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In this article, we present an example of an inhomogeneous cosmological model, which is inspired by the
linear perturbation theory. The metric of this model can be described as the Einstein–de Sitter background
with periodically distributed dust overdensities. The model construction enables application of the Green-
Wald averaging scheme and the Buchert averaging technique simultaneously. We compare the angular
diameter distance function of the considered model to the angular diameter distances corresponding to the
average space-times given by the Green-Wald and the Buchert frameworks respectively.
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I. INTRODUCTION

The impact of the matter inhomogeneities on the
evolution of the Universe on large scales is still a subject
of debate. Among many different approaches to averaging
in cosmology, it is worth mentioning the Green-Wald
scheme [1] and the Buchert averaging method [2]. In
recent years there has been a very interesting dispute
between Green, Wald and their opponents [3–6]. Green
and Wald presented in [1] a mathematically strict frame-
work, which enables them to prove some important
theorems. They show that the effective energy-momentum
tensor, which appears in the Einstein equations due to their
averaging procedure, is traceless and therefore cannot
mimic the cosmological constant. This result contradicts
alternative explanations of the accelerated expansion of the
Universe, like e.g. [7]. On the other hand the authors of [3]
argue that it is not clear whether the strict assumptions
of Green and Wald apply to the real Universe, and the
backreaction problem in cosmology is still open.
There are several approaches to the presented problem.

First, there is a growing interest in the numerical simulations
concerning the nonhomogeneous universe, e.g. [8–10].
These papers show that the matter inhomogeneities can
produce some important deviations from the homogeneous
models on sub-Hubble scales. Another thing is to study the
propagation of light in the inhomogeneous space-times (e.g.
[11–13]). Finally, it is important to analyze some model
space-times, to which the averaging procedures can be
applied. It is believed that the metric of our Universe could
be very complicated, but in the practical usage of the
averaging techniques usually the knowledge of the true
Universe metric is not necessary. In the viewpoint of the
Green and Wald framework, it is sufficient that there exist a
family of metrics which describe the true Universe and fulfil
the specified assumptions. The properties of the effective
energy-momentum tensor follow from the presented theo-
rems and they are true for any family ofmetrics satisfying the

model assumptions. In the case of the Buchert approach, one
can solve the Buchert equations with some closure con-
ditions, and find the effective scale factor without knowl-
edge of the original metric. However, to clarify the issue of a
backreaction it is worth studying simple models, in which
the space-time metric is given explicitly. Examples of such
nontrivial space-times, to which the Green-Wald scheme
applies, were given in [14,15].
The aim of this paper is to present a very simple

inhomogeneous space-time with a metric given explicitly,
to which the Green-Wald and Buchert schemes both apply
and for which the Friedmann-Lemaître-Robertson-Walker
(FLRW) space-time is expected as the average.
This paper is organized as follows. In Sec. II, we

present the metric of our model and its basic properties.
In Sec. III, we show how the Green-Wald and Buchert
procedures can be applied to the space-time under consid-
eration. Section IV is dedicated to the comparison between
the angular diameter distances calculated in a presented
space-time and derived in the Green-Wald and Buchert
average space-times respectively.

II. THE MODEL

Our model space-time is inspired by the perturbation
theory. We assume that the metric can be written as1

gμν ¼ gð0Þμν þ λhμν; ð1Þ

where gð0Þ represents the Einstein–de Sitter background
metric. To be able to perform the Buchert averaging we
introduce the coordinates ft; x; y; zg in which the back-

ground metric reads gð0Þμν ¼ diagð−1; a2; a2; a2Þ, with a

1We use the convention in which greek letters label the indices
which cover the range f0; 1; 2; 3g, while the latin letters describe
the spacelike indices f1; 2; 3g.
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scale factor aðtÞ ¼ Ct2=3 and C being a constant. We use the
natural units c ¼ 1 and G ¼ 1. The remaining tensor hμν
we define with the help of the two scalar functions
Cðt; x; y; zÞ and Dðt; x; y; zÞ as follows2:

h00 ¼ 0; hi0 ¼ 0; ð2Þ

hij ¼ aðtÞ2
�
C;ij −

1

3
δijðC;xx þ C;yy þ C;zzÞ þ δijD

�
: ð3Þ

We put the functions C and D as

Cðt; x; y; zÞ ¼ −
C3

81t
ðfðxÞ þ fðyÞ þ fðzÞÞ; ð4Þ

Dðt; x; y; zÞ ¼ −
C3

243t

�
d2fðxÞ
dx2

þ d2fðyÞ
dy2

þ d2fðzÞ
dz2

�
; ð5Þ

with

fðwÞ ¼ w2

16
þ 1

32B2
cosð2BwÞ: ð6Þ

The metric defined this way depends on the two free
parameters λ and B.
For a metric (1), the Einstein tensor can be expanded in a

Taylor series around λ ¼ 0,

Gμν ¼ Gð0Þ
μν þ λGð1Þ

μν þ λ2Gð2Þ
μν þ � � � : ð7Þ

When one takes the similar decomposition of the energy-
momentum tensor,

Tμν ¼ Tð0Þ
μν þ λTð1Þ

μν þ λ2Tð2Þ
μν þ � � � ; ð8Þ

it is easy to distinguish the background energy-momentum

tensor Tð0Þ
μν ¼ Gð0Þ

μν =8π. It has a form of the dust

Tð0Þ
μν ¼ ρð0ÞUμUν, with a four-velocity of the observer

comoving with matterUμ ¼ ð1; 0; 0; 0Þ and the background
density ρð0Þ ¼ ð4=3Þt−2. The ansatz (1)–(6) is proposed in
such a way that the first order energy-momentum tensor

Tð1Þ
μν ¼ Gð1Þ

μν =8π has also the form of the dust, Tð1Þ
μν ¼

ρð1ÞUμUν, with the density given by

ρð1Þ ¼ C3

3888πt3
ðsin2ðBxÞ þ sin2ðByÞ þ sin2ðBzÞÞ: ð9Þ

Note that we assumed that the observer four-velocity Uμ is
not perturbed (it does not depend on λ and it is tangent to
the timelike geodesic since Γμ

00 ¼ 0). The exemplary
isodensity surfaces of ρð1Þ are plotted in Fig. 1. They form
a periodic, cubic lattice. The parameter B controls the size

of the elementary cell, which is related directly to the size
of the overdensities. The parameter λ gives the amplitude of
the overdensities. There is an important constraint con-
cerning λ. We want to guarantee that the second and higher
order energy-momentum tensor components are small in
comparison to the energy density up to the first order,

ρð0Þ þ λρð1Þ ≫ jλ2Tð2Þ μ
ν þ � � � j: ð10Þ

In the order k ≥ 2, the tensor TðkÞ
μν ¼ GðkÞ

μν =8π has a more
complicated form, but when the condition (10) holds, the
proposed metric can be thought of as a metric approx-
imately well describing some dust inhomogeneous cosmo-
logical model, to which the Buchert averaging [2] can be
applied. In Sec. III C, we specify more precisely when this
condition is satisfied.
Before going further let us justify the choice of the

density perturbation ρð1Þ. The periodically distributed over-
densities correspond to the discrete counterpart of the
FLRW symmetry at the hypersurface of a constant time.
Moreover, at the scales much larger than the size of the
elementary cell the distribution of mass is uniform in
common sense. Such a periodically distributed matter has
been studied in a case of the black hole lattices [16]
and within numerical simulations with periodic boundary
conditions [8].
We note also that we treat our space-time only as a toy

model. It has no ambition to describe the true Universe [e.g.
the density contrast ρð1Þ=ρð0Þ falls off like t−1, so the model
does not describe the formation of structures and it is
useless for describing the early Universe]. Nevertheless, the
model is very useful to see the averaging schemes in action
and could be generalized in the future.

FIG. 1. Isodensity surfaces of the function sin2ðxÞ þ sin2ðyÞþ
sin2ðzÞ, which is a distribution of the first order density
perturbation ρð1Þ.

2We adopt the convention of the partial and covariant
derivatives where f;x ≡ ∂xf and f;x ≡∇xf.

SZYMON SIKORA and KRZYSZTOF GŁÓD PHYSICAL REVIEW D 95, 063517 (2017)

063517-2



III. THE AVERAGE SPACE-TIMES

A. The Green-Wald scheme

We use the formula (1) as a definition of the Green-Wald
family of metrics gμνðλÞ. The conditions (i)–(iv) which this
family of metrics should satisfy are listed in [1]. (i) For
every positive λ the Einstein equations hold, and the
background metric gð0Þ defined by the limit λ → 0 is the
Einstein–de Sitter one. The weak energy condition is

satisfied up to the first order Tð0Þ
μν þ λTð1Þ

μν since this
energy-momentum tensor represents a dust with a positive

density. The second order energy-momentum tensor Tð2Þ
μν is

diagonal, and its elements are always positive. This shows
that the weak energy condition is fulfilled up to the second
order too. In the higher orders, the energy-momentum
components become more complicated and it is not easy to
prove that the weak energy condition is satisfied in general.
However, according to the assumption (10), the higher
order energy-momentum tensor components are irrelevant

for our considerations. (ii) The metric perturbation gμνðλÞ −
gð0Þμν has the form λhμν. When we restrict ourselves to t > t0,
where t0 can be arbitrarily small, hμν is bounded. In practice
we are interested in the late times only, so the time t0 can be
taken for example as t0 ≈ 3 Gyr. [(iii) and (iv)] The

covariant derivative of gμνðλÞ − gð0Þμν is proportional to λ
and in the limit λ → 0 tends to 0, so the components of the
tensor μαβγδϵϕ are equal to 0. This shows that the conditions
(i)–(iv) are satisfied.
According to [1], as an effect of the properly defined

weak limit w-limλ → 0, in the Einstein equations concern-
ing gð0Þ there appears the additional effective energy-

momentum tensor tð0Þαβ , which represents the impact of
the inhomogeneities on the global dynamics. Because
components of μαβγδϵϕ are equal to 0, from Eq. (16) in

[1] the effective energy-momentum tensor tð0Þαβ in our case is
equal to 0 also. There is no backreaction (the inhomoge-
neities do not influence the global dynamics of the space-
time). Although this example is trivial in the viewpoint
of the Green-Wald scheme, it is interesting to compare
the Einstein–de Sitter metric (which can be thought of as
the average space-time here) with the predictions of the
Buchert method.

B. The Buchert scheme

The main idea behind the Buchert approach concerns the

fact that having the three-dimensional metric gð3Þij induced
on the hypersurface of a constant time t, one can define the
spatial volume of some domain DðtÞ,

VDðtÞ ¼
Z
DðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gð3Þ

q
d3X; ð11Þ

and a spatial average of any scalar function Ψ,

hΨiD ¼ 1

VD

Z
DðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gð3Þ

q
Ψðt; XkÞd3X; ð12Þ

where the coordinate choice is xμ ¼ ðt; XkÞ. Following [2],
one may consider the Universe filled with the dust. It is
described by the energy-momentum tensor Tμν ¼ ρUμUν,
where the four-velocity of the observer comoving with
matter is Uμ ¼ ð1; 0; 0; 0Þ. By applying the above type of
averaging to the scalar part of the Einstein equations (the
Raychaudhuri equation and the Hamiltonian constraint)
one can derive the two Friedmann-like equations,

3
äD
aD

þ 4πGhρiD ¼ QD; ð13Þ

3

�
_aD
aD

�
2

− 8πGhρiD þ 1

2
hRiD ¼ −

QD

2
: ð14Þ

For simplicity, we put the cosmological constant Λ ¼ 0. In
the above equations appears the effective scale factor,

aDðtÞ ¼
�
VDðtÞ
VDðt0Þ

�
1=3

; ð15Þ

which is related to the actual volume of the domain
normalized to the volume at the present time t0. The R
is a spatial Ricci scalar, while the term QD represents the
backreaction. In our case, when the metric is given, we
calculate QD in the following steps. The tensor Pμν ¼
gμν þ UμUν projects onto the space orthogonal to Uμ.
First, we calculate the components of the extrinsic curva-
ture tensor from Kij ¼ −Pμ

iPν
jUμ;ν. This enables us to

obtain the expansion scalar θ ¼ −Ki
i, the shear tensor

σij ¼ −Kij − θgð3Þij =3, and the square of the rate of shear
σ2 ¼ σijσ

j
i=2. Then we construct the two scalar invariants,

I ¼ θ and II ¼ θ2=3 − σ2, and calculate their averages.
The backreaction term is given by Eq. (10c) in [2],

QD ¼ 2hIIiD −
2

3
hIi2D: ð16Þ

For the purposes of this article, by the Buchert average
space-timewe mean the space-time described by the FLRW
metric ~gμν ¼ ð−1; a2D; a2D; a2DÞ, where the effective scale
factor aD satisfies the Buchert equations (13) and (14), and
the domain D is the elementary cell (because of the
periodicity, this is equivalent to averaging over the whole
space). This construction corresponds to the template
metric discussed in [17].
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C. The specific values of the model parameters

To show some quantitative results we have to specify the
model parameters. As we mentioned in the introduction we
use the natural units c ¼ 1 and G ¼ 1. We set the
megaparsec as a unit of length. For a Hubble constantH0 ¼
67.3 km=s=Mpc [18], the age of the Einstein–de Sitter
universe t0 ¼ 2=ð3H0Þ ¼ 9.67 Gyr in these units reads
t0 ¼ 2969.7 Mpc. The usual convention of the scale factor
scaling aðt0Þ ¼ 1 sets then the value of the constant
C ¼ 0.0048. We fix the parameter B ¼ 1, so the elementary
cell is a domain D defined by the inequalities 0 ≤ x < π,
0 ≤ y < π and 0 ≤ z < π, and the distance around
1.57 Mpc can be thought as a radius of the overdensity
region at t0. This is a typical scale for a galaxy cluster size.
It is convenient to measure the density in the units of the
critical density ρcr ¼ 3H2

0=ð8πÞ. The background density at
t0 in this unit is Ωð0Þ ≡ ρð0Þ=ρcr ¼ 1.0. We fix the ampli-
tude of the overdensities λ by demanding that on the
maximum x ¼ π=2, y ¼ π=2, z ¼ π=2 the density in the
first order is one tenth of the background density in critical
units Ωð1Þ ≡ λρð1Þ=ρcr ¼ 0.1. We choose this particular
value because it is smaller than the background density
and the average hΩð1ÞiD ¼ 0.0497 is not negligible. One
can compare this number with the estimation of the total
amount of the baryonic mass, derived from the primordial
nucleosynthesis [19].
Before we examine whether condition (10) is satisfied

for the choice Ωð1Þ ¼ 0.1, we show on Fig. 2 the behavior
of the effective scale factor aD compared with the scale
factor aðtÞ. In calculation of aD we get the determinant
det gð3Þ directly from the metric (1) with parameters
specified above and perform the numerical integration over
the elementary cell as a domain D. This procedure is
somehow different from the customary approach, because
instead of solving the Buchert equations (13) and (14) in

the derivation of aD, we obtain it directly from the proposed
metric. For the effective scale factoraD obtained thiswaywe
verify the Buchert equations in the next paragraph. Figure 2
shows that the effective scale factor is slightly lower than its
background counterpart. For the times t<0.7Gyr the
determinant det gð3Þ becomes negative in some points. For
the considered foliation of space-time, the aD cannot be
properly defined there. In this work, we do not analyze the
structure of the initial singularity in more detail.
It is interesting also to see the comparison between the

volume of the elementary cell in the considered model VD
and Einstein–de Sitter background V, which is plotted on
Fig. 3. The difference VD − V at the time t0 is 1.54 Mpc3,
which corresponds to a relative difference of about 5%.
Now, let us focus on the condition (10). At first we

compare the components of the second order energy-

momentum tensor expressed in the critical units Ωð2Þ
μν ≡

λ2Tð2Þ
μν =ρcr calculated on the maximum of the overdensity

x ¼ π=2, y ¼ π=2, z ¼ π=2, at the time t0, with the first
order density Ωð1Þ ¼ 0.1 and the background density
Ωð0Þ ¼ 1.0 there. The component corresponding to the

density in the second order has the value Ωð2Þ
00 ¼ 0.009 and

it is about ten times smaller than Ωð1Þ. The spatial

distribution of λ2Tð2Þ
00 does not change the overall picture

of the isodensity surfaces depicted on Fig. 1. The pressure-
like terms Ωð2Þ i

i are not larger than 0.001, which is less
than 0.1% of the energy density ðρð0Þ þ λρð1ÞÞ=ρcr. The
nondiagonal terms Ωð2Þ

ik , where i ≠ k, are strictly equal to 0.
This estimation shows that the condition (10) is valid at the
time t0.
To check whether this condition is fulfilled for the earlier

times t < t0 we verify the Buchert equations. In Figs. 4
and 5, we show the components of the first Buchert

FIG. 2. Comparison between the effective scale factor aD (blue)
and the background scale factor aðtÞ (black), for a model with
parameters given in the text.

FIG. 3. Comparison between the volume of the elementary cell
x ∈ ½0; πÞ, y ∈ ½0; πÞ, z ∈ ½0; πÞ, calculated for the metric with
parameters described in the text VD (blue), with the volume of the
elementary cell in the background metric V ¼ π3a3ðtÞ (black).
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equation (13) and the second Buchert equation (14)
respectively, as a functions of the time t. The effective
scale factor aD and the backreaction term QD were derived
directly from the model metric, the density ρ is taken up to
the first order ρ ¼ ρð0Þ þ λρð1Þ, while the averages were
calculated by means of the numerical integration over the
elementary cell as a domain D. The average spatial Ricci
scalar hRiD is 3.2 × 10−18 at t0, and about 1.7 × 10−16 at
t ¼ 3 Gyr, so concerning the second equation, it is neg-
ligible. At both figures, the left-hand side of the equation is
plotted by the blue curve, while the right-hand side is drawn
by the red curve. One can easily see that the Buchert
equations are fulfilled at the late times, but they are not
satisfied for the early times. This is because for a small t the
assumption (10) is not valid. The higher order energy-
momentum tensors become important there, and they have

the pressurelike terms, whereas the Buchert equations (13)
and (14) were derived assuming the Universe filled with
dust. On the other hand, at late times the components of the
higher order energy-momentum tensors other than the

density contribution TðkÞ
00 are negligible. The validity of

the equations (13) and (14) proves that the proposed metric
(1)–(6) very well approximates the nonhomogeneous uni-
verse filled with the dust, if only the time t is large enough.
There is no sharp distinction between these two regimes,
but the presented figures suggest that from the time around
t0 ≈ 3 Gyr up to the age of the Einstein–de Sitter universe t0
the condition (10) is satisfied and the model describes the
dust universe well. At the time t ¼ 3 Gyr the pressure-
like terms Ωð2Þ i

i are around 2% of the first order density
ðρð0Þ þ λρð1ÞÞ=ρcr at that time. The following section is
dedicated to some observables in the considered cosmo-
logical model. Based on these results one can see that the
time t ¼ 3 Gyr corresponds to the redshift z ¼ 1.2. It is
reasonable then to compare the observables calculated in
the proposed metric with the predictions obtained within
the Buchert average space-time and the Einstein–de Sitter
background, up to the redshift z ¼ 1.2.

IV. THE OBSERVABLES

A. The redshift

To calculate the redshift we produced numerically the
family of one hundred null geodesics in the following way.
For each geodesic xμðλÞ, we solve with the help of the
fourth order Runge-Kutta method the geodesic equation,

dkμ

dλ
¼ −Γμ

αβk
αkβ; ð17Þ

and the equation defining the wave vector as a vector
tangent to the geodesic,

dxμ

dλ
¼ kμ: ð18Þ

The initial conditions at λ ¼ 0 are taken such that the
position of the observer is xμ ¼ ðt0; 0; 0; 0Þ, the timelike
component of the wave vector is k0 ¼ −1 (so the geodesic
is past oriented), and the direction of the three-vector ki is
generated randomly with the probability distribution uni-
form on the unit sphere (the constraint kiki ¼ 1 guarantees
that kμ is a null vector at λ ¼ 0). During the numerical
integration the condition kμkμ ¼ 0 for each λ > 0 is
adopted as a test of the numerical convergence.
Once we obtain the geodesic xμðλÞ, we may calculate the

redshift. The observer four-velocity is Uμ ¼ ð1; 0; 0; 0Þ, so
the observed frequency of the light at λ ¼ 0 is normalized
to unity ωobs ¼ kμUμ ¼ 1. Suppose that the source of the
light is located on the geodesic xμðλÞ and its four-velocity is
Uμ ¼ ð1; 0; 0; 0Þ (so it is comoving with the matter also).

FIG. 4. The components of the first Buchert equation as a
function of time t. The left-hand side of the equation is plotted in
blue, while the right-hand side is plotted by the red curve.

FIG. 5. The components of the second Buchert equation as a
function of time t. The left-hand side of the equation is plotted in
blue, while the right-hand side is plotted by the red curve.
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Then the frequency of the emitted light is ωem ¼
kμðλÞUμ ¼ −k0ðλÞ at the particular λ (note that because
the geodesic is past oriented the k0 is negative so that
the frequency ω is positive). The redshift is then
z ¼ ðωem − ωobsÞ=ωobs ¼ −k0ðλÞ − 1. This way the red-
shift can be obtained as a function of the affine parameter
along the geodesic zðλÞ. By taking into account the function
aðtÞ ¼ Ct2=3, we may recover the relation between the
redshift and the scale factor aðzÞ, where the redshift is taken
along the particular geodesic. On Fig. 6 we plot this relation
for a family of the one hundred geodesics (the blue curves),
each of them generated numerically by the method given
above. Because of a large number of geodesics considered,
the reader could have an impression that this picture
represents one thick blue curve. The thickness of this
curve is related to the spread of the redshifts caused by the
fact that various geodesics pass through different over-
density regions. The resulting aðzÞ is slightly above the
standard profile aðzÞ ¼ 1=ð1þ zÞ corresponding to the
background Einstein–de Sitter space-time. Note, however,
that in the presented model the function aðtÞ has a different
meaning than the scale factor which appears in the
Einstein–de Sitter universe, because here aðtÞ is only
one of the three distinct metric functions, and its relation
to physical distances is not so straightforward.

B. The angular diameter dinstance
and the luminosity distance

Let us consider the light beam, for which the central ray
follows the geodesic xμðλÞ. The angular diameter distance
dA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AS=ΩO

p
by definition relates the area of the cross

section of the beam at the position of the light source AS,
with the solid angle of the beam ΩO, measured by the

observer at λ ¼ 0. The luminosity distance3 dL is defined as
d2L ¼ L=ð4πfÞ, where L is the source luminosity and f is
the flux measured by the observer at λ ¼ 0. With the help of
the reciprocity theorem [20] and by taking into account the
correction factor due to the change of the energy of
photons, one can derive the following relationship,

dL ¼ ð1þ zÞ2dA; ð19Þ

where z is a source redshift. The luminosity distance and
the angular diameter distance are associated with one
another, so it is sufficient to calculate one of these two
quantities. In order to obtain dA, one can follow the idea of
Sachs [21], which leads to the focusing equation [22],

d2

dλ2
dA ¼ −

�
1

2
Rμνkμkν þ jσj2

�
dA; ð20Þ

where σ is a complex shear satisfying

jσj2 ¼ 1

2
ð∇μkνÞð∇μkνÞ − θ2; ð21Þ

and θ is the expansion rate,

θ ¼ 1

2
∇μkμ: ð22Þ

Because we have found numerically only the central
ray geodesic xμðλÞ, instead of using the formulas (21)
and (22) we calculate the complex shear σ ¼ σ1 þ iσ2 on
the geodesic xμðλÞ, from the Sachs scalar evolution
equation [11],

d
dλ

σ1 þ 2σ1θ ¼ −
1

2
Cαβγδðsα1kβkγsδ1 þ sα2k

βkγsδ2Þ; ð23Þ

d
dλ

σ2 þ 2σ2θ ¼ Cαβγδsα1k
βkγsδ2; ð24Þ

where Cαβγδ is the Weyl tensor, the ðsμAÞA∈f1;2g is the Sachs
basis, and the expansion rate is expressed in the form

θ ¼ 1

dA

d
dλ

dA: ð25Þ

The procedure of finding the angular diameter distance
dA is the following. For a given geodesic xμðλÞ, the first step
is to fix the Sachs basis at the observer position λ ¼ 0.
Sachs basis vectors sμA are orthogonal to the observer four-
velocity, they are orthogonal to the direction of the
incoming photon dμ ¼ ð0; kiÞ, and they form the ortho-
normal basis on the two-dimensional screen, which reads

FIG. 6. The relation between the scale factor and the redshift. In
blue we plotted the family of the one hundred aðzÞ curves, each of
them corresponding to the particular geodesic. This result is
compared with the standard relation aðzÞ ¼ 1=ð1þ zÞ for a
background Einstein–de Sitter universe (black).

3In the literature it is often called uncorrected luminosity
distance.
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sμAUμ ¼ 0; sμAdμ ¼ 0; sμAs
ν
Bgμν ¼ δAB: ð26Þ

These conditions leave some freedom, because one can
choose the direction of one of these vectors on the two-
dimensional screen and the sign of the second vector
arbitrarily. We generate these arbitrary quantities randomly.
After we construct the Sachs basis at the observer position,
we solve numerically the parallel transport equations,

d
dλ

sμA ¼ −kρΓν
ραsαA A ¼ 1; 2; ð27Þ

by using the fourth order Runge-Kutta method. To test the
numerical precision we verify the condition sμAs

ν
Bgμν ¼ δAB

for each λ > 0. This way we obtain the Sachs basis at each
point on the geodesic sμAðλÞ. After that, we solve with the
same numerical method the system of equations (20) and
(23) with the initial conditions at the observer position λ¼0

given by dA ¼ ϵ≡ 10−6, ddA=dλ ¼ 1, σ1 ¼ 0, σ2 ¼ 0. By
taking the infinitesimally small initial value of the angular
diameter distance ϵ ≪ 1 we avoid the singularity of the
expansion rate given by (25) at λ ¼ 0.
By applying the procedure described above to the sample

of geodesics generated in Sec. IVAwe found that the shear
term jσj2, which appears in the focusing equation, is very
small in comparison to the Ricci contribution Rμνkμkν.
Putting σ ¼ 0 and solving numerically the focusing equa-
tion only provides the resulting angular diameter distance
dA, which is indistinguishable from the dA calculated from
the full system of equations (20) and (23). The difference at
the redshift z ¼ 1.2 is ΔdA ≈ 10−4 Mpc, and the relative
difference is ΔdA=dA ≈ 10−7. The no shear approximation
σ ≈ 0, which is sometimes considered in the literature (e.g.
[23]), is justified here.
In Fig. 7 we present the angular diameter distance as a

function of redshift dAðzÞ, calculated with the numerical
procedure described above for a sample of the one hundred
geodesics generated in Sec. IVA (the blue curves). The
origin of the spread of these results comes from the fact that
considered geodesics pass through different overdensity
regions. For comparison, the reference relation dAðzÞ for
the Einstein–de Sitter background is plotted by the black
curve, while the dAðzÞ for the FLRW model with param-
eters Ωm ¼ Ωð0Þ þ hΩð1ÞiD ¼ 1.0497 and ΩΛ ¼ 0.0 is
drawn by the red curve. On the same plot, the prediction
of the dAðzÞ for a Buchert average space-time is given by
the green dashed curve. By the Buchert average space-time
we mean FLRW space-time with the line element
ds2 ¼ −dt2 þ a2DðtÞðdr2 þ r2dΩ2Þ. To obtain the angular
diameter distance in such a model we calculate numerically
the integral

dðBuchertÞA ðzÞ ¼ 1

1þ z

Z
t0

t1

dt
aDðtÞ

; ð28Þ

where the aDðtÞ is the effective scale factor calculated in
Sec. III C, while the time of emission of light t1 is given
from the equation aDðt1Þ ¼ 1=ð1þ zÞ.
To show more clearly the differences between various

models we present in Fig. 8 the angular diameter distances
relative to the Einstein–de Sitter one. It is seen that the
angular diameter distances dAðzÞ calculated along the
considered sample of geodesics (blue curves) differ sig-
nificantly from the dAðzÞ predicted in the Einstein–de Sitter
space-time (black line) and from dAðzÞ obtained in the
FLRW dust model without cosmological constant, with the
density equal to the average density of our inhomogeneous

FIG. 7. The angular diameter distance as a function of redshift
calculated along each of the one hundred null geodesics of a
random direction (the set of the blue curves). This result is
compared with the Einstein–de Sitter (black) model, the FLRW
model with parameters Ωm ¼ 1.0497, ΩΛ ¼ 0.0 (red) and the
Buchert average space-time (green dashes).

FIG. 8. The angular diameter distance relative to the Einstein–
de Sitter model. The result of the numerical procedure described
in the text (the set of the blue curves) is compared with the FLRW
model with parameters Ωm ¼ 1.0497, ΩΛ ¼ 0.0 (red) and the
Buchert average space-time (green dashes).
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model (red curve). On the other hand, it seems that the
dAðzÞ calculated in the Buchert average space-time fits
well to the dA-redshift relation derived numerically in the
presented inhomogeneous model. It is of course not a proof
that the Buchert approach is correct in a general situation;
however, in this particular example, it gives the angular
diameter distance as a function of redshift which is
compatible with a direct numerical result.
At the end, we check how the position of the observer

affects the resulting angular diameter distance. We gen-
erated another sample of one hundred null geodesics, for
which the observer is located at the maximum of the density
xμ ¼ ðt0; π=2; π=2; π=2Þ at λ ¼ 0. Then, for the sample of
these geodesics we calculated the dAðzÞ distance by the
numerical method described above. The resulting dAðzÞ
relative to the Einstein–de Sitter model is presented in
Fig. 9. In comparison with the dAðzÞ relation obtained for
the observer located at the minimum density (Fig. 8), there
is a small difference for low redshifts z < 0.05. The same
effect was observed in [13]. It seems that for the inhomo-
geneous models close to the FLRW spacetime, the position
of the observer affects the dA distance in the observer’s
neighborhood only.

V. CONCLUSIONS

In this article, we presented explicitly the metric which
approximately well describes the dust inhomogeneous
cosmological model with periodically distributed over-
densities. We obtained numerically the sample of one
hundred random null geodesics, and for each of them
we calculated the angular diameter distance as a function of

redshift dAðzÞ. By using the correspondence between the
angular diameter distance and the luminosity distance
Eq. (19) one may translate these results onto luminosity
distance-redshift relation dLðzÞ, which can be derived from
observations (e.g. by supernovae Ia). In the considered
situation the inhomogeneities have a non-negligible impact
on the dAðzÞ.
Our example model can be instructive in comparison

with various approaches to averaging in cosmology. From
the viewpoint of the Green-Wald scheme, there is no
backreaction effect in our space-time. However, according
to [24], the geodesics of the actual metric are not neces-
sarily very close to corresponding geodesics of gð0Þ. Indeed,
the dAðzÞ predicted in our model differs from the Einstein–
de Sitter one. Therefore, the impact of the inhomogeneities
on the propagation of light should be taken into account
separately, e.g. by the method described in the paper [25].
From the viewpoint of the Buchert approach, it is

interesting that the angular diameter distance obtained with
the help of the effective scale factor fits into our results
very well. Similarly to the case of the Tardis space-time
[26], we find that the effective scale factor aD sometimes
can be very useful, even if its nature is effective and not
covariant. This may be a consequence of dealing with
models with a close to FLRW average evolution, however.
In general, when average evolution is not close to the
FLRW model, the cosmological parameters are dressed
according to [27]. Consequently, a model for light propa-
gation must be specified to relate local observables in the
Buchert average quantities in general, which can lead to
significant differences, as occurs in the case of the time-
scape model [28].
In what sense could the inhomogeneities mimic accel-

erated expansion here? The angular diameter distance in
our model with the average density equal to 1.0497 in
critical units is slightly higher than the angular diameter
distance in the FLRW space-time with the same density.
Then, we may expect that the fitting of the FLRW
parameters to the resulting dAðzÞ profile causes a slight
underestimation of the Ωm parameter or a similar overesti-
mation of the ΩΛ parameter.
The presented model space-time represents some simple

toy model, which can be thought of as a good starting point
for further investigations.
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FIG. 9. The angular diameter distance relative to the Einstein–
de Sitter model for the case when the observer is located at the
density maximum. The result of the numerical procedure de-
scribed in the text (the set of the blue curves) is compared with the
FLRW model with parameters Ωm ¼ 1.0497, ΩΛ ¼ 0.0 (red) and
the Buchert average space-time (green dashes).
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