including the shot-noise contamination given by

P̂
ðgig0jÞ
0 ðkÞ ¼ P

ðgig0jÞ
0 ðkÞ þ n−1ðgiÞδ

K
gig0j

. In subsequent analysis,

we assume that both the frequency gap and the minimum
wavelength coincide with the fundamental frequency,
namely kF ¼ Δk ¼ kmin. Moreover, for the maximal wave-
length, we choose kmax ¼ π=ð2RminÞ with Rmin such that

σðRmin; zÞ ¼ 0.5 [8]. For instance, kmax ¼ 0.19½h Mpc−1�
at z ¼ 1, and kmax ¼ 0.35½h Mpc−1� at z ¼ 2. Throughout
this paper, for our fiducial model, we assume a ΛCDM
cosmological model with parameters Ωm;0 ¼ 0.318,Ωb;0 ¼
0.0495, ΩΛ;0 ¼ 0.6817, w ¼ −1, h ¼ 0.67, ns ¼ 0.9619,
k0 ¼ 0.05 Mpc−1, and σ8 ¼ 0.835.
Let us consider two and three mass bins such that each

mass bin has the same galaxy number density, simply
because the tightest constraint for fNL is expected to be
obtained when the shot-noise contributions from all mass
bins become comparable. In the case of the two (three)
mass bins, we have the five (seven) parameters in the Fisher
matrix analysis: the four (six) bias parameters and non-
linearity parameter fNL. The bias parameters are fully
marginalized over when deriving the constraint on fNL.
When forecasting each non-linearity parameter, we neglect
the other parameters. The fiducial values of the non-
linearity parameters are set to zero, and the fiducial values
of the linear and non-linear bias parameters are calculated
for each redshift.
To see the impact of the multitracer technique in the

measurement of the galaxy bispectrum, we show the
expected marginalized 1σ statistical errors on the non-
linearity parameters in Figs. 1 and 2, marginalizing over the
bias parameters. The fiducial survey parameters are given
by the survey volume Vsurvey ¼ 10h3 Mpc−3 and the red-
shifts z ¼ 1 and z ¼ 2. When we consider the single tracer,
σðfNLÞ decreases rapidly as ng increases and approaches
the CV plateau in the large galaxy number density limit.
Once the galaxy number density is high enough to reach the
plateau, the further improvement in the galaxy number
density does not significantly improve constraints on fNL.
Even in the case of the two tracers, the plateau appears near
ng ≈ 10−3h3 Mpc−3, presumably because in this region the
galaxy number density is high enough to be CV limited but
not enough that the CV cancellation is effective. Pushing to
a higher galaxy number density, we found that the
reduction of the CV noise becomes effective, and we

σ(
f N

L)

ng [h3 Mpc-3]

1-tracer
2-tracer
3-tracer

 10

 100

 1000

10-5 10-4 10-3 10-2 10-1

Vsurvey=10h-3Gpc3, z=1

fNL
eq

fNL
local

fNL
orth

FIG. 1. 1σ marginalized errors as a function of the comoving
galaxy number density, feqNL (top), forthNL (middle), and flocalNL

(bottom) for a survey with Vsurvey ¼ 10h−3 Gpc3 and z ¼ 1.
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obtain the stronger constraint on fNL. In our specific
survey, the multitracer technique has the potential to
constrain PNG to an accuracy of a factor of 1.4 better
than the single-tracer constraints. In addition, we found that
the further increase in the number of tracers leads to slight
improvements of the constraints. Hence, in the subsequent
analysis, we consider only the case of two mass bins.
Based on the derived analysis tool, we then apply our

Fisher matrix analysis to future redshift surveys, in which
we will find a large number of galaxies enough that the
multitracer technique is effective. For future representative
surveys, we consider the galaxy surveys conducted by
Euclid and SKA Phase-2. We adopt the predicted number
density of galaxies as a function of redshift, given in
Table 3 of Ref. [33] for Euclid and in Table 1 of Ref. [34]
for the SKA. In Fig. 3, we plot the 1σ expected margin-

alized contours in the ðfNL; bð1Þ1 Þ plane. As for feqNL, the
SKA can reach σðfeqNLÞ ¼ 25.1 (one tracer), 23.0 (two
tracers), which is an improvement by a factor 2 compared
with the Planck constraint. The constraint, from Euclid,
σðfeqNLÞ ¼ 30.4 (one tracer), 30.0 (two tracers), is relatively
weaker than the SKA one. The constraints on forthNL from
Euclid and the SKA are σðforthNL Þ ¼ 13.6 (Euclid, one
tracer), 13.1 (Euclid, two tracers), 12.4 (SKA, one tracer)
and 10.2 (SKA, two tracers). The SKA is found to be more
advantageous in applying the multitracer technique, simply
because the low-z source density provided by the SKA is

higher than the Euclid one. Therefore, we conclude that the
precise measurement of the galaxy bispectrum by future
galaxy surveys can probe the nonlocal-type PNG to the
level comparable to or more severe than the CMB
constraints.

IV. SUMMARY

To summarize, we have discussed the potential power of
the multitracer technique for the galaxy bispectrum as a
possible probe of the various types of PNG. To apply the
multitracer technique, we first derived the formulas for the
monopole mode of RSD for the galaxy bispectrum gener-
alized to multiple tracers. Performing the Fisher matrix
analysis based on the derived formulas, we showed that the
precise measurement of the galaxy bispectrum with the
multitracer technique provides a powerful probe of not only
the local but also nonlocal types of PNG without the CV
noise. Particularly, in the region in which the galaxy
number density is high enough, even for the case of two
tracers, the reduction of the CV noise due to the effect of
the multiple tracers becomes effective, and we obtain the
stronger constraints on parameters than the single-tracer
constraints. Based on these facts, we also found that the
planned galaxy surveys in the next decade indeed have the
potential to be competitive with current and future CMB
measurements.
In this paper, we have made several simplified assump-

tions. We have considered only the tree-level contributions
to the galaxy bispectrum from the gravitational evolution
and the primordial bispectrum with the Kaiser formula. The
higher-order contributions may affect the details of our
result, though generic features are expected to remain the
same. On the other hand, future galaxy surveys will be
limited by the systematic uncertainties and the CV noises
rather than statistical errors because future surveys will be
able to probe the huge number of samples. Hence, we
should also address the systematics of future surveys in
more realistic situations. To take advantage of the multi-
tracer technique, we need to estimate the halo mass of each
galaxy, which has to be inferred from available observables.
The uncertainty in estimates of the halo mass for individual
galaxies may become important as systematics. When we
consider a future survey that covers a wide area of sky and a
significant redshift depth, a number of nuisance parameters
should be included to model systematic errors. We hope to
come back to these issues in the near future.
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FIG. 2. Same as Fig. 1 but for z ¼ 2. The green dotted lines
represent the current limit from Planck [3,4].
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