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We perform the first numerical simulations of necklaces in a non-Abelian gauge theory. Necklaces are
composite classical solutions which can be interpreted as monopoles trapped on strings, rather generic
structures in a Grand Unified Theory. We generate necklaces from random initial conditions, modeling a
phase transition in the early Universe, and study the evolution. For all cases, we find that the necklace
system shows scaling behavior similar to that of a network of ordinary cosmic strings. Furthermore, our
simulations indicate that comoving distance between the monopoles or semipoles along the string
asymptotes to a constant value at late times. This means that, while the monopole-to-string energy density
ratio decreases as the inverse of the scale factor, a horizon-size length of string has a large number of
monopoles, significantly affecting the dynamics of string loops. We argue that gravitational wave bounds
from millisecond pulsar timing on the string tension in the Nambu-Goto scenario are greatly relaxed.
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I. INTRODUCTION

As the early Universe cooled and expanded, it may have
undergone several symmetry-breaking phase transitions.
Depending on the details of the symmetry breaking, it is
possible that topological defects could have formed during
such phase transitions. Probably the most important class of
topological defects for the purposes of cosmology are
cosmic strings [1] (see Refs. [2–5] for reviews). These
are one-dimensional defects which, in the simplest case of
an Abelian Higgs model, arise from the breaking of a U(1)
symmetry. The resulting cosmic strings are then extended
Nielsen-Olesen vortex lines [6]. Cosmic strings can also
arise as fundamental objects from an underlying string
theory [7–10].
Abelian Higgs strings have been widely studied and

their observational consequences thoroughly explored
[11–15]. Superstrings or field theories with non-Abelian
symmetries can produce richer physics; for example, the
symmetry-breaking transition SUð2Þ → ZN has multiple
species of strings with N-fold junctions [16]. Networks of
strings with junctions have been numerically simulated in
Refs. [17–19], and modelled in Refs. [20,21].
In this paper, we report on the first three-dimensional

numerical simulations of a network of strings in a non-
Abelian gauge theory, one with symmetry-breaking
SUð2Þ → Z2 [6,22–25]. This model is particularly attrac-
tive because it can be embedded naturally in Grand Unified

Theories (GUTs) such as SO(10) [26], for which cosmic
strings are themselves argued to be generic [27]. In addition
to the SO(10) case with a single scale, our model permits
two symmetry-breaking scales with an intermediate unbro-
ken U(1) symmetry, modeling a two-stage GUT symmetry
breaking. In this case, the first stage, SUð2Þ → Uð1Þ,
produces ’t Hooft-Polyakov monopoles [28,29], and the
second attaches each monopole to two strings, both
carrying half the flux. This combination—of a monopole
trapped on a cosmic string—is called a bead [22], and if
many such beads exist on one string, then the configuration
is commonly referred to as a necklace [30]. For a review of
these systems, see Ref. [31].
In Ref. [32], we emphasized the importance of global

symmetries in the classification of the beads. In particular,
there is a Z2 × Z2 symmetry spontaneously broken to Z2

by the string solutions, and beads can be viewed as the
resulting kinks. We discovered new solutions in the case
where the SU(2) and U(1) symmetry-breaking scales are
degenerate, due to an enlarged discrete global symmetry
D4. Each bead splits into two “semipoles,” and these four
semipoles can annihilate only with the corresponding
antisemipole: in a generic configuration, a semipole may
not find itself next to its antipole.
The discrete global symmetry can be further promoted to

a global O(2) symmetry, which is spontaneously broken by
the string solution but not the vacuum. Hence, semipoles
dissolve, and the strings carry persistent global currents,
rather like a tube of superfluid.
There is wide disagreement in the literature about how

necklaces evolve in the early Universe. The necklace
network is characterized by two length scales, the average
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comoving monopole separation ξm and the average comov-
ing string separation ξs, in terms of which the physical
energy densities ρm and ρs are

ρm ≃ Mm

ðaξmÞ3
; ρs ≃ μ

ðaξsÞ2
; ð1Þ

where μ is the string mass per unit length when monopoles
are absent, Mm is the monopole mass, and a is the scale
factor. Note that the mass of a monopole on a string is
generally less than that of a free monopole, so (1) is only an
estimate of the extra energy due to the trapped monopoles.
In a normal string network, the string separation is

proportional to the horizon distance, so ξs ∝ t, where t is
conformal time; this behavior is known as scaling. In a
scaling network, all quantities with dimensions of length
(apart from the string width) grow in proportion to the
horizon distance.
In a necklace, there is a new dynamically important

length scale [30],

dBV ¼ Mm

μ
: ð2Þ

The ratio of the monopole energy density to the string
energy density r ¼ ρm=ρs can be written as

r ¼ dBV
ad

; ð3Þ

where d ¼ ξ3m=ξ2s is the average comoving separation
between monopoles along the string. It was argued in
Ref. [30] that r should grow, and it was supposed that
eventually the average monopole separation should tend
to the string width. With this assumption, r would evolve

quickly to a maximum value set by the ratio of the two
symmetry-breaking scales.
However, it was argued in Ref. [33] that this picture

underestimates the effect of monopole annihilations, which
act to reduce the number of monopoles per unit length of
string 1=d. If monopole annihilation is efficient, their
average separation along the string should scale, so
d ∝ t, or equivalently r ∼ dBV=tp, where tp ∝ at is the
physical time.
Given that the total density of the necklace network is

ð1þ rÞμ=ðaξsÞ2, there is a very big difference in the two
scenarios, and in particular the flux of ultrahigh energy
cosmic rays, γ rays, and neutrinos coming from monopole
annihilation differs by many orders of magnitude. It is
clearly important to settle the issue.
We have performed a set of numerical simulations of a

network of strings in the SUð2Þ → Z2 theory (see Fig. 1).
They confirm the spontaneous formation of monopoles,
semipoles, and supercurrents along with the string network.
We are particularly interested in extracting the asymp-

totic behavior of the network with time, as this is essential
for extrapolating to cosmological times much later than the
defect formation time. Our results support scaling behavior
in the total density of the necklace network; that is, it
decreases as t−2, as does a conventional cosmic string
network. The string and monopole average separations ξs
and ξm both grow with time, and the ratio of their energy
densities r decreases with time. Our simulations, while
limited in range, indicate that the mean comoving monop-
ole separation along the string d is approximately constant
and stays the same order of magnitude as its value when the
strings form. We also measure the rms velocities of both
strings and monopoles, finding that both relax to values of
about 0.5. If the string mass scale is the same as the
monopole mass scale, the rms semipole velocity is a little

FIG. 1. Views of a small 3603 simulation for three different parameter choices at t ≈ 240. The two fields Φ1 and Φ2 have blue and
green shading respectively. At left, a simulation with m2

1 ¼ 0.25 and m2
2 ¼ 0.025 (contours shown with TrΦ2

1 ¼ 0.2 and TrΦ2
2 ¼ 0.04),

giving rise to monopoles (blue) as beads on strings (green). The other two images show a system withm2
1 ¼ m2

2 ¼ 0.25 (contours shown
with TrΦ2 ¼ 0.2 for both Φ1 and Φ2). In the center, κ ¼ 2, showing the semipoles at the boundaries between the two colours. At right,
κ ¼ 1, and the theory has a continuous global symmetry, meaning that the boundaries between the colors have no extra energy.
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higher than the string rms velocity, indicating some relative
motion.
Necklaces with a constant comoving monopole separa-

tion are a new possibility, which has not been considered
before. In the conclusions, we briefly discuss how such a
network would alter the predictions for important obser-
vational signals.

II. MODEL AND ITS STATIC SOLUTIONS

We study the SU(2) Georgi-Glashow model with two
Higgs fields in a spatially flat Robertson-Walker metric. In
comoving coordinates and conformal time, and with scale
factor a, the action is

S ¼
Z

d4x

�
−
1

4
Fa
μνFμνa þ a2

X
n

Tr½Dμ;Φn�½Dμ;Φn�

− a4VðΦ1;Φ2Þ
�
; ð4Þ

whereDμ¼∂μþigAμ is the covariant derivative, Aμ¼Aa
μτ

a,
and τa ¼ σa=2 where σa is a Pauli matrix. The Higgs fields
Φn, n ¼ 1, 2, are in the adjoint representation, Φn ¼ ϕa

nτ
a.

Spacetime indices have been raised with the Minkowski
metric with mostly negative signature.
The potential is

VðΦ1;Φ2Þ ¼ m2
1TrΦ2

1 þ λðTrΦ2
1Þ2 þm2

2TrΦ2
2 þ λðTrΦ2

2Þ2
þ κðTrΦ1Φ2Þ2; ð5Þ

with λ and κ positive. One could add a TrΦ2
1TrΦ2

2 term and
have separate quartic couplings for the fields. However, this
would not alter the important dynamical features of the
necklace network.
The directions of the vacuum expectation values are

perpendicular, because of the ðTrΦ1Φ2Þ2 term in the
potential. The system therefore undergoes two sym-
metry-breaking phase transitions, SUð2Þ → Uð1Þ → Z2.
The vacuum expectation values of the two adjoint scalar
fields are given by TrΦ2

1;2 ¼ jm2
1;2j=2λ, or v21;2 ¼ jm2

1;2j=λ.
The scalar masses are then

ffiffiffi
2

p
m1;2. Without loss of

generality, we can label the scalar fields such that Φ1

has the larger vacuum expectation value and is responsible
for the first of the symmetry breakings.
After the first symmetry breaking, the theory has

’t Hooft-Polyakov monopole solutions with mass [34]

Mm ¼ 4πv1
g

fm

�
2λ

g2

�
; fmð1Þ ≈ 1.238: ð6Þ

After the second symmetry breaking, the theory has string
solutions, with mass per unit length

μ ¼ πv22fs

�
2λ

g2

�
; ð7Þ

where fsð1Þ ¼ 1.
As described in Ref. [32], in the generic case m2

1 > m2
2,

this system has a discrete global Z2 × Z2 symmetry
Φ1 → �Φ1 and Φ2 → �Φ2. The string solutions break it
down to Z2. The resulting kinks interpolating between the
two string solutions, called beads [22], can be interpreted as
’t Hooft-Polyakov monopoles with their flux confined to
two tubes. When m2

1 ¼ m2
2, the global symmetry is

enlarged by the transformation Φ1 → Φ2 to D4, the square
symmetry group, which is broken to Z2 by strings. The
resulting kinks are labelled by a Z4 topological charge.
A pair of these kinks has the same charge as a monopole on
a string, hence the name semipole.
Finally, when m2

1 ¼ m2
2 and κ ¼ λ, there is a global O(2)

symmetry,

Φ → eiαΦ and Φ → Φ�; ð8Þ

where Φ ¼ Φ1 þ iΦ2. The phase of the complexified
adjoint scalar θ, defined by tan θ ¼ jΦ2j=jΦ1j, changes
smoothly along the string. In this case, the string supports
persistent supercurrents, proportional to the gradient of the
phase along the string.
In order to achieve greater dynamic range, it is

common practice in cosmic string simulations to scale
the couplings and mass parameters with factors a1−s,
where a is the cosmological scale factor and 0 ≤ s ≤ 1.
This is done in such a way as to keep the scalar
expectation value fixed. As a result, the physical string
width grows for s < 1, but the string tension depends
only on the ratio of the scalar self-coupling to the square
of the gauge coupling and so stays constant. The
dynamics of a string network at s ¼ 0 are very similar
to those at s ¼ 1 [35].
By contrast, the monopole mass Mm is inversely

proportional to its radius, and so Mm and the dynamical
quantity dBV both grow throughout simulations with
s < 1. It is therefore not clear how the necklaces should
behave in this case; the growing mass might lead one to
expect that the monopole rms velocity should decrease
and the monopole density increase. We will see, how-
ever, that necklaces behave similarly with s ¼ 0 as they
do with s ¼ 1.

III. LATTICE IMPLEMENTATION

A. Discretization and initial conditions

We simulate the system by setting temporal gauge
A0 ¼ 0 and then discretizing the system on a comoving
3D spatial lattice. The Hamiltonian of this model in the
cosmological background takes the form
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HðtÞ ¼ 1

2g2a2ðs−1Þ
X
x;i;a

ϵai ðx; tÞ2 þ
1

2
a2
X
x;n;a

πanðx; tÞ2

þ 4

g2a2ðs−1Þ
X
x;i<j

�
1 −

1

2
TrUijðx; tÞ

�

− a2
X
x;i;n

2TrΦnðxÞUiðxÞΦnðxþ {̂ÞU†
i ðxÞ

þ a2
X
x;n

6TrΦ2
n þ a4

X
x

VðΦ1;Φ2Þ; ð9Þ

where the link matrices are Uμ ¼ u0 þ iσaua with
ðu0Þ2 þ uaua ¼ 1 and

ϵai ¼ −ði=2ÞTrðσa _UiU
†
i Þ: ð10Þ

With the time-varying constants, the potential becomes

VðΦ1;Φ2Þ ¼
1

a2ð1−sÞ
½m2

1TrΦ2
1 þ λðTrΦ2

1Þ2 þm2
2TrΦ2

2

þ λðTrΦ2
2Þ2 þ κðTrΦ1Φ2Þ2�: ð11Þ

The parameter s can be chosen to be smaller than its
physical value 1, in order that the comoving width of the
monopoles and strings wm ∼ ðasm1Þ−1, ws ∼ ðasm2Þ−1,
does not shrink below the lattice spacing during the
simulation [14]. This extends the time range over which
a simulation can be run.
We evolve our lattice equations of motion with a

standard Leapfrog method, and the damping term is
handled using the Crank-Nicolson method. More details
of our numerical methods can be found in Appendix A.
We perform simulations with both s ¼ 1 and s ¼ 0, with

two different expansion rate parameters, defined as

ν ¼ d ln a=d ln t: ð12Þ

We will see that the quantities of most interest described in
the next section behave in similar ways, justifying the use
of s ¼ 0.
Our initial conditions for Φ1;2 are uniformly distributed

random values in the range ½−0.5; 0.5� for each component
ϕa
1;2, while for the SU(2) gauge field on the lattice,

we generate a random SU(2) matrix from four Gaussian
random numbers fu0; uag which we then normalize to
obtain a unitary matrix of determinant 1.
We first run for a period of time with relatively strong

damping (σ ¼ 0.25; see Appendix A) before switching
to standard Hubble damping at t0;H (see Table I). The
momenta at the end of the damping phase are about
1=1000th the size of those arising initially from the random
initial conditions.
The procedure of seeding random fields at each site

followed by a period of overdamped evolution is standard
for modeling initial conditions for topological defects. The

important feature is that the correlations vanish beyond a
certain length scale, which is bounded above by the causal
horizon [1]. A finite correlation length is a sufficient
condition for defects to form. In all numerical experiments
to date, the fields subsequently evolve toward a self-similar
or scaling configuration which at large distances is inde-
pendent of the initial conditions. An explicit check of the
scaling in Abelian Higgs string simulations with two
different sets of initial conditions was made in Ref. [15],
although see also Ref. [36] for a discussion of possible
scaling violation by superhorizon correlations in truly
thermal initial conditions.
We then run with s ¼ −1 for a period until time tcg,

during which the comoving string width grows linearly.
After tcg, s is set to its physical value s ¼ 1. The reason for
this period of core growth is to accelerate the preparation of
the string network: the time taken for the fields to settle to
their vacua is of order wm and ws, so it is helpful to arrange
for them to be small while the fields are relaxing. The
graphs of wm and ws are shown in Appendix B in Fig. 8.
When ν ¼ 0 or when s ¼ 0, there is no need for the

period of core growth, and data taking can begin at t0;H.
Our initial conditions are designed as a compromise

between removing unwanted short-distance fluctuations
and allowing the strings to form in a reasonable time.
Due to the initial cooling period, the lattice ultraviolet

modes remain strongly suppressed during the evolution of
the string network. This is justified physically, because
in the early Universe the local energy density within the
strings is much larger than the energy density of the
thermal background (although, in a given volume,
the total energy of the thermal background can be larger
than the energy of the string network). Thus, the thermal
modes are expected to have little influence on the string
evolution. This also helps us avoid the problems

TABLE I. List of parameters for s ¼ 1 (physical) runs, with
dimensionful parameters given in units of the lattice spacing a.
Potential parameters (5) are shown along with the isolated monop-
ole mass Mm and the isolated string tension μ computed using
Eqs. (6) and (7). The length scale dBV as computed using Eq. (2) is
also shown. Finally, we quote the expansion rate parameter
ν ¼ d lna=d ln t, the time at which we change to Hubble damping
during our simulations t0;H, and the time at which core growth
ends and strings and monopoles reach their true physical width tcg.
All these simulations have lattice size 720 and duration 720.

m2
1 m2

2
g λ κ Mm μ dBV ν t0;H tcg

0.25 0.25 1 0.5 2 11 1.6 7 1 30 230
0.25 0.25 1 0.5 1 11 1.6 7 1 30 230

0.25 0.1 1 0.5 1 11 0.63 17.5 0.5 42.5 242.5
0.25 0.1 1 0.5 1 11 0.63 17.5 1 42.5 242.5

0.25 0.05 1 0.5 1 11 0.31 35 0.5 60 260
0.25 0.05 1 0.5 1 11 0.31 35 1 60 260
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associated with the thermal ultraviolet modes in real-time
lattice equations of motion [37].

B. Numerical tests

In simulations where expansion and the Hubble damping
were turned off (ν ¼ 0), energy conservation was better
than 0.1% over the period from t ¼ t0;H ¼ 42.5 to t ¼ 720.
The root mean square per-site relative Gauss law violation
Ḡ=ρ̄ never exceeded 3 × 10−15 during our simulations,
approaching this value only in the initial heavy damping
phase. For more details, see Appendix A and in particular
Eq. (A12).
In the expanding case with s ¼ 1, comoving energy

conservation was obeyed to 0.1% for simulations with
m2

1 ¼ 0.25, m2
2 ¼ 0.1, while the relative Gauss law viola-

tion Ḡ=ρ̄ was at most 8 × 10−4, a value reached at the start
of the core growth phase.
We also tested whether the lattice spacing was accept-

able; if the lattice is too coarse, velocities tend to be
reduced as the kinetic energy of a defect can be converted
into radiation.1 For these tests, we compared s ¼ 0 and
s ¼ 1 simulations at m2

1 ¼ m2
2 ¼ 0.25 with those at

m2
1 ¼ m2

2 ¼ 0.1, both with κ ¼ 2. The string rms velocities
at s ¼ 1 differed by about 1% between simulations with
different masses, suggesting that any effect of the lattice
spacing on the dynamics of the strings is minor. However,
with s ¼ 0, monopole and semipole rms velocities were as
much as 10% higher at the lower mass, indicating that there
is some lattice friction at m2

1 ¼ m2
2 ¼ 0.25. Our s ¼ 0 runs

are therefore carried out at m2
1 ¼ m2

2 ¼ 0.1.

IV. MEASUREMENTS

A. Network length scale

We measure the number of monopoles N and the string
length L and study length scales derived from them. We
obtain the number of monopoles N by computing the
residual unbroken U(1) gauge field using projectors derived
fromΦ1, the Higgs field which forms the monopoles. From
this, we can compute the divergence of the effective
magnetic field and hence the magnetic charge. We give
fuller details of the U(1) projection in Appendix C, based
on Ref. [40].
We compute the length of string by counting the

plaquettes with a gauge-invariant “winding” in the U(1)
subgroups formed by projection with the scalar field Φ1,
which is the heavier one in the nondegenerate case.
The comoving string length L is then defined to be

the number of plaquettes with winding. It is possible to
include a geometric correction to ξs to account for the fact
that counting the winding number gives the Manhattan
distance along the string rather than the true string length

(see Ref. [41]). We choose to omit it, which should be
borne in mind when comparing it to other field theory
simulations [14,35].

B. Monopole density

Several further quantities can be derived from N and L.
First are the average comoving string and monopole
separations,

ξs ¼ ðV=LÞ1=2 and ξm ¼ ðV=NÞ1=3: ð13Þ

We define the average comoving monopole separation
along the string

d ¼ L=N ¼ ξ3m
ξ2s

ð14Þ

and the average number of monopoles per comoving length
of string

n ¼ N=L ¼ 1=d: ð15Þ

The quantity r defined in (3) can be thought of as the
number of monopoles per unit physical length relative to
the length scale dBV. The string and monopole separations
can be combined into one network length scale ξn,
defined as

1

ξ2n
¼ 1

ξ2s
ð1þ rÞ: ð16Þ

The energy density of the necklace is proportional to ξ−2n ,
and when r > 1, the majority of the energy in the network
is due to the monopoles.
Note that in the degenerate casesm2

2=m
2
1 ¼ 1with κ ¼ 1,

the points where Φ1 vanishes recorded by our monopole
search algorithm are not special; there is no local maximum
in the energy density. However, they can be used as
convenient markers of the phase θ, defined after Eq. (8).

C. Monopole and string velocities

We use the positions of the strings and monopoles to
compute the string rms velocity v̄ and the monopole rms
velocity v̄m.
Using the projection methods discussed in Appendix C,

we record a list of the lattice cells that contain magnetic
charge every few time steps. We then take these lists for two
time steps and form a distance matrix for every pair of
monopoles in the system. If the time interval δt is much
smaller than ξm, we can assume that pairing each monopole
at the later time step with the closest one at the earlier time
step captures the same monopole at two different times.
On the other hand, the time interval between measurements
has to be large enough that lattice-scale discretization1For methods of mitigating this energy loss, see Refs. [38,39].
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ambiguities do not induce noise [39]. We will therefore
compare results for several different δt.
There are a number of standard algorithms to find the

choice of pairings in a distance matrix that minimizes the
total distance. We used a simple “greedy” algorithm that
found the smallest entry in the entire distance matrix, then
removed that monopole pair, repeating until all monopoles
at the later time were paired up. This algorithm has the
advantage of being easy to code; on the other hand, it scales
as the square of the number of monopoles.
The system has periodic boundary conditions, and so a

“halo” region is included from the other side of the lattice to
ensure that all possible subluminal monopole separations
will be found. Once we have determined all the pairings, we
remove spurious superluminal pairings (typically ≲1% of
measurements) and use the results to determine v̄m. We
considered δt ¼ 5, 10, and 15 and found convergence in
the resulting curves. We used δt ¼ 15 for our results. The
difference from δt ¼ 10 can be considered as a systematic
uncertainty, but in practice it is comparable to or smaller
than the random error.
For the string velocities, a very similar approach was

adopted, using the positions of the plaquettes threaded by
string. As many plaquettes can be threaded by the strings
in the system, the above pairing and distance finding
algorithms were parallelized. Even so, determining the
string velocity for a few hundred thousand plaquettes
between a pair of time steps took about 5 min on 120
processors. For this reason, string velocities are not
computed at early times, when the number of plaquettes
becomes too large. The corresponding monopole meas-
urement takes about 1 sec and can be performed through-
out the simulations.

V. RESULTS

We run over several different parameter choices for both
s ¼ 1 and s ¼ 0.
The parameters cover both the degenerate (m2

1 ¼ m2
2)

and nondegenerate cases and allow us to explore the three
possible global symmetries of the string solutions, namely
O(2), D4, and Z2 × Z2. In the degenerate case, three cross-
couplings κ are considered: the special case κ ¼ 2λ having
O(2) symmetry and both κ > 2λ and κ < 2λ. For the
nondegenerate case, having Z2 × Z2 symmetry, we explore
various ratios of m2

1 to m2
2.

Two different expansion rate parameters ν ¼ 0.5, 1 were
chosen, where ν is defined in Eq. (12). The choice ν ¼ 1
represents a radiation-dominated universe. While ν ¼ 0.5
does not correspond to any realistic cosmology, it is
useful to explore the impact of different expansion rates.
Simulating in a matter-dominated background (ν ¼ 2) does
not give enough dynamic range for reliable results.
All runs are carried out with m2

1 ¼ 0.25 (s ¼ 1) and
m2

1 ¼ 0.1 (s ¼ 0). The parameter choices are listed in

Tables I and II. The scale factor is normalized so that
a ¼ 1 at the end of the simulation.
The units are defined such that the lattice spacing Δx

is 1. All simulations are carried out on a 7203 lattice, with
time step Δt ¼ 0.25 after the initial heavy damping period
ends at t0;H, for a total time 720, or one light-crossing time of
the box. In principle, correlations can start to be established
after half a light-crossing time. However, the only massless
excitations are waves on the string, and the strings are much
longer than the box size even at the end of the simulations.
The network length scale does not show any evidence for
finite-size effects, although it is possible that the slight
increase in d for semipoles and supercurrents at t≳ 360 in
Fig. 4 is a sign of the limited simulation volume.
Each set of parameter choices is run for three different

realizations of the initial conditions, and our results are
statistical averages over these runs.
We investigate the monopole density with the two

different measures introduced in Sec. IV, the monopole-
to-string density ratio r and the number of monopoles per
unit comoving length of string n.

A. Network length scale

In Fig. 2, we plot the comoving necklace network length
scale ξn, defined in Eq. (16), for s ¼ 1 (top) and s ¼ 0
(bottom).
All cases show linear growth with time, which means

that the network is scaling. We perform fits in the range
360 < t < 480, which, while in excess of the half-light-
crossing time for the system, allows time for the scaling
behavior to develop. There are small differences in the slope
between simulations with different mass ratios, although
there is not enough dynamic range to ensure that they are not
inherited from differences in the initial conditions. There is
also evidence that the lower expansion rate ν ¼ 1=2 the
slope is lower, i.e. that the average necklace density is higher.

B. Monopole density

In Fig. 3, we plot the ratio of monopole-to-string energy
density r, defined in (3), against time in units ofm−1

1 , for all

TABLE II. List of simulation parameters for runs with s ¼ 0, as
for Table I. The expansion rate parameter is ν ¼ 1 (radiation era)
for all simulations. At s ¼ 0, the physical size of the monopole
and string cores grows in proportion to the scale factor. All these
simulations have lattice size 720 and duration 720.

m2
1 m2

2
g λ κ Mm μ dBV t0;H

0.1 0.1 1 0.5 2 6.96 0.628 11.1 30
0.1 0.1 1 0.5 1 6.96 0.628 11.1 30
0.1 0.1 1 0.5 0.5 6.96 0.628 11.1 30

0.1 0.04 1 0.5 1 6.96 0.251 27.7 67.1
0.1 0.02 1 0.5 1 6.96 0.126 55.4 94.9
0.1 0.01 1 0.5 1 6.96 0.0628 111 134
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parameters given in Table I. Note thatm−1
1 is approximately

the monopole size.
We see that r decreases after the formation of the string

network, with what appears to be a power law after the core
growth period has finished.

The significance of the power law is clearer if we plot the
comoving linear monopole density on the string n, again
in units of m−1

1 (Fig. 4). We can see from the figure that,
with the possible exception of the mass-degenerate cases
(m2

2=m
2
1 ¼ 1) at s ¼ 1, n appears to tend to a constant at

large time. Hence, the comoving separation of the monop-
oles remains the same order of magnitude as its value at the
formation of the strings.
There is some evidence for a slow increase in n for the

degenerate casesm2
2=m

2
1 ¼ 1 at s ¼ 1, which may be due to

semipole annihilations being less probable than monopole-
antimonopole annihilations—some pairings of semipoles
cannot annihilate [32]. However, the increase occurs after a
half-light-crossing time for the simulation box, so this may
be a finite-volume effect.
We illustrate the ability of semipoles to avoid annihila-

tion in Fig. 5, which depicts two strings winding around
the periodic lattice when the total length of string and the
semipole number has stabilized. One can see that on one
of the strings the semipole density is much higher, and
examination of multiple snapshots prior to this one shows
that semipoles have repelled each other. However, the high

FIG. 2. Plot of the network length scale ξn, defined in Eq. (16),
with core growth parameter s ¼ 1 (top) and s ¼ 0 (bottom).
Fits to linear growth are also shown, within the range indicated by
the vertical dashed lines. The gradients of the fit are given in
Tables III and IV.

FIG. 3. The ratio of monopole to string energy density (3) in
simulations with s ¼ 1. The legend gives the expansion rate
parameter ν ¼ d log a=d log t, the mass ratio of the fields m2=m1,
and in the degenerate case the value of the cross-coupling κ,
which is otherwise κ ¼ 1. The mass parameter m2

1 ¼ 0.25.

TABLE III. Gradients for the network comoving length scale
ξn, from the fits shown in the graphs of ξn against conformal time
t for s ¼ 1 in Fig. 2 (top).

m2
1 m2

2
κ ν ξn gradient

0.25 0.25 2 1 0.171� 0.002
0.25 0.25 1 1 0.168� 0.004
0.25 0.1 1 0.5 0.154� 0.001
0.25 0.1 1 1 0.171� 0.002
0.25 0.05 1 0.5 0.158� 0.002
0.25 0.05 1 1 0.165� 0.004

TABLE IV. Gradients for the network comoving length scale
ξn, from the fits shown in the graphs of ξn against conformal time
t for s ¼ 0 in Fig. 2 (bottom).

m2
1 m2

2
κ ξn gradient

0.1 0.1 2 0.154� 0.005
0.1 0.1 1 0.150� 0.003
0.1 0.1 0.5 0.163� 0.008
0.1 0.04 1 0.141� 0.004
0.1 0.02 1 0.143� 0.001
0.1 0.01 1 0.126� 0.001
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semipole density may be an artifact of the periodic
boundary conditions, which have prevented the strings
from shrinking in length any further. Without this shrink-
ing, semipoles are not forced together, so there is less
likelihood of overcoming the repulsion and annihilating.
In the degenerate casesm2

2=m
2
1 ¼ 1with κ ¼ 1, we recall

that the recorded monopole positions are just places where
the phase of the complexified scalar has the value
θ ¼ �π=2. The fact that the comoving distance between
these points remains approximately constant indicates that
the comoving rms current is constant, and so the physical
rms current decreases in inverse proportion to the scale
factor.
In the s ¼ 0 case, the increased dynamic range means we

can attempt a meaningful fit to investigate the relaxation
to the constant n evolution. In Fig. 6, we show a graph of
n − n∞, where the asymptotic value of the linear monopole
density n∞ is taken from a fit to the functional form

n ¼ n∞ þ A expð−Bm1tÞ: ð17Þ

Fits are shown with dashed lines, and fit parameters are
given in Table V.
The fits confirm the visual impression that the linear

monopole density is asymptoting to a constant nonzero
value and also support the exponential ansatz for the
relaxation.

C. Monopole velocities

Figure 7 shows the rms velocities of the strings,
monopoles, and semipoles for different masses, cross-
couplings κ, and expansion rate parameters ν. The rmsFIG. 4. The number of monopoles per comoving string length

in simulations with s ¼ 1 (top) and s ¼ 0 (bottom). The legend
gives the expansion rate parameter ν ¼ d log a=d log t, the mass
ratio of the fields m2=m1, and in the degenerate case the value of
the cross-coupling κ, which is otherwise κ ¼ 1. The mass
parameter m2

1 ¼ 0.25 (s ¼ 1) and m2
1 ¼ 0.1 (s ¼ 0).

FIG. 5. A small 3603 box at t ¼ 1080, simulated atm2
2=m

2
1 ¼ 1

and κ ¼ 2. The high density of semipoles on one of the strings
shows that semipoles can avoid annihilation in some cases.

FIG. 6. The difference of the linear monopole density n from its
asymptotic value n∞. The parameter n∞ is extracted from a fit of
n to a constant to exponential decay [see Eq. (17)]; the fits are
shown as dashed lines. Both n and the time are scaled by m1 to
make dimensionless quantities. Only those values of m2=m1

where a reliable fit is possible are shown; for other values, the
change in n is too small.
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velocities all appear to asymptote at the same rate d−1BV to a
constant value.
We see that the rms string velocities are all around 0.5.

When the field mass parameters m1 and m2 are different,
the rms monopole velocities are also all about 0.5,
independent of the mass ratio and the expansion rate. If
the mass parameters are the same, the rms monopole
velocity at about 0.63 is a little higher than the rms string
velocity. The rms velocities are consistent between s ¼ 1
and s ¼ 0, with the exception of the semipoles at s ¼ 0,

which appear to move a little slower (v̄m ≃ 0.6) than at
s ¼ 1 (v̄m ≃ 0.68).
The higher velocities of the semipoles should make

collisions more frequent than those between monopoles
and antimonopoles. However, as observed in the
Introduction, semipole collisions need not result in anni-
hilation, and so the higher velocities do not necessarily
result in a lower monopole density.
We interpret the difference v̄2rel ¼ v̄2m − v̄2 as the mean

square relative velocity of the monopoles and semipoles
along the string. One can estimate that, for semipoles,
v̄rel ≃ 0.3, while there is little evidence for relative motion
of monopoles.

VI. CONCLUSIONS

We have carried out simulations of non-Abelian
cosmic strings, formed by the symmetry-breaking scheme
SUð2Þ → Z2 by two adjoint scalar fields. This theory
has classical solutions which can be interpreted as
’t Hooft-Polyakov monopoles or semipoles [32] threaded

TABLE V. Parameters for the fit of the linear monopole density
data in Fig. 6 to the function (17). All simulations are radiation
era, with s ¼ 0.

m2
1 m2

2
n∞
m1

A B

0.1 0.04 0.036 0.031 0.0072
0.1 0.02 0.023 0.060 0.0104
0.1 0.01 0.025 0.075 0.0134

FIG. 7. Plot of v̄ and v̄m, the root mean square string and monopole/semipole velocities, for s ¼ 1 (top) and s ¼ 0 (bottom). The time
axis is scaled by dBV, defined in Eq. (2).
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by non-Abelian strings. We observe the formation of
cosmic necklaces, consisting of networks of strings and
monopoles or semipoles.
Our simulations were carried out in a cosmological

background corresponding to a radiation-dominated era
and also one with half the expansion rate of a radiation-
dominated universe, testing the effect of the expansion rate.
We performed simulations both with the true expanding
universe equations of motion and allowing the cores of the
topological defects to grow with the expansion of the
universe. Core growth has been shown not to significantly
affect the dynamics of strings [14,15,35], but its effect on
the dynamics of necklaces is important to check.
In all cases, our numerical results are consistent with

the evolution toward a scaling network of necklaces, with
both the density of strings and the density of monopoles
proportional to t−2. We obtain scaling with or without core
growth, giving confidence that scaling is a robust feature of
a necklace network. A necklace network should therefore
contribute a constant fraction to the energy density of the
universe.
We observe that the number of monopoles per unit

comoving length of string n changes little from its value at
the formation of the string network; monopole annihilation
on the string is therefore not as efficient as envisaged in
Ref. [33], and the average comoving separation of monop-
oles along the string d ¼ 1=n remains approximately
constant. The monopole-to-string density ratio r therefore
decreases in inverse proportion to the scale factor and does
not increase as proposed in Ref. [30]. The rms monopole
velocity is close to the rms string velocity, implying that the
monopoles have no significant motion along the string. In
particular, the suggestion that the monopole rms velocity
should be 50% larger than the string rms velocity [33], due
to the extra degree of freedom or motion, is not supported.
The number per unit comoving length of semipoles is

also approximately constant in the simulations with core
growth but grows slightly in the simulations using the true
equations of motion. We do not have large enough dynamic
range to establish whether this is a finite-volume effect. The
semipole rms velocity is higher than the string rms velocity,
indicating some relative motion of the semipoles along the
string. Annihilation is still inefficient despite the relative
motion, indicating that repulsion between semipoles is an
important factor in the dynamics.
In the special case where the strings carry a supercurrent,

the comoving distance between points where the Φ1 field
vanishes d also stays approximately constant. The super-
current along the string can be estimated as j ∼ 1=ad,
where a is the scale factor, and should therefore decrease.
This suggests that current is lost from shrinking loops of
string, which would tend to prevent the formation of
cosmologically disastrous stable string loops [42–44].
We are restricted to simulating necklace configurations

with r ∼ 1, so we are not able to fully test the robustness of

the constant comoving d scaling regime. Nonetheless, we
find it interesting to explore the consequences as it was not
anticipated in previous dynamical modeling, which envis-
aged that d would either shrink to the string width [30] or
grow with the horizon size [33]. The absence of a
significant relative velocity between monopoles and strings
indicates that monopoles are dragged around by the strings,
independent of the ratio of the energy scales. The average
string separation is of order the conformal time t, which
means that loops of string shrink and annihilate on that time
scale. We infer that the main monopole annihilation
channel is though collisions on shrinking loops of string.
As argued in Ref. [32], semipoles and monopoles are

generic on strings in GUT models. It is interesting to
consider their observational implications. As usual with
strings, one must extrapolate the results of numerical
simulations to a much larger ratio of the horizon size to
the string width, and it is possible that subtle effects
change the scaling of the network. It is clear in our
simulations that, just as with Abelian Higgs strings, our
SU(2) strings lose energy efficiently into Higgs and gauge
radiation. However, the process that causes the strings to
emit radiation of massive Higgs and gauge fields is not well
understood, and it may not be efficient over the huge range
of scales between today’s horizon size and the width of a
GUT string. In this case, a necklace would end up behaving
like ideal Nambu-Goto strings connecting massive par-
ticles, as assumed in Refs. [30] and [33].
In the case where field radiation is efficient, there is little

difference between a network of GUT strings with monop-
oles or semipoles and an Abelian Higgs string network. The
network length scale grows in proportion to the horizon,
and its energy density remains a constant fraction of the
total. The energy is lost to massive particles, which (if
coupled to the Standard Model) will show up in the diffuse
γ-ray background. Current observations from Fermi-LAT
indicate that the mass per unit length in Planck units Gμ is
bounded above by 3 × 10−11f−1SM, where fSM is the fraction
of the strings energy ending up in γ rays [45]. This fraction
is likely to be close to unity in a GUT theory, and so such
strings are essentially ruled out, as observed some time
ago [12]. However, strings in a hidden sector are subject
only to constraints from the cosmic microwave background
[46–48], which are Gμ ≲ 10−7.
In the case where the string dynamics eventually changes

over to Nambu-Goto, the difference between a necklace
network and an ordinary cosmic string network is more
dramatic with our new picture that the comoving distance
between monopoles remains approximately constant from
the time the strings formed. For GUT-scale strings forming
along with the monopoles, this is bounded above by the
horizon distance at the GUT temperature, or a few meters
today. Even if the scale of the U(1) symmetry breaking is
as low as a TeV, this distance is Oð1012Þ m today, a factor
10−14 smaller than the horizon size. When horizon-size
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string loops are chopped off the long string network, they
will therefore have a large number of monopoles on them.
Numerical investigations indicate [49] that such string
loops do not have periodic non-self-intersecting solutions.
We can therefore expect them to quickly chop themselves
up into smaller and smaller loops, some of which will
be free of monopoles and find stable periodic non-self-
intersecting trajectories. In this case, the typical loop size
for a GUT-scale string would be a few meters rather than
the horizon size. Hence, the tight bounds on the Nambu-
Goto string tension from millisecond pulsar timing
obtained by the European Pulsar Timing Array [50] and
NANOGrav [51] would be avoided, as the gravitational
waves would be at frequencies inaccessible to direct
observation.
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APPENDIX A: EQUATIONS OF MOTION
ON THE LATTICE

We write the adjoint Higgs field as Φn ¼ ϕa
nτ

a, with
n ¼ 1, 2. The link variables for the gauge field are
Uμ ¼ u01þ iuaσa, with ua ∈ R.
The d ¼ 4 continuum action in a Friedmann–Lemaître–

Robertson–Walker background with scale factor a and
s ¼ 1 is

S ¼
Z

d4x
�
−
1

4
Fa
μνFμνa þ a2

X
n

Tr½Dμ;Φn�½Dμ;Φn�

− a4VðΦ1;Φ2Þ
�
; ðA1Þ

where indices are raised with the Minkowski met-
ric ημν ¼ diagð1;−1;−1;−1Þμν.
As discussed both in Sec. III and in Appendix B

below, in order to mitigate the shrinking of the string
and monopole cores in comoving coordinates, one can
allow the coupling constants and mass parameters to
become time dependent,

m2
1;2 →

m2
1;2

a2ð1−sÞ
; λ →

λ

a2ð1−sÞ
; g →

g

a2ð1−sÞ
: ðA2Þ

The physical string and monopole core widths can be set to
grow by choosing s < 1, with s ¼ 0 maintaining constant
comoving core widths. This completely avoids the pos-
sibility of the topological defects shrinking in size below
the lattice spacing, although the effect on their dynamics
must be checked. In this paper, we have used s ¼ 1 and
s ¼ 0 only.
With this in mind, we take the lattice action to be

S½U;Φ� ¼ 4

g2a2ðs−1Þ
X
x;i

h
1 −

1

2
TrU0iðxÞ

i

−
4

g2a2ðs−1Þ
X
x;i<j

h
1 −

1

2
TrUijðxÞ

i

þ
X
x;n

a2Tr½D0;Φn�½D0;Φn�

−
X
x;i;n

a2Tr½Di;Φn�½Di;Φn� −
X
x

a4VðΦ1;Φ2Þ

ðA3Þ

with unit comoving lattice spacing and scale factor a. The
covariant derivative is

½Dμ;Φn�ðxÞ ¼ UμðxÞΦnðxþ μ̂ÞU†
μðxÞ −ΦnðxÞ: ðA4Þ

In the temporal gauge U0ðxÞ ¼ 1,

S½U;Φ� ¼ 4

g2a2ðs−1Þ
X
x;i

h
1 −

1

2
TrU0iðxÞ

i

−
4

g2a2ðs−1Þ
X
x;i<j

h
1 −

1

2
TrUijðxÞ

i

þ
X
x;n

a2Tr _Φ2
n −

X
x;i;n

a2½2TrΦ2
n

− 2TrΦnðxÞUiðxÞΦnðxþ {̂ÞU†
i ðxÞ�

−
X
x

a4VðΦ1;Φ2Þ; ðA5Þ

and after a Legendre transformation, the full Hamiltonian is

HðtÞ ¼ 1

2g2a2ðs−1Þ
X
x;i;a

ϵai ðx; tÞ2 þ
1

2
a2
X
x;n;a

πanðx; tÞ2

þ 4

g2a2ðs−1Þ
X
x;i<j

�
1 −

1

2
TrUijðx; tÞ

�

− a2
X
x;i;n

2TrΦnðxÞUiðxÞΦnðxþ {̂ÞU†
i ðxÞ

þ a2
X
x;n

6TrΦ2
n þ a4

X
x

VðΦ1;Φ2Þ: ðA6Þ
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The equations of motion on the lattice are (recalling that we
use the label a for elements of the Lie algebra and n to label
separate fields)

g2a2ðs−1Þ
∂
∂t
�

ϵai ðx;tÞ
g2a2ðs−1Þ

�

¼−
X
j≠i

TrfiσaUijðx;tÞg

þg2a2s
X
n

½−iTrfΦnðx;tÞσaUiðx;tÞΦnðxþ {̂; tÞU†
i ðx;tÞg

þ iTrfΦnðx;tÞUiðx;tÞΦnðxþ {̂; tÞU†
i ðx;tÞσag� ðA7Þ

_Uiðx; tÞ ¼ −iϵiðx; tÞUiðx; tÞ ðA8Þ

1

a2
∂
∂t ða

2πanðx; tÞÞ

¼ 6ϕa
n þ a2

∂VðΦ1;Φ2Þ
∂ϕa

n

−
X
j

Tr½σaUjðx; tÞΦnðxþ ĵ; tÞU†
jðx; tÞ�

−
X
j

Tr½σaU†
jðx − ĵ; tÞΦnðx − ĵ; tÞUjðx − ĵ; tÞ�

ðA9Þ

_ϕa
nðx; tÞ ¼ πanðx; tÞ; ðA10Þ

where, for example,

∂VðΦ1;Φ2Þ
∂ϕa

1

¼ 1

a2ð1−sÞ
½m2

1ϕ
a
1 þ 2λðTrΦ2

1Þϕa
1

þ κðTrΦ1Φ2Þϕa
2�; ðA11Þ

and similarly for ϕa
2.

The Gauss law is

GðxÞ ¼
X
i

ReTrσaðϵiðxÞ − U†
i ðx − {̂Þϵνðx − {̂ÞUiðx − {̂ÞÞ

− ρðxÞ ¼ 0; ðA12Þ

where the scalar charge density ρðxÞ is

ρðxÞ ¼ 2g2a2s
X
n

TrσaðΠnΦn −ΦnΠnÞ: ðA13Þ

1. Remarks on the numerical implementation

The implicit damping terms in Eqs. (A7) and (A9) are
handled by a method of the Crank-Nicolson type [52].
For Eq. (A7), let us write the right-hand side as
FfUiðx; tÞ;Φðx; tÞg. Then, we have

_ϵai þ 2ð1 − sÞ _a
a
ϵai ¼ FfUiðx; tÞ;Φðx; tÞg; ðA14Þ

which can be discretized as

ϵai ðtþ δt=2Þ − ϵai ðt − δt=2Þ
δt

þ ð1 − sÞ aðtþ δt=2Þ − aðt − δt=2Þ
δtaðtþ δt=2Þ

× ½ϵai ðtþ δt=2Þ þ ϵai ðt − δt=2Þ� ¼ FfUiðx; tÞΦðx; tÞg:
ðA15Þ

A similar expression can then be found for Eq. (A9).
The gauge field evolution equation (A8) can be solved to

give

Uiðx; tþ δtÞ ¼ exp

�
−i

σj

2
ϵjiðx; tþ δt=2Þδt

�
Uiðx; tÞ:

ðA16Þ

We carry out a period of cooling prior to the core growth
(in s ¼ 1) or Hubble (in s ¼ 0) phases. The coupling
constants and scale factor are kept constant, and damping
terms σϵ and σπan are added to Eqs. (A7) and (A9)
respectively. This particular choice preserves the Gauss
law. We needed to use a very small time step δt ¼ 0.025
during this short cooling phase.

APPENDIX B: SIMULATION IN AN EXPANDING
UNIVERSE: CORE GROWTH

In the comoving coordinates of the lattice, the cores
of defects shrink as a−1, where a is the cosmological scale
factor, as the simulation proceeds. If the lattice resolution is
to be sufficient to resolve the core widths at the end of the
simulation, the core would be larger than the simulation
box size L in the initial conditions. The core widths are also
related to the time for the fields to relax to their minima,
making the production of a defect network from random
initial conditions hard to achieve.
To address the problem, we scale the parameters of the

theory by powers of a1−s, with 0 ≤ s ≤ 1, as in Eq. (9).
This makes the comoving widths of the strings and
monopoles ws and wm proportional to a−s. At s ¼ 0, the
comoving width is constant. The properties of Abelian
Higgs string networks are largely independent of s, as they
are controlled by the string tension, which is invariant
under this scaling [14,15,35].
In order to simulate at s ¼ 1, we control s through the

simulation so that the core width is small in the initial
conditions and grows to meet the physical core width at a
controllable time tcg. The core widths of the strings and
monopoles in our s ¼ 1 simulations are plotted in Fig. 8.
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APPENDIX C: PROJECTORS, MAGNETIC
CHARGE, AND WINDING NUMBER

In this Appendix, we follow Ref. [40] in denoting the
two Higgs fields in the adjoint representation by Φ and χ.
We will assume that Φ ¼ Φ1 forms the ’t Hooft-Polyakov
monopoles, while χ ¼ Φ2 is responsible for the strings.
We define the projectors Π� ¼ 1

2
ð1� Φ̂Þ, where

Φ̂ ¼ Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=TrΦ2

p
(similarly, χ̂ ¼ χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Trχ2

p
).

1. Magnetic charge

For the time being, in this section, we will return to the
full four-dimensional theory.
In the symmetry broken phase, a residual U(1) symmetry

persists. We can derive link variables uμ corresponding to
this smaller gauge group [40,53],

uμðxÞ ¼ ΠþðxÞUμðxÞΠþðxþ μ̂Þ; ðC1Þ

these can be shown to transform like the Abelian gauge
field. The corresponding Abelian field strength tensor is

Aμν ¼ arg TruμðxÞuνðxþ μ̂Þu†μðxþ ν̂Þu†νðxÞ ðC2Þ

and, with the correct factors of the coupling to give a
continuum electromagnetic field,

αμν ¼
2

g
Aμν ðC3Þ

¼ 2

g
arg TruμðxÞuνðxþ μ̂Þu†μðxþ ν̂Þu†νðxÞ ðC4Þ

and, finally, the expression for the lattice magnetic field

Bi ¼
1

2
ϵijkαjk: ðC5Þ

The symmetry-breaking phase transitions studied in this
work allow the creation of magnetic charge. On the lattice,
the projected Gauss law for the magnetic field takes the
form

X3
i¼1

½Biðxþ {̂Þ − BiðxÞ� ¼ ρMðxÞ ¼
4πN
g

; ðC6Þ

where N is an integer. It is important to note that the
magnetic charge is quantized and localized within lat-
tice cells.

2. Winding number

The above section yielded αμν, the analog of the Abelian
gauge field, and hence Ei and Bi. To measure the winding
number directly [40], we also need to find the equivalent of
the Abelian Higgs field, as its phase angle appears in the
definition of the winding number.
The difference in the phase angle for the residual Higgs

field at neighboring lattice sites ðx; xþ {̂Þ is then

δiðxÞ ¼ arg Tr½χ̂ðxÞΠ−ðxÞUiðxÞΠ−ðxþ {̂Þ
× χ̂ðxþ {̂ÞΠþðxþ {̂ÞU†

i ðxÞΠþðxÞ�: ðC7Þ

The winding number through a plaquette is then

YijðxÞ ¼ δiðxÞ þ δjðxþ {̂Þ
− δiðxþ ĵÞ − δjðxÞ − 2AijðxÞ ðC8Þ

which is gauge invariant.
We then approximate the string length L in the system by

the total string winding through all plaquettes,

X
x;i<j

YijðxÞ ¼ 2πL: ðC9Þ

FIG. 8. Comoving core widths of monopoles (wm, solid) and
strings (ws, dashed) in the s ¼ 1 simulations. The core widths are
defined as wm ¼ ðam1Þ−1 and ws ¼ ðam2Þ−1, where a is the scale
factor.
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