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We focus on the massive gauge theory formulation of axion monodromy inflation. We argue that a gauge
symmetry hidden in these models is the key mechanism protecting inflation from dangerous field theory
and quantum gravity corrections. The effective theory of large-field inflation is dual to a massive
Uð1Þ 4-form gauge theory, which is similar to a massive gauge theory description of superconductivity.
The gauge theory explicitly realizes the old Julia-Toulouse proposal for a low-energy description of a gauge
theory in a defect condensate. While we work mostly with the example of quadratic axion potential induced
by flux monodromy, we discuss how other types of potentials can arise from the inclusion of gauge-
invariant corrections to the theory.
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I. INTRODUCTION

Large-field models of inflation, in which the canonically
normalized inflaton ϕ ranges over a distance ≥ mpl in field
space, have an appealing simplicity [1,2]: they can be built
from a single field with a flat and even monomial potential,
and some direct couplings to matter that the inflaton decays
into at the end of inflation, reheating the Universe. They
generate the largest possible primordial tensor fluctuations,
which could be detected by the new era of Cosmic
Microwave Background Radiation (CMBR) polarization
experiments sensitive to gravitational radiation.
The challenge such models present is that the infinite

number of terms of the form

δL ∼ cnϕn=mn−4
pl ð1Þ

must have exquisitely small coefficients cn lest slow-roll
and vacuum energy dominance be spoiled. This is not a
problem in perturbative quantum field theory (QFT), where
such models can be radiatively stable, so long as ϕ is
derivatively coupled to any heavy physics that it may reheat
into. Even when graviton loops are included, models with
small initial values of cn are still technically natural [3],
because an approximate shift symmetry [4,5] becomes
exact when cn>0 ¼ 0. On the other hand, there is a body of
theoretical evidence that quantum gravity does not allow
for unbroken or weakly broken global symmetries, bring-
ing into question the initial choice cn ≪ 1. Some mecha-
nism which restricts the UV theory is required.
Axion monodromy inflation [4–7] provides a candidate

mechanism for UV completion of large-field inflation.
Most work on these models is by necessity rather technical,
as it involves explicit string theory constructions in order to
discuss the UV-complete theory in a controlled fashion.

Our goal here is to understand the field theory description
of what the successful constructions lead to. We will argue
that monodromy inflation models use a hidden gauge
symmetry which ensures the consistency of the low-energy
theory and protects it from large corrections descending
from the ultraviolet (UV) completion.
More specifically, the low-energy theory can bewritten as

a massive Uð1Þ 4-form gauge theory [4,5,8,9], with
the axionic inflaton dual to the longitudinal mode of the
4-form. Such massive gauge theories can arise from the old
Julia-Toulouse description of phases which contains many
on-shell topological defects [10–12]. We will review it and
provide a new argument for the core ideas in [10–12]. The
phases with condensed defects are not continuously con-
nected to the usual perturbative vacuum of the original
theory. The large inflaton field excursions encode macro-
scopic field configurations: large 4-form fluxes induced by a
condensate of topological defects. We will show that this
theory is well behaved at high energies, so that the UV
completion enters only through irrelevant operators. The
macroscopic nature of the field configurations ensures that
these irrelevant operators do not spoil slow-roll inflation. The
upshot is a London-equation-level description of mono-
dromy inflation, which complements the Bardeen-Cooper-
Schrieffer (BCS)-type constructions in [4,6–9,13–15]. The
underlying effective theory is analogous to themassive gauge
theory description of the ground state of a superconductor.
This picture also sheds some light on the fate of the weak
gravity conjecture [16] for massive gauge fields.
We avoid the problems stemming from the sad fate of

global shift symmetries in quantum gravity because there is
no global shift symmetry to break. The discrete shift
symmetry of the dual axion ϕ is not a remnant of a broken
global symmetry, but a gauge symmetry which emerges
from the dual gauge symmetry of the massive 4-form. As
shown in [5], this prohibits direct contributions of the form
(1). One still needs to ensure that the construction of the
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massive Uð1Þ 4-form gauge theory is consistent with the
UV completion, but that is a more straightforward task,
which should be addressed with the existing tools.
While we focus here on generating quadratic axion

potentials, we also discuss extensions which display flatter
potentials, which emerge in the original string theory
constructions [6,7,17,18]. These can arise from coupling
to additional fields controlled by sub-Planckian dynamical
scales.
With this motivation inmind, wewill first discuss massive

Uð1Þvector fields, to highlight the essential physics in amore
familiar context. In particular we will give a novel, and we
feel compelling, motivation for the Julia-Toulouse descrip-
tion of the hydrodynamics of vortices.

II. WARMUP: MASSIVE Uð1Þ VECTOR FIELDS

A. Background

Massive Uð1Þ gauge theory contains three propagating
degrees of freedom: the standard two transverse modes, and
the additional longitudinal mode. These obey a massive
dispersion relation p2 þm2 ¼ 0 on shell. The theory has a
nonlinearly realized gauge symmetry. We will describe this
directly below, but an intuitive way to see this is to consider
the massive theory as the low-energy limit of a weakly
coupled Abelian Higgs model in the symmetry breaking
phase. Themass term arises frommixing between the photon
and the Goldstone mode of the charged condensate. This
Goldstone mode acts as the longitudinal mode of the photon,
transforming nonlinearly under the Uð1Þ gauge symmetry.
A well-known manifestation occurs in superconductors

governed by BCS theory. The condensate of Cooper pairs
at very low energies is decoupled from other excitations of
the medium due to the mass gap. The long distance
correlation between the Cooper pairs implies that the
quantum-mechanical phase invariance is spontaneously
broken in the material by the condensate. Hence there is
a dissipationless relativistic sound wave, by the Goldstone
theorem, which sustains a background current because the
Cooper pairs are charged. The current persists even in the
stationary limit, and the vector potential does not vanish but
is proportional to it:

~A ¼
~J
m2

: ð2Þ
This is the London equation, which is the basis for the
phenomenological theory of superconductivity. Substituting
this expression for J into Maxwell’s equations yields the
equations of motion for a massive photon.
The massive equation of motion can be easily obtained

as the nonrelativistic limit of the Poincaré-invariant Proca
Lagrangian1

L ¼ −
1

4
F2
μν −

1

2
m2A2

μ þ AμJμ: ð3Þ

Here Fμν ¼ ∂μAν − ∂νAμ, and Jμ is the conserved current
of the charged matter, ∂μJμ ¼ 0. Varying the equation with
respect to A yields

□Aμ − ∂μ∂ · A −m2Aμ ¼ Jμ: ð4Þ

Taking the divergence of this equation yields ∂ · A ¼ 0 for
m2 ≠ 0: the Lagrangian (3) is already gauge fixed.
Current conservation is required for internal consistency

of the theory, to guarantee the absence of ghosts.2 It also
guarantees that (3) is perfectly well behaved at the tree level
even in the m → 0 limit.
The gauge implicit in (3) is not ideal for examining the

high-energy behavior of the theory. The massive photon
propagator derived from (3) is

Δμν ¼
i

p2 þm2

�
ημν þ

pμpν

m2

�
; ð5Þ

and features singular behavior as m2 → 0, due to the
second term in the parenthesis. Naïvely this term could
appear in processes with virtual photons. In fact, as long as
the external lines involve only conserved currents,
pμJμ ¼ 0, the contributions from this term to any physical
S-matrix element vanish identically, suggesting that the
singularity is merely a gauge artifact, stemming from the
gauge choice ∂ · A ¼ 0. The next question is whether this
theory has a good m2 → 0 limit when one considers loops
containing virtual photons, since those involve contractions
of the momentum factors in terms ∝ pμpν=m2 off shell,
which do not vanish trivially. Here, gauge redundancies
come to the rescue, as we will now review.

B. Renormalizability

Massive Abelian gauge theories coupled to conserved
currents are known to be consistent renormalizable quan-
tum theories with a smooth massless limit. This is reviewed
in detail in many textbooks. We will give a heuristic
discussion of the underlying physics which keeps the
theory healthy.
Inspired by BCS theory, we change the gauge implied by

(3) and separate the longitudinal scalar mode from Aμ. To
this end we shift Aμ → Aμ − ∂μϕ, and treat ϕ as a field

1Note that we use the “east coast” signature convention
ð−þþþÞ in this paper.

2One can introduce current nonconservation by taking some
very heavy charged matter and integrating it out. The processes
which involve both light and heavy charged matter would lead to
unitarity violations and current nonconservation at low energies,
suppressed by the mass scale of the heavy matter. The low-energy
theory would appear to have a problem with ghosts. However the
ghost mass would be comparable to the mass of the heavy matter.
Unitarity is restored at that scale by integrating the heavy matter
back in.
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transforming nonlinearly under the gauge symmetry, as per
Stueckelberg’s trick (note that ϕ is dimensionless). The
Lagrangian (3) becomes manifestly gauge invariant.
Finally, we add a gauge-fixing term, in order to properly
quantize the theory, and arrive at the Lagrangian:

L ¼ −
1

4
F2
μν −

1

2
m2ðAμ − ∂μϕÞ2 þ ðAμ − ∂μϕÞJμ

−
1

2α
ð∂ · A − αm2ϕÞ2: ð6Þ

The parameter α is an arbitrary gauge-fixing parameter.
The scalar-current coupling ∂μϕJμ is just a boundary term
when the current is conserved and can be ignored hence-
forth: we only keep it to make the first three terms
manifestly gauge invariant under Aμ → Aμ þ ∂μΩ,
ϕ → ϕþ Ω. The gauge-fixing term imposes the Rξ-like
gauge

∂ · A − αm2ϕ ¼ 0: ð7Þ

Our gauge choice removes the bilinear cross term
∝ m2Aμ∂μϕ, ensuring that the vacuum is manifestly stable,
and simplifying the propagators.
The gauge (7) follows by applying a gauge transforma-

tion Ω to arbitrary A0
μ and ϕ0, such that Ω satisfies

ð∂2 − αm2ÞΩ ¼ −ð∂ · A0 − αm2ϕ0Þ. The transformed fields
satisfy the gauge condition (7). The theory retains a residual
gauge symmetry,

Aμ → Aμ þ ∂μω; ϕ → ϕþ ω; ð∂2 − αm2Þω ¼ 0:

ð8Þ

The transformation (8) preserves both the field equations
and the gauge choice. In covariantly quantized perturbation
theory, the gauge condition is imposed on the Hilbert
state by requiring them to be in the kernel of the
positive frequency part of the gauge-fixing condition,
ð∂ · A − αm2ϕÞðþÞjphysi ¼ 0.
While we appear to have 5 degrees of freedom—the four

components of the gauge field, and the scalar—two scalar
modes are redundant. The fields ∂ · A and ϕ satisfy the
same field equation thanks to current conservation. They
and the residual gauge mode ω reside on exactly the same
mass shell, which for general α is not degenerate with the
vector modes. The residual transformation (8) can be used
to set either of the two scalars ∂ · A;ϕ to zero. The gauge-
fixing condition ∂ · A − αm2ϕ ¼ 0 then sets the other field
to zero. Three degrees of freedom remain in the theory (6),
living on the physical mass shell p2 ¼ −m2.3 The theories
(3) and (6) are thus exactly the same.

The theory (6) has manifestly healthy behavior on and
off shell in the limit m2 → 0, which is equivalent to the
limit p2 → ∞ at fixed m. To see this, we write the
momentum space propagators following from (6) after
canonically normalizing the scalar by ϕ ¼ φ=m:

Δμν ¼
i

p2 þm2

�
ημν þ ð1 − αÞ pμpν

p2 þ αm2

�
;

Δφ ¼ −
i

p2 þ αm2
: ð9Þ

Consistent with the discussion above, the structure of these
propagators shows that the theory has in effect two mass
shells, one at p2 þm2 ¼ 0 where the three physical
massive photon polarizations reside, and another at
p2 þ αm2 ¼ 0, where the two extra scalars dwell. The
latter modes are unphysical since their mass depends
explicitly on the gauge-fixing parameter α. Indeed, as
noted above, they can be removed by the residual gauge
transformation ω. Their sole role is to allow for breaking
the degeneracy between the physical and unphysical
sectors, to show that the theory is manifestly well behaved
at high momenta. For finite m2; αm2, the propagators now
vanish as p2 → ∞, implying that the theory remains
weakly coupled all the way to UV, and that all the
S-matrix elements at an arbitrary loop level remain finite
and well behaved.
The problematic terms in the Proca gauge propagator (5)

come from the contribution ∝ pμpν=m2 in the parenthesis.
In (9) they are replaced by ∝ pμpν=ðp2 þ αm2Þ, which
saturate in the UV to ≃pμpν=p2, so that the propagator
reduces to the massless propagator at leading order in
m2=p2. The contributions from the photon mass in the loop
diagrams are just IR corrections. There are no terms ∝
p2=m2 in the UV that could spoil the UV behavior of the
theory, because the Stueckelberg scalars are free fields. The
singular contribution ∝ pμpν=m2 in the gauge (3) is pure
gauge, induced by the fact that the scalar field’s charge is
∝ m, and that ϕ is not canonically normalized. The theory
is therefore renormalizable for any α by simple power
counting, as long as the current Jμ is conserved.
Furthermore, there are no divergent counterterms propor-

tional tomass termm2A2
μ=2 [20]. All of the counterterms that

would be required for renormalizing the vector sector of the
theory come from the divergences in the photon self-energy.
Since the photon, massive or not, is neutral, and the
Stueckelberg scalars are free fields, the photon self-energy
must involve at least onematter current operator insertion.As
we demand current conservation, the photon self-energy in
momentum space obeys pμΠμν ¼ 0. Together with Poincaré
symmetry, this impliesΠμν ¼ ðημνp2 − pμpνÞΠðp2Þ.Πðp2Þ
must be dimensionless. If thematter sector is renormalizable,
then by power counting Π has at most a logarithmic
divergence; if the matter sector contains irrelevant operators

3This can be seen by projecting the mode ∂ · A out of the gauge
field Aμ: see for example Sec. 3-2-2 in [19].
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suppressed by a high cutoff Λ, Π will still grow logarithmi-
cally up to this scale Λ. Since Πμν is proportional to the
external momentum, the only counterterm required is a
wave-function renormalization term. This will induce a
logarithmic running of the photon mass term (which in
general could arise from both mass and wave-function
renormalization counterterms), but the shift will be propor-
tional to m2. Thus the mass term is radiatively stable.
We close with a scrutiny of the m2 → 0 limit of the pure

massive gauge theory. For fixed α, the propagators (9)
become

Δμν ¼
i
p2

�
ημν þ ð1 − αÞpμpν

p2

�
; Δφ ¼ −

i
p2

; ð10Þ

which are just the propagators of massless QED with a
gauge-fixing term 1

2α ð∂ · AÞ2, together with a canonically
normalized free scalar field with Lagrangian 1

2
ð∂φÞ2.

Nothing is charged under the scalar, due to gauge symmetry
and the renormalizability of the original massive Uð1Þ
theory. There are no long range forces that it can mediate.
So the scalar is completely fixed by the classically imposed
boundary conditions, and can never change in any quantum
process. In flat space, it can simply be set to zero, since it is
completely unphysical.
There is an apparent subtlety when gravity is turned on,

since in this limit the field φ has a nonvanishing stress-
energy tensor. While this field can be gauged away from the
stress-energy tensor for any nonvanishing m2, the canoni-
cally normalized field transforms as φ → φþmΩ, and so
becomes gauge invariant in the massless limit, coupling to
gravity as an additional minimally coupled scalar. The zero
mode of the scalar is frozen out (its periodicity scales as
m=e); momentum modes couple to gravity, but to nothing
else. The only effect will arise from this scalar running in
loops and correcting the gravitational effective action. This
is an unobservable, scheme-dependent effect: at worst it
will be absorbed into the definition of the bare couplings.
One may have worried about this in the context of the

weak gravity conjecture (WGC) [16], since the scalar can
be written as a dual 2-form gauge field with vanishing
gauge coupling. So long as we disallow any string solutions
with conserved charge under this scalar, the argument of
[16] does not apply. The presence of such strings indicates a
UV completion in which the longitudinal mode couples to
additional degrees of freedom and the mass is no longer
elementary, as happens in the Abelian Higgs model. In that
case the massless limit above yields a gauge theory together
with a massless charged scalar. Such a theory automatically
satisfies the lower bound on charged masses given in [16].

C. The low-energy effective action for massive
gauge fields

In any scenario we care about, our massive gauge theory
will be embedded in a more elaborate field theory or string

theory with both additional light fields and new dynamics
above some heavy mass scale Λ. The avatars of this high-
scale dynamics will be the renormalization of operators in
the low-energy theory. Our goal is to perform an effective
field theory analysis to deduce what operators can arise,
and what their strength can be. Since the low-energy theory
is renormalizable, with a nonlinearly realized gauge sym-
metry, the effective field theory is constrained.
The mass term receives no divergent counterterms, and

the gauge charge will have at most logarithmic divergences.
The remaining naïvely renormalizable operator is A4,
which we will discuss below as an example within a family
of operators. The remaining operators are irrelevant, and
since massive gauge theory is renormalizable, these oper-
ators will be generated only by integrating out the UV
fields, suppressed at least by the powers of Λ determined by
dimensional analysis.
The simplest case is the operators of the form F2k. These

are not prohibited by any symmetry, and will take the form
F2k=Λ4k−4 with Oð1Þ dimensionless couplings.
The more interesting terms are those of the form

δL ∼ ckA2k: ð11Þ

These carry the same nonlinearly realized gauge symmetry
that the mass term in (3) does, so they are not forbidden.
Nonetheless, we claim that they are suppressed compared
to what simple dimensional analysis would suggest: if

ck ¼
~ck

Λ2k−4 ; ð12Þ

then

~ck ∼ dk

�
m
Λ

�
2k
; ð13Þ

where dk is of order Oð1Þ or at worst OðlnðΛ=mÞÞ. For
k ¼ 2, 4 the operators are relevant and marginal by naïve
power counting. In the case k ¼ 2, we have already shown
that this is true for the mass term itself. We might expect
that a counterterm could be generated for k ¼ 4; however,
the arguments below for general k > 2 will show that this
will be suppressed by a factor of m4.
In a general Rξ gauge the gauge field propagator at high

energies approaches that of the massless propagator. Thus,
the high-energy behavior which controls counterterms will
be dominated by the massless theory. This is a consequence
of gauge symmetry. We thus expect that terms of the form
(11) should vanish as m2 → 0 and the manifest gauge
symmetry is restored. The question is the power of m that
should govern ck.
At this point we will assume that the UV completion of

our theory is either a renormalizable QFT or a theory such
as string theory with soft high-energy behavior. These
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theories have normal decoupling behavior at high energies,
such that when p2 ≫ m2, physical processes receive only
small corrections from the gauge field mass. Furthermore,
in the energy range m ≪ E ≪ Λ, S-matrix elements will
grow at most as lnðEÞ. We will also keep the Stueckelberg
mode ϕ explicit. This field could descend from the angular
mode of a charged scalar in the UV completion, or as a
phase of some fermion condensate.
With this assumption, we can appeal to the Goldstone

boson equivalence theorem (GBET) [21–24], which gov-
erns the behavior of irrelevant operators in effective field
theories with massive gauge particles, when such theories
arise as low-energy limits of renormalizable QFTs. We will
base our discussion in particular on the discussion and
proof in [23]. Using gauge invariance in the form of
Becchi-Rouet-Stora-Tyutin (BRST) invariance in Rξ gauge,
the theorem states that the S-matrix for n longitudinal
gauge bosons is equivalent to the S-matrix for n scalars ϕ,
up to terms which are powers of m=E (perhaps times lnE
terms). At such high energies, the longitudinal polarization
vector has the form

eμ;L ∼
kμ
m

þO
�
m
E

�
: ð14Þ

If we write an effective action whose coefficients generate
these S-matrix elements from tree-level diagrams, terms of
the formm2kA2k will have the same coefficients as terms of
the form ð∂φÞ2k. Note that the GBET guarantees this even if
we introduce direct couplings of the Stueckelberg mode to
other degrees of freedom via noncurrent interactions or
irrelevant operators, as long as these couplings do not
explicitly break gauge symmetry.
Finally, we demand that the S-matrix elements for ϕ

should not diverge as m2 → 0, beyond the usual IR
divergences which can be dealt with by properly specifying
the long wavelength observables. Thus, the coefficients of
ð∂φÞ2k in the low-energy effective action should be con-
stant or scale with positive powers of m. If the gauge field
mass is not elementary, this simply means that the
Goldstone mode must arise from a physical field which
conforms with our assumptions above. This demand
combined with the GBET then implies our claim about
mass dependence of the terms of the form A2k. Gauge
symmetry and absence of singularities in the effective
action for A in the massless limit are sufficient to show that
the coefficients of the irrelevant operators ∝ A2k can only
involve the gauge field mass in numerators. The argument
above fixes the minimum positive power of m to be that
given in (11)–(13).
The proof in [23] made the more restrictive assumption

that the UV theory was a renormalizable field theory. We
wish to reassure the reader that our less restrictive assump-
tions should not spoil the theorem. While string theory is
not of course a renormalizable 4d field theory in the usual

sense, the irrelevant operators it generates will be sup-
pressed by a high scale such as the string or Planck scale.
So long as this scale is at or above the scale Λ, the argument
above goes through. The additional operators with
dimension Δ will contribute terms scaling as ðE=ΛÞΔ−4
to S-matrix elements, which remain small in the limits we
are considering when Δ > 4. Of course, this is also the
reason that one can ignore Planck-suppressed operators
when using the GBET to study electroweak dynamics.

D. Julia-Toulouse and generation of mass

The “conventional” UV completion of a massive gauge
theory is via the Higgs mechanism, in which an electrically
charged field condenses, spontaneously breaking the
charge symmetry. The Goldstone mode of the broken
symmetry then becomes “eaten” by the gauge field because
the symmetry is gauged, and becomes the longitudinal
mode of the gauge field.
Another route was suggested by Julia and Toulouse in

the late 1970s [10], who proposed that the correct hydro-
dynamic variable for a fluid of vortices was a massive
gauge field. This argument was then generalized by
Quevedo and Truegenberger [11,12] to higher-rank gauge
theories, who also discussed some of the aspects of the
dynamical origin of the Julia-Toulouse proposal. Some
studies of specific microscopic models of condensation
were pursued recently in [25,26]. In this section we will
review this proposal and provide a novel argument for it,
which complements the prior work and, we hope, sheds
some light on this fascinating proposal.
Consider a compact scalar fieldϕ in a statewhich contains

stringlike topological defects. The string dynamics are
governed by someUVcompletionwhichwewill not specify,
other than that this dynamics supports a state in which there
are a large number or a condensate of such strings, justifying
a coarse-grained hydrodynamic description.
Outside of the vortex cores, dϕ is a closed but not exact

form, as ϕ is only defined up to shifts by its periodicity.
Inside the vortex core, in the UV-complete theory, dϕ will
not even be a closed form due to the interactions that
support the string configuration.
Julia and Toulouse argue for their proposal by noting that

the phase ϕ varies in a system of adiabatically moving
vortices according to δϕ ∼ ~v · δ~x. Since in the presence of
vortices the fluid is not irrotational, the velocity is not a

gradient of the phase, ~v ≠ ~∇ϕ, but is instead leading to an
independent superfluid current vector ~j ∝ ~v. They then
promote the superfluid current ~j to a gauge field, ~V ∼ ~j.
This is the London equation, which implies that the
underlying effective gauge theory must be massive. We
provide an alternative argument here.
Outside of the vortex cores, we can perform Abelian

duality, mapping the compact scalar ϕ to a 2-form gauge
potential Bμν with 3-form field strength H ¼ dB. This is
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just the standard Kalb-Ramond 3-form field strength. The
vortices will couple electrically to B. It is natural to suppose
that when the vortices condense and yield a background
current which mixes with B, the low-energy theory is
described by a massive 2-form potential. This will be our
key assumption. We then separate out the longitudinal
modes of B (which model the electrically charged vortex
current outside of the vortices) and treat them as
Stueckelberg fields, with the Lagrangian

LH ¼ −
1

12
H2

μνλ −
m2

4

�
Bμν −

1

m
~Fμν

�
2

þ � � � : ð15Þ

Here ~Fμν is the field strength for a 1-form Stueckelberg

potential ~Aμ, and we have chosen our normalization for
later convenience. The nonlinearly realized gauge sym-
metry for B is

B → Bþ dΛð1Þ; ~A → ~AþmΛð1Þ; ð16Þ

where Λð1Þ is a 1-form gauge transformation. Note that we
have written the Lagrangian (15) in a Proca-like gauge, in
which the duality transformations we describe below are
most straightforward.
The low-energy dynamics of the vortex condensate is

parametrized by the Stueckelberg “current” ~F, which mixes
with B. The mass m arises as an IR parameter of the
condensed phase. It is determined by the detailed micro-
physics that controls the core of the defects and thus the
defect-defect interactions, just as the gauge field mass in a
superconductor depends on the detailed microphysics
driving the formation and condensation of Cooper pairs.
Once it is established that the defects do condense, leading
to (15) as the low-energy theory, the mass m receives no
divergent contributions, so that the massive phase gener-
ated by the defect condensation is not destabilized by small
changes in the dynamics of the microscopic theory.
To arrive at the Julia-Toulouse description, let us now

dualize in the other direction. If we start from (15), B is
hard to dualize directly, as duality works at the level of field
strengths. But we can start by applying the duality to ~A, so
long as we work in a Proca-like gauge in which ~A appears
only via its field strength. To this end consider the
Lagrangian

LBF ¼ −
1

4
F2
μν −

1

12
H2

μνλ −
m
4
ϵμνλσBμνFλσ

þ 1

2
ϵμνλσ ~Aμ∂νFλσ þ � � � ; ð17Þ

where we introduce a new gauge field strength Fμν. If we
integrate the last term by parts, and integrate the Gaussian
field F out of the path integral, we arrive precisely at (15).
On the other hand, ~A now appears manifestly as a Lagrange

multiplier. Hence we can integrate it out of the path integral,
enforcing the Bianchi identity for F, which implies that
there exists a new gauge field potential Aμ such that
Fμν ¼ ∂μAν − ∂νAμ. This leaves us with the B∧F action
of a topologically massive gauge theory:

LBF ¼ −
1

4
F2
μν −

1

12
H2

μνλ −
m
4
ϵμνλσBμνFλσ þ � � � : ð18Þ

Finally, we can perform one more duality transformation:
we take H and map it back to the original scalar ϕ.
Proceeding similarly as above, we define a new gauge field
strength and potential, Vμν ¼ ∂μVν − ∂νVμ, and consider
the action

LJT ¼ −
1

4
F2
μν −

m2

2
ðAμ − VμÞ2 −

m
4
ϵμνλσBμνVλσ þ � � � :

ð19Þ
If we integrate the final term by parts and integrate the field
V out of the action, we arrive at (18). On the other hand, Bμν

now appears as a Lagrange multiplier. If we integrate over it
in the path integral we enforce Vμν ¼ 0, which implies that
locally the gauge field Vμ is pure gauge, Vμ ¼ ∂μϕ.
Substituting this into the action, we finally arrive at the
massive vector gauge theory action in Stueckelberg form,

LJT ¼ −
1

4
F2
μν −

m2

2
ðAμ − ∂μϕÞ2 þ � � � : ð20Þ

So as we said above, we see that the scalar ϕ is the
Stueckelberg field for a massive gauge field Aμ, which is
precisely the field Julia and Toulouse proposed to be the
variable to describe the hydrodynamics of superfluid
vortices. The precise duality relationship between these
fields is Aμ − ∂μϕ ¼ 1

6m ϵμνλσH
νλσ , which after fixing to the

Proca gauge A0
μ ¼ Aμ − ∂μϕ becomes

A0
μ ¼

1

6m
ϵμνλσHνλσ: ð21Þ

We can see through this chain dualities that A is dual to the
gauge field ~A. The latter gives the Goldstone-like dynamics
of a condensate of charged membranes. The Julia-Toulouse
field Aμ is dual to that Goldstone mode, while the
longitudinal component is dual to the gauge field B which
eats the Goldstone mode. We feel that this demystifies the
Julia-Toulouse ansatz.
Quevedo and Truegenberger [11,12] also argued that the

Julia-Toulouse mechanism was dual to the Higgs mecha-
nism. Their arguments began with writing actions for
p-form gauge fields coupled to both electric and magneti-
cally charged defects with delta function support on their
world volumes, consistent with Abelian duality. Their key
assumption is that one promotes the currents to gauge field
strengths in their own right, and they assign a kinetic term
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to them. The resulting action is equivalent to (20), and dual
to the massive 2-form potential we start with. Our argument
begins with an assumed form for the dual action, based on
an analogy with the physical Higgs mechanism and
specifically the London equation describing defect dynam-
ics. The Julia-Toulouse theory (20) follows from that. At
the level we and the authors of [10–12] work at, the
dynamics describing the requisite proliferation of defects
and their interactions that condense them is not given. For
these details, one needs their underlying microscopic
dynamics, in complete analogy to the BCS theory of the
microscopic origins of superconductivity.

E. Comments on the Weak Gravity Conjecture

While the nonlinearly realized gauge symmetry con-
strains corrections to the effective action, there are poten-
tially additional constraints on the 4d field theory spectrum
and the natural EFT cutoff, based on the so-called weak
gravity conjecture. The status of the WGC for massive
gauge fields is, at present, unclear. We will confine
ourselves to a discussion of some of the issues involved,
and leave a direct assault on the question for the future.
The WGC, as formulated in [16], is a statement aboutD-

dimensional effective field theories including gauge fields,
with cutoff Λ≲mpl;D, coupled to gravity. It is an attempt to
formulate a quantitative statement regarding quantum
gravity-induced global symmetry breaking. It asserts that
if one attempts to build a global symmetry by taking the
gauge coupling gD to zero, the natural cutoff Λ at which
four-dimensional effective field theory breaks down will
also vanish as a power of gD.
The sharpest arguments in [16] stem from avoiding large

numbers of stable electrically or magnetically charged
black holes which could serve as remnants in the theory.
To avoid this, [16] places bounds on the mass/tension of the
lightest charged particles=p-branes, of the form

Te
p;D ≲

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Dm

D−2
pl;D

q
; ð22Þ

for p-branes electrically charged under pþ 1-forms in D
dimensions, and

Tm
D−p−3;D ≲

ffiffiffiffiffiffiffiffiffiffiffi
mD−2

pl:D

g2D

s
; ð23Þ

for magnetically dual D-p-3-branes. In the latter case, the
tension is typically a function of the cutoff of the effective
field theory, so this places bounds on that cutoff. The point is
that these bounds prevent one from taking the limit of
vanishing charge, without simultaneously lowering the cut-
off and thus the regime of validity of 4d effective field theory.
The basic argument in [16] does not apply directly

to massive gauge fields [27]. There are no black hole
solutions which support such fields outside of the horizon,
whether the mass is fundamental [28–30] or emerges from

spontaneous symmetry breaking [31].4 Similarly, magnetic
charge is confined in such theories, and a magnetically
charged black hole must end on a magnetic flux tube which
either stretches to infinity or ends on another magnetically
charged black hole or a monopole of opposite sign. One
might therefore think that WGC might not have much to
say about the spectrum of fields coupling via conserved
currents to massive gauge fields.
However, as the gauge field mass gets small enough, it is

reasonable to ask how one would detect the mass in any
physical process. For example, Ref. [33] claims that if a
charged particle falls into a black hole, it will take a time
scale of order m−1, where m is the gauge field mass, to
discharge the massive electric field. For measurements on
shorter time scales, the mass is essentially unobservable (by
the energy-time uncertainty principle), and if the WGC
constrains the massless theory on these time scales, it can
be expected to yield at least some constraints on the
massive theory as well, at least in the limit of small masses.
While these questions are clearly interesting, we shall

confine ourselves to a few largely heuristic comments about
the massless limit of massive gauge fields which may be
relevant for a deeper exploration of WGC-type constraints.
For a massive gauge theory in Proca gauge,m ¼ ef with

f the periodicity of the Stueckelberg field. If the mass
arrives from the spontaneous symmetry breaking in an
Abelian Higgs model, f is the vacuum expectation values
(VEV) of the radial mode of the charged scalar. There are
two interesting massless limits. One is to fix e and send
f → 0. In the context of the Abelian Higgs model, the
symmetry becomes unbroken and a massless charged
particle emerges. For finite f, if empl > m, it seems
plausible to require the existence of a light charged state
with a massmwhich satisfies the WGC bound. If the Higgs
self-coupling is λ, the Higgs field itself satisfies the
constraint if λv2 < e2m2

pl. Of course, once v is small
enough this will always be the case. All of this is consistent
with the WGC conjecture: the Higgs mass is a threshold for
the massive gauge theory, abovewhich the gauge symmetry
is unbroken and there is a light charged field; no additional
charged matter is required.
A different perspective on this limit arises from consid-

ering the massive 2-form potential dual to the massive
gauge field. The dimensionful coupling of the 2-form is f,
and so this theory goes to weak coupling in the limit f → 0,
m2 → 0, consistent with the statement that the longitudinal
mode of the 1-form gauge field is decoupling. For e ≪ 1,
the massm ¼ ef of B is extremely light. In the case that the

4If the mass arises from a spontaneous symmetry breaking
pattern that preserves a finite discrete symmetry, there is still
potential quantum-mechanical hair [32]. This type of hair is not
associated with the classical long range fields which encode the
conserved black hole charges, and it is not obvious that black
holes with this kind of hair should lead to any limits on the low-
energy effective theory. We will sidestep this issue here.
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dual theory is the low-energy limit of an Abelian Higgs
model, the strings are the magnetic vortices whose tension
scales as f2, perhaps up to some logarithmic corrections.
This is broadly consistent with a naïve application of the
WGC that would indeed require that electric strings which
are charged under B are becoming tensionless.
Another massless limit is e → 0 with fixed f, which for

the massless theory is conjectured to lead to the complete
breakdown of 4d effective field theory coupled to gravity.
One possibility is that renormalization effects could yield
new nonperturbative vacua of the theory, which push the
Higgs VEV dynamically to extremely large values even for
small charges, as discussed in [34]. The gauge symmetry
would remain broken, and the gauge field massive, screen-
ing the charges and possibly evading the violations of the
WGC bound.
Absent this possibility, we can again consider the limit

from the viewpoint of the dual 2-form. The 2-form gauge
coupling f is constant in our limit, while the mass m ¼ ef.
In the strict limit, one has a massless 2-form potential, which
is dual to a massless scalar ϕ with field space periodicity f.
This theory has an apparent shift symmetry, which is
supposed to be forbidden by quantum gravity. This can be
avoided if instantons condense and break the symmetry.
Gravitational instantons are believed to do so [35–39].
The dual statement is that the instanton condensate generates
a 4-form whose longitudinal mode is the 3-form field
strength of the 2-form potential. These instantons are
magnetically charged under the 2-form potential; if that
potential is massive, the instantons will be confined, bound
together by Wilson lines. This transition, which is really a
realization of the Julia-Toulouse proposal, and the role
gravity plays in it, is an interesting subject for future work.

III. MASSIVE 3-FORM POTENTIALS

We now turn to axion monodromy as realized by the
dynamics of a massive 3-form potential, dual [40] to the
axion-4-form description in [4,5,8,41]. As with the vector
theory, the massive 3-form has good high-energy behavior,
due in large part to the nonlinearly realized gauge sym-
metry, which stabilizes the theory against microscopic
dynamics. In particular, the mass of the 3-form is radia-
tively stable, and higher powers of the potential A are
suppressed by higher powers of the gauge field mass m,
much as with the massive vector.
The Julia-Toulouse mechanism [10–12] provides two

routes to the required low-energy dynamics: via the
condensation of membranes, inducing a mass for a funda-
mental 4-form and generating the inflaton as a condensate,
or via a condensation of instantons which generates the
4-form as a collective mode that eats the 2-form dual to
the fundamental axion, opening up a mass gap and allowing
the 4-form to drive inflation. In these scenarios, the inflaton
dynamics is that of a macroscopic condensate with energy
densities well below the Planck scale: the size of the field in

fundamental units simply counts the contributing sources in
the condensate.
A typical statement about large-field inflation is that it

requires a softly broken shift symmetry, which gravity
abhors. The viewpoint which emerges from this paper is
that there was never any continuous shift symmetry to
protect. Rather, it is gauge invariance which determines the
dynamics and protects the theory from Planck-scale phys-
ics. To drive this point home, we will revisit the dual
description of the theory in terms of a periodic scalar
coupled to a 4-form [4,5,8]. In this language, the theory is
protected from UV corrections by a discrete gauge sym-
metry, which descends from the compactness of the gauge
group of the initial massive 4-form.
The existence and onset of this massive phase must

eventually be described within a well-defined microscopic
theory, which sets the spectrum and dynamics of the
defects, the mass of the gauge field, and so on. As field
strengths increase, the microscopic theory will also deter-
mine whether some intermediate description is required, in
which additional fields are activated, during inflation.
Such phenomena might also lead to behavior such as the
flattening of the inflaton potential that occurs in many
string constructions [6,7,17]. As with the 1-form, there may
be some general constraints on the spectrum of membranes
coming from quantum gravity, as outlined in [16]. At
present we believe these arguments are not prohibitive,
due in part to the physics of the massive phase.

A. Lagrangian and dynamical scales

Let us start with a massive 3-form Uð1Þ gauge theory.
In Stueckelberg formalism, the basic Lagrangian with an
Rξ-style gauge-fixing term is

L ¼ −
1

48
FμνλρFμνλρ −

m2

12
ðAμνλ − hμνλÞ2

−
1

2ξ

�
∂μAμνλ −

ξm2

2
bνλ

�
2

: ð24Þ

Here Fμνλρ ¼ 4∂ ½μAνλρ� and hμνλ ¼ 3∂ ½μbνλ�. We include the
gauge-fixing term as we will be interested in the high-
energy behavior of this theory, and following the discussion
of the 1-form, the properties of the propagator for A will be
crucial. The final gauge-fixing term is designed so that ∂ · A
and b decouple, up to a boundary term. If we set mb ¼ B,
mh ¼ H, so that B has a canonical kinetic term, then5

5In principle we should not stop here. The “gauge trans-
formation” 2-form B also has a gauge invariance B → Bþ dΛð1Þ
which is broken only by the ξ-dependent mass term. So we should
include a Stueckelberg 1-form field A, transforming nonlinearly
as A → Aþ Λð1Þ, and a gauge-fixing term for this gauge
invariance. Finally, the field Awill have its own gauge invariance,
and a gauge-fixing term and scalar Stueckelberg field should be
added for this. However, when J is conserved, the original 3-form
decouples from these Stueckelberg fields, and we will not worry
about this complication.
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L ¼ −
1

48
FμνλρFμνλρ −

1

12
ðmAμνλ −HμνλÞ2

−
1

2ξ

�
∂μAμνλ −

ξm
2

Bνλ

�
2

: ð25Þ

We can also couple A to a 3-form current J. The general
gauge-invariant coupling is

δLJ ¼ ðA − hÞμνλJμνλ ¼ ðA − hÞ∧ � J: ð26Þ

If J is conserved, d � J ¼ 0, then the second term is a
boundary term and δLJ ¼ A∧ � J. Note that if we consider
the field equation for F which follows from (25), and
include the conserved 3-form current δLJ as a source we
will find a nontrivial solution for the 3-form gauge field
potential A even in the homogeneous static limit:

Aμνλ ∼
Jμνλ
m2

; ð27Þ

which is just the 3-form version of the London equation.
Thus the physics is qualitatively similar to the case of a
massive vector gauge field in a superconductor.
To understand the range of field space over which the

theory (25) is defined, we can analyze the structure of
the gauge transformations. Absent the gauge-fixing term,
the above Lagrangian is invariant under the shift
A → Aþ dΛ, b → bþ Λ. If we assume that the volume
of the gauge group is compact, this implies also that b is a
compact 2-form gauge field. More precisely, we assume as
in [5] that the conjugate momentum for A is quantized in
units of the 3-form charge q. This also constrains the
field b.
To see this explicitly, it is easiest to compactify the

spatial directions on some Σ3.
R
Σ3
A describes a particle on a

circle. This follows from compactness of the gauge group
A → Aþ dΛ. If for any 2-manifold Σ2 we requireZ

Σ2

Λ≡
Z
Σ2

Λþ 2π

q
; ð28Þ

one can show thatZ
Σ3

A≡
Z
Σ3

Aþ 2π

q
: ð29Þ

An easy check is to consider the case Σ3 ¼ Σ2 × S1:
allowed gauge transformations Λ must shift by integer
multiples of (28) as it varies over a single winding of the S1.
The result is that the 4d momentum is quantized,

P123 ¼ _A123 ¼ nq: ð30Þ

In the limit that m → 0, this is the standard 4-form flux
quantization.

In the case m ≠ 0, b is a Stueckelberg field designed so
that it can be gauge fixed to zero by a shift ofΛ. It thus must
have the same properties as Λ: in particular,Z

Σ2

b≡
Z
Σ2

bþ 2π

q
; ð31Þ

which also implies that the magnetic h flux is quantized:Z
Σ3

h ¼ 2πn
q

: ð32Þ

Again, this is easily checked by considering Σ3 ¼ Σ2 × S1.

B. High-energy behavior

A massless 3-form potential has no on-shell dynamics.
As is clear from the duality transformation above, the
longitudinal mode of the massive 3-form will propagate.
We will now argue that, so long as the 3-form couples to a
conserved current, the theory will have good high-energy
behavior just as a massive vector field does.
Following our discussion of the massive vector theory,

we open a discussion of the high-energy behavior by
studying the propagator of the massive 3-form. A simple
avenue to deriving this propagator is to write the 3-form
potential as a dual vector:

Aμνλ ¼ ϵμνλρVρ: ð33Þ

In terms of Vμ, the Lagrangian becomes

L ¼ −
2

ξ

�
−
1

4
GμνGμν −

ξm2

4
V2 −

ξ

4
ð∂ · VÞ2

�
; ð34Þ

where G is just the field strength for V. Amusingly, the 3-
form kinetic term takes the form of a gauge-fixing term
with respect to the dual 1-form, and vice versa.
The propagator for V is thus a rescaled propagator for a

vector field with mass m
ffiffiffiffiffiffiffi
ξ=2

p
and a gauge-fixing param-

eter ~ξ ¼ 2=ξ. The propagator for the 3-form potential is

hAμνλðpÞAμ0ν0λ0 ð−pÞi

¼ ϵμνλρϵμ0ν0λ0ρ0

� ξ
2
ηρρ

0

p2 − ξm2

2

þ ð1 − ξ
2
Þpρpρ0

ðp2 −m2Þðp2 − ξm2

2
Þ

�
:

ð35Þ

As with the vector field, there are no terms which grow
large as p → ∞ or m → 0. Therefore as long as the 3-form
couples only to conserved 3-form currents, the longitudinal
and Stueckelberg forms will decouple. Thus as in the case
of the massive vector theory, the amplitudes with the
intermediate 3-form potential will have good high-energy
behavior.
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As with the massive vector theory, the gauge field mass
will not receive any divergent counterterms, if the 3-form
current is conserved and the matter sector which generates
it has good high-energy behavior. Antisymmetry and
Poincaré invariance implies the self-energy diagram will
have the form

Πμνλ;αβγðpÞ ¼ ϵμνλρϵαβγδðAηρδ þ BpρpδÞ: ð36Þ

Again, since the massive gauge field by itself is free, the
self-energy diagram will require at least one insertion of the
3-form current operator. If we demand that this current be
conserved, pμJμνγðpÞ ¼ 0, this means

pμΠμνλ;αβγ ¼ 0: ð37Þ

Applying this to (36), we find that the term proportional to
B satisfies this constraint automatically. Thus, we must set
A ¼ 0. The self-energy term is proportional to the momen-
tum alone. The only divergent counterterm will be a wave-
function renormalization for the 3-form, and if the current
sector has good high-energy behavior we expect the
divergent counterterm to be at worst logarithmic.

C. The dual axion and the Julia-Toulouse mechanism

The massive 3-form theory is dual [9,40] to the axion-4-
form theory of [4,5,8]. We will review the duality map in
detail, to make contact with [10–12].
We start with the Lagrangian

L ¼ −
1

48
F2
μνλσ −

m2

12
ðAμνλ − hμνλÞ2 þ

m
6
ϕϵμνλρ∂μhνλρ:

ð38Þ

Here ϕ is a compact scalar, with periodicity ϕ≡ ϕþ 2πf
to be determined. Integrating out ϕ, we find dh ¼ 0.
Locally, this means that we can set h ¼ db. We can do
this consistently in local coordinate patches if we identify b
under gauge transformations b → bþ dΛð1Þ.6 The field b
becomes the Stueckelberg field in (25). If we absorb b into
A via a gauge transformation, we arrive at the Proca-like
Lagrangian L ¼ − 1

48
F2 − m2

12
A2. Following our review of

the massive vector, we will not consider more general Rξ-
like gauges when studying the duality transformations. We
will use such gauges to better understand the high-energy
behavior of the massive 4-form: as ever, different gauges
are useful for making different aspects of the physics
manifest.

We pass to a dual form of the action by integrating out h.
We can complete the square in (15), and perform the
Gaussian integral, which is equivalent to solving the classical
equations of motion for h, hμνλ ¼ Aμνλ þ 1

m ϵμνλρ∂ρϕ, and
substituting the solution back into (38). In this casewe arrive
at the axion-4-form theory described in [4,5]:

Lϕ;A ¼ −
1

48
F2
μνλσ −

1

2
ð∂μϕÞ2 þ

m
24

ϕϵμνλρFμνλρ: ð39Þ

The periodicity condition μf ¼ q derived in [5] arises
naturally from thismap. The field redefinition hμνλ ¼ Aμνλ þ
1
m ϵμνλρ∂ρϕ directly implies pϕ ¼ mh123, where h123 is the
spatial polarization for h. The periodicity relation (32) then
implies mf ¼ q.
Proceeding in analogy to Sec. II.4, we wish to find a dual

to the 4-form. This is a somewhat odd step: by analogy, the
dual would a 0-form field strength q, and there is no
candidate potential that this would couple to. Furthermore,
in these duality chains, the dual field appears as a Lagrange
multiplier enforcing the Bianchi identity. This identity is
automatic for a 4-form. Nonetheless, we introduce Q as a
Lagrange multiplier enforcing the equation F ¼ dA [44],
by treating Að3Þ, Fð4Þ as independent fields. We start with
the Lagrangian

Lϕ;A ¼ −
1

48
F2
μνλσ −

1

2
ð∂μϕÞ2 þ

m
24

ϕϵμνλρFμνλρ

þ Q
24

ϵμνλσðFμνλσ − 4∂μAνλσÞ; ð40Þ

with the coefficient of the last term chosen to make the
following formulas more compact. Integrating over Q
enforces F ¼ dA. We allow A in different coordinate
patches to be related by nontrivial gauge transformations.
On the other hand we can integrate out F, by completing

the square in the action, again equivalent to finding the
equation of motion for F as an independent field and
inserting the result back into the action. This yields the
equation Fμνλσ ¼ ðQþmϕÞϵμνλσ, or if we invert it,
Qþmϕ ¼ −ϵμνλσFμνλσ=24. Substituting these equations
back in the action (40) yields

Lϕ;A ¼ −
1

2
ð∂μϕÞ2 −

m2

2

�
ϕþQ

m

�
2

þ 1

6
ϵμνλσQ∂μAνλσ:

ð41Þ

Note that varying A yields the equation of motion dQ ¼ 0,
consistent with the quantization condition. Furthermore,
the compactness of the gauge group means that summing
over integer units of flux

R
dA enforces a quantization

condition Q ¼ 2πnq. The resulting action is consistent
with the discrete gauge invariance ϕ → ϕþ 2πf if Q
transforms as Q → Qþ 2πq and mf ¼ q.

6If space is not simply connected, then as with the 2d path
integral arguments for T-duality [42,43], we should take care to
sum over winding sectors of ϕ. This will enforce flux quantiza-
tion for h.
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The result is precisely the scalar field action of [5,8]. Our
chain of reasoning however allows a discussion of these
actions in parallel with Sec. II.4, which we give here at a
very heuristic level. We can start with a compact scalar,
defined as a scalar that shifts by a discrete gauge symmetry.
This can be given a mass if we add a “Stueckelberg field”Q
which also transforms nonlinearly under this symmetry.
Pursuing our analogy, the scalar ϕ couples as a gauge field
to a charged instanton;Q denotes the instanton condensate.
Reversing the duality steps above, we find that the con-
densate dynamics can be described as those of a massive
3-form, with the scalar ϕ the dual of the 2-form longitudinal
mode. In this case, the massive 3-form gauge theory
describes the dynamics for some kind of instanton
condensate.
Another route to this set of dual effective actions is to

consider a 3-form potential which couples electrically to
charged membranes. It is natural to suppose that if and
when these membranes condense, the result is to give a
mass to the 3-form, such that the 2-form Stueckelberg field
parametrizes the membrane condensate. Pursuing the chain
of dualities to the action (41), we claim, following Julia and
Toulouse, that the inflaton dynamics is that of a membrane
condensate. The analogue of the Julia-Toulouse ansatz (21)
for massive vector fields is the equation

ϕ0 ¼ −
1

24m
ϵμνλσFμνλσ; ð42Þ

after the “gauge” variable Q has been absorbed into
ϕ0 ¼ ϕþQ=m. Note that—by the discussion of the quan-
tization ofQ above—as this quantity is a dual of the 4-form
flux, it is a sum total of many different units of flux inside
the volume occupied by the field configuration. So Q is a
macroscopic, extensive property of the system, whose large
value reflects the system’s size and number of constituent
parts rather than being characteristic of a high-energy
excitation of the system. Macroscopically large fluxes of
Fμνλσ thus translate into huge initial displacements of ϕ0

from its minimum without ever taking the theory out of the
validity of the low-energy description.
It is clearly of great interest to find UV complete models

in which membrane condensation and the emergence of a
dual scalar occurs as an infrared phenomenon. This does
occur in the two-dimensional reduction of the axion-4-form
theory, which is just a compact boson coupled to a 2d
Abelian gauge field:

L ¼ −
1

2
F2
01 −

1

2
ð∂ϕÞ2 − ϕ

2π
F01 − μ2 cosϕ: ð43Þ

A classic treatment can be found in [45]. This and related
2d models were studied in light of axion monodromy in
[46]. Charged fermions behave as domain walls; Bose-
Fermi duality maps the scalar ϕ to a charged fermion with
mass μ, the latter being the 2d analog of a charged domain

wall [45,47–49]. ϕ is a composite object from the fermionic
point of view. In two dimensions this is an exact duality.
In higher dimensions we would search for an infrared
duality.

D. Effective field theory analysis

Next, we discuss the low-energy effective field theory
dynamics of the massive 3-form gauge theory. When we
embed our 3-form theory in a UV-complete theory, we
expect the duality between the scalar and longitudinal
modes to hold only in the infrared. In considering the effect
of the UV completion, we should pick a duality frame in
which to write down local couplings between the inflaton
sector and additional fields. Thus, we will rerun the
discussion in [4,5] in the duality frame of the massive
4-form. Once this is done, we can discuss the IR dynamics
in whichever frame is convenient.

1. Terms of the form F2k

One set of leading terms are, as in [4,5], higher powers of
the 4-form field strength,

δL1 ¼ cn
F2n

M4n−4 ð44Þ

(assuming parity is conserved in this sector). As in [4,5],
these will lead to corrections to the inflaton potential of the
form

δV ∼ V
Vn

M4n : ð45Þ

In this discussion we treat the corrections as small
perturbations of the leading order action, and consider
the effective action of the theory as a series in higher-
dimension operators. There are known cases in which
higher-order terms resum to a function that can be
analytically continued outside of the radius of convergence
of the effective field theory expansion: a classic example is
[34]. This may come from integrating out additional fields,
which can lead for example to a “flattened” potential away
from the minimum at F ¼ A ¼ 0 [6,7,17]. For such cases,
we recall the following treatment in [40]. We start with the
general action of the form

L ¼ M4K

�
F
M2

�
−
m2

12
ðAμνλ − hμνλÞ2; ð46Þ

where we use the fact that a 4-form in four dimensions
has only one independent component, F ¼ −Fμνλσϵ

μνλσ=
24, and F2

μνλσ ¼ −24F2. We can still dualize this action as
before, to find the Lagrangian for the scalar ϕ. The resulting
axion effective potential is, using z ¼ ðQþmϕÞ=M2,
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VðzÞ ¼ M4fzWðzÞ − KðWðzÞÞg; ð47Þ

where W ¼ ðK0Þ−1. Thus the scalar axion potential is just
the Legendre transform of the kinetic term of the 3-form,
and the magnetic dual Q of the 4-form field strength
provides the monodromy structure. Under this map, a
quadratic function in F yields a quadratic function in z.

2. Terms of the form A2k

The next set of terms which can appear takes the form

δL2 ¼
dn

M2n−4 ðA − hÞ2n: ð48Þ

The duality map above takes this to δL2 ¼ dn
m2nM2n−4 ð∂ϕÞ2n.

If such terms were induced by fields with massM coupling
directly to ϕ, we would expect that dn ∼ ðmMÞ2n, so that the
m2 → 0 limit is smooth. We wish to argue that this scaling
also holds if the dual massive 4-form is coupled to matter
with the good high-energy behavior a renormalizable QFT
or string theory would provide.
To this end, gauge invariance points us to a 3-form version

of the Goldstone boson equivalence theorem: the scattering
of the longitudinal mode of k 3-form gauge bosons should be
of order mk=Ek times the scattering of k canonically
normalized 2-form gauge fields, up to terms of still higher
order in m2=E2. This is obvious in a way since the massive
4-form only has the longitudinal modes propagating, being
locally a constant in the massless limit. Gauge invariance
requires powers of A without derivatives in the effective
action to come in the form mðA − hÞ ¼ mA −H. Since the
massive 3-form has good high-energy behavior, m does not
function as a strong coupling scale and we expect the
scattering of the canonically normalized 2-form to be non-
singular in the m2 → 0 limit, which implies our claim that
dn ¼ d0nm2n=M2n. Thus the dual of (48) is higher-derivative
axion couplings of the form

fδL2 ∼
d0n

M4n−4 ð∂ϕÞ2n: ð49Þ

This gives a negligible contribution to density fluctuations
generated by inflation if M ≫ H, where H ¼ ffiffiffiffi

V
p

= ffiffiffiffiffiffiffimpl
p is

the Hubble scale during inflation [5,50].
Further possibilities arise form terms of the form A2kF2m.

We expect the above arguments to yield coefficients that
scale as m2k. The translation of these terms to inflaton
dynamics is a matter for future work.

3. Inflation models and flattening

If the UV scale is above MGUT ∼ 2 × 1016 GeV, and the
3-form sector does not couple to moduli with masses below
the inflationary Hubble scale and Planck-suppressed cou-
plings to the inflaton, then as in [4,5], we arrive at a model

of inflation nearly identical to the classic 1
2
m2ϕ2 chaotic

inflation. As we argued in [51], finding such a model may
require stringy compactifications for which the 10 or 11d
SUGRA approximation does not apply. Even in these
models, there is ample room for interesting observable
UV-sensitive corrections to the vanilla 1

2
m2ϕ2 model.

Particularly interesting would be the corrections suppressed
by scales close to the scale of inflation, since in this case the
corrected potential can lead to observably different sig-
natures than the plain vanilla 1

2
m2ϕ2. These theories benefit

from living dangerously close to the limits of the validity of
the perturbative description.
On the other hand, in the original constructions of axion

monodromy via string theory [6,7,17,18], and in the field
theory construction [52], the potentials flatten considerably
away from the quadratic form. For example potentials
written in terms of the canonically normalized inflaton can
scale as V ∼ ϕk<2. In our language this indicates the
dominance of operators such as F2k with very high powers
of k, indicating field strengths F above the dynamical scale
M generating this potential. Whether such terms are
calculable, following a treatment such as [34], depends
on the dynamics at the scale M.
It is worth revisiting the model in the Introduction of

[17], in our framework. As [17] we will take it as a model of
how a flattened potential might arise, without attempting to
complete it into a full theory of inflation. Consider an
“inflaton” ϕ and a heavy field ψ , with potential

V ¼ 1

2
gψ2ϕ2 þ 1

2
μ2ðψ − ψ0Þ2: ð50Þ

Following [17] we demand that ψ0 ≪ mpl, so that Planck-
suppressed operators will not unduly affect the dynamics of
ψ . We can rewrite this in our language:

L ∼
1

48

�
1 −

αψ

mpl

�
F2 −

m2

12
A2 −

1

2
μ2ψ2; ð51Þ

where we set ψ0 ≡mpl=α, α ≫ 1. If we integrate out ψ at
tree level, we find

LðFÞ ¼ f
�
α2F2

m2
plμ

2

�
F2 ð52Þ

where fðxÞ ∼ 1þOð1Þx for x ≪ 1, and fðxÞ ∼ 1=x for
x ≫ 1. The relevant dynamical scale controlling which
regime the theory is in is

M4 ≡m2
plμ

2=α2 ¼ μ2ψ2
0: ð53Þ

The scale M sets the value of F at which the potential
begins to flatten, as well as the energy density in this
regime.
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In [5,51] we noted that a quadratic monodromy potential
required that any moduli coupling to the inflaton have
masses μ ≫ H, where H is the Hubble scale during
inflation. As noted in [17], to avoid flattening in (52),
we must take μ ≫ αH, where H2 ¼ V=3m2

pl. Note that
super-Hubble masses can still lead to flattening. The point
is that in [5,51] we defined moduli as scalar fields with
Planck-suppressed couplings, in which case α ∼ 1. Which
scenario is more likely in string theory is a question we do
not address here.
Such potentials, with new scalar modes activated, may

arise if we formulate the analog of the Ginzburg-Landau
equation for our superconducting phase. It would be
interesting and useful to construct such“intermediate-level”
effective theories yielding monodromy inflation with flat-
ter-than-quadratic potentials, and to explore their UV
sensitivity.

E. Discrete gauge invariance and axion monodromy

In this subsection we turn more directly to the quantum
mechanics of the dual description of the massive 3-form
[4,5,8] to shed some light on the physics that protects large-
field displacements from quantum gravity effects. As we
noted above, the axion-4-form theory has a discrete gauge
symmetry ϕ → ϕþ 2πf. In the Lagrangian description,
this protects it from large UV corrections. In the
Hamiltonian language the gauge symmetry is hidden [5].
The canonical momentum for the 4-form flux is quantized
in units of the 4-form charge q as p ¼ �Fð4Þ −mϕ ¼ nq,
with n ∈ Z. The Hamiltonian is

H ¼ 1

2
p2
ϕ þ

1

2
ðmϕþ nqÞ2: ð54Þ

It is periodic under ϕ → ϕþ 2πf if 2πmf ¼ kq, with
k ∈ Z, and if we shift n → n − k. Thus we see that the
discrete gauge symmetry acts on the phase space of the
theory.
To clarify this, let us consider a massive charged particle

in two dimensions, coupled to a magnetic field,

L ¼ 1

2
_x2 þ 1

2
_y2 − gy_x; ð55Þ

where we have set the mass m ¼ 1. Equation (55) is the
dimensional reduction of the axion-4-form model of [4,5]
to zero spatial dimensions, encapsulating the nontrivial
dynamics of the system. The “coordinate” y is the axion
zero mode, while x is the 3-form gauge potential. We
further place the particle on the torus T2, so that x, y are
periodic with periods 2πRx;y. From the viewpoint of our
original 4d axion-4-form theory, the periodicity arises when
the original axion is a compact scalar, and the gauge group
of the 3-form theory is a compact Uð1Þ, so that Wilson
hypersurfaces

R
Σ3
A are compact.

The periodicity of T2 is a genuine discrete gauge
symmetry of the theory. The term proportional to g is

invariant up to a total derivative. The subtlety is to ensure
that this gauge symmetry is consistent with quantization.
Doing so imposes a quantization of g in units of
1=ð2πRxRyÞ. Indeed, the canonical momenta are

px ¼ _x − gy ¼ k
Rx

; py ¼ _y: ð56Þ

Since x → xþ 2πRx is a manifest discrete gauge sym-
metry, the wave functions must be invariant under it, and so
the conjugate momentum px will be quantized. On the
other hand, if y → yþ 2πRy, then px → px − 2πgRy,
which is only consistent with the quantization condition
on px if g ¼ l

2πRxRy
for l ∈ Z. This is the analog of the

condition on mass, axion decay constant, and 4-form
charge given in Eq. (6) of [5]. Furthermore, it is clear that
the gauge symmetry corresponding to shifts of y acts
nontrivially on phase space.
The Hamiltonian can then be rewritten as

H ¼ 1

2
ðpx þ gyÞ2 þ 1

2
p2
y; ð57Þ

where the index l ¼ 2πRxRyg is the number of magnetic
flux quanta, setting the degeneracy of a Landau level. For
l ¼ 1, that degeneracy is unity, and the energy of the nth
Landau level is gðnþ 1

2
Þ up to some factors. This is the

choice made in [4,5]. The Hamiltonian is just the linear
(a.k.a. simple) harmonic oscillator (LHO). One can create a
coherent state out of LHO creation and annihilation
operators, which is to all intents and purposes describing
the oscillator high up on the side of the potential. Such a
large excitation, counted by the high occupation number of
the LHO, models precisely the large inflaton VEV.
For a higher number l of flux quanta, the degeneracy of

the Landau levels increases. In the axion-4-form story, this
arises from the M-theory compactification of [4]. That is,
consider a compactification on M7 ¼ T4 × T3 or on some
K3 fibration of a 3d base Σ, perhaps on a manifold G2

holonomy. The 3-form potential has a Wilson surface
through the T3 or Σ, leading to a 4d axion. If one setsR
T4 or K3 F

ð4Þ ¼ l, one arrives at the 4d analog of the case of
degenerate Landau levels.
The phase space in the px − y direction is a tilted

cylinder, and so y is no longer periodic by itself in the
phase space. For a fixed value of k, k=ðgRxÞ, the lowest
Landau level looks like the minimum of the LHO, and this
minimum should sit inside the torus (cf. [53]). However the
assertion that the Landau levels are matched to the states of
a LHO presumes that one “unpacks” the coordinate y by
removing the excess units of the period to fit the value in
the fundamental domain: y larger than 2πRy is equivalent to
y inside the fundamental domain, but with k shifted by l.
For l ¼ 1, this gives the picture in Fig. 1 of [5].
The structure of quantized phase space restricts the

corrections to the zero mode dynamics, which in turn
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protects the inflationary slow roll. In the quantum-
mechanical theory, terms ∼yn cannot be added to the
Hamiltonian as they are not periodic in phase space.
They must be completed into the form cnðpx þ gyÞn ¼
cn _xn. Lifting to four dimensions, y → ϕ, _x → Fð4Þ, this
means that the terms in the Hamiltonian that involve ϕk

must be completed into ðpAð3Þ þmϕÞk where m is the mass
term. But this combination is just ðFð4ÞÞk.
The guideline of the effective field theory analysis of

[4,5] was that the UV completion is such that corrections
to the low-energy effective action take the form
Oð1ÞðF=M2

UVÞ2k, without powers of the gauge field mass
m in the denominators. As we have argued above, this
follows from fairly conservative assumptions about the
low-energy theory and its UV completion, based on
locality, unitarity and renormalizability. Under these con-
ditions large-field inflation can be made safe from danger-
ous corrections so long as MUV is a little bit larger than the
scale of inflation [4,5].

F. The weak gravity conjecture and membranes

The 4-forms couple electrically to charged membranes,
whose nucleation induces jumps in flux of order nq. So the
viability of inflation requires that these membranes are not
so light that their emission “discharges” the initial field
displacement too quickly, spoiling slow roll [4,5,51]. It
appears reasonable to assume that the WGC places an
upper bound on such charged membranes, though opinions
differ as to how prohibitive this constraint is [54–57].
However, it is not entirely clear that the arguments in

[16] should directly apply to codimension-1 charged
objects, as discussed in [55]. Furthermore, the 3-form
gauge theory we describe is massive, preventing a direct
application of the arguments in [16].
In the massive 3-form case, we have argued that the

inflaton can be considered as parametrizing a membrane
condensate. A related argument appears in Sec. 2 of [56].
One can consider instanton-induced sinusoidal modula-
tions of the effective potential for ϕ. The associated domain
walls between minima of this sinusoid can be light,
depending on the strong coupling scale of the gauge theory
producing the potential. If we can dial this scale, eventually
the scalar is no longer trapped and can roll classically over
the sinusoid. At this point the inflaton is behaving as a
condensate of membranes, in line with the Julia-Toulouse
mechanism [10,11].
It is tempting to speculate, as in [56], that the inflaton

thus automatically satisfies the “electric” form of the WGC.
We should be a little careful. Recall that for massive
vectors, initial gauge fields emanating from a black hole
are completely screened by the condensate over a time scale
of order m−1, with m the gauge field mass. When this mass
becomes small, the status of this electric form is unclear, as
it can depend on the UV completion of the massive gauge

theory. For the massive 3-form, the scalar discharges the
4-form flux, with a time scale set by its inverse mass, which
is also the inverse mass of the gauge field.
On the other hand, an argument following [56] may lead

to an upper bound on the validity of effective field theory,
albeit one weak enough to allow for inflation. So long as the
WGC holds in higher dimensions (for which the domain
wall may have higher codimension), the 4d theory may not
have domain walls with tension T ¼ M3

WGC satisfying the
naïve lower bound given in [16], if the 4d effective field
theory breaks down at a scale below MWGC. This can arise
via a low Kaluza-Klein (KK) scale, ΛKK < ðqmplÞ1=3,
where Λ is the scale at which 4d effective field theory
breaks down. As pointed out in [56], inflation can proceed
so long as this scale is above the Hubble scale. One may
also worry that terms of the form F2k would be suppressed
only by the KK scale, imposing a stronger constraint.
However, Kaluza-Klein modes come with mpl-suppressed
couplings (cf. [50,51]). Properly summing over Kaluza-
Klein modes leads to such operators suppressed by the
higher-dimensional Planck scale, so that the constraint is
still ΛKK > H. All that is required is thus that the higher-
dimensional Planck scale be large compared to the energy
scale at which inflation operates.

IV. CONCLUSION

CMBR observations will soon be able to efficiently
constrain inflationary models at the highest scales, or, with
luck, discover them. This forces the question of the internal
self-consistency of inflationary models. A UV complete
model provides a proof in principle of such consistency, as
well as a model with explicit, computable parameters.
However it is clearly of interest if one can make general
arguments as to which—if any—large-field models are
self-consistent, and why.
Here we have pursued this question from the effective

field theory point of view, and argued that massive Abelian
4-forms provide robust effective field theories realizing
axion monodromy inflation. Instead of a broken global shift
symmetry, which is expected to be badly broken by
quantum gravity, there is a nonlinearly realized gauge
symmetry for the 3-form, and an associated discrete gauge
symmetry for the dual inflaton. These control the possible
UV corrections. We know of no principle in quantum
gravity which prevents these gauge symmetries.
Further, the large-field excursions by the effective

inflaton are duals of large gauge field fluxes. These large
fluxes—and in turn, the effective inflaton field values—can
be thought of as macroscopic quantities which characterize
the size of the system, rather than high-energy excitations
of the inflaton. While there is an upper limit on just how
large a flux can be, this would imply that it is controlled by
the macroscopic properties of the low-energy theory, rather
than its UV features.
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The major question is whether the 3-form mass can be
kept well below the Planck scale. In string theory models
with high-scale supersymmetry, there will be p-form gauge
symmetries that become linearly realized in the ultraviolet,
which can become nonlinearly realized at a lower scale.
The gauge mass and the presence of extra modes that may
activate flattening of the inflaton potential are set by the
string compactification and the IR dynamics that emerge. If
the Julia-Toulouse mechanism [10–12] can be realized as
IR dynamics in a UV-complete theory, this may provide
an avenue to generate the needed scale hierarchies. Full
string compactifications are one route to this. It would be
interesting to find intermediate-scale four-dimensional
models of the Ginzburg-Landau type, in which one can
see the transition from a massless to a massive gauge theory
phase. Higher-dimensional intermediate models, such as
the “unwinding inflation” models of [13,14] are also of
great interest.7
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