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We examine the effect of the stress tensor of a quantum matter field, such as the electromagnetic field, on
the spectrum of primordial gravity waves expected in inflationary cosmology. We find that the net effect is a
small reduction in the power spectrum, especially at higher frequencies, but which has a different form from
that described by the usual spectral index. Thus, this effect has a characteristic signature, and is, in
principle, observable. The net effect is a sum of two contributions, one of which is due to quantum
fluctuations of the matter field stress tensor. The other is a quantum correction to the graviton field due to
coupling to the expectation value of this stress tensor. Both contributions are sensitive to initial conditions
in the very early universe, so this effect has the potential to act as a probe of these initial conditions.
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I. INTRODUCTION

The possible roles of quantum stress tensor fluctuations
of a conformal matter field in inflationary cosmology were
explored in Refs. [1–3]. The basic hypothesis is that
vacuum fluctuations of the energy density, or other stress
tensor components, during inflation can lead to additional
density or tensor perturbations beyond those due to the
nearly Gaussian fluctuations of the inflaton or graviton
fields, which are the dominant source of perturbations in
inflationary models. One of the usual features of infla-
tionary models is the relative lack of dependence upon
initial conditions. This arises because adequate inflationary
expansion will redshift and dilute pre-existing matter, so a
generic quantum state tends eventually to become indis-
tinguishable from the Bunch-Davies vacuum of de Sitter
spacetime. However, the effects of quantum stress tensor
fluctuations exhibit a strong dependence upon the initial
conditions, and tend to grow with increasing duration of the
inflationary expansion. In particular, the contributions to
the density perturbations [1,2] and the tensor perturbations
[3] are proportional to the scale factor change between an
initial time and the end of inflation. At first sight, this
violates Weinberg’s theorem [4], which states that loop
corrections can grow at most logarithmically in the scale
factor during inflation. However, a more careful analysis
shows that there is in fact no contradiction. One picks a
perturbation with a given wavelength at the present time,
and then traces it back to the initial time, when it becomes a

perturbation with very short wavelength, which is inversely
proportional to the scale factor change during inflation.
However, the magnitude of stress tensor fluctuation effects
increases as the relevant length scale decreases. The stress
tensor fluctuation contribution can typically be written as a
double integral over conformal time of the stress tensor
correlation function. Thus, increasing the duration of
inflation leads to increasing values of the integrals of the
stress tensor correlation function because shorter proper
wavelength modes are giving the dominant contribution,
not because anything is accumulating as inflation pro-
gresses. Another way of saying this is that the dominant
contribution is always large, but is not growing in time.
Thus, it is misleading to refer to these contributions as
“secular terms.”
The main purpose of the present paper is to perform a

more careful analysis of the tensor perturbations due to
stress tensor fluctuations which was begun in Ref. [3]. The
analysis in this reference was criticized by Fr̈ob et al. [5],
who noted correctly that an important contribution was
omitted. In addition to the passive fluctuations of the
graviton field due to stress tensor fluctuations, there is
also a correction to the active fluctuations of the graviton
field which is of the same order. Fr̈ob et al. propose a
method for calculating the combined effect of both con-
tributions which leads to a result which does not depend
upon the duration of inflation, and they infer that the two
contributions have cancelled one another. In the present
paper, we propose a rather different approach in which each
contribution is computed separately, with initial conditions
imposed by a switching function. This function describes
the switch-on of the coupling of the matter stress tensor
with the graviton field. We do not find cancellation between
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the passive and active fluctuation effects, but rather a
nonzero one-loop correction to the graviton power
spectrum.
The outline of the paper is as follows: Section II will

discuss averaging of quantum fields with switching func-
tions of time. Section III will review free gravitons in an
expanding universe, and Sec. IV will introduce some
formalism for describing the effects of a quantum matter
field. Section V will compute the correction to the graviton
power spectrum coming from matter stress tensor fluctua-
tions. These are the passive fluctuations of gravity driven
by the fluctuating stress tensor. The part of the power
spectrum coming from loop corrections to the graviton
field, the modified active fluctuations, is treated in Sec. VI.
The combination of both effects is discussed in Sec. VII,
and it is shown in our approach to be nonzero and
dependent upon the details of the switching function. In
general, it has the effect of slightly reducing the overall
power spectrum. Some numerical estimates and the pos-
sibility of observing this reduction will be discussed. Our
results will be summarized and discussed in Sec. VIII.

II. SWITCHING FUNCTIONS
IN QUANTUM FIELD THEORY

In interacting quantum field theory calculations of
scattering amplitudes, it is common to appeal to adiabatic
switching of the coupling constants of the theory. This
allows the theory to be noninteracting in the past and in the
future and allows a well defined S matrix to connect the
asymptotic states. Here the term “adiabatic” means that
the scale of any time dependence in the coupling constants
is long compared to any other time scales in the theory.
The details of the time dependence usually need not be
specified.
There is a different type of switching required in treat-

ments of the fluctuations of a quantum stress tensor
operator. The fluctuations of a local field operator are
not defined, as the moments of such an operator will
diverge if they are not zero. However, the time average or
spacetime average of a local stress tensor operator does
have finite moments, and can have a meaningful probability
distribution in a given quantum state, as discussed in
Refs. [6–8]. Here we briefly review the basic ideas and
describe the role which they will play in the present paper.
Let T be a stress tensor operator component, such as energy
density, which has been renormalized to have finite expect-
ation values. In Minkowski spacetime, this means a normal
ordered operator. In curved spacetime, it means an operator
which has been regulated and renormalized, as will be
reviewed in Sec. IV. Although the local operator T may
have finite expectation values in physically realizable
states, its fluctuations are not well defined because its
higher moments, hTni for n ≥ 2, typically diverge. The
physical implication of this divergence is that the fluctua-
tions of a local operator, such as energy density at a single

spacetime point, are infinite and hence not meaningful.
However, if we average T over a finite time or spacetime
interval, then the fluctuations do become well defined.
Let

T̄ ¼
Z

∞

−∞
sðtÞTðtÞdt ð1Þ

be the average of T at a given spatial point with respect to a
smooth (C∞) switching function sðtÞ, which satisfies
sðtÞ → 0 for t → �∞. Now the moments of T̄ become
finite, and a meaningful probability distribution may be
defined [6–8]. The effect of the time averaging described by
sðtÞ is to suppress the contribution of high frequency modes
to the moments. Averaging in space alone at a single time is
not adequate to produce this suppression, but averaging in
both space and time has qualitatively the same effect as
does time averaging alone. One may view the averaging of
a stress tensor operator as describing its measurement
process in a given physical situation, where the details
of the situation define the switching function. An example
of this was discussed in Ref. [9], which treats the effects of
vacuum radiation pressure fluctuations on quantum par-
ticles near a potential barrier. Here the duration of the
switching is taken to be determined by the time which the
particle spends in the vicinity of the barrier, and the form of
the switching function to be defined by the shapes of both
the barrier and the wave packet of the particle. Similar ideas
were applied in Ref. [10] to the fluctuations of the
quantized electric field. Most of the above discussion of
averaged stress tensor operators, which are quadratic in the
quantum field operator, applies to linear quantum fields,
such as the electric field. The primary difference is that
the stress tensor probability distribution is sensitive to the
functional form of the switching function, whereas the
probability distribution for the electric field is always a
Gaussian and depends primarily upon the width of the
switching interval. In Ref. [10], it was shown that if this
switching time is taken to be the time which a charged
particle spends in the vicinity of a potential barrier, then the
resulting electric field fluctuations produce a change in the
scattering amplitude which approximately agrees with that
given by the one-loop vertex correction to the scattering
amplitude. This agreement supports the hypothesis that the
details of a given physical situation can define the appro-
priate switching function.
In the present paper, we are concerned with the coupling

of a quantized matter field stress tensor with gravity,
specifically with the tensor perturbation of an expanding
universe. This coupling is mediated by Newton’s constant,
which will be assumed to be time-dependent in the early
universe. This time dependence produces both of the types
of switching discussed above, the switching of the coupling
constant of the theory, and time-averaging of the quantum
stress tensor operator. The functional form of the switching
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and its physical origin are not specified, but are assumed to
arise from some processes in the early universe which are
not yet understood. Several specific choices will be
explored in Sec. VII A.

III. FREE GRAVITON TWO-POINT FUNCTIONS
AND POWER SPECTRA

A. Tensor metric perturbations in spatially
flat Robertson-Walker spacetimes

We start with a brief review of the propagation of
gravitational waves in a spatially flat Robertson-Walker
universe, described by the background metric

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ
¼ a2ðηÞð−dη2 þ dx2 þ dy2 þ dz2Þ; ð2Þ

where t is comoving time and η is conformal time. Let the
perturbed metric tensor be

gμν ¼ γμν þ hμν; ð3Þ

where the background metric, Eq. (2), is γμν and hμν is the
perturbation. We may impose the transverse, trace-free
(TT) gauge conditions

hμν;ν ¼ 0; hμμ ¼ h ¼ 0; hμνuν ¼ 0; ð4Þ

which reduce the metric perturbations to two transverse
physical degrees of freedom, corresponding to the polar-
izations of the gravitational wave. Here the semicolon
denotes the covariant differentiation with respect to the
background metric γμν, and uμ ¼ δut is the four-velocity of a
comoving observer.
It was shown by Lifshitz [11] that in the absence of

sources, the mixed tensor of the metric perturbation hμν in
this gauge satisfies the scalar wave equation in the spatially
flat Robertson-Walker universe,

□hμν ¼ 0; ð5Þ

where the scalar wave operator□ in the metric Eq. (2) takes
the form

□ ¼ 1ffiffiffiffiffiffi−γp ∂μ

� ffiffiffiffiffiffi
−γ

p
γμν∂ν

�
; ð6Þ

with γ denoting the determinant of the background metric
γμν. This implies that gravitational waves behave like a pair
of free minimally coupled massless scalar fields in the
spatially flat Robertson-Walker universe [12]. In general,
we may write the solution to Eq. (5) as a sum of plane wave
modes, which are of the form

εμ
νðk; λÞeik·xfkðηÞ; ð7Þ

where x ¼ ðx; y; zÞ, k is a wave vector, and λ labels the
independent polarizations. The gauge conditions, Eq. (4),
imply that the polarization tensor εμν satisfies

kμεμν ¼ 0; εμ
μ ¼ 0; and uμεμν ¼ 0: ð8Þ

When the wave vector k is in the z direction, the two
independent polarization tensors have very simple forms,

ðþÞ∶ εx
x ¼ −εyy ¼

1ffiffiffi
2

p ; ð×Þ∶ εx
y ¼ εy

x ¼ 1ffiffiffi
2

p ; ð9Þ

while other elements vanish. The temporal part of the mode
function, fkðηÞ, satisfies

∂ηða2∂ηfkÞ þ k2a2fk ¼ 0; ð10Þ

and hence depends upon the functional form of the scale
factor aðηÞ and upon k ¼ jkj, but is independent of
polarization and of the direction of k. The mode function,
fkðηÞ, is normalized by imposition of the Wronskian
condition

fkðηÞ∂ηf�kðηÞ − f�kðηÞ∂ηfkðηÞ ¼
i

a2ðηÞ : ð11Þ

With this normalization, we may write the free graviton
field on the spatially flat Robertson-Walker background as

ĥð1Þ ji ðη;xÞ ¼ 2κ

Z
d3k

ð2πÞ32
X2
λ¼1

εi
jðk; λÞâkλeik·xfkðηÞ þ H:c:

ð12Þ

The graviton creation and annihilation operators âkλ, and
â†kλ obey

½âkλ; â†k0λ0 � ¼ δλλ0δðk − k0Þ: ð13Þ

Here

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
¼

ffiffiffiffiffiffi
8π

p
lP; ð14Þ

where GN is Newton’s constant, lP is the Planck length,
and units where c ¼ ℏ ¼ 1 are adopted. The factor of κ in

ĥð1Þ ji ðη;xÞ arises because the effective energy momentum

tensor for gravitons is quadratic in ĥð1Þ ji ðη;xÞ and propor-
tional to κ−2. (See the discussion in Sec. IVA.) In addition,
we require that the zero point energy of a given graviton
mode, which is an integral of the effective energy momen-
tum tensor, have its usual form of one-half of the angular
frequency of the mode, which is independent of κ.
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The above mode expansion defines a vacuum state j0i by
âkλj0i ¼ 0, for all k and λ. However, this vacuum state is
not uniquely defined, as there are an infinite set of mode
functions fkðηÞ which satisfy both Eqs. (10) and (11). This
is the usual ambiguity of defining particles in curved
spacetime. We will not attempt to address this ambiguity
for a general scale factor, but will focus on the special case
of de Sitter spacetime.

B. Gravitons in de Sitter spacetime

De Sitter spacetime may be represented as a spatially flat
Robertson-Walker universe, Eq. (2), with

aðηÞ ¼ −
1

Hη
; ð15Þ

where H is the Hubble parameter and −∞ < η < 0.
The set of coordinates covers one-half of global de
Sitter spacetime, but this is more than enough for
inflationary cosmology, where η can be restricted to
run over a finite range. With this choice of scale factor,
the solutions of (10) may be expressed in terms of
Hankel functions as

fkðηÞ ¼ H

�
π

4

�1
2

η3=2½c1Hð1Þ
3=2ðkηÞ þ c2H

ð2Þ
3=2ðkηÞ�; ð16Þ

where the Wronskian condition implies

jc2j2 − jc1j2 ¼ 1: ð17Þ

Each allowed choice of c1 and c2, which may be
functions of k, leads to a different definition of the
graviton vacuum in de Sitter spacetime. The Bunch-
Davies vacuum arises when c2 ¼ 1 and c1 ¼ 0. For
massive or nonminimally coupled scalar fields, the
Bunch-Davies vacuum is also the de Sitter invariant
vacuum state. It is an attractor state in the sense that
inflation redshifts the particle content of other states and
causes them to approach the Bunch-Davies vacuum.
However, the Bunch-Davies vacuum does not exist in
a strict sense for a massless, minimally coupled scalar
field or for the graviton field. This is due to an infrared
divergence in the two-point function. For free gravitons,
this function is defined by

11Ki
j
k
lðx; x0Þ ¼ h0jĥð1Þ ji ðxÞĥð1Þ lk ðx0Þj0i; ð18Þ

and contains an integral of the form

Z
d3keik·ðx−x0ÞfkðηÞf�kðη0Þ: ð19Þ

For the Bunch-Davies vacuum, fkðηÞ ¼ ukðηÞ, where

ukðηÞ ¼ H

�
π

4

�1
2

η3=2Hð2Þ
3=2ðkηÞ ¼ i

H

ð2k3Þ12 ð1þ ikηÞe−ikη:

ð20Þ

Because jukðηÞj ∝ k−3=2 as k → 0, the integral in Eq. (19)
diverges logarithmically at its lower limit. One resolution
of this problem is to modify the state slightly for very
long wavelength modes [13]. This may be done by
allowing c1 and c2 to have the Bunch-Davies values
for k > kC, but to vary for k < kC so as to avoid an
infrared divergence in Eq. (19). So long as kC is below
any graviton wave number with which we are concerned,
this infrared finite state is indistinguishable for the
Bunch-Davies vacuum. We will adopt this viewpoint
here and use Eq. (20) as the graviton mode function.
Now the mode expansion of the graviton field operator in

de Sitter spacetime becomes

ĥð1Þ ji ðη;xÞ ¼ 2κ

Z
d3k

ð2πÞ32
X2
λ¼1

εi
jðk; λÞâkλeik·xukðηÞ þ H:c:

ð21Þ

C. Power spectra

It is well known that a power spectrum can be defined as
a Fourier transform of a correlation function. In the
spatially flat Robertson-Walker universe, Eq. (2), let
Kðx; x0Þ ¼ Kðx − x0; η; η0Þ be a field correlation function,
or two-point function. Here we assume a state with spatial
translation symmetry in writing K as a function of x − x0.
Define the power spectrum at time η by a spatial Fourier
transform along an equal-time hypersurface, η0 ¼ η:

Pðk; ηÞ ¼ 1

ð2πÞ3
Z

d3ueik·uKðu; η; ηÞ: ð22Þ

Note that in cosmology, the term “power spectrum” often
refers not to Pðk; ηÞ, but rather to

Pðk; ηÞ ¼ k3Pðk; ηÞ: ð23Þ

(Here we use a definition of P which differs by a factor of
4π from that in Refs. [2,3], but which seems to agree with
many authors.)
If we adopt a quantum state which is close to the Bunch-

Davies vacuum as described above, then the spatial Fourier
transform of Eq. (18) leads to the free graviton power
spectum

P11ðk; ηÞ ¼ 2κ2
Z

d3q
ð2πÞ3 δ

ð3Þðkþ qÞuq;λðηÞu�q;λðηÞ

¼ κ2H2

4π3k3
ð1þ k2η2Þ: ð24Þ
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We are often interested in this function evaluated at the end
of inflation, η ¼ ηr. In this case, we drop the explicit η
dependence in P and write

P11ðkÞ ¼
κ2H2

4π3k3
ð1þ k2η2rÞ ð25Þ

or

P11ðkÞ ¼
κ2H2

4π3
ð1þ k2η2rÞ: ð26Þ

The tensor perturbation coming from free gravitons in
de Sitter spacetime was discussed in the context of
inflationary-type models by Starobinsky [14], Abbott
and Wise [15], and by Allen [16], among others. A recent
review of this topic was given by Guzzetti et al. [17]. Note
that if k2η2r ≪ 1, then Eq. (26) describes a scale-invariant
spectrum if H is independent of k. Most inflationary
models predict a weak power law dependence, described
by the tensor spectral index, which arises because H is
slowly decreasing in time during inflation.

IV. EFFECTS OF A QUANTUM MATTER FIELD

So far, we have been concerned with free gravitons
propagating on a cosmological background spacetime.
Now we wish to introduce quantized matter, which we
take to be a conformal field, such as the electromagnetic
field, with stress tensor operator T̂μν. As is well known, the
expectation value of this operator in any quantum state is
formally divergent and needs to be regularized and renor-
malized by four counterterms in the Einstein equations
[18]. Two of these counterterms renormalize the cosmo-
logical constant and Newton’s constant, respectively. The
second two counterterms are associated with two counter-
terms in the gravitational action which are quadratic in the
curvature. These may be taken to be the square of the scalar
curvature and of the Weyl tensor. After renormalization,
hT̂μνi may contain contributions from each of the tensors
associated with each counterterm. In addition, it will
contain a part with a nonzero trace, the conformal anomaly.
If we omit the metric and Einstein tensors from cosmo-
logical constant and Newton’s constant renormalizations,
the local geometric part of hT̂μνi on a Robertson-Walker
background may be written as

hT̂μν½g�iL ¼ c1Hμν þ c2Aμν þ CBμν: ð27Þ

Here the tensors Hμν, Aμν, and Bμν are

Hμν ¼ −2R;μν þ 2gμνR;ρ
ρ −

1

2
gμνR2 þ 2RRμν; ð28Þ

Aμν ¼ −4∇α∇βCμ
α
ν
β − 2RαβCμ

α
ν
β; ð29Þ

Bμν ¼ −2CαμβνRαβ þ 1

2
gμνRαβRαβ þ 2

3
RRμν

− Rμ
αRνα −

1

4
gμνR2; ð30Þ

where Rμν is the Ricci tensor, R ¼ Rμ
μ is the scalar

curvature, and the Weyl tensor is defined by

Cαβγδ ¼ Rαβγδ −
1

2
½gαγRβδ − gαδRβγ þ gβδRαγ

− gβγRαδ� þ
1

6
½gαγgβδ − gαδgβγ�R ð31Þ

for the metric tensor gαβ. The tensor Bμν will give the trace
anomaly of the conformally invariant field in the confor-
mally flat spacetime, and its coefficient C takes different
values for various conformally invariant fields. On the other
hand, the coefficients c1, c2 of the remaining two tensors
are undetermined, and are associated with the two counter-
terms which are quadratic in the curvature. In addition to
hT̂μν½g�iL, there can be nonlocal contributions to hT̂μνi,
which will be discussed in more detail in Sec. VI B.
We will be concerned with the effects of the fluctuations

of the matter stress tensor operator, T̂μν, around its
renormalized expectation value, hT̂μνi. These stress tensor
fluctuations will contribute to additional terms in the
graviton field, ĥμν which are higher order in κ than the
free graviton field. However, we first discuss the various
expansions which we need.

A. Perturbative expansions

The treatment of gravity waves on a fixed background
necessarily involves an expansion of the metric and other
tensors in powers of the metric perturbation. The perturbed
metric tensor was defined in Eq. (3). We may expand the
Einstein equations in powers of the perturbations, hμν,
using the corresponding expansion of the Einstein tensor,

Gμν ¼ ð0ÞGμν þ ð1ÞGμν þ ð2ÞGμν þ ð3ÞGμν þ � � � : ð32Þ

In the expansion of the Einstein equations, the lowest order
is an equation for the background metric, the first order
gives the equation for linear perturbations, Eq. (5), and the
second-order term describes the backreaction of gravity
waves on the background, in the limit where the wave-
length of the gravity waves is small compared to the local
radii of curvature of the background geometry [19].
However, in addition to this expansion, we will need

an expansion of the graviton field in powers of κ, which acts
as the coupling constant for gravity. We write this expan-
sion as

ĥμν ¼ ĥð1Þμν þ ĥð2Þμν þ ĥð3Þμν þ � � � : ð33Þ
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This expansion begins at first order, as the free graviton
field is already proportional to κ. Note that we use a
notation in which the order in hμν is denoted by a super-
script on the left, as in Eq. (32), while the order in κ is
denoted by a superscript on the right, as in Eq. (33).
We will now treat the Einstein equation as an operator

relation involving both the graviton field operator, ĥμν, and
the matter stress tensor operator, T̂μν. In the presence of a
cosmological constant Λ, the Einstein equation is

Gμν½γ þ ĥ� − Λðγμν þ ĥμνÞ − κ2T̂μν½γ þ ĥ� ¼ 0: ð34Þ

Next we expand in both hμν and κ to write

fð0ÞGμν½γ� − Λγμν − κ2hð0ÞT̂μν½γ�ig þ fð1ÞGμν½ĥð1Þ� − Λĥð1Þμν g
þ fð1ÞGμν½ĥð2Þ� − Λĥð2Þμν − κ2ðð0ÞT̂μν½γ� − hð0ÞT̂μν½γ�iÞg
þ fð1ÞGμν½ĥð3Þ� − Λĥð3Þμν − κ2ð1ÞT̂μν½ĥð1Þ�g
þ ð2ÞGμν½ĥð1Þ� þ ð3ÞGμν½ĥð1Þ� þOðκ4Þ ¼ 0: ð35Þ

The first term in braces is zeroth order in the metric
perturbation, and its vanishing is the equation for the
background with the expectation value hð0ÞT̂μν½γ�i as its
source,

ð0ÞGμν½γ� − Λγμν ¼ κ2hð0ÞT̂μν½γ�i: ð36Þ

In de Sitter spacetime, hð0ÞT̂μν½γ�i ∝ γμν and is hence a finite
shift in the value of the cosmological constant. The second
term in braces is first order both in hμν and in κ, and its
vanishing is the equation for the perturbation. Of the
remaining terms, there are two which do not depend upon
the conformal stress tensor. At the classical level, ð2ÞGμν

describes the backreaction of gravity waves on the back-
ground geometry, as noted above. At the quantum level,
both ð2ÞGμν½ĥð1Þ� and ð3ÞGμν½ĥð1Þ� describe graviton loop
effects, which we will ignore here.
The third and fourth terms in braces in Eq. (35) are of

orders κ2 and κ3, respectively, and may be separately set to
zero, leading to

ð1ÞGμν½ĥð2Þ� − Λĥð2Þμν ¼ κ2ðð0ÞT̂μν½γ� − hð0ÞT̂μν½γ�iÞ; ð37Þ

and

ð1ÞGμν½ĥð3Þ� − Λĥð3Þμν ¼ κ2ð1ÞT̂μν½ĥð1Þ�: ð38Þ

Equation (37) relates ĥð2Þμν to the fluctuations of the matter

stress tensor, and Eq. (38) relates ĥð3Þμν to ð1ÞT̂μν½ĥð1Þ�, the
shift in the matter stress tensor operator due to a first-order
perturbation of the background. The solutions of these
equations will be discussed in Secs. V and VI, but here we

note that both may be simplified in the transverse, trace-free
gauge. We assume that the TT gauge conditions, Eq. (4),
apply in each order of the expansion, Eq. (33). The
equation for the first-order term in this gauge may be
written as

ð1ÞGμ
ν½ĥð1Þ� − Λĥð1Þμ

ν ¼ −
1

2
□ĥð1Þμ

ν ¼ 0; ð39Þ

which is the Lifshitz equation, Eq. (5). Note that the left-
hand sides of Eqs. (37), (38), and (39) have the same
functional form. Thus, we may express the former two
equations as

□ĥð2Þμν ¼ −2κ2ðð0ÞT̂μν½γ� − hð0ÞT̂μν½γ�iÞ; ð40Þ
and

□ĥð3Þμν ¼ −2κ2ð1ÞT̂μν½ĥð1Þ�; ð41Þ
where □ is the scalar wave operator, defined in Eq. (6).
In the following sections, we will use these two equations
to calculate theOðκ4Þ corrections to the gravity wave power
spectrum.

B. Graviton correlation functions

Let jΨi denote the quantum state of the combined
graviton-conformal field system. As discussed earlier, we
take the gravitons to be in an approximation to the Bunch-
Davies vacuum, in which Eq. (20) is the graviton mode
function, and denote this state by j0Gi. The matter field is
assumed to be in the conformal vacuum state, j0Mi, in
which the matter field correlation functions are conformal
transforms of the Minkowski space vacuum correlation
functions. We assume that the state of the combined system
may be written as a direct product: jΨi ¼ j0Gij0Mi.
The full graviton corrections function,

Kμνρσðx; x0Þ ¼ hΨjĥμνðxÞĥρσðx0ÞjΨi; ð42Þ
may be expanded in powers of κ using Eq. (33) as

Kμνρσðx; x0Þ ¼ 11Kμνρσðx; x0Þ þ 22Kμνρσðx; x0Þ
þ 13Kμνρσðx; x0Þ þ � � � : ð43Þ

Here

11Kμνρσðx; x0Þ ¼ hΨjĥð1Þμν ðxÞĥð1Þρσ ðx0ÞjΨi
¼ h0Gjĥð1Þμν ðxÞĥð1Þρσ ðx0Þj0Gi ð44Þ

is the free graviton correlation function defined in Eq. (18).
It is independent of the matter state, j0Mi, and of order κ2.

There is no order κ3 contribution, as h0Gjĥð1Þμν ðxÞj0Gi ¼ 0.
There are two order κ4 terms,
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22Kμνρσðx; x0Þ ¼ hΨjĥð2Þμν ðxÞĥð2Þρσ ðx0ÞjΨi; ð45Þ

and

13Kμνρσðx; x0Þ ¼
1

2
½hΨjĥð1Þμν ðxÞĥð3Þρσ ðx0ÞjΨi

þ hΨjĥð3Þμν ðxÞĥð1Þρσ ðx0ÞjΨi�: ð46Þ

These will be studied in Secs. V and VI, respectively.

V. GRAVITY WAVES FROM STRESS TENSOR
FLUCTUATIONS

In this section, we deal with the Oðκ2Þ part of the

graviton field, ĥð2Þνμ , and its contribution to the power

spectrum. Equation (40) reveals that ĥð2Þνμ describes gravity
waves radiated by the fluctuations of the conformal stress

tensor. We impose the initial condition that ĥð2Þνμ → 0 if the
right-hand side of Eq. (40) vanishes, which assumes no
incoming radiation from other sources. Then the solution
becomes

ĥð2Þμν ¼2κ2
Z

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−γðx0Þ

p
GRðx;x0Þðð0ÞT̂μν½γ�−hð0ÞT̂μν½γ�iÞ;

ð47Þ

where GRðx; x0Þ is the retarded Green’s function for the
scalar wave operator, which satisfies

□xGRðx; x0Þ ¼ −
δð4Þðx − x0Þffiffiffiffiffiffiffi

−γ0
p : ð48Þ

The spatial Fourier transform of GRðx; x0Þ is (see, for
example, Refs. [1,3])

~GRðη; η0; kÞ ¼
H2

ð2πkÞ3 ½ð1þ k2ηη0Þ sin kðη − η0Þ

− kðη − η0Þ cos kðη − η0Þ�; ð49Þ

in de Sitter spacetime. Recall that our normalization for
Fourier transforms is given in Eq. (22).
The correlation function associated with ĥð2Þνμ was

defined in Eq. (45). However, the operator ĥð2Þνμ acts only
on the matter field, so

22Ki
j
k
lðx; x0Þ ¼ h0Mjĥð2Þji ðxÞĥð2Þlk ðx0Þj0Mi; ð50Þ

which may be written as

22Ki
j
k
lðx; x0Þ ¼ ð2κ2Þ2

Z
d4x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γðx1Þ

p Z
d4x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γðx2Þ

p

×GRðx; x1ÞGRðx0; x2ÞCi
j
k
lðx1; x2Þ: ð51Þ

Here Ci
j
k
lðx1; x2Þ is the correlation function for the stress

tensor, defined by

Cμ
ν
ρ
σðx; x0Þ ¼ h0Mjð0ÞT̂μ

νðxÞð0ÞT̂ρ
σðx0Þj0Mi

− h0Mjð0ÞT̂μ
νðxÞj0Mih0Mjð0ÞT̂ρ

σðx0Þj0Mi:
ð52Þ

More precisely, if 22Ki
j
k
lðx; x0Þ is expressed in the trans-

verse, trace-free gauge, then Ci
j
k
lðx1; x2Þ is the transverse,

trace-free part of the full stress tensor correlation function,
which is best defined in momentum space, as discussed
in Ref. [3].
We now implement the switching of Newton’s con-

stant discussed in Sec. II, and let κ → κgðηÞ, so that
Newton’s constant becomes proportional to sðηÞ ¼ g2ðηÞ.
We require that the switching function, gðηÞ satisfy the
following conditions: (1) gðηÞ and at least its first four
derivative be finite everywhere; (2) gðηÞ ≤ 1 everywhere;
(3) gðηrÞ ¼ 1; (4) the characteristic interval in conformal
time during which g ≠ 0 be jη0j, the approximate duration
of inflation; and (5) gðηÞ → 0 as η → −∞ sufficiently
rapidly that all integrals on η converge at their lower limits.
Concerning (1), we should comment that if we wish to
calculate all of the moments of the stress tensor, as needed
for the complete probability distribution, then we must
require that gðηÞ be C∞. Here we are solely concerned with
the variance, so C4 is sufficient.
We can rewrite Eq. (51) as

22Ki
j
k
lðx; x0Þ ¼ ð2κ2Þ2

Z
d4x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γðx1Þ

p

×
Z

d4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γðx2Þ

p
g2ðη1ÞGRðx; x1Þg2ðη2Þ

×GRðx0; x2ÞCμ
ν
ρ
σðx1; x2Þ; ð53Þ

where now the integrations on both η1 and η2 range from
−∞ to ηr, the value of the conformal time on the reheating
surface. Note that the factors of sðηÞ ¼ g2ðηÞ act to give
time averages of the stress tensor operators in the sense
described in Eq. (1). The stress tensor correlation function
in an expanding universe may be obtained from that in

Minkowski spacetime, CðMÞν
μ ρ

σðx1; x2Þ, by a conformal
transformation,

Cμ
ν
ρ
σðx1; x2Þ ¼ a−4ðη1ÞCðMÞν

μ ρ
σðx1; x2Þa−4ðη2Þ: ð54Þ

Note that the conformal symmetry is broken by the
conformal anomaly, the appearance of a nonzero trace of
h0Mjð0ÞT̂μνðxÞj0Mi. However, the conformal anomaly con-
tribution cancels in the stress tensor correlation function, so
we may still use Eq. (54).
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We next take a spatial Fourier transform of Eq. (53). The
Fourier transform of the right-hand side may be expressed
as an integral of products of the Fourier-transformed
retarded Green’s function, ~GRðη; η0; kÞ, and stress tensor
correlation function, ~Cμ

ν
ρ
σðη1; η2;kÞ. The result is P22ðkÞ,

the contribution to the power spectrum from stress tensor
fluctuations,

P22ðkÞ ¼
Z

d3R
ð2πÞ3 22Ki

j
k
lðx; x0Þeik·Rjη¼η0¼ηr

¼ ð2κ2Þ2ð2πÞ6
Z

ηr

−∞
dη1

Z
ηr

−∞
dη2g2ðη1Þ

× ~GRðηr; η1; kÞg2ðη2Þ ~GRðηr; η2; kÞ
× ~Cμ

ν
ρ
σðη1; η2;kÞ: ð55Þ

In the transverse, trace-free gauge, when the wave vector
points along the z axis, the relevant components of the
stress tensor correlation function will be ~Cx

y
x
y, ~Cx

x
x
x, and

the terms obtained by permutations of the indices. In this
case, these correlation functions are equal, that is,
~C≡ ~C× ¼ ~Cþ, so we drop the polarization label and write
the stress tensor correlation function in Minkowski space-
time, appearing in Eq. (55), as

~CðMÞðη; η0; kÞ ¼ 1

1280π5

�
d2

dτ2
þ k2

�
2
�
−
sin kτ
τ

þ πδðτÞ
�
;

ð56Þ

with τ ¼ η − η0. The derivation of this result is given in the
Appendix. Next we consider separately the contributions of
the two terms in brackets in the above expression.

A. Delta function term

The contribution of the δðτÞ term in Eq. (56) to P22 is
proportional to

I ¼
Z

ηr

−∞
dη1

Z
ηr

−∞
dη2g2ðη1Þ ~GRðηr; η1; kÞg2ðη2Þ

× ~GRðηr; η2; kÞ
�
d2

dη21
þ k2

�

×

�
d2

dη22
þ k2

�
πδðη1 − η2Þ: ð57Þ

By the change of the variables from η1, η2 to u ¼ η1 þ η2
and v ¼ η1 − η2 and with the help of integration by parts,
we can write I in the form

I ¼ π

2

Z
2ηr

−∞
du

Z
2ηr−u

u−2ηr
dvδðvÞ

�
d2

dv2
þ k2

�
2

×

�
g2
�
uþ v
2

�
~GR

�
ηr;

uþ v
2

; k

�
g2
�
u − v
2

�

× ~GR

�
ηr;

u − v
2

; k

��
: ð58Þ

There is no surface term because δðnÞðvÞ ¼ 0 when v ≠ 0.
When the switching function g varies much more slowly
than does the retarded Green’s function ~GR with respect to
u and v, we can pull the switching function outside the
differential operators, arriving at

I≃ π

2

Z
2ηr

−∞
du

Z
2ηr−u

u−2ηr
dvδðvÞg2

�
uþ v
2

�
g2
�
u− v
2

�

×

�
d2

dv2
þ k2

�
2
�
~GR

�
ηr;

uþ v
2

; k

�
~GR

�
ηr;

u− v
2

; k

��
:

ð59Þ

If we first perform the differentiations and then the v
integration, and drop terms which oscillate rapidly in the
remaining integral, then we have

I ≈ πk4ð1þ k2η2rÞ
H4

ð2πkÞ6
Z

ηr

−∞
dη0g4ðη0Þ: ð60Þ

We are primarily interested in contributions which grow as
the switching interval increases, but terms which oscillate
on a scale of order 1=kwill remain constant, and hence may
be ignored.

B. Remaining contribution to P22

The contribution to P22, coming from the sin kτ term in
Eq. (56), is proportional to the integral,

J ¼ −
Z

ηr

−∞
dη1

Z
ηr

−∞
dη2g2ðη1Þ ~GRðηr; η1; kÞg2ðη2Þ

× ~GRðηr; η2; kÞ
�
d2

dη21
þ k2

��
d2

dη22
þ k2

�

×
sin kðη1 − η2Þ

η1 − η2
: ð61Þ

Note that with this definition, P22 may be expressed as

P22 ¼
1

5
πκ4ðI þ JÞ: ð62Þ

We again change the variables to u and v, and introduce the
function NðvÞ
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NðvÞ≡
�
d2

dη21
þ k2

��
d2

dη22
þ k2

�
sin kðη1 − η2Þ

η1 − η2

¼
�
d2

dv2
þ k2

�
2 sin kv

v
: ð63Þ

We note that NðvÞ is sharply peaked at v ¼ 0, with
Nð0Þ ∼Oðk5Þ, within an interval jvj ∼Oðk−1Þ, and then
it falls off to zero very rapidly when v ≫ k−1. On the other
hand, the product ~GRðηr; η1; kÞ ~GRðηr; η2; kÞ is regular and
finite but oscillates very fast with respect to u and v for
large values of k. This implies that the bounds of the
integral over v in Eq. (61) can be extended from u − 2ηr ≤
v ≤ 2ηr − u to −∞ < v < ∞. Since the switching function
barely changes within the central peak of NðvÞ, we can
move the switching function gðu�v

2
Þ out of the v integral and

evaluate it at v ¼ 0. This will give

J ¼ −
1

2

Z
2ηr

−∞
du

Z
2ηr−u

u−2ηr
dvg2

�
uþ v
2

�
g2
�
u − v
2

�

× ~GR

�
ηr;

uþ v
2

; k

�
~GR

�
ηr;

u − v
2

; k

�
NðvÞ

≈ −
1

2

Z
2ηr

−∞
dug4

�
u
2

�Z
∞

−∞
dv ~GR

�
ηr;

uþ v
2

; k

�

× ~GR

�
ηr;

u − v
2

; k

�
NðvÞ: ð64Þ

This approximation introduces an error of order OðηrÞ,
which results from the regime ju − 2ηrj≲Oðk−1Þ. It is
negligible compared to the dominant contribution to the
integral for the case jηr=η0j ≪ 1, where jη0j is the approxi-
mate duration of inflation in conformal time.
The product GRðη; η1; kÞGRðη; η2; kÞ contains various

terms that rapidly oscillate in u, v, so after carrying out the
integral over v, we only keep terms that grow in u. Hence
we find that J becomes

J ≈ −
k4π
2

ð1þ k2η2rÞ
H4

ð2πkÞ6
Z

ηr

−∞
dηg4ðηÞ: ð65Þ

This result is half of Eq. (60), and it takes a minus sign.
Thus, the P22 component of the Oðκ4Þ contribution to
the graviton power spectrum becomes, using Eqs. (14)
and (62),

P22ðkÞ ¼
1

10π2
l4
PH

4

k2
ð1þ k2η2rÞ

Z
ηr

−∞
dηg4ðηÞ; ð66Þ

which is strictly positive and ∝ jη0j. If the correlation
functions are nonsingular, then the positivity of the power
spectrum is a consequence of the Wiener-Khinchin theo-
rem. However, in quantum field theory, with singular

correlation functions, this conclusion does not necessarily
follow, as was discussed in Ref. [20].

VI. THE P13 CONTRIBUTION TO THE
POWER SPECTRUM

In addition to P22, which was computed in the previous
section, there is another Oðκ4Þ contribution to the power
spectrum, P13. This contribution is the Fourier transform of

13Ki
j
k
lðx; x0Þ, defined in Eq. (46). It is the cross term in the

graviton correlation function between the free graviton

field, ĥð1Þμν , and ĥð3Þμν , which satisfies Eq. (41). We can view

ĥð3Þμν as describing the gravitons radiated by the perturbed
stress tensor, ð1ÞT̂μν½ĥð1Þ�. However, both of these quantities
are operators acting on both the graviton and matter
vacuum states. The process of forming 13Ki

j
k
lðx; x0Þ will

involve taking an expectation value in both vacua. Because

the free graviton field, ĥð1Þμν , does not act on the matter
vacuum, j0Mi, we may take the expectation value of
Eq. (41) in this state and write a solution of the resulting
equation as

hĥð3Þμν iM ¼ 2κ2
Z

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−γðx0Þ

p
GRðx; x0Þ

× g2ðη0Þhð1ÞT̂μν½ĥð1Þ�iM; ð67Þ

where we have assumed no incoming solution of the
homogeneous equation and use a notation where hiM
denotes an expectation value in the state j0Mi. We have
also introduced a factor of g2ðη0Þ to describe the switch-on
of Newton’s constant.
Note that hĥð3Þμν iM is still an operator in the graviton state

space and may be expressed in terms of graviton creation
and annihilation operators in an expansion analogous to
that for the free graviton field, Eq. (21),

hĥð3Þ ji ðη;xÞiM ¼ 2κ

Z
d3k

ð2πÞ32
X2
λ¼1

εi
jðk; λÞâkλeik·xzkðηÞ

þ H:c: ð68Þ

There is a similar expansion for hð1ÞT̂μν½ĥð1Þ�iM, which is an
operator in the graviton state space,

hð1ÞT̂μν½ĥð1Þ�iM ¼ 2κ

Z
d3k

ð2πÞ32
X2
λ¼1

εi
jðk; λÞâkλeik·xvkðηÞ

þ H:c: ð69Þ

We may now construct a compact expression for P13ðkÞ
by inserting the mode expansions in Eqs. (21) and (68) into
the expression for 13Ki

j
k
lðx; x0Þ, Eq. (46), and then taking a

Fourier transform to write
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P13ðkÞ ¼
κ2

2π3
Re½zkðηrÞu�kðηrÞ�: ð70Þ

Note that the mode functions are evaluated at the end of
inflation, η ¼ ηr. Thus, the mode function zkðηrÞ may be
expressed as

zkðηrÞ ¼ 2κ2ð2πÞ3
Z

ηr

−∞
dηa4ðηÞ ~GRðηr; η; kÞg2ðηÞvkðηÞ;

ð71Þ

where ~GRðηr; η; kÞ is defined in Eq. (49).
Although hð1ÞT̂μν½ĥð1Þ�iM is an operator in the graviton

state space, it may be calculated as the expectation value of
a conformal field stress tensor in an almost conformally flat
spacetime. A formalism for this calculation was developed
by Horowitz and Wald [21], and will be briefly reviewed
here. See Ref. [22] for more details, especially concerning
the application of the Horowitz-Wald formalism to gravity
waves in de Sitter spacetime. The explicit expression for
hð1ÞT̂μν½ĥð1Þ�iM contains a sum of four tensors,

hð1ÞT̂μν½ĥð1Þ�iM ¼ c1ð1ÞHμν½ĥð1Þ� þ Cð1ÞBμν½ĥð1Þ�
þ Pμν½ĥð1Þ� þQμν½ĥð1Þ�: ð72Þ

The first two tensors, ð1ÞHμν and ð1ÞBμν, are first-order
corrections of the local geometric tensors Hμν and Bμν due

to the metric perturbation ĥð1Þμν . Recall that Hμν arises from
an R2 term in the gravitational action, so we absorb this
tensor into a renormalization of the coefficient of this term,
and set c1 ¼ 0 for our purposes. The tensor ð1ÞBμν is the
first-order perturbation of the conformal anomaly. It was
shown in Sec. III of Ref. [22] that this term may be
absorbed in a combination of cosmological constant and
Newton’s constant renormalization, so we will not consider
it further.
The two remaining terms in hð1ÞT̂μν½ĥð1Þ�iM are

Pμν ¼ −16παa−2 ~∂ρ ~∂σ½ð1Þ ~Cμρνσ lnðaÞ�; ð73Þ

and

Qμν ¼ αa−2
Z

d4x0Hλðx − x0Þð1Þ ~Aμνðx0Þ: ð74Þ

Here ð1Þ ~Cμρνσ is the Weyl tensor of perturbed Minkowski

spacetime with the perturbation ~hμν ¼ a−2hð1Þμν , or equiv-

alently, ~hνμ ¼ hð1Þ νμ . Here ð1Þ ~Aμν ¼ −4∂ρ∂σ ~Cμρνσ is the
first-order form of Aμν, defined in Eq. (29) for perturbed
Minkowski spacetime. In our case, it has the explicit form

ð1Þ ~Aμ
νðxÞ ¼ ~□ ~□½gðηÞĥð1Þ νμ ðxÞ�; ð75Þ

where ~□ ¼ −∂2
η þ∇2 is the wave operator for flat

spacetime.
The action of the nonlocal kernel Hλðx − x0Þ on a scalar

function fðxÞ is described by

Z
d4x0Hλðx− x0Þfðx0Þ

¼
Z

dΩ
Z

0

−∞
du

�
ln

�
−
u
λ

� ∂
∂uþ

1

2

∂
∂v

�
fðx0Þ

				
v¼0

; ð76Þ

where u and v are null coordinates in x0 for radial null rays
with origin at x. The integration

R
dΩ is performed over the

solid angle spanned by the past light cone of the point x.
The parameter λ in the kernel Hλðx − x0Þ arises from the
ambiguity in a renormalized stress tensor; a shift of the
value of λ changes the constant c2 in Eq. (27). Note that
PμνðxÞ is a local quantity, but QμνðxÞ is nonlocal and
depends upon an integral over the past light cone of the
point x. Now we may write the Oðκ3Þ part of the graviton
field as

ĥð3Þμν ¼ 2κ2
Z

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−γðx0Þ

p
GRðx; x0ÞfPμν½ĥð1Þ�

þQμν½ĥð1Þ�g; ð77Þ

and we will treat the two contributions in succession.

A. Contribution associated with Pi
j

In the transverse, trace-free gauge, the tensor PμνðxÞ
defined in Eq. (73) has only spatial components. In de Sitter
spacetime, it may be expressed as

P̂i
jðxÞ ¼ 4πα

a4ðηÞ


1

η2

�
~□ĥð1Þ ji ðxÞþ 2ĥð1Þ ji;ηηðxÞ

�

þ 2

η
∂η

~□ĥð1Þ ji ðxÞ− lnð−HηÞ ~□ ~□ ĥð1Þ ji ðxÞ
�
; ð78Þ

where ĥð1Þ ji ðxÞ is the free graviton field on the de Sitter
background given in Eq. (21), but now multiplied by a
factor of the switching function gðηÞ. This leads to the
mode expansion

P̂i
jðxÞ ¼ 2κ

Z
d3k

ð2πÞ32
X
λ

εi
jðk; λÞâkλeik·xv1kðηÞ þ H:c:;

ð79Þ

where the function v1kðηÞ is given by
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v1kðηÞ ¼
4πα

a4ðηÞ
�
1

η2

�
d2

dη2
− k2

�
−
2

η

�
d3

dη3
þ k2

d
dη

�

− lnð−HηÞ
�
d2

dη2
þ k2

�
2
�
½gðηÞukðηÞ�: ð80Þ

The contribution of Pi
j to the power spectrum comes

from the contribution of v1kðηÞ to zkðηrÞ through the
integral in Eq. (71). We denote this contribution by
z1kðηrÞ. We are primarily interested in contributions to
P13, which grow at least as rapidly with increasing duration
of inflation, jη0j, as the linear growth found for P22. Terms
in the integrand of Eq. (71) which oscillate as η → −∞
cannot produce such growth and can be ignored here. Note
that ukðηÞ and hence v1kðηÞ are both proportional to e−ikη.
Thus, only the part of ~GRðηr; η; kÞ which is proportional to
eikη can produce a growing contribution to z1kðηrÞ. We
write

~GRðηr; η; kÞ ¼
H2

2ð2πkÞ3 ð1þ ikηrÞðiþ kηÞeikðη−ηrÞ

þ terms proportional to e−ikðη−ηrÞ; ð81Þ

and drop the second term in this expression. In addition, we
note that jkηj ≫ 1 in the region which gives the dominant
contribution to the η integration, and write

~GRðηr; η; kÞ ≈
H2

16π3k2
ð1þ ikηrÞηeikðη−ηrÞ: ð82Þ

We may combine Eqs. (70), (80), and (82) to write the
dominant contribution of Pi

j to the power spectrum as

κ2

2π2
Re½z1kðηrÞu�kðηrÞ�

∝
Z

ηr

−∞

dη
η
½ðgþ 5ηg0 þ 3η2g00Þ

þ 2 lnð−HηÞð2ηg0 þ 3η2g00 þ η3g000Þ�: ð83Þ

Now we need to examine the rate of growth for large jη0j
of each of the contributions to the above integral. Recall
that gðηrÞ ¼ 1 and gðηÞ ≈ 1 for η≳ η0 ¼ −jη0j, but g and its
derivatives vanish faster than any inverse power of η as
η → −∞. Similarly, the derivatives of g vanish at η ¼ ηr.
Thus,

Z
ηr

−∞

dη
η
gðηÞ ∼ ln jη0j; ð84Þ

Z
ηr

−∞
dηg0ðηÞ ¼ gðηrÞ ¼ 1; ð85Þ

and

Z
ηr

−∞
dηηg00ðηÞ ¼ ½ηg0ðηÞ�ηr−∞ −

Z
ηr

−∞
dηg0ðηÞ ¼ −1: ð86Þ

Similarly, we find

Z
ηr

−∞
dη lnð−HηÞg0ðηÞ ¼ ½lnð−HηÞgðηÞ�ηr−∞

−
Z

ηr

−∞
dη

gðηÞ
η

∼ − ln jη0j; ð87Þ

Z
ηr

−∞
dη lnð−HηÞηg00ðηÞ ¼ ½η lnð−HηÞg0ðηÞ�ηr−∞

−
Z

ηr

−∞
dη½lnð−HηÞ þ 1�g0ðηÞ

∼ − ln jη0j; ð88Þ

and

Z
ηr

−∞
dη lnð−HηÞη2g000ðηÞ ¼ ½η2 lnð−HηÞg00ðηÞ�ηr−∞

−
Z

ηr

−∞
dη½2η lnð−HηÞ þ η�g0ðηÞ

∼ −2 ln jη0j: ð89Þ

Thus, the contribution of Pi
j to P13 can only grow

logarithmically with increasing jη0j, and is hence subdomi-
nant compared to P22, which grows linearly.

B. Contribution associated with Qi
j

Now we turn to the contribution to P13 from the nonlocal
tensor, Qi

j. This contribution involves integrations with
two retarded Green’s functions, GRðx; x0Þ and the function
Hλðx − x0Þ defined in Eq. (76), The null coordinates used in
this expression may be taken to be u ¼ η0 − η − r and
v ¼ η0 − ηþ r, where r ¼ x0, so that

∂
∂u ¼ 1

2

� ∂
∂η0 −

∂
∂r

�
;

∂
∂v ¼ 1

2

� ∂
∂η0 þ

∂
∂r

�
: ð90Þ

The function fðx0Þ in Eq. (76) can be taken to be a graviton
mode function of the form fðx0Þ ¼ eik·x

0
Fðη0Þ. We may

choose the coordinates x0 such that the origin is at x ¼ 0, so
r ¼ jx0j, and such that the z0 axis is in the direction of the
wavevector k. In this case, k · x0 ¼ kz0 ¼ krc, where c ¼
cos θ0 is the cosine of the polar angle in these coordinates.
Now we have fðx0Þ ¼ eikrcFðη0Þ, which leads to

�∂f
∂u

�
v¼0

¼ 1

2
½F0ðη− rÞ− ikcFðη− rÞ�eikrc; ð91Þ

and
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�∂f
∂v

�
v¼0

¼ 1

2
½F0ðη − rÞ þ ikcFðη − rÞ�eikrc: ð92Þ

Note that along the v ¼ 0 line, u ¼ −2r, so thatR
0
−∞ du ¼ 2

R
∞
0 dr. We combine these results and perform

the angular integrations to write Eq. (76) as

Z
d4x0Hλðx − x0Þfðx0Þ ¼ 2π

k

Z
∞

0

dr½Fðη − rÞy1ðrÞ

þ F0ðη − rÞy2ðrÞ�; ð93Þ

where

y1ðrÞ ¼
kr cos kr − sin kr

r2

�
1 − 2 ln

�
2r
λ

��
; ð94Þ

and

y2ðrÞ ¼
sin kr
r

�
1þ 2 ln

�
2r
λ

��
: ð95Þ

We can now write Qi
j in a mode expansion of the form

of Eq. (79), but with v1kðηÞ replaced with v2kðηÞ, given by

v2kðηÞ ¼
2πα

ka4ðηÞ
Z

∞

0

dr½Fðη − rÞy1ðrÞ þ F0ðη − rÞy2ðrÞ�;

ð96Þ

where

FðηÞ ¼
�
d2

dη2
þ k2

�
2

½gðηÞukðηÞ�: ð97Þ

If we insert Eq. (96) for vkðηÞ in Eq. (71), the result is
z2kðηrÞ, the nonlocal contribution to zkðηrÞ. We can use the
fact that F0ðη − rÞ ¼ −∂=∂rFðη − rÞ and perform an
integration by parts on the second term in Eq. (96), but
only if we initially restrict the range of integration to
r ≥ ϵ > 0. In this case, we have

Z
∞

ϵ
drF0ðη − rÞy2ðrÞ ¼ Fðη − ϵÞy2ðϵÞ

þ
Z

∞

ϵ
drFðη − rÞy02ðrÞ: ð98Þ

Note that Fðη − rÞy2ðrÞ vanishes as r → ∞ due in part
to the presence of derivatives of gðη − rÞ in Fðη − rÞ.
If we use

y1ðrÞ þ y02ðrÞ ¼ 2k
cos kr
r

; ð99Þ

then we have

v2kðηÞ ¼
2πα

ka4ðηÞ limϵ→0

�
Fðη − ϵÞy2ðϵÞ

þ 2k
Z

∞

ϵ
drFðη − rÞ cos kr

r

�
: ð100Þ

This limit is finite because the ln ϵ terms from the lower
limit of the r integration and from y2ðϵÞ cancel one another.
Now we may use Eqs. (20) and (97) to write FðηÞ in

terms of derivatives of the switching function, gðηÞ, as
FðηÞ ¼ c0½−8ik3g0ðηÞ þ 4k2ð2 − ikηÞg00ðηÞ

þ 4k2ηgð3ÞðηÞ þ ð1þ ikηÞgð4ÞðηÞ�e−ikη; ð101Þ
where

c0 ¼ i
H

ð2k3Þ12 : ð102Þ

Note that there are no terms in the above expression for
FðηÞ which are proportional to gðηÞ itself. Recall that gðηÞ
varies from 0 to 1 over an interval in η of order Δ, which
may be either of the order of or less than jη0j. In any case,
we require slow switching in the sense that Δ ≫ 1=k. We
can estimate the magnitude of the nth derivative of gðηÞ as
being of order 1=Δn. This means that the gð3ÞðηÞ and gð4ÞðηÞ
terms in Eq. (101) are suppressed by factors of k=Δ and
ðk=ΔÞ2, respectively, compared to the g00ðηÞ term, and may
be ignored. We cannot assess the relative magnitudes of the
g0ðηÞ and g00ðηÞ terms because of the kη term in the latter,
but we can assume that jkηj ≫ 1, and shift the argument of
F to write

Fðη − rÞ ≈ c0½−8ik3g0ðη − rÞ
− 4ik3ðη − rÞg00ðη − rÞ þ � � ��e−ikðη−rÞ: ð103Þ

As in the previous subsection, we are concerned with
contributions to the power spectrum which grow as jη0j
increases, which can only come from nonoscillatory terms
in the η integration. Because Fðη − rÞ ∝ e−ikðη−rÞ, the form
of ~GRðηr; η; kÞ given in Eq. (82) will contribute the
dominant contribution. Now we may combine Eqs. (71),
(82), (100), (101), and (103) to write

z2kðηrÞ ≈ −8πiακ2H2c0ð1þ ikηrÞe−ikηr

×
Z

ηr

−∞
dηg2ðηÞη lim

ϵ→0



½2g0ðηÞ þ ηg00ðηÞ�y2ðϵÞ

þ 2k
Z

∞

ϵ
dr

cos kr
r

eikr½2g0ðη − rÞ

þ ðη − rÞg00ðη − rÞ�
�
: ð104Þ

The contribution of z2kðηrÞ to the power spectrum is from
the quantity
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Re½z2kðηrÞu�kðηrÞ� ¼ 16πακ2H2jc0j2kð1þ k2η2rÞ

×
Z

ηr

−∞
dηg2ðηÞη

Z
∞

0

dr
coskr
r

× sinkr½2g0ðη− rÞ þ ðη− rÞg00ðη− rÞ�:
ð105Þ

Note that the y2ðϵÞ term and the ln ϵ term from the lower
limit of the r integration in z1kðηrÞu�kðηrÞ are pure imagi-
nary, and do not contribute here. This allows us to extend
the lower limit of the r integration to zero. Next note that

Z
∞

0

dr
cos kr
r

sin kr ¼ 1

2

Z
∞

0

dr
sin 2kr

r
¼ π

4
; ð106Þ

and that the dominant contribution to this integral comes
from r≲ k−1. Because the dominant contribution to the η
integral comes from jηj ≫ k−1, we may use η − r ≈ η in
Eq. (105). We may combine this result with Eqs. (70) and
(102) to write the contribution of the nonlocal tensor, Qi

j,
to the power spectrum as

P13ðkÞ ¼
ακ4H4

πk2
ð1þ k2η2rÞ

Z
ηr

−∞
dηg2ðηÞη½2g0ðηÞþ ηg00ðηÞ�:

ð107Þ

The integral in the above expression will be shown below to
grow at least linearly as jη0j increases. Hence, it is the
dominant contribution to P13 as the Pi

j contribution grows
only logarithmically.
It is of interest to compare the structures of the

expressions for P22, Eq. (66), and for P13, Eq. (107).

We note that P22 contains four powers of the switching
function gðηÞ. This arises because P22 is a double integral
of the stress tensor correlation function, Eq. (55), and each
stress tensor operator contributes a factor of g2. In contrast,
P13 contains three powers of g. Of these, a factor of g2

arises in Eq. (67), the relation between hð1ÞT̂μν½ĥð1Þ�iM and

hĥð3Þμν iM. The remaining factor involving derivatives of gðηÞ
comes from the operator ĥð1Þ upon which hð1ÞT̂μν½ĥð1Þ�iM
depends. There is nominally a fourth factor of g in P13,
which, like P22, is proportional to κ4, but this is a factor of
gðηrÞ ¼ 1 coming from ĥð1ÞðηrÞ. Thus, we see that for
general switching functions, it is not possible for P22 and
P13 to cancel one another.
It is also of interest to compare the domains of integra-

tion in the spacetime integrations which contribute to P22

and to P13. Recall that P22 is the spatial Fourier transform

of 22Kðx; yÞ, the equal time correlation function of ĥð2Þ ji ðxÞ
with itself, and that ĥð2Þ ji ðxÞ is given by Eq. (47), which is
an integral over the past light cone of the spacetime point x.
This situation is illustrated in Fig. 1. In contrast, P13 is the
spatial Fourier transform of 13Kðx; yÞ, the equal time

correlation function of the free graviton field, ĥð1Þ ji ðyÞ,
and the third-order correction to the graviton field, ĥð3Þ ji ðxÞ.
The latter is given by Eq. (67), an integral over the past light
cone of x of the first-order correction to the stress tensor,
ð1ÞT̂μν½ĥð1Þ�ðx0Þ. The dominant contribution to the latter is
the nonlocal tensor Qi

j, which is in turn given by Eq. (74),
an integral over the past light cone of x0 of a linear

functional of the free graviton field, ĥð1Þ ji ðx00Þ. The net
result is an integration over the interior of the past light

FIG. 1. The structure of the correlation function 22Kðx; yÞ, which leads to P22, is illustrated. It involves an integral over the past light
cones of points x and y of the product of a retarded Green’s function and the fluctuating part of the free electromagnetic field stress
tensor, ð0ÞT̂i

j.
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cone of x. This is illustrated in Fig. 2. This also serves to
illustrate that the structures of P22 and P13 are quite
different.

VII. COMBINED POWER SPECTRA

In this section, we discuss the combined Oðκ4Þ con-
tribution to the power spectrum, P4ðkÞ ¼ P22 þ P13, and
its correction to the free graviton power spectrum P11ðkÞ.
We restrict attention to the case where the conformal matter
field is the electromagnetic field, for which

α ¼ 1

320π3
: ð108Þ

We may extend the upper limit of the integration in
Eq. (107) to η ¼ 0, as the range ηr < η < 0 will give a
subdominant contribution for large jη0j. After doing this,
we may perform an integration by parts and use Eq. (14) to
write P13 as

P13ðkÞ ¼ −
2l4

pH4

5π2k2
ð1þ k2η2rÞ

Z
0

−∞
dηgðηÞη2½g0ðηÞ�2:

ð109Þ

Note that P13ðkÞ < 0. We may similarly extend the upper
limit of the integral in the expression for P22, Eq. (66), and
write the combined power spectrum as

P4ðkÞ ¼ P22 þ P13 ¼
l4
pH4

10π2k2
ð1þ k2η2rÞI ; ð110Þ

where

I ¼
Z

0

−∞
dηgðηÞfg3ðηÞ − 4η2½g0ðηÞ�2g: ð111Þ

The first term in the above integrand comes from the
positive P22 part, and the second term form the negative
P13 part.

A. Specific choices of the sampling function

Next we examine results for several explicit choices for
the switching function gðηÞ.

1. Exponential switching

Let

gðηÞ ¼ epη; ð112Þ

where p > 0. In this case, the effective Newton’s constant
is exponentially damped as η → −∞, and we find

I ¼ −
5

108p
≈ −0.046p−1: ð113Þ

Here jη0j ¼ p−1 is the approximate duration of the switch-
ing in conformal time, so we have linear growth of P4. In
addition, P4 < 0, corresponding to a reduction in the total
graviton power spectrum.
A more general exponential-type switching function is

gðηÞ ¼ e−jpηjb ; ð114Þ

which leads to

I ¼ −
1

54p

�
8b × 3

b−1
b Γ

�
2bþ 1

b

�

− 27 × 2
b−2
b Γ

�
bþ 1

b

��
< 0: ð115Þ

A plot reveals that this function is negative for all values of
b, and includes Eq. (113) for the case b ¼ 1 and Gaussian
switching when b ¼ 2.

2. Lorentzian switching

A more gradual form of switching arises from a
Lorentzian function,

gðηÞ ¼ 1

1þ ðη=jη0jÞ2
; ð116Þ

which yields

FIG. 2. The structure of the correlation function 13Kðx; yÞ,
which leads to P13, is illustrated. It is the correlation function of

the free graviton field, ĥð1Þ ji ðyÞ with ĥð3Þ ji ðxÞ, which is given by
an double integral over the interior of the past light cone of x.
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I ¼ −
π

32
jη0j: ð117Þ

Again P4 < 0, and its magnitude grows linearly with
increasing jη0j.

3. A polynomial, finite duration switching function

Here we wish to consider a function gðηÞwhich is strictly
zero before a certain time, but for which both gðηÞ and its
first three derivative are continuous. This insures that g and
its first four derivatives are finite everywhere. One such
function is

gðηÞ ¼

8>><
>>:

1; η0 þ Δ ≤ η ≤ 0;

gPðτÞ; η0 ≤ τ ≤ η0 þ Δ;
0; η < η0;

ð118Þ

where gPðηÞ is a polynomial given by

gPðηÞ ¼ −
1

Δ7
ðη − η0Þ4½20ðη − η0Þ3 − 70Δðη − η0Þ2

þ 84Δ2ðη − η0Þ − 35Δ3�: ð119Þ

Here 0 < Δ < jη0j, so η0 < η0 þ Δ < 0. The switch-on
begins at η ¼ η0, and ends at η ¼ η0 þ Δ, so Δ is the
duration of the switch-on.
The result here is

I ¼ −
1400η20
429Δ

−
19599η0
4199

−
483928444Δ
277272567

< 0: ð120Þ

There are two limits of interest here. First we can hold the
ratio Δ=jη0j fixed as jη0j becomes large. In this case, the
magnitude of P4 grows linearly in jη0j, as in the previous
examples. A second possibility is to hold Δ fixed as jη0j
becomes large, in which case the magnitude of P4 grows
quadratically in jη0j. The second option corresponds to a
fixed switching interval in conformal time, followed by an
increasing interval of inflation.

4. A C∞ finite duration switching function

Now we examine a function qualitatively similar to the
previous example, but which is infinitely differentiable. Let

gðηÞ ¼


e−

Δ
η0 e−

Δ
η−η0 ; η0 ≤ η < 0;

0; η ≤ η0:
ð121Þ

As in the previous example, this function switches on at
η ¼ η0 and reaches g ¼ 1 at η ¼ 0. If Δ < jη0j, the
approximate duration of the switch-on is about Δ. In this
case, we find

I ¼ −
8η20
27Δ

þ jη0j þ 4ΔEi
�
−4

Δ
jη0j

�
; ð122Þ

where Ei denotes the exponential integral function. This
result has the same general behavior found in the previous
subsection. If jη0j becomes large for fixed Δ, then we again
have quadratic growth,

I ∼ −
8η20
27Δ

: ð123Þ

If we let ξ ¼ Δ=jη0j, then Eq. (122) may be written as

I ¼ jη0jFðξÞ; ð124Þ

where

FðξÞ ¼ −
8

27ξ
þ 1þ 4ξe4ξEið−4ξÞ: ð125Þ

This result holds for all ξ. The asymptotic forms of FðξÞ are

FðξÞ ∼ −
8

27ξ
; ξ ≪ 1; ð126Þ

and

FðξÞ ∼ −
5

108ξ
; ξ ≫ 1: ð127Þ

A plot indicates that FðξÞ < 0 for all intermediate values.
Thus, if ξ is fixed and jη0j becomes large, then P4 < 0, and
its magnitude grows linearly with jη0j, as in the previous
example.

B. Switching in comoving time

It has been convenient in much of our analysis to use the
conformal time η as the time coordinate. However, the
proper time for comoving observers is t, the comoving
time. During inflation, when aðtÞ ¼ eHt, these time coor-
dinates are related by

η ¼
Z

dt
aðtÞ ¼ −

1

H
e−Ht: ð128Þ

Let inflation end at t ¼ tr ¼ 0, or η ¼ ηr ¼ −H−1. If the
universe expands by a factor of eN , then inflation begins at
about η ¼ η0 ¼ −H−1eN , but at t ¼ t0 ¼ −NH−1, a very
large range of conformal time corresponds to a much
smaller range of comoving time. In addition, much of the
initial change in η corresponds to a small fraction of the
change in t. Let η1=2 ¼ η0=2 be when roughly one-half
of the total conformal time interval has elapsed, and let t1=2
be the corresponding comoving time. The elapsed comov-
ing time interval is ðt1=2 − t0Þ ¼ ln 2H−1 ≈ 0.69H−1. Thus,
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regardless of the size of N, the first one-half of the total
conformal time corresponds to less than one e-fold time in
comoving time.
The implication is that apparently slow switching in

conformal time is relatively rapid switching in comoving
time. We can illustrate this more explicitly for the case of
the exponential switching function, Eq. (112), which we
can express as a function of t,

gðηðtÞÞ ¼ exp½−pH−1e−Ht�: ð129Þ
The switch-on part of this function is plotted in Fig. 3 for
the case p ¼ H=70, corresponding to η0 ¼ 70H−1 or
N ¼ 70. We can see that essentially all of the switch-on
occurs in a comoving time interval of Δt ≈ 6H−1.
This is the comoving time required for about six e-folds.

This seems to be a plausible switching interval. However,
the functions discussed in Sec. VII A, which describe more
rapid switching, such as Eqs. (118) or (121), withΔ ≪ jη0j,
can correspond to a comoving switching time Δt ≪ H−1.
This seems unphysically short. Recall that these rapid
switching cases are also those which cause P4 to grow
quadratically in jη0j. Thus, the quadratic growth is probably
an artifact of a too rapid switch-on. This leaves the linear
growth behavior as the more reasonable case.

C. Some estimates

Here we consider some numerical estimates for the
correction to the graviton power spectrum. We assume
that I ¼ −βjη0j, where β is a numerical constant of order
one, or somewhat less, determined by the switching
function. The total power spectrum, including the quantum
corrections computed in previous sections, becomes

PTðkÞ ¼ P11 þ P4: ð130Þ
It is slightly reduced from the free graviton spectrumP11ðkÞ
by the factor

R ¼ PT

P11

¼ 1 −
βl2

pH2

20

�
k
H

�
S; ð131Þ

where S ¼ Hjη0j is the total scale factor increase during
inflation. Here we are setting the scale factor to one at the
end of inflation, so aðηrÞ ¼ 1 and ηr ¼ −H−1.
During inflation, the Friedmann equation gives

H2 ¼ 8π

3
l2
pρV; ð132Þ

where ρV is the vacuum energy density. Consider a model
with efficient reheating at the end of inflation, so essentially
all of the vacuum energy is converted to thermal energy
without significant redshifting. In units where Boltzmann’s
constant is one, the reheating temperature TR is given by
ρV ¼ Nπ2T4

R=30, where N is the number of degrees of
freedom excited at reheating. This number depends upon
unknown details of the particle physics at the reheating
scale, but N ≈ 100 is a plausible guess, as this is the
approximate number of degrees of freedom of the Standard
Model of particle physics. In this model, we have

lpH ¼ 1.12 × 10−7

ffiffiffiffiffiffiffiffi
N
100

r �
TR

1015 GeV

�
2

: ð133Þ

Consider a gravity wave whose proper wavelength today
is λ0, so its comoving wave number is

k ¼ a0
2π

λ0
; ð134Þ

where a0 ≈ TR=3 K is the present scale factor. Let
λ0 ¼ fdH, where dH ≈ 1.3 × 1028 cm is the current horizon
size. We then find

k
H

¼ 2.7 × 10−26

f

ffiffiffiffiffiffiffiffi
100

N

r �
1015 GeV

TR

�
: ð135Þ

Note that factors of TR which arise from ρV depend uponN,
whereas those which arise from a0 do not. We are interested
in perturbations for which f < 1, so k2η2r ≪ 1 for all
realistic choices for TR, and the free graviton power
spectrum, Eq. (25), becomes

P11ðkÞ ¼
2l2

pH2

π2k3
; ð136Þ

or

P11 ¼
2

π2
l2
pH2 ≈ 2.54 × 10−15

�
N
100

��
TR

1015 GeV

�
4

:

ð137Þ

Now we may write the magnitude of the fractional
change in the power spectrum as

FIG. 3. The exponential switching function, Eq. (129), is
plotted as a function of comoving time t for the case
p ¼ H=70. This graph illustrates that gðηðtÞÞ rises from zero
to near one in a comoving time interval of Δt ≈ 6H−1.

HSIANG, FORD, NG, and WU PHYSICAL REVIEW D 95, 063524 (2017)

063524-16



jR − 1j ¼ 1.7 × 10−15β

�
10−3

f

� ffiffiffiffiffiffiffiffi
N
100

r �
S

1023

�

×
�

TR

1015 GeV

�
3

: ð138Þ

This change will be very small unless S is much larger than
the minimal value of about 1023 needed to solve the horizon
and flatness problems. However, if S becomes too large,
then the perturbation in question will have a proper
wavelength below the Planck length at the beginning of
inflation. This initial wavelength can be expressed as

λi ¼
λ0
S

�
3K
TR

�
: ð139Þ

The status of trans-Planckian frequency modes is contro-
versial. They play a crucial role in Hawking’s derivation of
black hole particle creation [23], but it seems questionable
that perturbation theory holds for such modes. If we impose
the requirement of no trans-Planckian modes, so λi ≥ lp,
then we find

S
f
≤ 2.1 × 1033

�
1015 GeV

TR

�
; ð140Þ

and

jR − 1j ≤ 3.5 × 10−8β

ffiffiffiffiffiffiffiffi
N
100

r �
TR

1015 GeV

�
2

: ð141Þ

In this case, the decrease in the graviton power due to the
effects calculated in this paper will be fairly small.

VIII. SUMMARY AND DISCUSSION

In this paper, we have examined Oðl4
pÞ quantum

corrections to the tensor power spectrum in inflationary
models. The corrections with which we are concerned
come from the coupling of gravitons to a conformal matter
field, which we take to be the electromagnetic field. There
are two distinct corrections to the power spectrum. One is
P22, which arises from vacuum stress tensor fluctuations of
the matter field. One can view this contribution as being the
gravity waves radiated by the fluctuating stress tensor, or
equivalently, the passive fluctuations of the gravitational
field driven by the quantum stress tensor fluctuations. The
other contribution is P13, which arises from a modification
of the graviton field in de Sitter spacetime, produced by its
coupling to the renormalized expectation value of the
matter field. This can be viewed as a correction to the
active fluctuations of the quantized tensor perturbations of
de Sitter spacetime.
A key feature of our approach is the use of the switching

function, gðηÞ. This function may be viewed as describing a

switching of the coupling of gravity with the matter field
through a time-dependent Newton’s constant. It may also
be viewed as a form of time averaging of the quantum stress
tensor operator, which is essential for a meaningful treat-
ment of quantum stress tensor fluctuations. The viewpoint
adopted in this paper is that this averaging is more than a
formal device, and it represents actual physical processes
associated with the measurement of the stress tensor of a
quantized field. In the case of cosmology, we postulate that
it describes some physical effects in the early universe.
These effects are presently not well understood and are
associated with a choice of initial conditions.
We find that the combined correction, P4 ¼ P22 þ P13,

depends upon the choice of switching function. This seems
to be required in our approach because P22 and P13 scale
with different powers of gðηÞ, as discussed at the end of
Sec. VI. For all of our explicit choices of gðηÞ, we find
P4 < 0, so the effect is a slight reduction in the tensor
power spectrum, compared to the result obtained from
consideration of free gravitons in de Sitter spacetime. We
also find that the magnitude of P4 is proportional to the
scale factor change during inflation. This is not due to
growth as inflation progresses, but rather is due to decreas-
ing proper wavelength of the perturbation at the initial time,
as this time is made earlier. Recall that we consider a
perturbation with given proper wavelength today, so its
proper wavelength at the beginning of inflation depends
upon the amount of subsequent expansion. Furthermore,
the dominant contributions to P22 and P13 come from the
beginning of inflation, or the initial switch-on interval, as
evidenced by their growth with increasing jη0j, the effective
switch-on time in conformal time. The essential physical
reason for this behavior is that quantum stress tensor
fluctuations are greater on smaller length scales. This
introduces a breaking of de Sitter symmetry by the initial
conditions. The situation described here is quite different
from the usual behavior in inflationary models, where
classical perturbations of a given proper wavelength at the
beginning of inflation are more effectively redshifted away
by an increasing duration of inflation.
Our conclusions clearly differ from those of Fr̈ob et al.

[5], who find no significant dependence of P4 upon the
initial conditions. This seems to be due to physical
inequivalence of our approaches. Fr̈ob et al. [5] use a
rather formal prescription, which they call an “iϵ prescrip-
tion,” to select a de Sitter–invariant state for the coupled
conformal field–gravity system. Our view is that this
prescription is not physically well motivated. In light of
the discussion in the previous paragraph, we argue that one
should expect to find the behavior found in this present
paper, as well in Refs. [1–3], where the quantum correc-
tions to the power spectrum depend upon initial conditions.
Our main result is a small decrease in the power

spectrum of tensor perturbations which has the linear
dependence upon k given in Eq. (131). Note that this
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has a distinct functional form from the usual spectral tilt
due to weak dependence of H upon k. The latter effect is
due to the effective value of H varying as different length
scales leave the horizon during inflation, which will also be
present in our model. This is usually modeled by a factor of
the form knT , where nT is the tensor spectral index. The
estimates given in Sec. VII C indicate that the quantum
corrections to the power spectrum are small. However, if
they can be observed, they could lead to insights about the
initial conditions in the early universe.
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APPENDIX: STRESS TENSOR CORRELATION
FUNCTION OF THE ELECTROMAGNETIC

FIELD IN MINKOWSKI SPACETIME

Given the stress tensor of the EM field

Tμν ¼ Fμ
αFαν −

1

4
gμνFαβFαβ; ðA1Þ

with Fαβ ¼ ∂αAβ − ∂βAα, we may define the correlation
function between the stress tensors by

Cμνρσðx; x0Þ ¼ h∶TμνðxÞ∶∶Tρσðx0Þ∶i: ðA2Þ

It is convenient to use Wick’s expansion to express this
correlation function in terms of that of the vector potential

Dμνðx; x0Þ ¼ hAμðxÞAνðx0Þi ¼ −ημνDðx; x0Þ ðA3Þ

if we choose the Lorentz gauge, the space is flat
and unbounded, and Dðx; x0Þ is the corresponding
correlation function of the minimally coupled, massless
scalar field. Here ημν is the Minkowski metric with
ημν ¼ diagð−1;þ1;þ1;þ1Þ.
When the EM field is in its vacuum state, the stress

tensor correlation function takes the form [24]

Cμνρσ ¼ 4ð∂μ∂νDÞð∂ρ∂σDÞ þ 2ημνð∂ρ∂λÞð∂σ∂λDð0ÞÞ
þ 2ηρσð∂μ∂λÞð∂ν∂λDÞ − 2ημσð∂ν∂λDÞð∂ρ∂λDÞ
− 2ηνσð∂μ∂λDÞð∂ρ∂λDÞ − 2ηνρð∂μ∂λDð0ÞÞð∂σ∂λDÞ
− 2ημρð∂ν∂λDÞð∂σ∂λDÞ
þ ðημρηνσ þ ημσgνρ − ημνηρσÞð∂λ∂κDÞð∂λ∂κDÞ:

ðA4Þ

In particular, the xyxy component of Eq. (A4) is explicitly
given by

Cðx; x0Þ ¼ Cxyxyðx; x0Þ
¼ ½∂2

t Dðx; x0Þ�2 þ ½∂2
zDðx; x0Þ�2 − ½∂2

xDðx; x0Þ�2
− ½∂2

yDðx; x0Þ�2 þ 2½∂x∂yDðx; x0Þ�2
− 2½∂t∂zDðx; x0Þ�2

¼ 2

π4
ðτ2 − Z2Þ2 − X4 − Y4 þ 6X2Y2

½ðτ − iϵÞ2 − R2�6 ; ðA5Þ

where Dðx; x0Þ is the Wightman function of the free
massless scalar field ϕ in Minkowski space,

Dðx; x0Þ ¼ hϕðxÞϕðx0Þi ¼ 1

4π2
1

−ðτ − iϵÞ2 þ R2
; ðA6Þ

and we introduce the shorthand notations R2 ¼ X2 þ Y2 þ
Z2 with X ¼ x − x0, Y ¼ y − y0, Z ¼ z − z0, and τ ¼ t − t0.
The spatial Fourier transformation of this two-point

function is defined by

~Cðτ;kÞ ¼
Z

d3R
ð2πÞ3 Cðτ;RÞeik·R: ðA7Þ

To simplify the calculations, we assume that k ¼ kêz, and
use the polar coordinate decomposition. Let ρ2 ¼ X2 þ Y2,
with X ¼ ρ cosϕ and Y ¼ ρ cosϕ. We find the Fourier
transformation Eq. (A7) reduces to

~Cðτ;kÞ ¼ −
1

20π6

Z
∞

−∞
dZeikZ

1

½ðτ − iϵÞ2 − Z2�3 : ðA8Þ

Next we would like to rewrite the integrand in Eq. (A8)
before evaluating the integral with the residue theorem,

~Cðτ;kÞ ¼ 1

40π6

Z
∞

−∞
dZ

�
d2

dZ2

eikZ

ðZ − τ þ iϵÞ3
�

1

Z þ τ − iϵ
:

ðA9Þ

Since k > 0, we can close the contour of Z on the upper
complex Z plane, in which there is only one simple pole
Z ¼ −τ þ iϵ. Applying the residue theorem gives

~Cðτ;kÞ ¼ 1

40π6
2πi

�
d2

dZ2

eikZ

ðZ − τ þ iϵÞ3
�
Z¼−τþiϵ

¼ −
1

1280π5

�
d2

dτ2
þ k2

�
2 ie−ikðτ−iϵÞ

τ − iϵ
: ðA10Þ
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The expression next to the differential operators can be
recast into the form

ie−iωðτ−iϵÞ

τ − iϵ
¼ ie−iωðτ−iϵÞ

�
P
�
1

τ

�
þ iπδðτÞ

�

¼
�
sinωτ
τ

− πδðτÞ
�
þ iP

�
cosωτ

τ

�
: ðA11Þ

Therefore the real part of Eq. (A10) will yield Eq. (56)

~Cðτ;kÞ ¼ 1

1280π5

�
d2

dτ2
þ k2

�
2
�
−
sin kτ
τ

þ πδðτÞ
�
:

ðA12Þ

Note that this result differs in two ways from the correlation
function given in Ref. [3]. First, we have corrected the
overall numerical coefficient. Second, we have included the
delta function term, which arises from the use of τ − iϵ, as
opposed to τ, in the Wightman functions, Eq. (A6).
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