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We study the cosmological evolution of a complex scalar field with a self-interaction potential Vðjφj2Þ,
possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment.
We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field
approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510
(2015)]. We establish the general equations governing the evolution of a spatially homogeneous complex
scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime
(equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the
scalar field in parametric form for an arbitrary potential Vðjφj2Þ. We explicitly consider the case of a quartic
potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field
undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting
regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the
strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era
followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an
inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-
interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on
which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early
times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant
energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective
cosmological constant produced by the scalar field. Throughout the paper, we analytically characterize the
transition scales of the scalar field and establish the domain of validity of the fast oscillation regime. We
analytically confirm and complement the important results of Li, Rindler-Daller, and Shapiro [Phys. Rev. D
89, 083536 (2014)]. We determine the phase diagram of a scalar field with repulsive or attractive
self-interaction. We show that the transition between the weakly self-interacting regime and the strongly
self-interacting regime depends on how the scattering length of the bosons compares with their effective
Schwarzschild radius. We also constrain the parameters of the scalar field from astrophysical and
cosmological observations. Numerical applications are made for ultralight bosons without self-interaction
(fuzzy dark matter), for bosons with repulsive self-interaction, and for bosons with attractive
self-interaction (QCD axions and ultralight axions).
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I. INTRODUCTION

There is compelling observational evidence for the
existence of dark matter (DM) and dark energy (DE) in
the Universe. The suggestion that DM may constitute a
large part of the Universe was raised by Zwicky [1] in 1933.
Using the virial theorem to infer the average mass of
galaxies within the Coma cluster, he obtained a much
higher value than the mass of luminous material. He
realized therefore that some mass was “missing” to account
for the observations. The existence of DM has been
confirmed by more precise observations of rotation

curves [2], gravitational lensing [3], and hot gas in clusters
[4]. On the other hand, DE is responsible for the ongoing
acceleration of the Universe revealed by the high redshift of
type Ia supernovae treated as standardized candles [5–7].
Recent observations of baryonic acoustic oscillations pro-
vide another independent support to the DE hypothesis [8].
In both cases (DM and DE) more indirect measurements
come from the cosmic microwave background (CMB) and
large scale structure observations [9–11].
The variations in the temperature of the thermal CMB

radiation at 3K throughout the sky imply Ωk;0 ∼ 0 and
Ωr;0 ∼ 10−4, while the power spectrum of the spatial dis-
tributions of large scale structures gives Ωm;0 ∼ 0.3, where
Ωk;0 is the effective curvature of spacetime,Ωr;0 is the present
energy density in the relativistic CMB radiation (photons)
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accompanied by the low mass neutrinos that almost homo-
geneously fill the space, andΩm;0 is the current mean energy
density of nonrelativistic matter which mainly consists of
baryons and nonbaryonic DM. These observations give a
value of ΩΛ;0 ∼ 0.7 for the present DE density [11].
One of the most fundamental problems in modern cos-

mology concerns the nature of DM and DE. In the last
decades, various DM and DE models have been studied.
The simplest model of DM consists in particles moving
slowly compared to the speed of light (they are cold) and
interacting very weakly with ordinary matter and electro-
magnetic radiation. These particles, known as weakly
interacting massive particles (WIMPS), behave as dust with
an equation of state (EOS) parameterw ¼ P=ϵ≃ 0 [12–14].
They may correspond to supersymmetric (SUSY) particles
[15]. On the other hand, the simplest manner to explain the
accelerated expansion of the Universe is to introduce a
cosmological constant Λ in the Einstein equations [16]. In
that case, the value of the energy density ϵΛ ¼ Λc2=8πG
stored in the cosmological constant represents the DE.
The standard model of cosmological structure formation

in the Universe is known as the cold dark matter model with
a cosmological constant (ΛCDM) [17–20]. Cosmological
observations at large scales support the ΛCDM model with
a high precision.
However, this model has some problems at small

(galactic) scales for the case of DM [21–24]. In particular,
it predicts that DM halos should be cuspy [25] while
observations reveal that they have a flat core [26]. On the
other hand, the ΛCDM model predicts an overabundance
of small-scale structures (subhalos/satellites), much more
than what is observed around the Milky Way [27]. These
problems are referred to as the “cusp problem” and
“missing satellite problem.” The expression “small-scale
crisis of CDM” has been coined.
Furthermore, the value of the cosmological constant Λ

assigned to DE has to face important fine-tuning problems
[28–30]. From the point of view of particle physics, the
cosmological constant can be interpreted naturally in terms
of the vacuum energy density whose scale is of the order
of the Planck density ρP ¼ 5.16 × 1099 gm−3. However,
observationally, the cosmological constant is of the order
of the present value of the Hubble parameter squared,
Λ ∼H2

0 ¼ ð2.18 × 10−18 s−1Þ2, which corresponds to a
dark energy density ρΛ ¼ Λ=8πG ∼ 10−24 gm−3. The
Planck density and the cosmological density differ from
each other by 123 orders of magnitude. This leads to the
so-called cosmological constant problem [28–30].
Since the ΛCDM model poses problems, some efforts

have been done in trying to understand the nature of
DM and DE from the framework of quantum field theory.
In particle physics and string theory, scalar fields (SF) arise in
a natural way as bosonic spin-0 particles described by the
Klein-Gordon (KG) equation [31,32]. Examples include the
Higgs particle, the inflaton, the dilaton field of superstring
theory, tachyons etc. SFs also arise in the Kaluza-Klein and

Brans-Dicke theories [33]. In cosmology, SFs were intro-
duced to explain the phase of inflation in the primordial
Universe [34]. SF models have then been used in cosmology
in various contexts and they continue to play an important
role as potential DM and DE candidates.
For example, the source of DE can be attributed to a SF.

A variety of SF models have been inferred for this purpose
(see for example [17,35,36]). Quintessence [37,38], which is
the simplest case, is described by an ordinary SF minimally
coupled to gravity. It generally has a density and EOS
parameterwðtÞ that varywith time, hencemaking it dynamic.
By contrast, a cosmological constant is static, with a fixed
energy density and w ¼ −1. Phantom fields [39–42] are
associatedwith a negative kinetic term. This strange property
leads to an EOS parameter w ≤ −1 implying that the energy
density increases as the Universe expands, possibly leading
to a big rip. It has also been suggested that, in a class of string
theories, tachyonic SF [43] can condense and have cosmo-
logical applications. Tachyons have an interesting EOS
whose parameter smoothly interpolates between −1 and 0,
thus behaving as DE and pressureless DM. SF models
describing DE usually feature masses of the order of the
current Hubble scale (m ∼H0ℏ=c2 ∼ 10−33 eV=c2) [44,45].
Concerning DM, it has been proposed that DM halos can

be made of a SF described by the Klein-Gordon-Einstein
(KGE) equations (see, e.g., [46–49] for reviews and [50] for
high resolution numerical simulations showing the viability
of this scenario). In general, SFDM models suppose that
DM is a real or complex SF minimally coupled to gravity.
This SF can be self-interacting but it does not interact with
the other particles and fields, except gravitationally. SFs
that interact only with gravity could be gravitationally
produced by inflation [51]. The SF may represent the wave
function of the bosons having formed a Bose-Einstein
condensate (BEC). The KGE equations describe a relativ-
istic SF/BEC. General relativity is necessary to model
compact SF objects such as boson stars [52–54] and
neutron stars with a superfluid core [55,56]. It is also
necessary in cosmology to model the phase of inflation
and the evolution of the early Universe [34]. However, in
the context of DM halos, Newtonian gravity is sufficient.
The evolution of a nonrelativistic SF/BEC is described
by the Gross-Pitaevskii-Poisson (GPP) equations. There are
several models of SFDM, e.g. noninteracting (fuzzy) DM
[57], self-interacting DM [58], or axionic DM [59–63].1

1Axions can be produced in the early Universe through two
mechanisms. At the quantum chromodynamics (QCD) phase
transition where a BEC of axions forms and these very cold
particles behave as CDM; and through the decay of strings formed
at the Peccei-Quinn phase transition [64,65]. Unless inflation
occurs after the Peccei-Quinn phase transition, strings are thought
to be the dominant mechanism for axion production [66]. Recent
analysis confirms that strings are likely to be the dominant source of
axions, even though strings will not produce an interesting level of
density fluctuations as their predictedmass per unit length is far too
small to be cosmologically interesting [67].
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Most of these models are based on the assumption that DM
is made of extremely light scalar particles with masses
between 10−23 eV=c2 ≤ m ≤ 10−2 eV=c2. Within this
mass scale, SFDM displays a wave (quantum) behavior
at galactic scales that could solve many of the problems of
the ΛCDMmodel. Indeed, the wave properties of bosonic
DM may stabilize the system against gravitational col-
lapse, providing halo cores and sharply suppressing small-
scale linear power. This may solve the cusp problem and
the missing satellite problem. Therefore, the main virtues
of the SF/BEC model are that it can reproduce the
cosmological evolution of the Universe for the back-
ground and behave as CDM at large scales where its wave
nature is invisible, while at the same time it solves the
problems of the CDMmodel at small scales where its wave
nature manifests itself.
In quantum field theory, ultralight SFs seem unnatural

but renormalization effects tend to drive these scalar masses
up to the scale of a new physics. Given the present
observational status of cosmology, and despite all the
efforts that have been made, it is fair to say that the nature
of DM and DE remains a mystery. As a result, the SF
scenario is an interesting suggestion that deserves to be
studied in more detail.
Instead of working directly in terms of field variables, a

fluid approach can be adopted. In the nonrelativistic case,
this hydrodynamic approach was introduced by Madelung
[68] who showed that the Schrödinger equation is equiv-
alent to the Euler equations for an irrotational fluid with an
additional quantum potential arising from the finite value of
ℏ and accounting for Heisenberg’s uncertainty principle.
This approach has been generalized to the GPP equations in
the context of DM halos by [69–71] among others. In the
relativistic case, de Broglie [72–74] in his so-called pilot
wave theory, showed that the KG equations are equivalent
to hydrodynamic equations including a covariant quantum
potential. This approach has been generalized to the Klein-
Gordon-Poisson (KGP) and KGE equations in the context
of DM halos by [75–79].2 In this hydrodynamic represen-
tation, DM halos result from the balance between the
gravitational attraction and the quantum pressure arising
from the Heisenberg uncertainty principle or from the self-
interaction of the bosons. At small scales, pressure effects
are important and can prevent the formation of singularities
and solve the cusp problem and the missing satellite
problem. At large scales, pressure effects are generally
negligible (except in the early Universe) and one recovers
the ΛCDM model.
The formation of large-scale structures is an important

topic of cosmology. This problem was first considered by

Jeans [80] (before the discovery of the expansion of the
Universe) who studied the instability of an infinite homo-
geneous self-gravitating classical collisional gas (see [81]
for a review). This study has been generalized in the context
of SF theory. The Jeans instability of an infinite homo-
geneous self-gravitating system in a static background
was studied by [82] for a relativistic SF described by the
generalized KGP equations, using the field representation.
The same problem was studied in [70,83] for a non-
relativistic SF described by the GPP equations in the
context of Newtonian cosmology, and in [77,78] for a
relativistic SF described by the KGE equations, using the
hydrodynamic representation.
The growth of perturbations of a relativistic real SF in an

expanding Universe was considered in [84,85] using the
field representation. The same problem was addressed in
[77,83] for a complex SF using the hydrodynamic repre-
sentation. Analytical results were obtained in the (non-
relativistic) matter era where the background Universe has
an Einstein-de Sitter (EdS) evolution [77,83]. The matter era
is valid at sufficiently late times, after the radiation-matter
equality. At earlier times, the SF affects the background
evolution of the Universe so we can no more assume that the
scale factor follows the EdS solution.
The classical evolution of a real SF described by the

KGE equations with a potential of the form VðφÞ ¼ aφn in
an isotropic and homogeneous cosmology was first inves-
tigated by Turner [86] (see also the subsequent works of
[51,87,88]). He showed that the SF experiences damped
oscillations but that, in average, it is equivalent to a perfect
fluid with an EOS P ¼ ½ðn − 2Þ=ðnþ 2Þ�ϵ (this result is
valid if we neglect particle creation due to the time variation
of φ). For n ¼ 2 the SF behaves as pressureless matter and
for n ¼ 4 it behaves as radiation. Turner also mentioned
the possibility of a stiff EOS. The cosmological evolution
of a spatially homogeneous real self-interacting SF with a
repulsive φ4 potential described by the KGE equations
competing with baryonic matter, radiation and dark energy
was considered by [84]. In this work, it is found that a
real self-interacting SF displays fast oscillations and that,
on the mean, it undergoes a radiationlike era followed by a
matterlike era. In the noninteracting case, the SF undergoes
only a matterlike era [89]. In any case, at sufficiently late
times, the SF reproduces the cosmological predictions of
the standard ΛCDM model.
The cosmological evolution a complex self-interacting

SF representing BECDM has been considered by [83,90]
who solved the (relativistic) Friedmann equations with the
EOS of the BEC derived from the (nonrelativistic) GP
equation after identifying ρmc2, where ρm is the rest-mass
density, with the energy density ϵ. However, as clarified in
[91], this approach is not valid in the early Universe as it
combines relativistic and nonrelativistic equations. These
studies may still have interest in cosmology in a different
context, as discussed in [92,93].

2The pilot wave theory of de Broglie [72–74] is the relativistic
version of Madelung’s hydrodynamics [68]. The works of de
Broglie and Madelung were developed independently. See the
Introduction of [79] for a short history of the early development
of quantum mechanics.
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The exact relativistic cosmological evolution of a complex
self-interacting SF/BEC described by the KGE equations
with a repulsive jφj4 potential has been considered byLi et al.
[94] (see also the previous works of [95–98]). In this work,
the evolution of the homogeneous background is studied. It is
shown that the SF undergoes three successive phases: a stiff
matter era, followed by a radiationlike era (that only exists for
self-interacting SFs), and finally a matterlike era similar to
the one appearing in the CDMmodel. Another cosmological
model displaying a primordial stiff matter era has been
developed in [91]. Interestingly, it leads to a completely
analytical cosmological solution generalizing the EdSmodel
and the (anti)-ΛCDM model.
In general, the SF oscillates in time and it is not clear

how these oscillations can be measured in practice because
there is no direct access to field variables such as φ. As a
result, the hydrodynamic representation of the SF may be
more physical than the KG equation itself because it is
easier to measure hydrodynamic variables such as the
energy density ϵ, the rest-mass density ρm, and the pressure
P. In our previous paper [77], we showed that the three
phases of a relativistic SF with a repulsive jφj4 potential
(stiff matter, radiation and pressureless matter) could be
obtained from the hydrodynamic approach in complete
agreement with the field theoretic approach of Li et al. [94].
In the present paper, we complete and generalize our

study in different directions: we formulate the problem for
an arbitrary SF potential Vðjφj2Þ, not just for a jφj4
potential; we solve the equations in the fast oscillation
regime and obtain several analytical results in different
asymptotic limits that complement the work of Li et al.
[94]; we consider repulsive and attractive self-interaction
and show that the later can lead to very peculiar results. The
case of attractive self-interaction is of considerable interest
since axions, that have been proposed as a serious DM
candidate, usually have an attractive self-interaction. The
case of attractive self-interaction has been studied previ-
ously in [70,77,83,99,100]. It is shown in [77,83] that an
attractive self-interaction can accelerate the growth of
structures is cosmology. On the other hand, it is shown
in [70,99,100] that stable DM halos with an attractive self-
interaction can exist only below a maximum mass that
severely constrains the parameters of the SF.
The paper is organized as follows. In Sec. II, we

introduce the KG and Friedmann equations describing
the cosmological evolution of a spatially homogeneous
complex3 SF with an arbitrary self-interaction potential

Vðjφj2Þ in an expanding background and provide their
hydrodynamic representation. We show that these hydro-
dynamic equations can be simplified in the fast oscillation
regime equivalent to the Thomas-Fermi (TF), or semi-
classical, approximation where the quantum potential can
be neglected. We derive the EOS of the SF in parametric
form for an arbitrary potential Vðjφj2Þ. In Sec. III, we
consider the cosmological evolution of a spatially homo-
geneous SF with a repulsive quartic self-interaction. In
agreement with previous works [77,94], we show that the
SF undergoes a stiff matter era (w ¼ 1) in the slow
oscillation regime, followed by a radiationlike era
(w ¼ 1=3) and a pressureless dark matter era (w≃ 0) in
the fast oscillation regime. We analytically determine the
transition scales between these different periods and show
that the radiationlike era can only exist for sufficiently large
values of the self-interaction parameter. More precisely, the
transition between the weakly self-interacting and strongly
self-interacting regimes depends on how the scattering
length of the bosons as compares with their effective
Schwarzschild radius rS ¼ 2 Gm=c2. We determine the
phase diagram of a SF with repulsive self-interaction. We
also analytically recover the bounds on the ratio as=m3

obtained by Li et al. [94] by requiring that the SF must be
nonrelativistic at the epoch of matter-radiation equality and
by using constraints from the big bang nucleosynthesis
(BBN). In Sec. IV, we consider the evolution of a spatially
homogeneous SF with an attractive quartic self-interaction.
In the fast oscillation regime, the SF emerges at a nonzero
scale factor with a finite energy density. At early time, it
behaves as a gas of cosmic strings (w ¼ −1=3). At later
time, two evolutions are possible. On the normal branch,
the SF behaves as pressureless DM (w≃ 0). On the
peculiar branch, it behaves as DE (w ¼ −1) with an almost
constant energy density giving rise to a de Sitter evolution.
We derive the effective cosmological constant produced
by the SF. We establish the domain of validity of the fast
oscillation regime. We argue that, in the very early
Universe, a complex SF with an attractive self-interaction
undergoes an inflation era. If the self-interaction constant is
sufficiently small, the inflation era is followed by a stiff
matter era. We determine the phase diagram of a SF with
attractive self-interaction. We also set constraints on the
parameters of the SF using cosmological observations.
Numerical applications are made for standard (QCD)
axions and ultralight axions. This is indicative because
QCD axions are real SFs while certain results of ours
are only valid for complex SFs. In Sec. V, we study the
evolution of the SF in the total potential V totðjφj2Þ
incorporating the rest-mass energy. A SF with repulsive
self-interaction descends the potential. A SF with attractive
self-interaction descends the potential on the normal branch
and ascends the potential on the peculiar branch. This is
possible because of the effect of a centrifugal force that is
specific to a complex SF. This is called spintessence [97].
The concluding Sec. VI summarizes the main results of our

3Complex SFs are potentially more relevant than real SFs
because they can form stable DM halos while DM halos made of
real SFs are either dynamically unstable or oscillating. If DM
halos were stable “oscillatons” [101], their oscillations would
probably have been detected. On the other hand, bosons
described by a complex SF with a global Uð1Þ symmetry
associated with a conserved charge (Noether theorem) can form
BECs even in the early Universe while this is more difficult for a
boson described by a real SF (like the QCD axion).
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study and regroups the numerical applications of astro-
physical relevance. The Appendices contain additional
material that is needed to interpret our results.

II. SPATIALLY HOMOGENEOUS COMPLEX SF

In our previous paper [77], we have derived a hydro-
dynamic representation of the KGE equations in an
expanding background in the weak field approximation.
We considered a complex SF with a quartic self-interaction
potential. This study was extended to the case of an
arbitrary SF potential of the form Vðjφj2Þ in [78,79]. In
this section, we consider the case of a spatially homo-
geneous complex SF. For the clarity and the simplicity of
the presentation, we assume that the Universe is only
composed of a SF, although it would be straightforward
to include in the formalism other components such as
normal radiation, baryonic matter, and dark energy (e.g., a
cosmological constant).

A. The KG equation for a spatially
homogeneous complex SF

The cosmological evolution of a spatially homogeneous
complex SF φðtÞ with a self-interaction potential Vðjφj2Þ
in a Friedmann-Lemaître-Robertson-Walker (FLRW) uni-
verse is described by the KG equation

1

c2
d2φ
dt2

þ 3H
c2

dφ
dt

þm2c2

ℏ2
φþ 2

dV
djφj2 φ ¼ 0; ð1Þ

where H ¼ _a=a is the Hubble parameter and aðtÞ is the
scale factor. The second term in Eq. (1) is the Hubble drag.
The rest-mass term (third term) can be written as φ=λ2C
where λC ¼ ℏ=mc is the Compton wavelength of the
bosons.
The energy density ϵðtÞ and the pressure PðtÞ of the

SF are given by

ϵ ¼ 1

2c2

���� dφdt
����2 þm2c2

2ℏ2
jφj2 þ Vðjφj2Þ; ð2Þ

P ¼ 1

2c2

���� dφdt
����2 −m2c2

2ℏ2
jφj2 − Vðjφj2Þ: ð3Þ

The EOS parameter is defined by w ¼ P=ϵ.

B. The Friedmann equations

From Eqs. (1)–(3), we can obtain the energy equation

dϵ
dt

þ 3Hðϵþ PÞ ¼ 0: ð4Þ

This equation can also be directly obtained from the
Einstein field equations and constitutes the first
Friedmann equation [102]. From this equation we deduce

that, as the Universe expands, the energy density decreases
when w > −1, increases when w < −1, and remains
constant when w ¼ −1. In the second case, the Universe
is “phantom” [39]. The second Friedmann equation,
obtained from the Einstein field equations, writes

H2 ¼ 8πG
3c2

ϵ: ð5Þ

We have assumed that the Universe is flat in agreement
with the observations of the CMB. From Eqs. (4) and (5),
we easily obtain the acceleration equation

ä
a
¼ −

4πG
3c2

ðϵþ 3PÞ ð6Þ

which constitutes the third Friedmann equation. From this
equation, we deduce that the expansion of the Universe
is decelerating when w > −1=3 and accelerating when
w < −1=3. The intermediate case, in which the scale factor
increases linearly with time, corresponds to w ¼ −1=3.

C. Hydrodynamic representation of a spatially
homogeneous complex SF

Instead of working with the SF φðtÞ, we will use
hydrodynamic variables like those considered in our
previous works [77–79]. We define the pseudo rest-mass
density by

ρ ¼ m2

ℏ2
jφj2: ð7Þ

We stress that it is only in the nonrelativistic limit c → þ∞
that ρ has the interpretation of a rest-mass density. In
the relativistic regime, ρ does not have a clear physical
interpretation but it can always be defined as a convenient
notation [77–79]. We write the SF in the de Broglie form

φðtÞ ¼ ℏ
m

ffiffiffiffiffiffiffiffi
ρðtÞ

p
eiStotðtÞ=ℏ; ð8Þ

where ρ is the pseudo rest-mass density and Stot ¼
ð1=2Þiℏ lnðφ�=φÞ is the real action. The total energy of
the SF (including its rest mass mc2 energy) is

EtotðtÞ ¼ −
dStot
dt

: ð9Þ

Substituting Eq. (8) into the KG equation (1) and
separating real and imaginary parts, we get

1

ρ

dρ
dt

þ 3

a
da
dt

þ 1

Etot

dEtot

dt
¼ 0; ð10Þ

E2
tot ¼ ℏ2

d2
ffiffi
ρ

p
dt2ffiffiffi
ρ

p þ 3Hℏ2

d
ffiffi
ρ

p
dtffiffiffi
ρ

p þm2c4 þ 2m2c2V 0ðρÞ: ð11Þ
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On the other hand, from Eqs. (2) and (8), we find that the
Friedmann equation (5) takes the form

3H2

8πG
¼ ℏ2

8m2c4
1

ρ

�
dρ
dt

�
2

þ ρE2
tot

2m2c4
þ 1

2
ρþ 1

c2
VðρÞ: ð12Þ

Equations (10)–(12) can also be obtained from the general
hydrodynamic equations derived in [77–79] by considering
the particular case of a spatially homogeneous SF
(ρð~x; tÞ ¼ ρðtÞ, ~vð~x; tÞ ¼ ~0, Φð~x; tÞ ¼ 0, and Sð~x; tÞ ¼
SðtÞ). In that case, Eq. (10) is deduced from the continuity
equation, Eq. (11) from the quantum Bernoulli or
Hamilton-Jacobi equation, and Eq. (12) from the
Einstein equations. In this connection, we note that the
first two terms (the terms proportional to ℏ2) in the right-
hand side of Eq. (11) correspond to the relativistic de
Broglie quantum potential

QdB ¼ ℏ2

2m

□
ffiffiffi
ρ

pffiffiffi
ρ

p ð13Þ

for a spatially homogeneous SF. We stress that the hydro-
dynamic equations (10)–(12) are equivalent to the KGE
equations (1), (2), and (5). Finally, we note that the
hydrodynamic equations (10)–(12) with the terms in ℏ
neglected provide a TF, or semiclassical, description of
relativistic SFs.
The continuity equation (10) can be rewritten as a

conservation law

d
dt

ðEtotρa3Þ ¼ 0: ð14Þ

Therefore, the total energy of the SF is exactly given by

Etot

mc2
¼ Qm

ρa3
; ð15Þ

where Q is a constant which represents the conserved
charge of the complex SF [77,94,98,103].4

In the hydrodynamic representation, the energy density
and the pressure of a homogeneous SF can be expressed as

ϵ ¼ ℏ2

8m2c2
1

ρ

�
dρ
dt

�
2

þ ρE2
tot

2m2c2
þ 1

2
ρc2 þ VðρÞ; ð16Þ

P ¼ ℏ2

8m2c2
1

ρ

�
dρ
dt

�
2

þ ρE2
tot

2m2c2
−
1

2
ρc2 − VðρÞ: ð17Þ

D. Cosmological evolution of a spatially homogeneous
complex SF in the fast oscillation regime

The exact equations (10)–(12) are complicated. In the
case of a quartic potential with a positive scattering length,
Li et al. [94] have identified two regimes in which these
equations can be simplified. When the oscillations of the
SF are slower than the Hubble expansion (ω ≪ H), the
SF is equivalent to a stiff fluid with an EOS P ¼ ϵ. This
approximation is valid in the early Universe. At later times,
when the oscillations of the SF are faster than the Hubble
expansion (ω ≫ H), it is possible to average over the fast
oscillations in order to obtain a simpler dynamics. The
resulting equations can be obtained either from the field
theoretic approach [94] or from the hydrodynamic
approach [77]. We note that the equations obtained in
the fast oscillation regime specifically depend on the form
of the SF potential. In this section, we generalize these
results to the case of an arbitrary SF potential Vðjφj2Þ. We
use the hydrodynamic approach. The field theoretic
approach is exposed in Appendix A.
The simplified equations valid in the fast oscillation

regime can be obtained from Eqs. (11) and (12) by
neglecting the terms involving a time derivative.
Interestingly, this is equivalent to neglecting the terms
in ℏ. Therefore, the fast oscillation regime is equivalent to
the TF, or semiclassical, approximation where the quantum
potential (arising from Heisenberg’s uncertainty principle)
is neglected. In that case, we obtain

E2
tot ¼ m2c4 þ 2m2c2V 0ðρÞ; ð18Þ

3H2

8πG
¼ ρE2

tot

2m2c4
þ 1

2
ρþ 1

c2
VðρÞ: ð19Þ

Keeping only the solution of Eq. (18) that leads to a positive
total energy (the solution with a negative total energy
corresponds to antibosons), we get

Etot ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

c2
V 0ðρÞ

r
: ð20Þ

Combining Eqs. (15) and (20), we obtain

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

c2
V 0ðρÞ

r
¼ Qm

a3
: ð21Þ

This equation determines the pseudo rest-mass density ρ as
a function of the scale factor a. Substituting Eq. (18) into
Eq. (19), we find

4The conserved charge (normalized by the elementary charge
e) of a complex SF is given by Q ¼ 1

ec

R
J0e

ffiffiffiffiffiffi−gp
d3x, where

ðJeÞμ ¼ ie
2ℏ ðφ�∂μφ − φ∂μφ

�Þ is the quadricurrent of charge of the
SF (see, e.g., [79] for details). The charge density is ρe ¼ðJeÞ0=c. Using Eqs. (8) and (9), we find that ρe ¼
eρEtot=m2c2. The conserved charge of a spatially homogeneous
SF in an expanding Universe is Q ¼ ρea3=e ¼ ρEtota3=m2c2,
corresponding to Eq. (15).
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3H2

8πG
¼ ρþ 1

c2
½VðρÞ þ ρV 0ðρÞ�: ð22Þ

Equations (21) and (22) determine the evolution of the scale
factor aðtÞ of the Universe induced by a spatially homo-
geneous SF in the regime where its oscillations are faster
than the Hubble expansion. The energy Etot of the SF is
then given by Eq. (20).
It is not convenient to solve the differential equation (22)

for the scale factor a because we would need to inverse
Eq. (21) in order to express ρ as a function of a in the right-
hand side of Eq. (22). Instead, it is more convenient to view
a as a function of ρ, given by Eq. (21), and transform
Eq. (22) into a differential equation for ρ. Taking the
logarithmic derivative of Eq. (21), we get

_a
a
¼ −

1

3

_ρ

ρ

�
1þ ρV 00ðρÞ

c2 þ 2V 0ðρÞ
�
: ð23Þ

Substituting this expression into Eq. (22), we obtain the
differential equation

c2

24πG

�
_ρ

ρ

�
2

¼ ρc2 þ VðρÞ þ ρV 0ðρÞ
½1þ ρV 00ðρÞ

c2þ2V 0ðρÞ�
2

: ð24Þ

For a given SF potential VðρÞ, this equation can be solved
easily as it is just a first order differential equation for ρ.
The temporal evolution of the scale factor a is then
obtained by plugging the solution of Eq. (24) into Eq. (21).
In the fast oscillation regime, the energy density and the

pressure are given by

ϵ ¼ ρE2
tot

2m2c2
þ 1

2
ρc2 þ VðρÞ; ð25Þ

P ¼ ρE2
tot

2m2c2
−
1

2
ρc2 − VðρÞ: ð26Þ

Using Eq. (18), we get

ϵ ¼ ρc2 þ VðρÞ þ ρV 0ðρÞ; ð27Þ

P ¼ ρV 0ðρÞ − VðρÞ: ð28Þ

The pseudo velocity of sound is

c2s ¼ P0ðρÞ ¼ ρV 00ðρÞ: ð29Þ

We note that the pressure PðtÞ of a spatially homogeneous
SF in the fast oscillation regime coincides with the pseudo
pressure pð~x; tÞ ¼ pðtÞ that arises in the Euler equation
obtained in the hydrodynamic representation of a complex
SF [77–79], i.e. PðtÞ ¼ pðtÞ (compare Eq. (28) with
Eq. (38) of [78]). This extends to an arbitrary SF potential
Vðjφj2Þ the result obtained in [77] for a quartic potential

(we note that this equivalence is not true for a spatially
inhomogeneous SF and for a homogeneous SF outside of
the fast oscillation regime).
On the other hand, Eqs. (27) and (28) define the EOS

PðϵÞ of the SF in parametric form for an arbitrary potential.
The EOS parameter can be written as

w ¼ P
ϵ
¼ ρV 0ðρÞ − VðρÞ

ρc2 þ VðρÞ þ ρV 0ðρÞ : ð30Þ

The Universe is accelerating (w < −1=3) when 4ρV 0ðρÞ−
2VðρÞ < −ρc2. Introducing the total potential V totðρÞ ¼
VðρÞ þ ρc2=2 (see Sec. V), this condition can be rewritten
as 2ρV 0

totðρÞ < V totðρÞ. The Universe is phantom (w < −1)
when 2V 0ðρÞ=c2 < −1 or, equivalently, when V 0

totðρÞ < 0.
However, this condition is never realized in the fast
oscillation regime because of the constraint imposed
by Eq. (20).
For a given EOS PðϵÞ, we can obtain the potential

VðρÞ as follows (inverse problem [104]). Equations (27)
and (28) can be rewritten as ϵ ¼ VtotðρÞ þ ρV 0

totðρÞ and
P ¼ ρV 0

totðρÞ − V totðρÞ leading to ϵ − P ¼ 2V totðρÞ and
ϵþ P ¼ 2ρV 0

totðρÞ. From these equations, we obtain

Z
1 − P0ðϵÞ
ϵþ PðϵÞ dϵ ¼ ln ρ; V totðρÞ ¼

1

2
½ϵ − PðϵÞ�: ð31Þ

The first equation determines the relationship between ρ
and ϵ. The second relation then determines the total
potential V totðρÞ.
Remark: From Eqs. (27) and (28), we can obtain the

EOS PðϵÞ. Solving the energy equation (4) with this EOS,
we can obtain ϵðaÞ. The relation ϵðaÞ can also be obtained
from Eqs. (21) and (27). We can easily check that the
relations are the same. Indeed, from Eqs. (4), (27), and (28)
we obtain the differential equation

½c2 þ 2V 0ðρÞ þ ρV 00ðρÞ� dρ
da

þ 3

a
½ρc2 þ 2ρV 0ðρÞ� ¼ 0:

ð32Þ

This differential equation is equivalent to Eq. (21). This
can be seen easily by taking the logarithmic derivative of
Eq. (21) which leads to Eq. (32). This shows the con-
sistency of our approximations.

E. The nonrelativistic limit

In order to take the nonrelativistic limit c → þ∞ of the
previous equations, we need to subtract the contribution of
the rest mass energy mc2 of the SF. To that purpose, we
make the Klein transformation

φðtÞ ¼ ℏ
m
e−imc2t=ℏψðtÞ; ð33Þ
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where ψ is the wave function such that ρ ¼ jψ j2.
Substituting Eq. (33) into Eq. (1) and taking the limit
c → þ∞, we obtain the GP equation

iℏ
dψ
dt

þ 3

2
iℏHψ ¼ m

dV
djψ j2 ψ ð34Þ

for a nonrelativistic spatially homogeneous SF. On the
other hand, in the nonrelativistic limit, Eqs. (2) and (3)
become

ϵ ∼ ρc2; P=c2 → 0: ð35Þ

As explained previously, it is convenient to work in terms
of hydrodynamic variables. We write the wave function
under the Madelung form

ψðtÞ ¼
ffiffiffiffiffiffiffiffi
ρðtÞ

p
eiSðtÞ=ℏ ð36Þ

and introduce the energy

EðtÞ ¼ −
dS
dt

: ð37Þ

Substituting Eq. (36) into the GP equation (34) and
separating real and imaginary parts, we get

1

ρ

dρ
dt

þ 3

a
da
dt

¼ 0; ð38Þ

E ¼ mV 0ðρÞ: ð39Þ

On the other hand, using Eq. (35), we find that the
Friedmann equation (5) takes the form

3H2

8πG
¼ ρ: ð40Þ

We also note that the energy equation (4) reduces to
Eq. (38). It can be integrated into ρ ∝ 1=a3 which, together
with Eq. (40), leads to the EdS solution a ∝ t2=3 and
ρ ¼ 1=6πGt2. Equations (38)–(40) can also be obtained
from the general hydrodynamic equations derived in
[77–79] by considering the particular case of a spatially
homogeneous SF in the nonrelativistic limit c → þ∞.
Finally, comparing Eqs. (8), (33) and (36) we find that

Stot ¼ S −mc2t and Etot ¼ Eþmc2. Substituting this
decomposition into Eqs. (10)-(12) and taking the limit
c → þ∞ we recover Eqs. (38)–(40). We also find that
Eq. (15) reduces to

ρ ¼ Qm
a3

: ð41Þ

Remarks: the hydrodynamic equations (10)–(12) and
(38)–(40) do not involve viscous terms because they are

equivalent to the KG and GP equations. As a result, they
describe a superfluid. We note that Eq. (11) for StotðtÞ or
EtotðtÞ is necessary in the relativistic case in order to have a
closed system of equations [since Etot appears explicitly in
Eqs. (10) and (12)] while Eq. (39) for SðtÞ or EðtÞ is not
strictly necessary in the nonrelativistic case [since E does
not appear in Eq. (38) and (40)].

F. The quartic potential

In the case where the SF describes a BEC at zero
temperature, the self-interaction potential can be written as

Vðjφj2Þ ¼ 2πasm
ℏ2

jφj4; ð42Þ

where m is the mass of the bosons and as is their scattering
length (see Appendix B for other expressions of the
self-interaction constant). A repulsive self-interaction
corresponds to as > 0 and an attractive self-interaction
corresponds to as < 0. In the first case, as may be
interpreted as the “effective radius” of the bosons if we
make an analogy with a classical hard spheres gas.
In terms of the pseudo rest-mass density ρ and wave

function ψ , the quartic potential (42) can be rewritten as

VðρÞ ¼ 2πasℏ2

m3
ρ2; Vðjψ j2Þ ¼ 2πasℏ2

m3
jψ j4: ð43Þ

From Eqs. (28) and (29), we obtain

PðρÞ ¼ 2πasℏ2

m3
ρ2; c2s ¼

4πasℏ2

m3
ρ: ð44Þ

The pressure law PðρÞ corresponds to a polytropic EOS of
index γ ¼ 2 (quadratic).

III. THE CASE OF A QUARTIC POTENTIAL WITH
A POSITIVE SCATTERING LENGTH

From now on, we restrict ourselves to a SF with a quartic
potential given by Eq. (42). We focus on the evolution of a
homogeneous SF in the regime where its oscillations are
faster than the Hubble expansion. We first consider the case
of a SF with a positive scattering length as ≥ 0 correspond-
ing to a repulsive self-interaction (the noninteracting case
corresponds to as ¼ 0). This is the most studied case in the
literature. A very nice study has been done by Li et al. [94].
Here, we complement their study and provide more explicit
analytical results.

A. The basic equations

The equations of the problem are

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πasℏ2

m3c2
ρ

s
¼ Qm

a3
; ð45Þ
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3H2

8πG
¼ ρ

�
1þ 6πasℏ2

m3c2
ρ

�
; ð46Þ

ϵ ¼ ρc2
�
1þ 6πasℏ2

m3c2
ρ

�
; ð47Þ

P ¼ 2πasℏ2

m3
ρ2; ð48Þ

w ¼
2πasℏ2

m3c2 ρ

1þ 6πasℏ2

m3c2 ρ
; ð49Þ

Etot ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πasℏ2

m3c2
ρ

s
: ð50Þ

Equation (47) gives the relation between the energy density
ϵ and the pseudo rest-mass density ρ. This is a second
degree equation for ρ. The only physically acceptable
solution (the one that is positive) is

ρ ¼ m3c2

12πasℏ2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24πasℏ2

m3c4
ϵ

s
− 1

!
: ð51Þ

Combining Eqs. (48) and (51), we obtain the EOS
[84,88,94]:

P ¼ m3c4

72πasℏ2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24πasℏ2

m3c4
ϵ

s
− 1

!2

: ð52Þ

It coincides with the EOS obtained by Colpi et al. [54]
in the context of boson stars (see also [56]). For a non-
interacting SF (as ¼ 0), Eq. (52) reduces to P ¼ 0meaning
that a noninteracting SF behaves as pressureless matter.

B. The evolution of the parameters
with the scale factor a

The evolution of the pseudo rest-mass density ρ with the
scale factor a is plotted in Fig. 1 (in the figures, unless
otherwise specified, we use the dimensionless parameters
defined in Appendix C). It starts from þ∞ at a ¼ 0 and
decreases to 0 as a → þ∞. For a → 0:

ρ ∼
�
Q2m5c2

8πasℏ2

�
1=3 1

a2
: ð53Þ

For a → þ∞:

ρ ∼
Qm
a3

: ð54Þ

The evolution of the energy density ϵ with the scale
factor a is plotted in Fig. 2. It starts from þ∞ at a ¼ 0 and
decreases to 0 as a → þ∞. For a → 0:

ϵ ∼
6πasℏ2

m3
ρ2 ∼

3

2
ðQ4πmasℏ2c4Þ1=3 1

a4
: ð55Þ

For a → þ∞:

ϵ ∼ ρc2 ∼
Qmc2

a3
: ð56Þ

The pressure is always positive. It starts from þ∞ at
a ¼ 0 and decreases to 0 as a → þ∞. For a → 0:

P ∼
1

3
ϵ ∼

1

2
ðQ4πmasℏ2c4Þ1=3 1

a4
: ð57Þ

For a → þ∞:

P ∼
2πasℏ2

m3c4
ϵ2 ∼

2πasℏ2Q2

ma6
≃ 0: ð58Þ

The relationship between the pressure and the energy
density is plotted in Fig. 3.
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FIG. 1. Pseudo rest-mass density ρ as a function of the scale
factor a.
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FIG. 2. Energy density ϵ as a function of the scale factor a.
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The evolution of the EOS parameter w ¼ P=ϵ with the
scale factor a is plotted in Fig. 4. It starts from

wi ¼
1

3
ð59Þ

when a ¼ 0 and decreases to 0 as a → þ∞. For a → 0:

w≃ 1

3
−
1

6

�
m2c2

πasℏ2Q

�
2=3

a2: ð60Þ

For a → þ∞:

w ∼
2πasℏ2Q
m2c2a3

: ð61Þ

The total energy Etot starts from þ∞ at a ¼ 0 and
decreases up to mc2 as a → þ∞. For a → 0:

Etot

mc2
∼
�
8πasℏ2Q
m2c2

�
1=3 1

a
: ð62Þ

For a → þ∞:

Etot

mc2
≃ 1þ 4πasℏ2Q

m2c2a3
: ð63Þ

C. The temporal evolution of the parameters

In this section, we determine the temporal evolution of
the parameters assuming that the Universe contains only
the SF. For a quartic potential with as ≥ 0, the differential
equation (24) becomes

�
dρ
dt

�
2

¼ 24πGρ3
ð1þ 6πasℏ2

m3c2 ρÞð1þ 8πasℏ2

m3c2 ρÞ2

ð1þ 12πasℏ2

m3c2 ρÞ2
: ð64Þ

The solution of this differential equation which satisfies
the condition that ρ → þ∞ as t → 0 is

Z þ∞

2πasℏ2

m3c2
ρ

ð1þ 6xÞdx
x3=2ð1þ 3xÞ1=2ð1þ 4xÞ ¼

�
12Gm3c2

asℏ2

�
1=2

t: ð65Þ

The integral can be computed analytically:

Z ð1þ 6xÞdx
x3=2ð1þ 3xÞ1=2ð1þ 4xÞ

¼ 4tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

x
1þ 3x

r �
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x

x

r
: ð66Þ

From these equations, we can obtain the temporal
evolution of the pseudo rest-mass density ρðtÞ. Then, using
Eqs. (45)–(50), we can obtain the temporal evolution of all
the parameters. The temporal evolution of the scale factor a
is plotted in Fig. 5. It starts from a ¼ 0 at t ¼ 0 and
increases to þ∞ as t → þ∞. We do not show the other
curves because they can be easily deduced from Figs. 1, 2
and 4 since a is a monotonic function of time. However,
we provide below the asymptotic behaviors of all the
parameters.
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FIG. 3. Pressure P as a function of the energy density ϵ.
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FIG. 4. EOS parameter w as a function of the scale factor a.
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FIG. 5. Temporal evolution of the scale factor a.
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For t → 0:

a ∼ 2

�
π4G3Q4masℏ2

c2

�
1=12

t1=2; ð67Þ

ρ ∼
m3=2c

8πℏa1=2s G1=2t
; ð68Þ

ϵ ∼
3c2

32πGt2
; ð69Þ

P ∼
c2

32πGt2
; ð70Þ

w≃ 1

3
−
2m3=2G1=2c

3ℏa1=2s

t; ð71Þ

Etot

mc2
∼
�

asℏ2

m3Gc2

�
1=4 1

t1=2
: ð72Þ

For t → þ∞:

a ∼ ð6πGQmt2Þ1=3; ð73Þ

ρ ∼
1

6πGt2
; ð74Þ

ϵ ∼
c2

6πGt2
; ð75Þ

P ∼
asℏ2

18πG2m3t4
; ð76Þ

w ∼
asℏ2

3Gm3c2t2
; ð77Þ

Etot

mc2
≃ 1þ 2asℏ2

3m3Gc2t2
: ð78Þ

D. The different eras

In the fast oscillation regime, a SF with a repulsive self-
interaction (as ≥ 0) undergoes two distinct eras. For a → 0,
the EOS (52) reduces to Eq. (57) so the SF behaves
as radiation. The scale factor increases like a ∝ t1=2. For
a → þ∞, the EOS (52) reduces to Eq. (58) so the SF
behaves essentially as pressureless matter (dust) like in
the EdS model.5 The scale factor increases like a ∝ t2=3.

Therefore, the SF undergoes a radiationlike era (w ¼ 1=3)
followed by a matterlike era (w ¼ 0). Since w > −1=3, the
Universe is always decelerating. As emphasized by Li et al.
[94], the radiationlike era is due to the self-interaction of
the SF (as ≠ 0). There is no such phase for a noninteracting
SF (as ¼ 0). This remark will be made more precise in
Sec. III E. On the other hand, if we identify the SF as the
source of DM, it is possible to determine its charge Q by
considering its asymptotic behavior in the matterlike era.
It is given by Eq. (E12) of Appendix E.
In conclusion, a SF with a repulsive self-interaction

behaves at early times as radiation and at late times as dust.
We can estimate the transition between the radiationlike era
and the matterlike era of the SF as follows. First of all,
using Eqs. (45) and (49), we find that the scale factor
corresponding to a value w of the EOS parameter is

a ¼
�
2πasℏ2Q
m2c2

�
1=3 ð1 − 3wÞ1=2

w1=3ð1þ wÞ1=6 : ð79Þ

Interestingly, this equation provides an analytical expres-
sion of the function aðwÞ, the inverse of the function wðaÞ
plotted in Fig. 4. If we consider that the transition between
the radiationlike era and the matterlike era of the SF
corresponds to wt ¼ 1=6,6 we obtain

at ¼
ffiffiffi
3

p

71=6

�
2πasℏ2Q
m2c2

�
1=3

: ð80Þ

This corresponds to ϵt ¼ 2ρtc2 ¼ m3c4=3πasℏ2. In order
to make numerical applications here and in the following
sections, it is convenient to introduce the reference scale
factor a� defined in Appendix C. Using the expression
(E12) of the charge of the SF, we get

a� ≡
�
2πjasjℏ2Q

m2c2

�
1=3

¼
�
2πjasjℏ2Ωdm;0ϵ0

m3c4

�
1=3

¼ 6.76 × 10−7
�jasj
fm

�
1=3 eV=c2

m
: ð81Þ

Therefore, at ¼ ð ffiffiffi
3

p
=71=6Þa�. According to Eq. (81), we

note that at depends only on the ratio as=m3 (see Sec. III I).
For a SF with a ratio as=m3 given by Eq. (D7), we get
at ¼ 1.26 × 10−5. For a SF with a ratio as=m3 given by
Eq. (D23), we get at ¼ 1.35 × 10−5. This analytical result
is in good agreement with the numerical result of Li et al.
[94] (see their Fig. 1).5The pressure of the SF is nonzero but since P ∝ ϵ2 ≪ ϵ for

ϵ → 0, everything happens in the cosmological Friedmann
equations (4) and (5) describing the large scales as if the Universe
were pressureless. In particular, Eq. (4) implies ϵ ∝ a−3 for
a → þ∞ as when P ¼ 0. However, the nonzero pressure of the
SF is important at small scales, i.e. at the scale of dark matter
halos, because it can prevent singularities and avoid the cusp
problem and the missing satellite problem as discussed in the
Introduction (see also Appendix D).

6This value is obtained by analogy with the standard model
(see Appendix E). Since Pm ¼ 0 and Pr ¼ ϵr=3, the EOS
parameter of the standard model (neglecting here dark energy)
is w ¼ Pr=ðϵr þ ϵmÞ ¼ ϵr=½3ðϵr þ ϵmÞ�. At the radiation-matter
equality (ϵr ¼ ϵm), we get w ¼ 1=6. This transition value is also
the arithmetic mean of w ¼ 1=3 (radiation) and w ¼ 0 (dust).
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E. Validity of the fast oscillation regime

The previous results are valid in the fast oscillation
regime ω ≫ H. In this section, we determine the domain of
validity of this regime.
For a spatially homogeneous SF, the pulsation is given by

ω ¼ dθ=dt ¼ ð1=ℏÞdStot=dt ¼ −Etot=ℏ (see Appendix A)
and the Hubble parameter is given by H2 ¼ 8πGϵ=3c2

(see Sec. II B). Therefore, the fast oscillation regime
corresponds to

E2
tot

ℏ2
≫

8πG
3c2

ϵ: ð82Þ

Introducing the dimensionless variables of Appendix C, this
condition can be rewritten as

~E2
tot ≫ ~ϵ=σ; ð83Þ

where

σ ¼ 3asc2

4Gm
ð84Þ

is a new dimensionless parameter that can be interpreted as
the ratio σ ¼ 3as=2rS between the effective Schwarzschild
radius rS ¼ 2Gm=c2 of the bosons (see Sec. III H) and their
scattering length as. Introducing proper normalizations, we
get

σ ¼ 5.67 × 1047
as
fm

eV=c2

m
: ð85Þ

The dimensionless variables ~E2
tot and ~ϵ are plotted as a

function of ~a in Fig. 6. Their ratio ~E2
tot=~ϵ is plotted as a

function of ~a in Fig. 7. The intersection of this curvewith the
line ~E2

tot=~ϵ ¼ 1=σ determines the domain of validity of the
fast oscillation regime.

Combining Eqs. (45), (47), and (50), we find that the fast
oscillation regime is valid for a ≫ av with

av ¼
�
2πasℏ2Q
m2c2

�
1=3

f

�
3asc2

4Gm

�
; ð86Þ

where the function fðσÞ is defined by

fðσÞ ¼ 1

r1=3ð1þ 4rÞ1=6 ð87Þ

with

r ¼ 4σ − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4σ − 1Þ2 þ 12σ

p
6

: ð88Þ

For σ → 0:

fðσÞ ∼ 1

σ1=3
: ð89Þ

For σ → þ∞:

fðσÞ ∼
ffiffiffi
3

p

24=3
1

σ1=2
: ð90Þ

These asymptotic results can be written more explicitly by
restoring the original variables. When as ¼ 0:

avð0Þ ¼
�
8πGQℏ2

3mc4

�
1=3

: ð91Þ

This corresponds to ϵvð0Þ ¼ ρvð0Þc2 ¼ 3m2c6=8πGℏ2.
Using the expression of the charge given by Eq. (E12),
and introducing proper normalizations, we obtain

avð0Þ≃ 8.17 × 10−23
�
eV=c2

m

�
2=3

: ð92Þ
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FIG. 6. Graphical construction determining the validity of the
fast oscillation regime. The transition scale av corresponds to the
intersection of the curves σ ~E2

tot and ~ϵ.
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This value corresponds to the beginningof the fast oscillation
regime in the noninteracting case (ω ¼ mc2=ℏ ≫ H).When
as ≫ rS:

av ∼
�
π2G3ℏ4Q2

asmc10

�
1=6

: ð93Þ

Using the expression of the charge given by Eq. (E12),
and introducing proper normalizations, we obtain

av ≃ 6.17 × 10−31
�
fm
as

�
1=6
�
eV=c2

m

�
1=2

: ð94Þ

This value corresponds to the beginningof the fast oscillation
regime in the strongly self-interacting case.
For a ≫ av, we are in the fast oscillation regime in which

the SF behaves successively as radiation and matter. For
a ≪ av, we are in the slowoscillation regime inwhich the SF
behaves as stiff matter. Therefore, av marks the end of the
stiff matter era (see Appendix F). A complex SF generically
undergoes three successive eras: a stiff matter era for a < av,
a radiationlike era for av < a < at, and a matterlike era
for a > at. The transition scales av and at are given
analytically by Eqs. (86) and (80) respectively. Actually,
the radiationlike era only exists if at > av. This corresponds
to fðσÞ < ffiffiffi

3
p

=71=6 leading to the condition

σ ¼ 3asc2

4Gm
>

2

7
; i:e:; as >

8

21

Gm
c2

¼ 4

21
rS: ð95Þ

When as < ð4=21ÞrS, the SF undergoes only two successive
eras: a stiff matter era for a < av and a matterlike era for
a > av. There is no radiationlike era even though the SF is
self-interacting. This generalizes the result of Li et al. [94]
according to which a noninteracting SF (as ¼ 0) does not
present a radiationlike era. This result remains true as long
as as < ð4=21ÞrS. In this regime, the transition scale av
depends veryweakly on the scattering lengthas of thebosons
(see below). In the noninteracting case (as ¼ 0), av is given
by Eq. (91). We note that the transition between the stiff
matter era and the matterlike era happens later with decreas-
ing mass. This is in agreement with the observation of
Li et al. [94] but Eq. (91) provides an explicit analytical
formula refining this statement. This formula, together with
Eq. (E12), displays a m−2=3 scaling for avð0Þ.

F. Phase diagram

We can represent the previous results on a phase diagram
(see Fig. 8) where we plot the transition scales av and at as
a function of the scattering length as. To that purpose, it is
convenient to normalize the scale factor a by the reference
value avð0Þ given by Eq. (91) that is independent of as. The
scattering length as can be normalized by the effective
Schwarzschild radius rS using the parameter σ ¼ 3as=2rS
defined by Eq. (84). With these normalizations, the

transition scale av between the slow and fast oscillation
regimes is given by

av
avð0Þ

¼ fðσÞσ1=3: ð96Þ

For σ ¼ 0:

av
avð0Þ

¼ 1: ð97Þ

For σ ¼ 2=7:

av
avð0Þ

¼
ffiffiffi
3

p

71=6

�
2

7

�
1=3 ≃ 0.825: ð98Þ

For σ → þ∞:

av
avð0Þ

∼
1

41=6

�
3

4

�
1=2 1

σ1=6
: ð99Þ

The transition scale av starts from the value avð0Þ given by
Eq. (91) for as ¼ 0, decreases slowly up to av ¼ ð ffiffiffi

3
p

=71=6Þ
ð2=7Þ1=3avð0Þ when as ¼ ð4=21ÞrS, and decreases like
a−1=6s according to Eq. (93) for as ≫ rS. Therefore, the
domain of validity of the fast oscillation regime is larger
when the self-interaction is stronger (the stiff matter era
ends earlier). On the other hand, the transition scale at
between the radiationlike era and the matterlike era is
given by

at
avð0Þ

¼
ffiffiffi
3

p

71=6
σ1=3: ð100Þ

It starts from 0 at as ¼ 0 and increases like a1=3s according
to Eq. (80). The transition scales av and at cross each other
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FIG. 8. Phase diagram showing the different eras of the SF
during the evolution of the Universe as a function of the scattering
length of the bosons in the case of a repulsive self-interaction.
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at as¼ð4=21ÞrS. At that point av ¼ at ¼ ð ffiffiffi
3

p
=71=6Þ

ð2=7Þ1=3avð0Þ.
We can now describe the phase diagram (see Fig. 8).

When as ≤ ð4=21ÞrS, the SF is in the stiff matter era for
0 ≤ a ≤ av and in the matterlike era for a ≥ av.

7 When
as ≥ ð4=21ÞrS, the SF is in the stiff matter era for
0 ≤ a ≤ av, in the radiationlike era for av ≤ a ≤ at,
and in the matterlike era for a ≥ at. Therefore, when
as ≤ ð4=21ÞrS, av determines the transition scale between
the stiff matter era and the matterlike era. When
as ≥ ð4=21ÞrS, av determines the transition scale between
the stiff matter era and the radiationlike era. We note that
the radiationlike era starts earlier and lasts longer as the
self-interaction strength as increases (the stiff matter era
ends earlier and the matterlike era starts later). This is in
agreement with Fig. 1 of Li et al. [94].
Let us make a numerical application. We first consider a

noninteracting SF. Using the value of m given by Eq. (D3),
we obtain avð0Þ ¼ 1.86 × 10−8. This is the transition scale
between the stiff matter era and the matterlike era. For a self-
interacting SF, using the values of (m, as) given by Eq. (D8),
we obtain σ ¼ 2.27 × 1045 and av ¼ 1.45 × 10−28. In that
case, the stiff matter era (if it really physically exists) ends
very early. On the other hand, using the values of (m, as)
given by Eq. (D22), we obtain σ ¼ 2.10 × 1010 and
av ¼ 5.14 × 10−11. In the two cases σ ≫ 2=7 so the SF is
deep in the strongly self-interacting regime and there is a
radiationlike era. Therefore, av determines the transition
between the stiff matter era and the radiationlike era (see
Sec. III D for the determination of the transition scale
between the radiationlike era and the matterlike era). Our
analytical result av ¼ 5.14 × 10−11 is in good agreement
with the numerical result obtained by Li et al. [94] (see
their Fig. 1).
Particular cases: When m ¼ as ¼ 0, Eqs. (2) and (3)

imply P ¼ ϵ, so there is only a stiff matter era. Whenm ≠ 0
and as ¼ 0 (noninteracting case), there is only a stiff matter
era and a pressureless matterlike era. The transition takes
place at avð0Þ given by Eq. (91). It scales as m−2=3 and
tends to þ∞ when m → 0. When m ¼ 0 and as > 0
(massless case), there is only a stiff matter era and a
radiationlike era. The transition takes place at

av ¼
�
8π3G3ℏ3Q2

λc9

�
1=6

ð101Þ

obtained from Eq. (93) by replacing as by λ, using Eq. (B1).
It scales as λ−1=6 (assuming Q independent of λ) and tends
to þ∞ when λ → 0.

G. Inflation era?

It is well known that a massive real SF with a quartic
potential (or a sufficiently flat potential) undergoes a stiff
matter era followed by an inflation era which is an attractor
of the KGE equations [105,106]. Finally, it oscillates and
behaves on average as radiation and pressureless matter.
We may wonder whether a complex SF also experiences
an inflation era. This would be the case if Stot ≃ 0 in the
early Universe because, in that case, it would behave as a
real SF. However, because of the charge conservation
constraint (15), the condition Stot ≃ 0 implies
Etot ≃Q≃ 0. Therefore, the charge of the SF should be
extremely small [95,96] which may be considered artificial.

H. Weakly and strongly self-interacting regimes

We note that the phase diagram of Fig. 8 depends on a
dimensionless control parameter σ which is, up to a factor
3=2, the ratio between the scattering length as of the bosons
and their effective Schwarzschild radius

rS ¼
2Gm
c2

¼ 2.65 × 10−48
m

eV=c2
fm: ð102Þ

The strongly self-interacting regime corresponds to
as ≫ rS and the weakly self-interacting regime corre-
sponds to as ≪ rS. In general rS is very small. For
example, for bosons with m ¼ 2.92 × 10−22 eV=c2 (see
Appendix D), we have rS ¼ 7.74 × 10−70 fm. Therefore,
even when as ∼ 10−68 fm we are in the strongly self-
interacting regime, not in the weakly self-interacting
regime, although this value of as may seem very “small”
at first sight.
We note that the effective Schwarzschild radius of the

bosons is much smaller than their Compton wavelength

λC ¼ ℏ
mc

¼ 0.197
GeV=c2

m
fm ð103Þ

because their mass m is much smaller than the Planck
mass MP ¼ ðℏc=GÞ1=2 ¼ 1.22 × 1019 GeV=c2. For exam-
ple, for bosons with m ¼ 2.92 × 10−22 eV=c2, we have
λC ¼ 6.75 × 1029 fm.
The condition of validity of the strongly self-interacting

regime can also be expressed in terms of the variables
introduced in Appendix B. Using the dimensionless
self-interaction constant (B1), we find that the strongly
self-interacting regime as ≫ rS corresponds to

λ

8π
≫

rS
λC

¼ 2

�
m
MP

�
2

: ð104Þ

For bosons with m ¼ 2.92 × 10−22 eV=c2, we get
λ=8π ≫ 1.15 × 10−99. Therefore, even when λ=8π ∼ 10−98

we are in the strongly self-interacting regime, not in the

7For as ¼ 0, the stiff matter era may be connected to the
matterlike era by a short period of inflation with a constant energy
density (plateau) as argued in [98].
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noninteracting regime λ ¼ 0 (!). A similar remark was made
in Appendix A. 3 of [99] using different arguments.
Therefore, it is important to take the self-interaction of the
bosons into account even if the self-interaction constant
seems to be very small. Many works (see, e.g., [49,50])
neglect the self-interaction of the bosons. Their results may
substantially change if it is taken into account.
Finally, using the dimensional self-interaction constant

(B2), we find that the strongly self-interacting regime
as ≫ rS corresponds to

λs ≫
8πGℏ2

c2
¼ 1.295 × 10−69 eV cm3: ð105Þ

We note that this bound is independent of the mass of the
bosons.
According to the previous results, the dimensionless

parameter σ that measures the strength of the self-interaction
for our problem can be written as

σ ¼ 3as
2rS

¼ 3

4

λ

8π

�
MP

m

�
2

¼ 3λsc2

16πGℏ2
: ð106Þ

The weakly self-interaction regime corresponds to σ ≪ 1
and the strongly self-interaction regime corresponds to
σ ≫ 1. The dimensionless self-interaction constant λ has
a different meaning. We can be in the strongly self-
interaction regime σ ≫ 1 for our problem even when
λ ≪ 1 (weak self-interaction in quantum field theory) due
to the large factor ðMP=mÞ2 when m ≪ MP.

I. The ratio as=m3

Using the expression (E12) of the chargeQ of the SF, we
see that the equations of the problem (45)–(50) depend on
the mass m of the SF and on its scattering length as only
through the ratio as=m3.8 In this section, we show how
cosmological (large scale) observations can constrain the
ratio as=m3. We then compare these constraints with the
value of as=m3 obtained from astrophysical (small scale)
observations (see Appendix D).

Following Li et al. [94], we impose that, at the epoch of
matter-radiation equality, corresponding to the scale factor
aeq ¼ 2.95 × 10−4 (see Appendix E), the SF should be
nonrelativistic, i.e., it should behave as pressureless matter
(CDM-like phase). This is a constraint imposed by CMB.
This condition can be expressed by the inequality

wðaeqÞ ≤ χ; ð107Þ

where χ is a small constant that Li et al. [94] take equal
(somehow arbitrarily) to χ ¼ 10−3. In the matterlike era
where w ≪ 1, the function wðaÞ can be approximated by
Eq. (61) so that

wðaeqÞ≃ 2πasℏ2Q
m2c2a3eq

: ð108Þ

Using the expression (E12) of the charge Q of the SF and
the expression (E9) of the scale factor at the epoch of
matter-radiation equality, we obtain

wðaeqÞ≃ 2πasℏ2ϵ0Ωdm;0Ω3
m;0

m3c4Ω3
r;0

: ð109Þ

Introducing proper normalizations, we get

wðaeqÞ ¼ 1.20 × 10−8
as
fm

�
eV=c2

m

�
3

: ð110Þ

The condition of Eq. (107) implies

as
m3

≤
χc4Ω3

r;0

2πℏ2Ωdm;0Ω3
m;0ϵ0

; ð111Þ

i.e.,

as
fm

�
eV=c2

m

�
3

≤ 8.31 × 104: ð112Þ

Using the results of Appendix B, we analytically recover
the result λs=ðmc2Þ2 ≤ 4.07 × 10−17 cm3=eV of Li et al.
[94] [see their Eq. (38)].
Using astrophysical considerations related to the mini-

mum size of DM halos (Fornax) observed in the Universe
and interpreted as the ground state of a self-gravitating
BEC (see Appendix D), we find that the ratio as=m3 has
the value ðas=fmÞððeV=c2Þ=mÞ3 ¼ 3.28 × 103 leading to
wðaeqÞ ¼ 3.94 × 10−5. These values are much smaller than
the bounds implied by Eqs. (107) and (112) for χ ¼ 10−3.
These inequalities are fulfilled by two orders of magnitude.
The same remark applies to the values ðas=fmÞ
ððeV=c2Þ=mÞ3 ¼ 4.10 × 103 and wðaeqÞ ¼ 4.92 × 10−5

corresponding to the fiducial model of Li et al. [94].

8This is because, as noted in Sec. II D, the simplified
equations (45)–(50) are obtained in a TF, or semiclassical,
approximation where the quantum potential is neglected
(ℏ ¼ 0). By contrast, the scale av marking the transition between
the slow and fast oscillation regimes is due to quantum mechanics
(ℏ ≠ 0) so it depends on the two individual parameters as and m,
or equivalently as=m3 and as=m as is apparent on Eq. (86) with
Eq. (E12). To see the effect of ℏ in the equations, it is better to use
the parameter λs=ðmc2Þ2 instead of 4πasℏ2=m3c4 [see Eq. (B5)]
because the appearance of ℏ in the latter does not correspond to
the quantum potential and can be absorbed in the self-interaction
constant. Equations (45)–(50) can then be written in terms of
λs=ðmc2Þ2 only, in which ℏ does not appear (TF approximation).
By contrast, av given by Eq. (96), depends on m=ℏ [through
Eqs. (91) and (E12)] and on λs=ℏ2 [through Eq. (106)], in which
ℏ appears explicitly.
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Actually, we can relate the EOS parameter wðaeqÞ at the
epoch of matter-radiation equality (cosmology/large scales)
to the minimum size R of the DM halos observed in the
Universe (astrophysics/small scales). Indeed, combining
Eqs. (109) and (D5), we get

wðaeqÞ ¼
2ϵ0GR2Ωdm;0Ω3

m;0

πc4Ω3
r;0

: ð113Þ

Introducing proper normalizations, Eq. (113) can be
rewritten as

wðaeqÞ ¼ 3.94 × 10−5
�

R
kpc

�
2

: ð114Þ

The condition wðaeqÞ ≤ 10−3 corresponds to a minimum
halo size less than R ¼ 5.04 kpc, a condition which
is observationaly realized. Inversely, taking R ¼ 1 kpc
(Fornax), we get wðaeqÞ ¼ 3.94 × 10−5. Taking R ¼
1.12 kpc, corresponding to the fiducial model of
Li et al. [94], we get wðaeqÞ ¼ 4.92 × 10−5.
We can also compare the scale at corresponding to the

transition between the radiationlike era and the matterlike
era of the SF (see Sec. III E) with the scale aeq correspond-
ing to the matter-radiation equality. Combining Eqs. (80)
and (108), we obtain

at
aeq

¼
ffiffiffi
3

p

71=6
wðaeqÞ1=3: ð115Þ

We first note that the condition wðaeqÞ ≪ 1 is equivalent
to at ≪ aeq, i.e., the transition between the radiationlike
era and the matterlike era of the SF must take place
long before the standard radiation-matter equality.
Taking wðaeqÞ ≤ 10−3, we obtain the constraint at=aeq ≤
0.125. Taking wðaeqÞ ¼ 3.94 × 10−5, corresponding to the
model of Appendix D (Fornax), we obtain at=aeq ¼
4.26 × 10−2. Taking wðaeqÞ ¼ 4.92 × 10−5, corresponding
to the fiducial model of Li et al. [94], we obtain
at=aeq ¼ 4.59 × 10−2. Since at is much below aeq, we
confirm that, at the radiation-matter equality epoch, the
SF behaves as pressureless matter, i.e., it is nonrelativistic.
Finally, we can obtain the value of the ratio μ ¼ ϵSF=ϵr

between the radiation of the SF and the standard radiation
in the radiationlike era of the SF (see Appendix E).
Combining Eqs. (E15) and (109), we obtain

μ ¼
�
27

16

�
1=3 Ωdm;0

Ωm;0
wðaeqÞ1=3: ð116Þ

We first note that the condition wðaeqÞ ≪ 1 is equivalent to
μ ≪ 1 i.e. the radiation of the SF must be much smaller
than the standard radiation. Taking wðaeqÞ ≤ 10−3, we

obtain the constraint μ ≤ 0.100. Therefore, the energy of
SF radiation must be about one order of magnitude smaller
than the energy of standard radiation. Taking wðaeqÞ ¼
3.94 × 10−5, corresponding to the model of Appendix D
(Fornax), we obtain μ ¼ 3.42 × 10−2. Taking wðaeqÞ ¼
4.92 × 10−5, corresponding to the fiducial model of
Li et al. [94], we obtain μ ¼ 3.68 × 10−2. This is in good
agreement with the value inferred from their Fig. 3. We
also find that the effective temperature of the SF [see
Eq. (E22)] is Teff ≃ 0.43T.
We can be more precise by introducing the fraction of

standard radiation Ωr ¼ ϵr=ϵ and the fraction of SF
ΩSF ¼ ϵSF=ϵ. During the radiationlike era of the SF, i.e.
for av ≤ a ≤ at, since ϵr and ϵSF both decay as a−4, the
fraction of SF has a constant value

ΩSFðplateauÞ ¼
ϵSF

ϵSF þ ϵr
¼ μ

μþ 1
: ð117Þ

For the fiducial model of Li et al. [94], we obtain
ΩSFðplateauÞ ¼ 3.55 × 10−2 in good agreement with the
value inferred from their Fig. 3. More generally, using their
constraint coming from BBN [94],

0.028 ≤ ΩSFðplateauÞ ≤ 0.132; ð118Þ

we obtain 2.88 × 10−2 ≤ μ ≤ 0.152, giving [see Eq. (E17)]

1.95 × 103 ≤
as
fm

�
eV=c2

m

�
3

≤ 2.87 × 105: ð119Þ

Using the results of Appendix B, we analytically
recover the result 9.54 × 10−19 eV−1 cm3 ≤ λs=ðmc2Þ2 ≤
1.40 × 10−16 eV−1 cm3 of Li et al. [94] [see their Eq. (43)].
The cosmological constraints corresponding to the bounds
of Eq. (118) are illustrated in Fig. 9.
The approach of Li et al. [94] is more general than ours

because they make precisely the matching between the slow
oscillation regime and the fast oscillation regime. This allows
them to obtain precise bounds on m and as from BBN.
We can, however, obtain a bound on m by the following
(rough) argument. We require that the stiff matter era is
over at the beginning of the neutron-proton ratio freeze-out
an=p ∼ 10−10, i.e., when BBN begins. This leads to the
constraint av ≤ an=p. Using Eq. (94), we obtain the condition

m
eV=c2

≥
6.17 × 10−31

an=p

�
fm
as

�
1=6
�

m
eV=c2

�
1=2

: ð120Þ

Combining this equation with Eq. (119), we obtain the
constraint

m ≥ 1.75 × 10−21 eV=c2 ðapproxÞ ð121Þ
which is very close to the exact constraint m ≥ 2.4 ×
10−21 eV=c2 obtained by Li et al. [94].
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In conclusion, we confirm the important results of Li
et al. [94]. An interest of our approach is that we obtain all
the relevant quantities analytically, so we can understand
better where they come from. This also allows us to play
more easily with the parameters. The case of a SF at
nonzero temperature (TSF ≠ 0) will be considered in a
future work [107].
Remark: As shown by Li et al. [94], cosmological

constraints from CMB and BBN exclude the possibility that
the bosons are noninteracting. Indeed, according to the
inequality of Eq. (119) resulting from the constraint (118)
coming from BBN, the SF must be self-interacting. If we
ignore the constraint (118), take as ¼ 0, and impose the
constraint avð0Þ ≤ an=p, we find from Eq. (92) that
m ≥ 7.38 × 10−19 eV=c2. This cosmological constraint is
in contradictionwith the astrophysical constraint of Eq. (D3).
This confirms that the SF must be self-interacting.

IV. THE CASE OF A QUARTIC POTENTIAL WITH
A NEGATIVE SCATTERING LENGTH

We now consider the case of a SF with a negative
scattering length as < 0 corresponding to an attractive self-
interaction. This is the case, for example, of the axion field
that has been proposed as a dark matter candidate.

A. The basic equations

The equations of the problem are

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8πjasjℏ2

m3c2
ρ

s
¼ Qm

a3
; ð122Þ

3H2

8πG
¼ ρ

�
1 −

6πjasjℏ2

m3c2
ρ

�
; ð123Þ

ϵ ¼ ρc2
�
1 −

6πjasjℏ2

m3c2
ρ

�
; ð124Þ

P ¼ −
2πjasjℏ2

m3
ρ2; ð125Þ

w ¼ − 2πjasjℏ2
m3c2 ρ

1 − 6πjasjℏ2
m3c2 ρ

; ð126Þ

Etot ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8πjasjℏ2

m3c2
ρ

s
: ð127Þ

Solving Eq. (124) for ρ, we find two acceptable solutions

ρ ¼ m3c2

12πjasjℏ2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

24πjasjℏ2

m3c4
ϵ

s !
: ð128Þ

Substituting Eq. (128) into Eq. (125), we obtain the EOS

P ¼ −
m3c4

72πjasjℏ2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

24πjasjℏ2

m3c4
ϵ

s !2

: ð129Þ

B. The evolution of the parameters with
the scale factor a

The evolution of the pseudo rest-mass density ρ with the
scale factor a is plotted in Fig. 10. The curve ρðaÞ has two
branches. These two branches start from the same point
corresponding to the minimum scale factor

ai ¼
�
12

ffiffiffi
3

p
πjasjℏ2Q
m2c2

�1=3

ð130Þ
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FIG. 9. Evolution of the fraction of the energy density of each
component (standard radiation, SF, baryons, DE) during the fast
oscillation regime of the SF (see Appendix E 3). We have taken
the values of ðm; asÞ corresponding to the fiducial model of
Li et al. [94] (full lines). The dashed and dotted lines correspond
to the models leading to the bounds of Eq. (118). In this figure, a
is the true scale factor (not ~a). Figure 3 of Li et al. [94] is more
general since it takes into account the stiff matter era that prevails
for a≲ 10−10.
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FIG. 10. Pseudo rest-mass density ρ as a function of the scale
factor a.
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and to the density

ρi ¼
m3c2

12πjasjℏ2
: ð131Þ

For a → ai:

ρ≃ ρi

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
a
ai

− 1

�s #
: ð132Þ

On the “normal” branch (sign −), the pseudo rest-mass
density decreases as the scale factor increases and asymp-
totically tends to 0. For a → þ∞:

ρ ∼
Qm
a3

: ð133Þ

On the “peculiar” branch (sign þ), the rest-mass density
increases as the scale factor increases9 and asymptotically
tends to a maximum density

ρΛ ¼ m3c2

8πjasjℏ2
: ð134Þ

For a → þ∞:

ρ≃ ρΛ

�
1 −

�
8πQjasjℏ2

m2c2a3

�
2
�
: ð135Þ

The evolution of the energy density ϵ with the scale
factor a is plotted in Fig. 11. It starts at a ¼ ai from

ϵi ¼
1

2
ρic2 ¼

m3c4

24πjasjℏ2
: ð136Þ

For a → ai:

ϵ≃ ϵi

�
1 −

�
ρ

ρi
− 1

�
2
�

≃ ϵi

�
1 − 2

�
a
ai

− 1

�
� 4

ffiffiffi
2

p

3

�
a
ai

− 1

�
3=2
�
: ð137Þ

On the normal branch, the energy density decreases as the
scale factor increases and asymptotically tends to 0. For
a → þ∞:

ϵ ∼ ρc2 ∼
Qmc2

a3
: ð138Þ

On the peculiar branch, the energy density decreases as the
scale factor increases and asymptotically tends to a mini-
mum density given by

ϵΛ ¼ 1

4
ρΛc2 ¼

m3c4

32πjasjℏ2
: ð139Þ

For a → þ∞:

ϵ≃ 3

4
ρΛc2 −

1

2
ρc2 ≃ ϵΛ

�
1þ 2

�
8πQjasjℏ2

m2c2a3

�
2
�
: ð140Þ

The evolution of the pressure P with the scale factor a is
plotted in Fig. 12. The pressure is always negative. It starts
at a ¼ ai from

Pi ¼ −
1

6
ρic2 ¼ −

m3c4

72πjasjℏ2
¼ − εi

3
: ð141Þ

For a → ai:

P≃ Pi

�
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ϵ

ϵi

r �
≃ Pi

"
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
a
ai

− 1

�s #
:

ð142Þ
On the normal branch, the pressure increases as the
scale factor increases and asymptotically tends to 0. For
a → þ∞:

P ∼ −
2πjasjℏ2

m3c4
ϵ2 ∼ −

2πjasjℏ2Q2

ma6
≃ 0: ð143Þ
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FIG. 11. Energy density ϵ as a function of the scale factor a.
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FIG. 12. Pressure P as a function of the scale factor a.

9Although the pseudo rest-mass density increases with the
scale factor, the Universe is not phantom, contrary to our claim in
Ref. [77]. Indeed, as shown below, the energy density ϵ always
decreases with the scale factor a, even on the peculiar branch.
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On the peculiar branch, the pressure decreases as the scale
factor increases and asymptotically tends to the minimum
value

PΛ ¼ −ϵΛ: ð144Þ

For a → þ∞:

P≃ ϵ − 2ϵΛ ≃ −ϵΛ
�
1 − 2

�
8πQjasjℏ2

m2c2a3

�
2
�
: ð145Þ

The relationship between the pressure and the energy
density is plotted in Fig. 13. The normal branch corre-
sponds to 0 ≤ ρ ≤ ρi, 0 ≤ ϵ ≤ ϵi, and Pi ≤ P ≤ 0. The
peculiar branch corresponds to ρi ≤ ρ ≤ ρΛ, ϵΛ ≤ ϵ ≤ ϵi,
and PΛ ≤ P ≤ Pi.
The evolution of the EOS parameter w ¼ P=ϵ with the

scale factor a is plotted in Fig. 14. The EOS parameter is
always negative. It starts at a ¼ ai from

wi ¼ −
1

3
: ð146Þ

For a → ai:

w≃ −
1

3

"
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
a
ai

− 1

�s #
: ð147Þ

On the normal branch, w increases as the scale factor
increases and asymptotically tends to 0. For a → þ∞:

w ∼ −
2πjasjℏ2Q
m2c2a3

: ð148Þ

On the peculiar branch, w decreases as the scale factor
increases and asymptotically tends to

wΛ ¼ −1: ð149Þ

For a → þ∞:

w≃ −1þ 4

�
8πQjasjℏ2

m2c2a3

�
2

: ð150Þ

The total energy Etot=mc2 starts at a ¼ ai from

ðEtotÞi
mc2

¼ 1ffiffiffi
3

p : ð151Þ

For a → ai:

Etot

mc2
≃ 1ffiffiffi

3
p ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�
a
ai

− 1

�s
: ð152Þ

On the normal branch, Etot=mc2 increases as the scale
factor increases and asymptotically tends to 1. For
a → þ∞:

Etot

mc2
≃ 1 −

4πjasjℏ2Q
m2c2a3

: ð153Þ

On the peculiar branch, Etot decreases as the scale factor
increases and asymptotically tends to 0. For a → þ∞:

Etot

mc2
≃ 8πQjasjℏ2

m2c2a3
: ð154Þ

C. The temporal evolution of the parameters

In this section, we determine the temporal evolution of
the parameters assuming that the Universe contains only
the SF. For a quartic potential with as < 0, the differential
equation (24) becomes

�
dρ
dt

�
2

¼ 24πGρ3
ð1 − 6πjasjℏ2

m3c2 ρÞð1 − 8πjasjℏ2
m3c2 ρÞ2

ð1 − 12πjasjℏ2
m3c2 ρÞ2

: ð155Þ
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FIG. 13. Pressure P as a function of the energy density ϵ.
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FIG. 14. EOS parameter w as a function of the scale factor a.
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The solution of this differential equation which takes the
value ρi at t ¼ 0 is

Z
1=6

2πjas jℏ2
m3c2

ρ

ð1 − 6xÞdx
x3=2ð1 − 3xÞ1=2ð1 − 4xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Gm3c2

jasjℏ2

s
t: ð156Þ

The integral can be computed analytically:

Z ð1 − 6xÞdx
x3=2ð1 − 3xÞ1=2ð1 − 4xÞ

¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

x

r
þ 2 ln

�
2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3x
p þ 3

ffiffiffi
x

p

2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
− 3

ffiffiffi
x

p
�

þ 2 ln
�
1 − 2

ffiffiffi
x

p
1þ 2

ffiffiffi
x

p
�
: ð157Þ

From these equations, we can obtain the temporal evolu-
tion of the pseudo rest-mass density ρðtÞ. Then, using
Eqs. (122)–(127), we can obtain the temporal evolution of
all the parameters. The temporal evolution of the scale factor
a is plotted in Fig. 15. It starts from a ¼ ai at t ¼ 0 and
increases toþ∞ as t → þ∞ on the two branches.We do not
show the other curves because they can be easily deduced
from Figs. 10, 11, 12 and 14 since a is a monotonic function
of time on the two branches. However, we provide below the
asymptotic behaviors of all the parameters.
For t → 0:

a≃ ai

�
1þ

�
4πGρi

3

�
1=2

t� 4
ffiffiffi
2

p

15

�
4πGρi

3

�
5=4

t5=2
�
;

ð158Þ

ρ ¼ ρi

�
1�

�
16πGρi

3

�
1=4 ffiffi

t
p �

; ð159Þ

ϵ≃ ϵi

�
1 − 2

�
4πGρi

3

�
1=2

t

�
; ð160Þ

P≃ Pi

�
1� 2

�
16πGρi

3

�
1=4 ffiffi

t
p �

; ð161Þ

w≃ −
1

3

�
1� 2

�
16πGρi

3

�
1=4 ffiffi

t
p �

; ð162Þ

Etot

mc2
≃ 1ffiffiffi

3
p ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

�
a
ai

− 1

�s
: ð163Þ

On the normal branch, for t → þ∞:

a ∼ ð6πGQmt2Þ1=3; ð164Þ

ρ ∼
1

6πGt2
; ð165Þ

ϵ ∼
c2

6πGt2
; ð166Þ

P ∼ −
jasjℏ2

18πm3G2t4
; ð167Þ

w ∼ −
jasjℏ2

3m3c2Gt2
; ð168Þ

Etot

mc2
∼ 1 −

2jasjℏ2

3m3c2Gt2
: ð169Þ

On the peculiar branch, for t → þ∞:

a ∼
�
8πQjasjℏ2

m2c2

�
1=3

e−A=12e−1=6eð23πGρΛÞ1=2t; ð170Þ

where

A ¼ −2
ffiffiffi
3

p
þ 2 ln

�ð2 ffiffiffi
6

p þ ffiffiffi
3

p þ 3Þð ffiffiffi
6

p
− 2Þ

ð2 ffiffiffi
6

p þ ffiffiffi
3

p
− 3Þð ffiffiffi

6
p þ 2Þ

�
: ð171Þ

Numerically, A ¼ −6.09802…. The other parameters con-
verge towards their asymptotic values determined in
Sec. IV B exponentially rapidly.
Remark: If we assume that the Universe contains only a

SF with an attractive self-interaction, and if we assume that
the fast oscillation regime is always valid (see, however,
Sec. IV E), we find that the Universe emerges from an
initial state in which the scale factor is nonzero and the
energy density is finite. This initial state is nonsingular for
what concerns the values of ρi, ϵi and ai. However, it is
singular because the time derivative of the pseudo rest-mass
density ρ is infinite: _ρi ¼ ∞. This is different from the big
bang singularity in which the scale factor vanishes and the
energy density is infinite. There are important claims that
support the idea of a nonsingular Universe, one example
being the case of bouncing Universes where the big bang is
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FIG. 15. Temporal evolution of the scale factor a.
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taken as the beginning of a period of expansion that
followed a period of contraction. These kinds of behaviors
are often referred to as a (nonsingular) big crunch followed
by a (nonsingular) big bang, or more simply, a big bounce
[108–110] (see also [91] in a different context). Our
solution valid for t ≥ 0 can be extended to t ≤ 0 by
symmetry leading to a big bounce. However, this assumes
that the Universe contains only the SF although this is not
the case in reality.

D. The different eras

In the fast oscillation regime, a SF with an attractive self-
interaction (as < 0) undergoes two distinct eras. It emerges
from an initial state where the scale factor ai is nonzero and
the energy density ϵi is finite. The SF does not exist before
ai (see, however, the limitations of our approximations in
Sec. IV E). For a → ai, the EOS parameter tends to
wi ¼ −1=3. This value is the same as for a gas of cosmic
strings10 described by the EOS P ¼ −ϵ=3. The EOS
parameter w ¼ −1=3 marks the transition between accel-
erating and decelerating Universes. Indeed, for the EOS
P ¼ −ϵ=3, using the Friedmann equations (4) and (5), we
find that ϵ ¼ ϵs;0=a2 so that the scale factor increases
linearly with time as a ¼ ð8πGϵs;0=3c2Þ1=2t. In our model,
the evolution of the scale factor is different but we note that
the leading term in Eq. (158) valid for short times also
scales linearly with t. Therefore, it is possible that the early
evolution of our model shares some analogies with a gas of
cosmic strings. At later times, two evolutions are possible.
The normal branch is asymptotically similar to the evolu-
tion of a pressureless Universe like in the EdS model.
Indeed, for a → þ∞, the EOS (129) reduces to Eq. (143)
and the EOS parameter tends to 0 [see Eq. (148)] so the SF
behaves essentially as pressureless DM (dust) with an EOS
P ¼ 0.11 In that case, the scale factor increases algebrai-
cally with time like a ∝ t2=3. On the other hand, the
peculiar branch is asymptotically similar to the evolution
of a de Sitter Universe. Indeed, the energy density tends to a

constant given by Eq. (139) and the EOS parameter tends to
wΛ ¼ −1 [see Eq. (149)] similar to the EOS parameter of
DE with an EOS P ¼ −ϵ [see Eq. (144)]. In that case, the
scale factor increases exponentially rapidly with time like
a ∝ eð2πGρΛ=3Þ1=2t. Therefore, the SF undergoes a cosmic
stringlike era (w ¼ −1=3) followed by a matterlike era
(w ¼ 0) on the normal branch or a de Sitterlike era
(w ¼ −1) on the peculiar branch. On the normal branch,
since w ≥ −1=3, the Universe is always decelerating.
On the peculiar branch, since w ≤ −1=3, the Universe is
always accelerating. In conclusion, a SF with an attractive
self-interaction behaves at early times as a gas of cosmic
strings and at late times as DM (normal branch) or as DE
(peculiar branch). We note that the cosmic stringlike era
and the peculiar branch are due to the attractive self-
interaction of the SF.
In the fast oscillation regime, the SF exists only for

a > ai where ai is given by Eq. (130). Using Eq. (81)
relying on the expression (E12) of the charge of the SF,12

we can obtain ai ¼ ð6 ffiffiffi
3

p Þ1=3a� as a function of the ratio
as=m3. In order to be consistent with the observations, we
must require that ai ≪ aeq ¼ 2.95 × 10−4. Using Eq. (E9),
we obtain the constraint

jasj
m3

≪
c4Ω3

r;0

12
ffiffiffi
3

p
πℏ2ϵ0Ωdm;0Ω3

m;0

: ð172Þ

Introducing proper normalization, we get

jasj
fm

�
eV=c2

m

�
3

≪ 8.00 × 106: ð173Þ

For a QCD axion field [see Eq. (D17)], we obtain ðjasj=fmÞ
ððeV=c2Þ=mÞ3 ¼ 5.8 × 10−26 and ai ¼ 5.69 × 10−15. For
an ultralight axion [see Eq. (D19)], we obtain ðjasj=fmÞ
ððeV=c2Þ=mÞ3¼1.06×103 and ai¼1.50×10−5. Therefore,
the constraint ai ≪ aeq is verified.
We can estimate the transition between the cosmic

stringlike era and the matterlike era (normal branch) or
the de Sitter-like era (peculiar branch) of the SF as follows.
First of all, using Eqs. (122) and (126), we find that the
scale factor corresponding to a value w of the EOS
parameter is

a ¼
�
2πjasjℏ2Q

m2c2

�
1=3 ð1 − 3wÞ1=2

jwj1=3ð1þ wÞ1=6 : ð174Þ

Interestingly, this equation provides an analytical expres-
sion of the function aðwÞ, the inverse of the function wðaÞ
plotted in Fig. 14. If we consider that the transition between

10Cosmic strings are a type of topological defects which may
have formed during a symmetry breaking phase transition in the
early Universe. The phase transitions leading to the production of
cosmic strings are likely to have occurred during the earliest
moments of the Universe’s evolution, just after cosmological
inflation, and are a fairly generic prediction in both quantum field
theory and string theory models of the early Universe [111–113].

11As explained in footnote 5, the pressure of the SF is nonzero
but since P ∝ −ϵ2 ≪ ϵ for ϵ → 0, everything happens at large
scales as if the Universe were pressureless. However, the nonzero
pressure of the SF is important at the scale of DM halos. Contrary
to a repulsive self-interaction that stabilizes the halos, an
attractive self-interaction has the tendency to destabilize the
halos. Stable halos with as < 0 can exist only below a maximum
mass [70,99,100]. For QCD axions, this mass is too small to
account for the mass of DM halos. It becomes of the order of DM
halos in the case of ultralight axions with a very small self-
interaction (see [70,99,100] and Appendix D).

12In principle, this expression is only valid for the SF on
the normal branch which asymptotically behaves as DM. The
SF on the peculiar branch which behaves as DE is treated in
Sec. IV G.
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the cosmic stringlike era and the matterlike era of the SF

corresponds to wðNÞ
t ¼ −1=6 (the arithmetic mean of

w ¼ −1=3 and w ¼ 0), we obtain

aðNÞt

ai
¼

ffiffiffi
3

p

21=351=6
¼ 1.05129…: ð175Þ

Similarly, if we consider that the transition between the
cosmic stringlike era and the de Sitter-like era of the SF
corresponds to wðPÞ

t ¼ −2=3 (the arithmetic mean of
w ¼ −1=3 and w ¼ −1), we obtain

aðPÞt

ai
¼

ffiffiffi
3

p

22=3
¼ 1.09112…: ð176Þ

The transition scales aðNÞt and aðPÞt are very close to ai so
that the duration of the cosmic stringlike era is extremely
short. On the other hand, for QCD and ultralight axions, the
transition scales aðNÞt and aðPÞt are below aeq ¼ 2.95 × 10−4

by several orders of magnitude so that, at the equality
epoch, the axionic SF already behaves as DM (normal
branch) or DE (peculiar branch).

E. Validity of the fast oscillation regime

The previous results are valid in the fast oscillation
regime ω ≫ H. In this section, we determine the domain of
validity of this regime.
In terms of dimensionless variables, the conditionω ≫ H

can be expressed by Eq. (83) where σ is given by Eq. (84) in
which as is replaced by jasj. The dimensionless variables ~E2

tot
and ~ϵ are plotted as a function of ~a in Fig. 16. Their ratio
~E2
tot=~ϵ is plotted as a function of ~a in Fig. 17. The intersection

of this curve with the line ~E2
tot=~ϵ ¼ 1=σ determines the

domain of validity of the fast oscillation regime.
We first consider the normal branch. Since ~E2

tot (corre-
sponding to ω2) increases with the scale factor a up to 1

while ~ϵ (corresponding to H2) decreases to 0, the fast
oscillation regime ~E2

tot ≫ ~ϵ=σ (corresponding to ω ≫ H)
will be valid for any a ≥ ai if it is valid at a ¼ ai.
Since ð ~E2

totÞi ¼ 1=3 and ~ϵi ¼ 1=12, we find that the fast
oscillation regime is valid for any a ≥ ai when

σ >
1

4
; i:e:; jasj >

Gm
3c2

¼ 1

6
rS: ð177Þ

When σ < 1=4, the fast oscillation regime starts to be valid
for a ≫ a0v with

a0v ¼
�
2πjasjℏ2Q

m2c2

�
1=3

g

�
3jasjc2
4Gm

�
; ð178Þ

where the function gðσÞ is defined by

gðσÞ ¼ 1

r1=3ð1 − 4rÞ1=6 ð179Þ

with

r ¼ 4σ þ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4σ þ 1Þ2 − 12σ

p
6

: ð180Þ

For σ → 0:

gðσÞ ∼ 1

σ1=3
: ð181Þ

For σ → þ∞:

gðσÞ ∼ 24=3σ1=6: ð182Þ

The function gðσÞ takes its minimum value gmin ¼
21=3

ffiffiffi
3

p ≃ 2.18225… at σ ¼ 1=4. These asymptotic results
can be written more explicitly by restoring the original
variables. When as ¼ 0, we find that a0v is given by Eq. (91)
corresponding to the beginning of the fast oscillation
regime in the noninteracting case. When jasj ¼ rS=6, we
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FIG. 16. Graphical construction determining the validity of the
fast oscillation regime. The transition scale a0v corresponds to the
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get a0v ¼ ai. When jasj ≥ rS=6, the fast oscillation regime
is valid for any a ≥ ai.

13 We may wonder what happens to
the SF in the early Universe, before the fast oscillation
regime. Is there a stiff matter era? Does the stiff matter era
exist for any value of as < 0? A stiff matter era must exist
in the early Universe if jasj is sufficiently small since it
exists during a finite period of time 0 ≤ a ≤ avð0Þ when
jasj ¼ 0 and it cannot disappear suddenly when as < 0.
In Sec. V we argue that the stiff matter era exists for
ai ≤ a ≤ a0v when jasj ≤ rS=6 and does not exist anymore
when jasj ≥ rS=6. We also argue that, in the very early
Universe, for 0 ≤ a ≤ ai, the SF undergoes an inflation
era. However, in order to investigate these regimes, we need
to solve the exact equations (10)–(12), taking quantum
terms into account. This study would be particularly
important to determine the duration of the inflation era
(if there is really one), and its connection to the stiff matter
era when jasj ≤ rS=6 or its connection to the matter era
when jasj ≥ rS=6 (in particular, the inflation era is expected
to stop long before ai). However, this study is beyond the
scope of this paper.
We now consider the peculiar branch. Since ~E2

tot (corre-
sponding toω2) decreases to 0 with the scale factor awhile ~ϵ
(corresponding to H2) decreases to ~ϵΛ ¼ 1=16, the fast
oscillation regime ω ≫ H is not valid for large a. If
σ < 1=4, the fast oscillation regime is never valid. If
σ > 1=4, the fast oscillation regime is only valid for a ≪
a0v wherea0v is given byEq. (178). The asymptotic results can
bewritten more explicitly by restoring the original variables.
When jasj ≤ rS=6, the fast oscillation regime is never valid.
When jasj ¼ rS=6, we get a0v ¼ ai. When jasj ≫ rS:

a0v ≃
�
768π2jasj3ℏ4Q2

Gm5c2

�
1=6

: ð183Þ

Using the expression of the charge given by Eq. (E12) (see,
however, footnote 12), and introducing proper normaliza-
tions, we obtain

a0v ≃ 1.55 × 102
�
as
fm

�
1=2
�
eV=c2

m

�
7=6

: ð184Þ

This value corresponds to the end of the fast oscillation
regime in the strongly self-interacting regime. We may

wonder what happens to the SF in the early (a < ai) and
late (a > a0v) Universewhen the fast oscillation regime is not
valid. In that case, we have to take quantum mechanics into
account and solve the exact equations (10)-(12). This is
beyond the scope of the present paper but we can make the
following remarks:

(i) It is shown in Sec. V C that the peculiar branch
requires very particular initial conditions, so it is not
clear how it can be connected to another, more
primordial, era before ai. Probably, the SF emerges
suddenly at a nonzero scale factor ai whose exact
value may be affected by quantum mechanics as
discussed in footnote 13.

(ii) It is argued in Sec. V C that the de Sitter regime stops
after a0v and that the SF eventually enters in a
matterlike era (so that the Universe passes from
acceleration to deceleration). In between, quantum
mechanics must be taken into account. It is curious,
but not excluded, that quantum mechanics (i.e., the
quantum potential) becomes important at late times,
after a0v.

F. Phase diagrams

We can represent the previous results on a phase diagram
(see Figs. 18 and 19) where we plot the transition scales a0v,
ai, a

ðNÞ
t and aðPÞt as a function of the scattering length as.

To that purpose, it is convenient to normalize the scale
factor a by the reference value avð0Þ given by Eq. (91) that
is independent of as. The scattering length jasj can be
normalized by the effective Schwarzschild radius rS using
the parameter σ ¼ 3jasj=2rS defined by Eq. (84). With
these normalizations, the scale ai marking the emergence
of the SF is given by

ai
avð0Þ

¼ ð6
ffiffiffi
3

p
σÞ1=3: ð185Þ
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FIG. 18. Phase diagram (mainly hypothetical) showing the
different eras of the SF during the evolution of the Universe as a
function of the scattering length of the bosons in the case of an
attractive self-interaction (normal branch).

13Actually, the fast oscillation condition ω ≫ H is a necessary
but not a sufficient condition for the validity of Eqs. (122)–(127).
We must also require that ω ≫ _ρ=ρ (see Appendix A). This
condition is never realized by the solution of Eqs. (122)–(127)
close to ai since _ρi is infinite. This means that Eqs. (122)–(127)
are never valid close to ai, even when ω ≫ H. If we remember
that Eqs. (122)–(127) are obtained from the exact equations (10)-
(12) by neglecting the terms involving ℏ (see Sec. II D), i.e. by
neglecting the quantum potential, we come to the conclusion that
quantum mechanics is important at early times and must be taken
into account. In particular, it will prevent the divergence of _ρ at ai
and regularize the evolution of the SF in the early Universe.
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It increases as jasj1=3 according to Eq. (130). It starts from 0
at as ¼ 0 and takes the value ai ¼ ð ffiffiffi

3
p

=21=3Þavð0Þ at
jasj ¼ rS=6. Therefore, the SF appears later when jasj is
larger. On the other hand, the transition scale a0v determin-
ing the beginning (normal branch) or the end (peculiar
branch) of the fast oscillation regime is given by

a0v
avð0Þ

¼ gðσÞσ1=3: ð186Þ

For σ ¼ 0:

a0v
avð0Þ

¼ 1: ð187Þ

For σ ¼ 1=4:

a0v
avð0Þ

¼
ffiffiffi
3

p

21=3
≃ 1.37: ð188Þ

For σ → þ∞:

a0v
avð0Þ

∼ 24=3σ1=2: ð189Þ

The transition scale a0v starts from the value avð0Þ given
by Eq. (91) for as ¼ 0, increases slowly up to ai ¼
ð ffiffiffi

3
p

=21=3Þavð0Þ when jasj ¼ rS=6, and increases like
jasj1=2 according to Eq. (183) for jasj ≫ rS.
We can now describe the phase diagrams. We first

consider the normal branch (see Fig. 18). When
jasj ¼ 0, the SF experiences a stiff matter era for 0 ≤ a ≤
avð0Þ (slow oscillation regime) and a matterlike era for
a ≥ avð0Þ (fast oscillation regime). When 0 < jasj < rS=6,
the SF experiences an inflation era for 0 ≤ a ≤ ai, a stiff
matter era for ai ≤ a ≤ a0v (slow oscillation regime) and a
matterlike era for a ≥ a0v (fast oscillation regime). When
jasj ≫ rS=6, the SF experiences an inflation era for

0 ≤ a ≤ ai, a cosmic stringlike era for ai ≤ a ≤ aðNÞt and

a matterlike era for a ≥ aðNÞt . We now consider the peculiar
branch (see Fig. 19). When jasj < rS=6, the fast oscillation
regime is never valid. When jasj > rS=6, the SF appears
suddenly at ai (presumably). It experiences a cosmic

stringlike era for ai ≤ a ≤ aðPÞt and a de Sitter-like era,
equivalent to an effective cosmological constant Λeff (see

Sec. IVG), for aðPÞt ≤ a ≤ a0v. For a > a0v, the fast oscil-
lation regime is not valid and the behavior of the SF is
unknown. It may finally enter in a matterlike era (see
Sec. V C).
Let us make a numerical application. For a QCD

axion field [see Eq. (D17)], we obtain σ ¼ 3.29 × 1014

and a0v ¼ 1.73 × 10−12 ¼ 304ai. For an ultralight axion
[see Eq. (D19)], we obtain σ ¼ 2.87 × 107 and a0v ¼
3.03 × 10−4 ¼ 20.2ai. Since σ ≫ 1=4, the SF is strongly
self-interacting and the fast oscillation regime is always
valid on the normal branch (see, however, footnote 13).
By contrast, the fast oscillation regime is valid on the
peculiar branch only in a very small range of scale factors.
Remember, however, that the expression of the charge
(E12) used in the calculations is valid only for the normal
branch (see footnote 12) so the numerical application may
not be relevant for the peculiar branch (the peculiar branch
is treated in the next section).

G. Effective cosmological constant

A striking, and relatively mysterious, result of our study is
the discovery that, under certain conditions, a complex SF
with an attractive self-interactionmay behave as DE. Indeed,
on the peculiar branch of Fig. 11, the energy density
asymptotically tends to a constant ϵΛ. Furthermore, the final
value of the energy density is not very different from its initial
value ϵi. According to Eqs. (136) and (139), we have
ϵΛ ¼ ð3=4Þϵi. Therefore, a SF with a negative scattering
length naturally generates a cosmological model with an
approximately constant energy density ∼ϵΛ. This may be a
physical mechanism to produce a cosmological constant
leading to a de Sitter evolution in which the scale factor
increases exponentially rapidlywith time.14 This exponential
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FIG. 19. Same as Fig. 18 for the peculiar branch.

14Usually, one accounts for DE (or for a cosmological
constant) by adding a constant term V0 ¼ ϵΛ, called the vacuum
energy, in the SF potential Vðjφj2Þ. This introduces a constant
term þϵΛ in the energy density ϵ and a constant term −ϵΛ in the
pressure P. However, particle physics predicts that the vacuum
energy is of the order of the Planck energy that differs from 123
orders of magnitude from the cosmological energy. This is the
cosmological constant problem [28–30]. Our model is very
different in this respect since V0 is equal to zero. Our effective
cosmological constant comes from the properties of a complex
SF with an attractive self-interaction that can maintain an almost
constant energy density because of the centrifugal force resulting
from its fast rotation (see Sec. V and Appendix A). This solution
corresponds to a particular case of spintessence [97]. There is no
such solution for a real SF, nor for a repulsive self-interaction.
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growth of the scale factor may account for the early inflation
or for the late acceleration of the Universe. Furthermore, the
attractive self-interaction of the bosons (as < 0) could justify
that the pressure is negative during these periods and that
w≃ −1. In this section, we try to constrain the parameters of
the SF in order to make the value of the effective cosmo-
logical constant consistent with observations. This section is
highly speculative so that only orders of magnitude will be
considered.
The asymptotic value of the energy density of a SF

with an attractive self-interaction (as < 0) on the peculiar
branch is

ϵΛ ¼ m3c4

32πjasjℏ2
: ð190Þ

On the other hand, the energy density produced by a
cosmological constant Λ is

ϵΛ ¼ Λc2

8πG
: ð191Þ

Comparing Eqs. (190) and (191), we find that a SF with
an attractive self-interaction is equivalent to an effective
cosmological constant

Λ ¼ Gm3c2

4jasjℏ2
: ð192Þ

In the very early Universe, the cosmological constant
may account for the phase of inflation. In that case, the
energy density is of the order of the Planck energy density
ϵP ¼ ρPc2 where ρP ¼ c5=ℏG2 ¼ 5.16 × 1099 gm−3.
Substituting this value into Eq. (190), we obtain

jasj
m3

¼ c2

32πℏ2ρP
¼ G2

32πℏc3
: ð193Þ

Introducing proper normalizations, we get

jasj
fm

�
eV=c2

m

�
3

¼ 8.83 × 10−107: ð194Þ

In the late Universe, the cosmological constant may
account for the phase of acceleration (ΛCDM model). In
that case, the energy density is equal to the cosmological
density ϵΛ ¼ΩΛ;0ϵ0¼ 5.25×10−7 gm−1 s−2 where ΩΛ;0 ¼
0.687 is the present fraction of DE and ϵ0 ¼ 3c2H2

0=8πG ¼
7.64 × 10−7 gm−1 s−2 is the present energy density of the
Universe. We introduce ρΛ ¼ ϵΛ=c2 ¼ 5.84 × 10−24 gm−3.
Substituting this value into Eq. (190), we obtain

jasj
m3

¼ c2

32πℏ2ρΛ
¼ Gc2

12ℏ2ΩΛ;0H2
0

: ð195Þ

Introducing proper normalizations, we get

jasj
fm

�
eV=c2

m

�
3

¼ 7.80 × 1016: ð196Þ

Let us make a numerical application. For a QCD axion
field [see Eq. (D17)], we obtain jasj=m3 ¼ 5.8 ×
10−26 fm=ðeV=c2Þ3 and ρΛ ¼ 7.85 × 1018 gm−3. The
value of jasj=m3 is very different from the one given by
Eqs. (194) and (196). We conclude that QCD axions cannot
account for the value of the cosmological constant during
the early inflation or the late acceleration of the Universe.
The early inflation and the late acceleration of the Universe
could be produced by another self-attractive complex SF
with a ratio jasj=m3 given by Eqs. (194) and (196).
Let us try to determine the parameters of this hypotheti-

cal SF. The value of the cosmological constant Λ associated
with the energy density ϵΛ ¼ ρΛc2 determines the ratio
jasj=m3 according to Eq. (190), i.e.,

jasj
m3

¼ c2

32πℏ2ρΛ
: ð197Þ

The beginning of the inflation era identified with ai
determines the charge of the SF according to Eq. (130).
Using Eq. (197), we get

Qm ¼ 8

3
ffiffiffi
3

p ρΛa3i : ð198Þ

Finally, the end of the inflation era identified (somehow
arbitrarily) with a0v determines the ratio jasj=m from the
relation

a0v
ai

¼ 1

ð6 ffiffiffi
3

p Þ1=3 g
�
3jasjc2
4Gm

�
ð199Þ

obtained by combining Eqs. (130) and (178). In order to
have sufficient inflation, we need a0v ≫ ai. This requires
σ ≫ 1=4 allowing us to use the approximate expression
(182) of gðσÞ. In that case, Eq. (199) gives

jasjc2
Gm

¼ 9

16

�
a0v
ai

�
6

: ð200Þ

From Eqs. (197) and (200), we obtain

m ¼ 3

4

�
a0v
ai

�
3

mΛ; jasj ¼
27

2048π

�
a0v
ai

�
9

rΛ; ð201Þ

where the mass and length scales mΛ and rΛ are defined in
Appendix G. Equation (201) determines the massm and the
scattering length as of the hypothetical SF producing the
early inflation or the late acceleration of the Universe in our
model. Their precise values depend on the ratio a0v=ai.
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V. THE TOTAL POTENTIAL

A. Spintessence

The total potential of the SF including the rest-mass term
and the self-interaction term is given by

V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 þ 2πasm

ℏ2
jφj4: ð202Þ

Using the relation from Eq. (7) between the modulus of the
SF and the pseudo rest-mass density, we can rewrite it as

V tot ¼
1

2
ρc2 þ 2πasℏ2

m3
ρ2 ¼ 1

2
ρc2
�
1þ 4πasℏ2

m3c2
ρ

�
: ð203Þ

We can study the evolution of the SF in the total potential
V totðjφj2Þ by using a mechanical analogy. To that purpose,
we write φ ¼ Reiθ where R ¼ jφj (see Appendix A). The
KG equation (A7) takes the form

1

c2
d2R
dt2

þ 3H
c2

dR
dt

¼ −
dV tot

dR
þ Rω2 ð204Þ

with

ω2 ¼ Q2ℏ2c4

R4a6
: ð205Þ

This is similar to the equation describing the axisymmetric
motion of a damped particle in polar coordinates, where R
plays the role of the radial distance, θ the angle, and ω ¼ _θ
the angular velocity. The fictive particle is submitted to a
friction force −ð3H=c2Þ _R (Hubble drag) that tends to slow
it down, a radial force −dV tot=dR that tends to decrease R
and a centrifugal force Rω2 that tends to increase R. This
centrifugal force is a specificity of a complex SF called
spintessence [97]. For a real SF, there is just the radial force
so the SF descends the potential towards R ¼ 0 and
displays damped oscillations about it. Because of the
presence of the centrifugal force, the evolution of a
complex SF is richer. The fast oscillation regime that we
have considered corresponds to a quasistatic equilibrium
between the radial force and the centrifugal force:

dV tot

dR
¼ Rω2: ð206Þ

A complex SF has the tendency to spin with angular
velocity ω at a fixed radial distance R. However, according
to Eq. (205) the angular velocity decreases as the scale
factor increases. Therefore, the centrifugal force becomes
less and less effective as time goes on. We can nevertheless
maintain a quasistatic equilibrium at any time if dV tot=dR
decreases as the scale factor increases. As a result, the SF
moves towards an extremum of V tot, either the minimum
(when as ≥ 0 or as < 0) or the maximum (when as < 0).

We now describe more specifically the evolution of the SF
in the total potential V totðjφj2Þ for the solutions obtained
in Secs. III and IV.

B. The case as ≥ 0

When as ≥ 0, the total potential (see Fig. 20) has a single
minimum V tot ¼ 0 at jφj ¼ ρ ¼ 0. In the fast oscillation
regime studied in Sec. III, the SF descends the potential
from þ∞ to 0. The initial value of j _φji (“velocity”) is −∞
(see Appendix H).
The total potential V tot starts at a ¼ 0 from þ∞ and

decreases to 0 as a → þ∞. For a → 0:

V tot ∼
1

2
ðQ4mπasℏ2c4Þ1=3 1

a4
: ð207Þ

For a → þ∞:

V tot ∼
Qmc2

2a3
: ð208Þ

Assuming that the Universe contains only the SF and using
the results of Sec. III C, we can obtain the temporal
evolution of V tot. For t → 0:

V tot ∼
c2

32πGt2
: ð209Þ

For t → þ∞:

V tot ∼
c2

12πGt2
: ð210Þ

In the stiff matter era, corresponding to the slow
oscillation regime, using Eq. (87) of [77], we find that
the SF behaves as
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FIG. 20. Motion of the SF in the total potential V tot when
as ≥ 0. The zig-zag is a rough representation of the spiralling
motion of the SF in the (3D) potential.
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jφj ∼
�
3c4

4πG

�
1=2

ð− ln aÞ: ð211Þ

The stiff matter era precedes the radiation and matter eras.
The SF jφj starts fromþ∞ and decreases with time. The SF
descends the potential. As shown in Appendix F, the stiff
matter era (slow oscillation regime) connects smoothly the
radiation and matter eras (fast oscillation regime) at a ∼ av
where av is given by Eq. (86).

C. The case as < 0

When as < 0, the total potential (see Fig. 21) has a local
minimum V ¼ 0 at jφj ¼ ρ ¼ 0 and a maximum at

jφΛj ¼
�

mc2

8πjasj
�

1=2

; ρΛ ¼ m3c2

8πjasjℏ2
; ð212Þ

whose value is

ðV totÞΛ ¼ 1

4
ρΛc2 ¼ ϵΛ ¼ m3c4

32πjasjℏ2
: ð213Þ

In the fast oscillation regime studied in Sec. IV, the SF starts
from

jφij ¼
�

mc2

12πjasj
�

1=2

; ρi ¼
m3c2

12πjasjℏ2
; ð214Þ

corresponding to a total potential

ðV totÞi ¼
1

3
ρic2 ¼

m3c4

36πjasjℏ2
: ð215Þ

We note that jφij differs from the inflexion point
(d2V tot=djφj2 ¼ 0) of the potential given by

jφIj ¼
�

mc2

24πjasj
�

1=2

; ρI ¼
m3c2

24πjasjℏ2
; ð216Þ

corresponding to a total potential

ðV totÞI ¼
5

12
ρIc2 ¼

5m3c4

288πjasjℏ2
: ð217Þ

We find ρi¼ 2ρI, jφij ¼
ffiffiffi
2

p jφIj, and ðV totÞi ¼ ð8=5ÞðV totÞI .
On the normal branch, the SF descends the potential from
jφij to 0. The initial value of j _φji (“velocity”) is −∞ (see
Appendix H). On the peculiar branch, the SF ascends the
potential from jφij to jφΛj. The initial value of j _φji
(“velocity”) is þ∞ (see Appendix H). Since jφΛj corre-
sponds to the maximum ðV totÞΛ ¼ ϵΛ of the potential, we
understand why the SF reaches a de Sitter regime ϵ≃ ϵΛ
at late times.

It is unusual, but not impossible, that the SF ascends the
potential. In the present case, the SF ascends the potential,
and maintains an almost constant value of jφj, because of
the centrifugal force that is specific to a complex SF.
Indeed, the SF is in a quasistatic equilibrium between the
“attractive” radial force and the “repulsive” centrifugal
force [see Eq. (206)]. As the scale factor a increases, the
SF slowly moves towards the maximum of V totðjφj2Þ so as
to decrease dV tot=djφj (see Sec. VA). Therefore, the
almost constant value of jφj giving rise to a de Sitter
era and to an effective cosmological constant is a
manifestation of spintessence for a complex SF with an
attractive self-interaction. We now understand the origin
of the two branches (N) and (P) corresponding to DM
and DE. A SF with an attractive self-interaction can have
two possible evolutions because the total SF potential has
two extrema: a minimum at jφj ¼ 0 and a maximum at
jφj ¼ jφΛj. According to the discussion of Sec. VA, a SF
in quasistatic equilibrium moves towards an extremum of
V tot (see Fig. 22). If the SF starts from jφij with a velocity
j _φji ¼ þ∞ (or from jφ0j > jφij with a finite positive
velocity), it will ascend the potential towards the maxi-
mum in order to decrease dV tot=djφj. In that case, it will
behave as DE. If the SF starts from jφij with a velocity
j _φji ¼ −∞ (or from jφ0j < jφij with a finite negative
velocity), it will descend the potential towards the mini-
mum in order to decrease dV tot=djφj. In that case, it will
behave as DM. Therefore, depending on the initial
condition, the SF may behave either as DM or as DE.
Note that a SF with a repulsive self-interaction can only
have one possible evolution because the total SF potential
has only one extremum: a minimum at jφj ¼ 0. It can only
descend the potential towards the minimum in order to
decrease dV tot=djφj.
The evolution of the total potential Vtot with the scale

factor a is plotted in Fig. 23. The potential starts at a ¼ ai
from ðV totÞi. For a → ai:
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FIG. 21. Motion of the SF in the total potential V tot when
as < 0.
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V tot ≃ ρic2

3

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
a
ai

− 1

�s #
: ð218Þ

On the normal branch, the potential decreases as the scale
factor increases and asymptotically tends to 0. For
a → þ∞:

V tot ∼
Qmc2

2a3
: ð219Þ

On the peculiar branch, the potential increases as the scale
factor increases and asymptotically tends to its maximum
value ðV totÞΛ ¼ ϵΛ. For a → þ∞:

V tot ≃ ϵΛ

�
1 −

�
8πQjasjℏ2

m2c2a3

�
4
�
: ð220Þ

Assuming that the Universe contains only the SF and using
the results of Sec. IV C, we can obtain the temporal
evolution of V tot. For t → 0:

V tot ≃ ρic2

3

�
1� 1ffiffiffi

2
p
�
4πGρi

3

�
1=4

t1=2
�
: ð221Þ

On the normal branch, for t → þ∞:

V tot ∼
c2

12πGt2
: ð222Þ

On the peculiar branch, for t → þ∞, V tot converges to its
asymptotic value ϵΛ exponentially rapidly.
We now comment on the early evolution of the SF,

before the fast oscillation regime. We first consider the
normal branch. In the stiff matter era, corresponding to the
slow oscillation regime, the evolution of the SF jφj is given
by Eq. (211). It starts from þ∞ and decreases with time.
When as < 0, this solution implies that the SF should climb
the outer branch of the potential (see Fig. 21). This is very
unlikely, if not impossible (when as ¼ 0, there is no
problem because this branch is rejected at infinity). This
suggests that the stiff matter era is not valid at very early
times when as < 0. On the other hand, it is shown in
Appendix F that the stiff matter era can be connected
smoothly to the matterlike era (at av) only when jasj≲ rS
[briefly, this is because j ~φjstiff ∼ σ according to Eq. (F2) so
we need σ ≲ 1 to have j ~φjstiff ≲ j ~φji ¼ 1=

ffiffiffi
6

p
]. Therefore,

the duration of the stiff matter era should decrease as jasj
increases up to ∼rS. These results suggest that the stiff
matter era exists only for ai ≤ a ≤ a0v when jasj < rS=6
and does not exist when jasj > rS=6. We can now wonder
what happens at very early times, before ai. When as < 0,
the SF could start from the top of the potential and descend
the potential along the inner branch until it connects the
solution described previously at ai. The initial motion
0 ≤ a ≤ ai is not in the fast oscillation regime, nor in the
slow oscillation regime. Therefore, quantum mechanics
must be taken into account, and we must solve the exact
equations (10)–(12). Since the SF starts from the maximum
of the potential at ðV totÞΛ ¼ ϵΛ, the initial motion of the SF
corresponds to a phase of inflation with a constant energy
density given by Eq. (190). In our model, the inflation era is
due to the negative scattering length of the SF (as < 0).
This could give a physical justification of why the pressure
is negative during inflation. Expanding the total potential
close to the maximum, we get

V tot ≃ ϵΛ −
m2c2

ℏ2
ðjφj − jφjΛÞ2: ð223Þ

This corresponds to an inverted jφj2 potential with an
effective mass m� ¼

ffiffiffi
2

p
m interpreted as the inflaton mass

(actually the mass is imaginary). In our model, the same SF
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FIG. 22. Temporal evolution of the complex SF (spintessence).
On the normal branch, it spirals towards the center giving rise to a
matterlike era. On the peculiar branch, it reaches a limit cycle
giving rise to a de Sitter era.
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FIG. 23. Total SF potential V tot as a function of the scale factor
a when as < 0.
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describes the inflation in the early Universe (top of the
potential) and the formation of DM halos in the matterlike
era (bottom of the potential). In order to account for the size
of DM halos, a SF with an attractive self-interaction must
have a mass given by Eq. (D3) and a very small scattering
length jasj satisfying the inequality (D21). If this same SF
experiences an inflation era with a constant energy density
equal to the Planck density, it must fulfill the constraint
(194). Combining Eqs. (D3) and (194), we obtain

m ¼ 2.92 × 10−22 eV=c2; as ¼ −2.20 × 10−171 fm;

ð224Þ

corresponding to λ=8π ¼ −3.26 × 10−201.
We now consider the peculiar branch. It is shown in

Appendix F that the stiff matter era can never be connected
smoothly to the peculiar branch. In addition, it is not clear
what kind of phase could appear before ai because, in the
most likely scenario, the SF should first descend the
potential (for a < ai) and suddenly reverse its motion
and ascend it (for a > ai). We conclude that, if the peculiar
branch ever makes sense, the SF should emerge suddenly
at ai from a very particular initial condition. For what
concerns its evolution after a0v, when the fast oscillation
regime ceases to be valid, we may argue that the centrifugal
force becomes inefficient to maintain an almost constant
energy density and that the de Sitter regime comes to an
end. The motion of the SF in the total potential is reversed.
The SF descends the potential, connects the normal branch
for jφj < jφij, and ultimately behaves as pressureless
matter. In that case, there will be a transition from
acceleration to deceleration in the late Universe.
However, the de Sitter regime can be sufficiently long to
be physically relevant (see Sec. IVG).

VI. CONCLUSION

In this paper, we have studied the cosmological evolution
of a complex SF with repulsive or attractive self-interaction
using a fully general relativistic treatment. The SF may be
interpreted as the wave function of a BEC. Although a SF is
generally not a fluid, it can be studied through the hydro-
dynamic representation of the KGE equations [75–79].
For a jφj4 self-interaction, the parameters of the SF are the
mass m of the bosons and their scattering length as. We
have introduced a new length scale rS ¼ 2Gm=c2, which
can be interpreted as the effective Schwarzschild radius of
the bosons. The evolution of the SF depends on how the
scattering length of the bosons as compares with their
effective Schwarzschild radius rS. Our results can be
summarized as follows.
In the case of repulsive self-interaction (as ≥ 0), we have

confirmed and complemented the results of Li et al. [94].
We have given many analytical formulas that allow us to
understand the results better and play more easily with the

parameters. When as < ð4=21ÞrS, the SF undergoes a stiff
matter era (w ¼ 1) followed by a matter era (w ¼ 0). There
is no radiationlike era, even though as > 0. For a non-
interacting SF withm ¼ 2.92 × 10−22 eV=c2, the transition
takes place at av ¼ 1.86 × 10−8. When as > ð4=21ÞrS, the
SF undergoes a stiff matter era (w ¼ 1) followed by a
radiationlike era (w ¼ 1=3), and finally a matterlike era
(w ¼ 0). For a SF with m ¼ 3 × 10−21 eV=c2 and
as ¼ 1.11 × 10−58 fm, corresponding to the fiducial model
of Li et al. [94], the transition between the stiff matter era
and the radiationlike era takes place at av ¼ 5.14 × 10−11

and the transition between the radiationlike era and the
matterlike era takes place at at ¼ 1.35 × 10−5. For a SF
with m ¼ 1.10 × 10−3 eV=c2 and as ¼ 4.41 × 10−6 fm
(see Appendix D), we get av ¼ 1.45 × 10−28 and
at ¼ 1.26 × 10−5. In both cases, the SF behaves at large
scales as pressureless matter (like the CDM model) at,
and after, the epoch of radiation-matter equality
aeq ¼ 2.95 × 10−4. However, its intrinsic nonzero pressure
(either due to the scattering of the bosons or to the quantum
potential taking into account the Heisenberg uncertainty
principle) manifests itself at small scales and can balance
the gravitational attraction. This leads to DM halos that
present a core (BEC/soliton) instead of a cusp. These cores
are surrounded by a halo with a NFW profile made of scalar
radiation resulting from gravitational cooling. Therefore, a
SF with as ≥ 0 has a lot of nice properties and is a serious
DM candidate that could solve the CDM small-scale crisis.
The case of attractive self-interaction (as < 0) has been

studied in our paper for the first time. We have found that
the SF can evolve along two different branches, a normal
branch where it behaves as DM and a peculiar branch
where it behaves as DE. We first consider the normal
branch. When jasj ¼ 0, the SF undergoes a stiff matter era
(w ¼ 1) followed by a matter era (w ¼ 0). When
0 < jasj < rS=6, the SF undergoes an inflation era, a stiff
matter era (w ¼ 1), and a matter era (w ¼ 0). The duration
of the stiff matter era decreases as the self-interaction jasj
increases. When jasj > rS=6, there is no stiff matter era
anymore. The SF undergoes an inflation era, a very short
cosmic stringlike era (w ¼ −1=3), and a matterlike era
(w ¼ 0). For QCD axions with m ¼ 10−4 eV=c2 and
as ¼ −5.8 × 10−53 m, the matterlike era starts at
ai ¼ 5.69 × 10−15. For ultralight axions with m ¼ 2.19 ×
10−22 eV=c2 and as ¼ −1.11 × 10−62 fm, we get
ai ¼ 1.50 × 10−5. In each case ai ≪ aeq ¼ 2.95 × 10−4

so the axionic SF behaves at large scales as pressureless
matter (like the CDM model) at, and after, the epoch of
radiation-matter equality. However, its intrinsic nonzero
pressure manifests itself at small scales. The quantum
pressure arising from the Heisenberg uncertainty principle
is always repulsive but the negative pressure due to the
self-interaction is attractive and adds to the gravitational
attraction. This can destabilize the halo. Stable DM halos
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exist only below a maximum mass [70,99,100]. For QCD
axions with m ¼ 10−4 eV=c2 and as ¼ −5.8 × 10−53 m
this mass Mmax ¼ 6.5 × 10−14 M⊙ is too small to account
for the mass of DM halos. Therefore, QCD axions cannot
form DM halos. They rather form mini axion stars that
could be the constituents of DM halos in the form of mini
massive compact halo objects (mini-MACHOs) [100].
However, they would essentially behave as CDM and
would not solve the CDM small-scale crisis. The maximum
mass of self-gravitating axions becomes of the order of the
mass of DM halos M ∼ 108 M⊙ in the case of ultralight
axions with a mass m ¼ 2.19 × 10−22 eV=c2 and a very
weak self-interaction as ¼ −1.11 × 10−62 fm [100]. Such
ultralight axions could solve the CDM small-scale crisis.
We now consider the peculiar branch on which the SF
behaves as DE (w ¼ −1) with an almost constant energy
density. This peculiar branch is valid only when
jasj > rS=6. It starts at ai and ceases to be valid at a0v.
On this branch, the SF is equivalent to an effective
cosmological constant given by Λeff ¼ Gm3c2=4jasjℏ2.
A complex SF with a negative scattering length could be
a new mechanism to produce a cosmological constant.
Cosmic acceleration could arise from the attractive self-
interaction term present in the SF potential. That could
justify why the pressure of DE is negative.
To our knowledge, the effective Schwarzschild radius of

the bosons rS ¼ 2Gm=c2 has not been introduced before. It
arises naturally in the equations of the problem in order to
separate the weakly self-interacting regime σ ¼ 3as=2rS ≪
1 from the strongly self-interacting regime σ ≫ 1. Actually,
for ultralight bosons with a massm ¼ 2.92 × 10−22 eV=c2,
even for a very small value of as ∼ 10−68 fm (or, equiv-
alently, for a value of the dimensionless self-interaction
constant λ=8π as small as 10−98) we are in the strongly self-
interacting regime, not in the weakly self-interacting regime
(see Sec. III H and Appendix A. 3 of [99]). This is because
σ ≫ 1 while λ ≪ 1. Therefore, it is important to take into
account the nonzero value of the self-interaction constant in
the problem even if it looks extremely small. This feature
has been overlooked in previous works that often consider a
noninteracting SF (see, e.g., [49,50]). In this connection,
we recall that the cosmological bounds obtained by Li et al.
[94] exclude noninteracting SFs.
Although observations tend to favor the ΛCDM model,

other cosmological models cannot be rejected. The SF
model is extremely rich and can have important implica-
tions concerning the nature of DM and DE in the Universe.
Therefore, SFs should be considered as serious alternatives
to find an answer to these paradigms. We have obtained
very intriguing results that deserve to be developed in
future works. For example, it is important to study what
happens at very early times, before the fast oscillation
regime, when as < 0. This requires to go beyond the TF
approximation and take into account quantum mechanics
(i.e. the quantum potential) by solving the exact

equations (10)-(12). The analytical results obtained in
the present paper, valid in the fast oscillation regime,
may be useful to make the matching with this primordial
era. An important suggestion of our work that needs to be
confirmed is that a SF with an attractive self-interaction
(as < 0) can produce a phase of early inflation followed by
a stiff matter era and/or a matter era. It is important to
determine whether this model can account for the obser-
vations because, in that case, we could describe different
phases of the Universe with a single SF (see the still
“hypothetical” phase diagrams of Figs. 18 and 19). Many
other developments are also possible. For example, we have
assumed that the SF has a jφj4 self-interaction potential and
that this potential remains the same during the whole
history of the Universe. Of course, if the SF has a different
potential Vðjφj2Þ, or if its potential changes during the
history of the Universe (for example in the very early
Universe), our conclusions must be revised. For simplicity,
we have focused on a jφj4 interaction but we could consider
more general potentials (see Appendix I). For example,
when jφj is large (early Universe), the jφj4 approximation
may not be valid anymore and higher order terms in the
expansion of the potential should be considered. We have
established the general equations to perform these studies.
They will be considered in future works.

ACKNOWLEDGMENTS

A. S. acknowledges CONACyT for the postdoctoral
grant received (No. 231276). We are also grateful to the
referees for their remarks.

APPENDIX A: THE FAST OSCILLATION
REGIME ω ≫ H FROM THE FIELD

THEORETIC APPROACH

In this Appendix, we consider the fast oscillation regime
ω ≫ H from the field theoretic approach based on the KG
equation. We generalize the results of Li et al. [94] to an
arbitrary potential of interaction Vðjφj2Þ and show the
equivalence with the hydrodynamic approach of Sec. II.

1. General equations

The KG equation for a spatially homogeneous SF is
given by Eq. (1). Decomposing the complex SF as

φ ¼ jφjeiθ; ðA1Þ

inserting this decomposition into the KG equation (1),
and separating the real and imaginary parts, we obtain

1

c2

�
d2jφj
dt2

− jφj
�
dθ
dt

�
2
�
þ 3H

c2
djφj
dt

þm2c2

ℏ2
jφj þ 2

dV
djφj2 jφj ¼ 0; ðA2Þ
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1

c2

�
2
djφj
dt

dθ
dt

þ jφj d
2θ

dt2

�
þ 3H

c2
jφj dθ

dt
¼ 0: ðA3Þ

Equation (A3) can be exactly integrated once giving

d
dt

�
a3jφj2 dθ

dt

�
¼ 0: ðA4Þ

This can be rewritten as

a3jφj2 dθ
dt

¼ −Qℏc2; ðA5Þ

where Q is the charge of the SF [77,94,98,103].
In the fast oscillation regime H ¼ _a=a ≪ dθ=dt, intro-

ducing the pulsation ω ¼ dθ=dt, Eq. (A2) reduces to

ω2 ¼ m2c4

ℏ2
þ 2c2

dV
djφj2 : ðA6Þ

As pointed out in [94], this approximation also requires that
jφj−1djφj=dt ≪ dθ=dt, a condition that is not always
satisfied. For a free field (V ¼ 0), the pulsation ω is
proportional to the mass of the SF (jωj ¼ mc2=ℏ) and
the fast oscillation condition reduces to mc2=ℏ ≫ H.
Remark: To make the link with the hydrodynamical

approach, we use jφj ¼ ðℏ=mÞ ffiffiffi
ρ

p
, θ ¼ Stot=ℏ and

ω ¼ −Etot=ℏ. Then, Eqs. (A4), (A5) and (A6) return
Eqs. (14), (15) and (20), respectively.

2. Spintessence

From Eqs. (A2) and (A5) we obtain

d2jφj
dt2

þ 3H
djφj
dt

þm2c4

ℏ2
jφj þ 2c2

dV
djφj2 jφj −

Q2ℏ2c4

a6jφj3 ¼ 0:

ðA7Þ

This equation differs from the KG equation of a real SF by
the presence of the last term and the fact that φ is replaced
by jφj. The last term coming from the “angular motion” of
the complex SF can be interpreted as a “centrifugal force”
(see Sec. VA) whose strength depends on the charge of the
complex SF [103]. Equation (A7) can be rewritten as

d2jφj
dt2

þ 3H
djφj
dt

þm2c4

ℏ2
jφj þ 2c2

dVeff

djφj2 jφj ¼ 0; ðA8Þ

where

Veffðjφj2Þ ¼ Vðjφj2Þ þQ2ℏ2c2

2a6jφj2 ðA9Þ

is an effective potential incorporating the centrifugal
potential. The presence of the centrifugal force for a

complex SF is a crucial difference with the case of a
real SF (that is not charged) because the fast oscillation
approximation (A6) corresponds to the equilibrium
between the centrifugal potential and the total SF potential:

Q2ℏ2c4

a6jφj4 ¼ m2c4

ℏ2
þ 2c2

dV
djφj2 : ðA10Þ

This is what Boyle et al. [97] call “spintessence.”
Equation (A10) is equivalent to Eq. (21). Such a relation
does not hold for a real SF. We note that jφj does not
oscillate in the fast oscillation regime when the condition
(A10) is fulfilled.

3. EOS in the fast oscillation regime

To establish the EOS in the fast oscillation regime,
Li et al. [94] proceed as follows (see also [51,84,86,88]).
Multiplying the KG equation (1) by φ� and averaging over
a time interval that is much longer than the field oscillation
period ω−1, but much shorter than the Hubble time H−1,
we obtain

1

c2

����� dφdt
����2
	

¼ m2c2

ℏ2
hjφj2i þ 2

�
dV
djφj2 jφj

2

	
: ðA11Þ

This relation constitutes a sort of virial theorem. For a
spatially homogeneous SF, the energy density and the
pressure are given by Eqs. (2) and (3). Taking the average
value of the energy density and pressure, using Eq. (A11),
and making the approximation

�
dV
djφj2 jφj

2

	
≃ V 0ðhjφj2iÞhjφj2i; ðA12Þ

we obtain

hϵi ¼ m2c2

ℏ2
hjφj2i þ V 0ðhjφj2iÞhjφj2i þ Vðhjφj2iÞ; ðA13Þ

hPi ¼ V 0ðhjφj2iÞhjφj2i − Vðhjφj2iÞ: ðA14Þ

This returns Eqs. (27) and (28). The EOS parameter is
given by

w ¼ P
ϵ
¼ V 0ðhjφj2iÞhjφj2i − Vðhjφj2iÞ

m2c2

ℏ2 hjφj2i þ V 0ðhjφj2iÞhjφj2i þ Vðhjφj2iÞ :

ðA15Þ

Remark: Writing Eqs. (A11) and (A12) with hydro-
dynamic variables, and ignoring the averages, we obtain

ℏ2

8m2c2
1

ρ

�
dρ
dt

�
2

þ
�

E
2mc2

þ 1

�
ρE
m

¼ V 0ðρÞρ: ðA16Þ
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If we substitute this equation into Eqs. (16) and (17), we
obtain Eqs. (27) and (28) without having to neglect the term
in ℏ2 in Eq. (A16). However, in order to be consistent with
Eq. (A6), which is equivalent to Eq. (18), the term in ℏ2 can
actually be neglected in Eq. (A16).

4. EOS in the slow oscillation regime: Stiff matter

For a free SF with V ¼ 0, Eqs. (2) and (3) reduce to

ϵ ¼ 1

2c2

���� dφdt
����2 þm2c2

2ℏ2
jφj2; P ¼ 1

2c2

���� dφdt
����2 −m2c2

2ℏ2
jφj2:

ðA17Þ

For massless particles (m ¼ 0) or for massive particles in
the slow oscillation regime ω ¼ mc2=ℏ ≪ H, the kinetic
term dominates the potential term (kination) and we obtain
the stiff EOS:

P ¼ ϵ: ðA18Þ

For a self-interacting SF, we find from Eqs. (2) and (3) that
the stiff EOS (A18) is valid in the slow oscillation regime
ω ≪ H where ω is defined by Eq. (A6). In that case, the SF
cannot even complete one cycle of spin within one Hubble
time so that it just rolls down the potential, without
oscillating. Therefore, the comparison of ω and H deter-
mines whether the SF oscillates or rolls. For the stiff EOS
(A18), using the Friedmann equations (4) and (5), we
easily get ϵ ∝ a−6, a ∝ t1=3, and ϵ ∼ c2=24πGt2. It is also
shown in [77] that ρ ∼ ð3m2c4=4πGℏ2Þð− ln aÞ2 and
jφj ∼ ð3c4=4πGÞ1=2ð− ln aÞ. We note that quantum effects
(quantum potential) give rise to a stiff matter era but do not
prevent the initial big bang singularity since ϵ ∼ c2=24πGt2

diverges as t → 0.

APPENDIX B: SELF-INTERACTION
CONSTANTS

In the main part of the paper, we have expressed all the
results in terms of the scattering length of the bosons as.
Instead of working with the scattering length, we can work
with the dimensionless self-interaction constant [70,99]:

λ

8π
¼ as

λC
¼ asmc

ℏ
; ðB1Þ

where λC ¼ ℏ=mc is theComptonwavelength of the bosons.
We can also introduce a dimensional self-interaction
constant

λs ¼
4πasℏ2

m
¼ λℏ3

2m2c
: ðB2Þ

Introducing proper normalizations, we get

λ

8π
¼ 5.07

as
fm

m
GeV=c2

; ðB3Þ

λs
ðmc2Þ2 ¼ 4.89 × 10−22

as
fm

�
eV=c2

m

�
3

eV−1 cm3: ðB4Þ

In the TF regime (semiclassical approximation), the results
depend on the single parameter

4πasℏ2

m3c4
¼ λℏ3

2m4c5
¼ λs

ðmc2Þ2 : ðB5Þ

APPENDIX C: DIMENSIONLESS VARIABLES

In the main part of the paper, for the sake of clarity, we
have worked with dimensional variables. However, in order
to simplify the calculations and make the figures, it can be
convenient to introduce dimensionless variables defined by

~ρ ¼ ρ

ρ�
; ρ� ¼

m3c2

2πjasjℏ2
; ðC1Þ

~a ¼ a
a�

; a� ¼
�
2πjasjℏ2Q

m2c2

�
1=3

; ðC2Þ

~t ¼ t
t�
; t� ¼

�
2πjasjℏ2

4πGm3c2

�
1=2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ�

p ; ðC3Þ

~ϵ ¼ ϵ

ϵ�
; ϵ� ¼

m3c4

2πjasjℏ2
¼ ρ�c2; ðC4Þ

~P ¼ P
P�

; P� ¼
m3c4

2πjasjℏ2
¼ ϵ�; ðC5Þ

~E ¼ E
E�

; E� ¼ mc2; ðC6Þ

~V tot ¼
V tot

ϵ�
; ~φ ¼ φ

φ�
; φ� ¼

�
mc2

2πjasj
�

1=2

: ðC7Þ

Working with the dimensionless variables ~ρ, ~a, ~t, ~ϵ, ~P and ~E
is equivalent to taking

4πG ¼ c ¼ m ¼ Q ¼ 2πjasjℏ2 ¼ 1 ðC8Þ

in the original equations.

APPENDIX D: THE PARAMETERS (m;as)
OF THE SF

In order to make numerical applications, we need to
specify the values of the massm and scattering length as of
the SF. They can be obtained by the argument developed in
Appendix D of [114]. If DM is a self-gravitating BEC, there

ABRIL SUÁREZ and PIERRE-HENRI CHAVANIS PHYSICAL REVIEW D 95, 063515 (2017)

063515-32



must be a minimum halo radius R and a minimum halo
mass M in the Universe corresponding to the ground state
of the self-gravitating BEC at T ¼ 0. This result is in
agreement with the observations. Indeed, there is no DM
halo with a radius less than R ∼ 1 kpc and a mass less than
M ∼ 108 M⊙, the typical values of the radius and mass of
dwarf spheroidal galaxies (dSph). Larger halos have a core-
halo structure with a solitonic core corresponding to a pure
BEC at T ¼ 0 and an “atmosphere” made of scalar
radiation that has an approximate Navarro-Frenk-White
(NFW) profile. It is the atmosphere, resulting from gravi-
tational cooling, that fixes their size. We shall consider a
dwarf halo of radius R ¼ 1 kpc and mass M ¼ 108 M⊙
(Fornax). Assuming that this halo represents the ground
state of a self-gravitating BEC, we can obtain constraints on
the parameters ðm; asÞ of the SF. In our previous works
[77,114], we took M ¼ 0.39 × 106 M⊙ and R ¼ 33 pc
corresponding to Willman 1 [115]. However, these values
may not be relevant because Willman 1 is usually not
considered as a DM halo [116].

1. Noninteracting SF

A self-gravitating BEC without self-interaction has the
mass-radius relation [53,99,117]15:

MR ¼ 9.95
ℏ2

Gm2
: ðD1Þ

This gives

m
eV=c2

¼ 9.22 × 10−17
�
pc
R

�
1=2
�
M⊙
M

�
1=2

: ðD2Þ

Using the values of M and R corresponding to Fornax, we
obtain a boson mass

m ¼ 2.92 × 10−22 eV=c2: ðD3Þ

We note that, inversely, the specification of m does not
determine the mass and the radius of the halo but only their
product MR.
Remark: The maximum mass of the bosonic core

(soliton) of a noninteracting SFDM halo fixed by general
relativity is Mmax ¼ 0.633ℏc=Gm and its minimum radius
is Rmin ¼ 9.53GMmax=c2 [52]. Introducing scaled varia-
bles, we get

Mmax

M⊙
¼ 8.48 × 10−11

eV=c2

m
;

Rmin

km
¼ 14.1

Mmax

M⊙
:

ðD4Þ

For m ¼ 2.92 × 10−22 eV=c2, we obtain Mmax ¼ 2.90 ×
1011 M⊙ and Rmin ¼ 0.133 pc. We note that the bosonic
core of DM halos is generally nonrelativistic
(Mc ≪ Mmax).

2. Repulsive self-interaction

A self-gravitating BEC with a repulsive self-interaction
in the TF approximation has a unique radius
[69,70,118,119]:

R ¼ π

�
asℏ2

Gm3

�
1=2

ðD5Þ

that is independent of its mass. This gives

as
fm

�
eV=c2

m

�
3

¼ 3.28 × 10−3
�
R
pc

�
2

: ðD6Þ

Using the value of R corresponding to Fornax, we obtain

as
fm

�
eV=c2

m

�
3

¼ 3.28 × 103: ðD7Þ

This fixes the ratio as=m3. In order to determine the mass
of the bosons, we need another relation. This relation is
provided by the constraint σ=m < 1.25 cm2=g set by the
Bullet Cluster [120], where σ ¼ 4πa2s is the self-interaction
cross section. Assuming that this bound is reached, we get
ðas=fmÞ2ðeV=mc2Þ ¼ 1.77 × 10−8. From this relation and
Eq. (D7), we obtain

m ¼ 1.10 × 10−3 eV=c2; as ¼ 4.41 × 10−6 fm; ðD8Þ

corresponding to λ=8π ¼ 2.46 × 10−17. This boson mass is
in agreement with the limit m < 1.87 eV=c2 obtained from
cosmological considerations [121].
The TF approximation is valid when the radius given by

Eq. (D5) is much larger than the radius given by Eq. (D1).
This corresponds to as ≫ ℏ2=GM2m or λ=8π ≫ ℏc=GM2

(see Sec. II. G. of [70] and Appendix A. 3 of [99]). Using
the value of M corresponding to Fornax, we get

as
fm

m
eV=c2

≫ 2.36 × 10−84; ðD9Þ

or, equivalently, λ=8π ≫ 1.20 × 10−92 (note the smallness
of this quantity already emphasized in Appendix A. 3 of
[99]). This condition is clearly satisfied by the parameters
of Eq. (D8). Inversely, when as ≪ ℏ2=GM2m, we can
ignore the self-interaction of the bosons. We then find

15This relation can be understood qualitatively by identifying
the halo radius R with the de Broglie wavelength λdB ¼ ℏ=mv of
a boson with a velocity v ∼ ðGM=RÞ1=2 equal to the virial
velocity of the halo.
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that the boson mass is given by Eqs. (D2) and (D3).
An estimate of the critical scattering length separating
the TF regime from the noninteracting regime can be
obtained by substituting Eq. (D2) into Eq. (D6). This gives
ac ¼ 31.4ðRℏ2=GM3Þ1=2, i.e.

ac
fm

¼ 2.57 × 10−51
�
R
pc

�
1=2
�
M⊙
M

�
3=2

: ðD10Þ

Using the values of M and R corresponding to Fornax,
we obtain

m ¼ 2.92 × 10−22 eV=c2; ac ¼ 8.13 × 10−62 fm:

ðD11Þ

The mass m ¼ 2.92 × 10−22 eV=c2 obtained for bosons
without self-interaction gives a lower bound on the mass
of the bosonic dark matter particle. Inversely, the mass m ¼
1.10 × 10−3 eV=c2 obtained for self-interacting bosons in
the TF approximation gives an upper bound on the mass
of the bosonic dark matter particle. Therefore, we predict
that the mass of the bosonic particle is in the range
2.92 × 10−22 eV=c2 ≤ m ≤ 1.10 × 10−3 eV=c2. The TF
limit is valid for sufficiently large scattering lengths,
i.e., above ac. For as < ac, the mass of the bosonic particle
ism ¼ 2.92 × 10−22 eV=c2 and for ac<as<4.41×10−6 fm
the mass of the bosonic particle is 2.92 × 10−22 <
m=ðeV=c2Þ ¼ 6.73 × 10−2ðas=fmÞ1=3 < 1.10 × 10−3. We
note that, inversely, the specification of m and as does not
determine the mass of the halo but only its radius R.
Remark: The maximum mass of the bosonic core

(soliton) of a self-interacting SFDM halo fixed by general
relativity is Mmax ¼ 0.307ℏc2

ffiffiffiffiffi
as

p
=ðGmÞ3=2 and its mini-

mum radius is Rmin ¼ 6.25GMmax=c2 [56]. Introducing
scaled variables, we get

Mmax

M⊙
¼ 1.12

�
as
fm

�
1=2
�
GeV=c2

m

�
3=2

; ðD12Þ

Rmin

km
¼ 9.27

Mmax

M⊙
: ðD13Þ

We note that these results do not depend on the specific
mass m and scattering length as of the bosons, but only on
the ratio m3=as. For ðas=fmÞðeV=mc2Þ3 ¼ 3.28 × 103, we
obtain Mmax ¼ 2.03 × 1015 M⊙ and Rmin ¼ 609 pc. We
note that the bosonic core of DM halos is generally
nonrelativistic (Mc ≪ Mmax).

3. Attractive self-interaction

A self-gravitating BEC with an attractive self-interaction
(as < 0) is stable only below a maximum mass Mmax and
above a radius R� given by [70,99]

Mmax ¼ 1.012
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p ; R� ¼ 5.5

�jasjℏ2

Gm3

�
1=2

:

ðD14Þ

This gives

Mmax

M⊙
¼ 1.56 × 10−34

�
eV=c2

m

�
1=2
�
fm
jasj
�

1=2
; ðD15Þ

R�
R⊙

¼ 1.36 × 109
�jasj
fm

�
1=2
�
eV=c2

m

�
3=2

: ðD16Þ

Considering standard (QCD) axions [122] with

m ¼ 10−4 eV=c2; as ¼ −5.8 × 10−53 m; ðD17Þ

jasj
fm

�
eV=c2

m

�
3

¼ 5.8 × 10−26; ðD18Þ

corresponding to λ ¼ −7.4 × 10−49, we obtain Mmax ¼
6.5 × 10−14 M⊙ and R� ¼ 3.3 × 10−4R⊙. Obviously,
QCD axions cannot form DM halos of relevant mass
and size; they rather form mini axion stars [100]. DM
halos could be made of numerous mini axion stars (mini-
MACHOs) that would behave as CDM. On the other hand,
ultralight axions can form DM halos. Assuming that Fornax
corresponds to a self-gravitating BEC with attractive self-
interaction at the limit of stability, we can use Eqs. (D15)
and (D16) to obtain the values of m and as. We get [100]

m ¼ 2.19 × 10−22 eV=c2; as ¼ −1.11 × 10−62 fm;

ðD19Þ

jasj
fm

�
eV=c2

m

�
3

¼ 1.06 × 103; ðD20Þ

corresponding to λ=8π ¼ −1.23 × 10−92. Actually, the halo
does not need to be at the limit of stability. On the contrary,
we need to impose that M ≪ Mmax for the halo to be
robustly stable. This corresponds to jasj ≪ ℏ2=GM2m or
jλj=8π ≪ ℏc=GM2 leading to the reverse of Eq. (D9) with
as replaced by jasj. In that case, we can ignore the self-
interaction of the bosons. We then find that the boson mass
is given by Eq. (D3). This is valid as long as its scattering
length satisfies

jasj ≪ 1.11 × 10−62 fm ðD21Þ

or, equivalently, jλj=8π ≪ 1.23 × 10−92 because above this
value the halo mass becomes larger than the maximum
mass and the halo undergoes gravitational collapse [100].
We note that this value is of the same order as the value
(D11) marking the transition between the noninteracting
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limit and the TF limit in the case as > 0. This is expected in
view of the similar scalings. In conclusion, bosons with
attractive self-interaction must have an ultralight mass and
an extraordinarily small scattering length to form stable
DM halos of relevant size.
Remark: In the high resolution numerical simulations of

self-gravitating BECs performed by [50], the self-interac-
tion of the bosons is not taken into account (λ ¼ 0). Our
results show that even an apparently tiny attractive (λ < 0)
self-interaction with jλj≳ 10−90 can considerably change
the physics of the problem. For example, the solitonic core
(M ∼ 108 M⊙) of the dark matter halos considered in [50]
is stable for λ ¼ as ¼ 0 but becomes unstable in the case
of an attractive self-interaction with jλj=8π ¼ jasjmc=ℏ >
1.02ℏc=GM2 ¼ 1.02ðMP=MÞ2 ¼ 1.23 × 10−92, or jasj >
1.11 × 10−62 fm for m ¼ 2.19 × 10−22 eV=c2, because in
that case M > Mmax [70,100]. Therefore λ=8π ¼ −1.23 ×
10−92 is very different from λ ¼ 0 (!). It would be therefore
extremely interesting to perform numerical simulations of
the GPP and KGE equations for self-interacting bosons.

4. Cosmological constraints

Li et al. [94] have obtained stringent bounds on the
values of m and as (assuming as ≥ 0) by using cosmo-
logical constraints coming from the CMB and from the
abundances of the light elements produced by the BBN.
First of all, their bounds exclude the possibility that the
bosons are noninteracting (as ≠ 0). On the other hand, by
combining all their constraints they obtain a fiducial model:

m ¼ 3 × 10−21 eV=c2; as ¼ 1.11 × 10−58 fm; ðD22Þ

as
fm

�
eV=c2

m

�
3

¼ 4.10 × 103; ðD23Þ

corresponding to λ=8π ¼ 1.69 × 10−87. We note that the
ratio (D23) obtained by Li et al. [94] from cosmological
(large scales) arguments is of the same order as the ratio
(D7) obtained from astrophysical (small scales) arguments
(it corresponds to a minimum halo radius R ¼ 1.12 kpc).
This agreement is very satisfactory. On the other hand, the
value of the boson mass (D22) obtained by Li et al. [94] is
relatively close to the mass (D3) of a noninteracting boson.
This is because their fiducial model is relatively close to the
transition between the noninteracting limit and the TF limit
[compare Eq. (D22) with Eq. (D11)]. However, the fact that
their mass (D22) is substantially larger (by one order of
magnitude) than the mass (D3) reflects the fact that the
bosons are self-interacting (their fiducial model is at the
beginning of the TF regime). Actually the mass (D3) of a
noninteracting SF is excluded by their bound m ≥ 2.4 ×
10−21 eV=c2 [94]. Note that their fiducial model uses a
mass close to the minimum allowed mass. However, the

mass of the SF could be much larger than this bound like
the mass of Eq. (D8) which is deeper in the TF regime.
Remark: In a very recent paper, Hui et al. [123] have

given further support to the BECDM/SFDM model. They
focused on the noninteracting case (as ¼ 0), considering an
ultralight axion of mass m ∼ 1–10 × 10−22 eV=c2 [consis-
tent with Eq. (D3)]. While mentioning several virtues of
this model, they noted that this mass is in tension with
observations of the Lyman-α forest, which favor masses
10–20 × 10−22 eV=c2 or higher. A similar conclusion was
reached by Menci et al. [124] based on the measured
abundance of ultrafaint lensed galaxies at redshift z≃ 6 in
the Hubble Frontier Fields (HFF). We note that such larger
masses are in agreement with Eq. (D22). Therefore, large-
scale observations could reflect the fact that axions are
self-interacting. In that case, all the known observational
constraints seem to be satisfied.

5. Fermions

In this paper, we have assumed that DM halos are made
of bosons. If they are made of fermions, their mass-radius
relation is MR3 ¼ 1.49 × 10−3h6=ðG3m8Þ [125]. This
gives

m
eV=c2

¼ 2.27 × 104
�
pc
R

�
3=8
�
M⊙
M

�
1=8

: ðD24Þ

Using the values of M and R corresponding to Fornax,
we find a fermion mass m ¼ 170 eV=c2. We note that,
inversely, the specification of m does not determine the
mass and the radius of the halo but only the product MR3.
Remark: The maximum mass of the fermionic core

(fermion ball) of a DM halo fixed by general relativity
is Mmax ¼ 0.376ðℏc=GÞ3=2=m2 and its minimum radius is
Rmin ¼ 9.36GMmax=c2 [126]. Introducing scaled variables,
we get

Mmax

M⊙
¼ 6.13 × 1017

�
eV=c2

m

�
2

;
Rmin

km
¼ 13.8

Mmax

M⊙
:

ðD25Þ

For m ¼ 170 eV=c2, we obtain Mmax ¼ 2.12 × 1013 M⊙
and Rmin ¼ 9.49 pc. We note that the fermionic core of
DM halos is generally nonrelativistic (Mc ≪ Mmax).

APPENDIX E: COMPARISON BETWEEN THE
STANDARD MODEL AND THE SF MODEL

In this Appendix, we compare the standard model and
the SF model with as ≥ 0. In the first two subsections, for
the clarity of the presentation, we do not take the baryonic
matter and the DE (or cosmological constant) into account.
The complete model is discussed in the third subsection.
For the numerical applications, we adopt the values of the
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cosmological parameters given by Li et al. [94]. They are
listed in the fourth subsection.

1. The standard model

In the standard model, DM (which corresponds to
WIMPs) and radiation (which accounts for the photons
and neutrinos of the CMB) are two different species
described by the EOSs Pdm ¼ 0 and Pr ¼ ϵr=3 respec-
tively. Solving the continuity equation (4) for each species,
we obtain

ϵdm
ϵ0

¼ Ωdm;0

a3
;

ϵr
ϵ0

¼ Ωr;0

a4
; ðE1Þ

where Ωdm;0 is the present fraction of dark matter and Ωr;0

is the present fraction of radiation. We have taken a0 ¼ 1.
The total energy density of these two species is

ϵ

ϵ0
¼ Ωr;0

a4
þΩdm;0

a3
: ðE2Þ

From the Friedmann equation (5) we obtain the differential
equation �

_a
a

�
2

¼ 8πGϵ0
3c2

�
Ωr;0

a4
þΩdm;0

a3

�
ðE3Þ

that determines the evolution of the scale factor a. This
equation can be integrated exactly, giving [91]

H0t ¼ −
2

3

1

Ω1=2
dm;0

�
2Ωr;0

Ωdm;0
− a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωr;0

Ωdm;0
þ a

s
þ 4Ω3=2

r;0

3Ω2
dm;0

:

ðE4Þ

Equation (E4) can also be written as

a3 − 3
Ωr;0

Ωdm;0
a2 ¼ 9

4
Ωdm;0H2

0t
2 − 6

Ω3=2
r;0

Ωdm;0
H0t: ðE5Þ

This is a cubic equation for a of the form a3 þ Aa2 þ
Baþ C ¼ 0 which can be solved by standard methods.
Using Cardano’s formula, the real root is given by

a ¼ −
A
3
þ
�
−
q
2
þ

ffiffiffiffi
R

p �
1=3

þ
�
−
q
2
−

ffiffiffiffi
R

p �
1=3

ðE6Þ

with R ¼ ðp=3Þ3 þ ðq=2Þ2, p ¼ B − A2=3, and q ¼ C −
AB=3þ 2A3=27 (in our case R > 0). However, to obtain
aðtÞ, it is easier to use Eq. (E4) that gives tðaÞ, and plot the
inverse function. For a → 0 (radiation era):

ϵ

ϵ0
∼
Ωr;0

a4
; a ∼

�
32πGϵ0Ωr;0

3c2

�
1=4

t1=2: ðE7Þ

For a → þ∞ (matter era, EdS solution):

ϵ

ϵ0
∼
Ωdm;0

a3
; a ∼

�
6πGϵ0Ωdm;0

c2

�
1=3

t2=3: ðE8Þ

The epoch of matter-radiation equality (ϵm ¼ ϵr) corre-
sponds to16

aeq ¼
Ωr;0

Ωm;0
¼ Ωr;0

Ωdm;0 þΩb;0
: ðE9Þ

Numerically, aeq ¼ 2.95 × 10−4. For a < aeq, we are in the
radiation-dominated regime and for a > aeq, we are in the
matter-dominated regime.
The energy density of radiation can be written as

ϵr ¼ κσT4 ¼ κπ2

15c3ℏ3
ðkBTÞ4; ðE10Þ

where T is the temperature, σ is the Stefan-Boltzmann
constant, and κ ¼ κγ þ κν ¼ 1þ 3.046ð7=8Þð4=11Þ4=3 ≃
1.692 is a constant that accounts for the fact that radiation
comes from photons and neutrinos in thermal equilibrium
[11]. According to Eqs. (E1) and (E10), the relation
between the temperature and the scale factor is given by

kBT ¼
�
15c3ℏ3Ωr;0ϵ0

κπ2

�
1=4 1

a
¼ kBT0

a
; ðE11Þ

where T0 is the present temperature of radiation.
Numerically, T0 ¼ 2.7255 K.

2. The SF model

In the standard model, the Universe undergoes a radi-
ation era followed by a pressureless DM era. Similarly, a SF
with as > 0 undergoes a radiationlike era followed by a
pressureless dark matter era (see Sec. III D). However, the
two models are physically different. In the standard model,
radiation and dark matter correspond to different species
that exist in permanence. For a < aeq radiation dominates
over matter and for a > aeq matter dominates over radi-
ation. In the SF model, there is just one species. The
radiation and the matter are two manifestations of the same
entity. For a < at, the SF behaves as radiation and for
a > at it behaves as pressureless matter. The relation
between the energy density and the scale factor is different
in the two models [see Eq. (E2) for the standard model and
Eqs. (45) and (47) for the SF model]. However, their
asymptotic behaviors for a → 0 and a → þ∞ are similar.
For a → þ∞, the SF behaves as pressureless matter.

Since the SF is expected to describe DM, we can identify

16Here, we take the contribution of baryonic matter into
account noting that baryonic matter behaves as dark matter,
i.e., it is described by an EOS Pb ¼ 0.
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the matterlike era of the SF with the DM era of the standard
model. Comparing Eqs. (56) and (E8) valid for a → þ∞,
we find that the charge of the SF is given by

Q ¼ Ωdm;0ϵ0
mc2

: ðE12Þ

This relation is also valid for the SF model with as < 0 on
the normal branch since it also behaves as pressureless
matter for a → þ∞.
For a → 0, the SF behaves as radiation which adds to the

standard radiation (photons, neutrinos, etc.). We define the
initial ratio between the radiation of the SF and the standard
radiation by

μ ¼ lim
a→0

ϵSF
ϵr

; ðE13Þ

where ϵSF is the energy density of the SF and ϵr is the
energy density of the standard radiation. Using Eqs. (55)
and (E7) valid for a → 0, we obtain

μ ¼
�
27πQ4masℏ2c4

8Ω3
r;0ϵ

3
0

�
1=3

: ðE14Þ

Substituting the expression of the charge from Eq. (E12)
into Eq. (E14), we get

μ ¼
�
27πasℏ2Ω4

dm;0ϵ0
8Ω3

r;0m
3c4

�1=3

: ðE15Þ

We see that μ is determined by the ratio as=m3. Inversely,
if we know the value of μ, Eq. (E15) determines the ratio
as=m3 through the relation

as
m3

¼ 8μ3Ω3
r;0c

4

27πΩ4
dm;0ϵ0ℏ

2
: ðE16Þ

Introducing proper normalizations, we get

as
fm

�
eV=c2

m

�
3

¼ 8.18 × 107 μ3: ðE17Þ

On the other hand, in the radiationlike era of the SF valid
for a → 0, we can write

ϵSF ¼ κσT4
eff ¼

κπ2

15c3ℏ3
ðkBTeffÞ4; ðE18Þ

where Teff is an effective temperature of SF radiation.
Using Eq. (55), we obtain

kBTeff ¼
�
91125c13ℏ11Q4mas

8π5κ3

�
1=12 1

a
: ðE19Þ

Although the SF is at T ¼ 0, we can define an effective
temperature of radiation for the SF that depends on its
charge Q and on the self-interaction strength as. Using
Eq. (E12) to evaluate Q, we get

kBTeff ¼
�
91125c5ℏ11asΩ4

dm;0ϵ
4
0

8π5m3κ3

�
1=12 1

a
: ðE20Þ

Using Eq. (E16) to evaluate as=m3, we obtain

kBTeff ¼
�
15μc3ℏ3ϵ0Ωr;0

π2κ

�
1=4 1

a
: ðE21Þ

Comparing Eqs. (E11) and (E21), we find that

Teff

T
¼ μ1=4 ðE22Þ

in the radiative regime of the SF.
Remark: In the standard model we can calculate the

present temperature of radiation T0. We cannot define
ðTeffÞ0 for the SF because Teff is only defined in the
radiationlike regime so this effective temperature has no
meaning in the present Universe.

3. The complete model

Since the SF is expected to represent DM (replacing the
WIMP hypothesis), the complete model incorporating
standard radiation and SFDM is obtained by replacing
the second term in Eq. (E2) by the energy density of the SF.
To be even more complete, we must also include baryonic
matter and DE (cosmological constant). Therefore, the total
energy reads

ϵ

ϵ0
¼ Ωr;0

a4
þ ϵSFðaÞ

ϵ0
þΩb;0

a3
þ ΩΛ;0: ðE23Þ

This complete model has been studied by Li et al. [94]. In
the fast oscillation regime, introducing the dimensionless
variables of Appendix C, the energy density of the SF is
given by

ϵSF
ϵ0

¼ 27

16

Ω4
dm;0

Ω3
r;0

1

μ3
~ϵSFð ~aÞ ðE24Þ

with

a ¼
�
16

27

�
1=3 Ωr;0

Ωdm;0
μ ~a; ðE25Þ

where the function ~ϵSFð ~aÞ is given in parametric form by
Eqs. (45) and (47). This fast oscillation regime has been
investigated in detail in Sec. III.
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4. Values of the cosmological parameters

For the values of the cosmological parameters, follo-
wing Li et al. [94], we take Ωr;0 ¼ 9.23765 × 10−5,
Ωdm;0 ¼ 0.2645, Ωb;0 ¼ 0.0487273, Ωm;0 ¼ 0.313228,
ΩΛ;0 ¼ 0.687, H0 ¼ 2.18 × 10−18 s−1, and ϵ0 ¼
7.64 × 10−7 gm−1 s−2

APPENDIX F: MATCH ASYMPTOTICS

In the stiff matter era, corresponding to the slow
oscillation regime, the pseudo rest-mass density and the
energy density evolve with the scale factor as [77]

ρstiff ∼
3m2c4

4πGℏ2
ð− ln aÞ2; ϵstiff ∼

K
a6

; ðF1Þ

where K is a constant. We note that the pseudo rest-mass
density changes very slowly with the scale factor as
compared to the energy density. We want to see when it
is possible to connect the slow oscillation regime ρstiffðaÞ to
the fast oscillation regime ρðaÞ. Using the dimension-
less variables introduced in Appendix C, the condition
ρðaÞ ∼ ρstiffðaÞ corresponds to

~ρð ~aÞ ∼ ~ρstiffð ~aÞ ¼ 2σð− ln aÞ2; ðF2Þ

where σ is defined byEq. (84). Therefore, thematching point
corresponds to the intersection of the curve ~ρð ~aÞ drawn in
Figs. 1 and 10 with the curve ρstiffð ~aÞ ¼ 2σð− ln aÞ2 that is
almost a straight line due to the slow variation of the
logarithmic term.
We first consider a SF with as ≥ 0. Matching the pseudo

rest-mass density of the slow oscillation regime [see
Eq. (F1)] with the pseudo rest-mass density of the fast
oscillation regime [see Eq. (45)], we obtain

a�v ¼
�
2πasℏ2Q
m2c2

�
1=3

f�

�
3asc2

4Gm

�
; ðF3Þ

where the function f�ðσÞ is defined by

f�ðσÞ ¼
1

r1=3ð1þ 4rÞ1=6 ðF4Þ

with

r ¼ 2σð− ln a�vÞ2: ðF5Þ

It is easy to see that, up to logarithmic corrections, a�v is of
the same order of magnitude as the scale av marking the
transition between the slow and fast oscillation regimes given
by Eq. (86). Mathematically, this is because the function r
defined by Eq. (88) behaves as r ∼ 4σ=3 for σ → þ∞ and as
r ∼ σ for σ → 0 which is the same scaling as the function
r ∝ σ defined by Eq. (F5). This is most easily seen by
considering the asymptotic limits. Matching the pseudo

rest-mass density of the stiff matter era [see Eq. (F1)] with
the pseudo rest-mass density of the radiationlike era [see
Eq. (53)], we obtain a transition scale of the same order as
Eq. (93). Matching the pseudo rest-mass density of the stiff
matter era [see Eq. (F1)] with the pseudo rest-mass density of
the matterlike era [see Eq. (54)], we obtain a transition scale
of the same order as Eq. (91). Of course, these qualitative
agreements are to be expected. They just provide a con-
sistency check of our approximations.
We can also use match asymptotics to estimate the

constant K in Eq. (F1). Matching the energy density of the
slow oscillation regime [see Eq. (F1)] with the energy
density of the fast oscillation regime [see Eq. (47)] at the
transition scale av determined by Eq. (86), we obtain

K ¼ 2πasℏ2Q2

m
h

�
3asc2

4Gm

�
; ðF6Þ

where the function hðσÞ is defined by

hðσÞ ¼ 1þ 3r
ð1þ 4rÞr ðF7Þ

with

r ¼ 4σ − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4σ − 1Þ2 þ 12σ

p
6

: ðF8Þ

For σ → þ∞, we obtain

K ¼ 3πGℏ2Q2

2c2
ðF9Þ

which can also be obtained by matching the energy
density of the stiff matter era [see Eq. (F1)] with the
energy density of the radiationlike era [see Eq. (55)] at the
transition scale (93). For σ → 0, we obtain

K ¼ 8πGℏ2Q2

3c2
ðF10Þ

which can also be obtained by matching the energy
density of the stiff matter era [see Eq. (F1)] with the
energy density of the matterlike era [see Eq. (56)] at the
transition scale (91). We note that the value of K does not
sensibly depend on as. Now that the constant K is known,
the Friedmann equation (5) can be integrated with the stiff
energy density given by Eq. (F1) yielding

a ¼
�
24πGK

c2

�
1=6

t1=3: ðF11Þ

Using the foregoing results, we can determine the tran-
sition between the stiff matter era of the SF and the
standard radiation era. Equating Eqs. (E1) and (F1), and
using Eq. (F9) valid for σ ≫ 1 (the most relevant case), we
obtain
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asr ¼
�
3πGℏ2Ω2

dm;0ϵ0
2m2c6Ωr;0

�1=2

: ðF12Þ

For a SF with m¼3×10−21 eV=c2 and as¼
1.11×10−58 fm, corresponding to the fiducial model of
Li et al. [94], we obtain asr ¼ 9.87 × 10−12. This analyti-
cal result is in qualitative agreement with their numerical
result (see their Fig. 3).
We now consider a SF with as < 0. We first consider the

normal branch. If σ ≫ 1, it is not possible to match the
pseudo rest-mass density of the slow oscillation regime [see
Eq. (F1)] with the pseudo rest-mass density of the fast
oscillation regime [see Eq. (122)]. This suggests that there
is no stiff matter era when σ ≫ 1, or that it cannot be
smoothly connected to the matterlike era. When σ ≪ 1, we
obtain

ða0vÞ� ¼
�
2πjasjℏ2Q

m2c2

�
1=3

g�

�
3jasjc2
4Gm

�
; ðF13Þ

where the function g�ðσÞ is defined by

g�ðσÞ ¼
1

r1=3ð1 − 4rÞ1=6 ðF14Þ

with

r ¼ 2σð− ln a�vÞ2: ðF15Þ

It is easy to see that, up to logarithmic corrections, ða0vÞ� is
of the same order of magnitude as the scale a0v marking the
transition between the slow and fast oscillation regimes
given by Eq. (178). Mathematically, this is because the
function r defined by Eq. (180) behaves as r ∼ σ for σ → 0
which is the same scaling as the function r ∝ σ defined by
Eq. (F15). This is most easily seen by considering
asymptotic limits. Matching the pseudo rest-mass density
of the stiff matter era [see Eq. (F1)] with the pseudo rest-
mass density of the matterlike era [see Eq. (133)], we obtain
a transition scale of the same order as Eq. (91).
We now consider the peculiar branch. In that case, we

find that it is not possible to match the pseudo rest-mass
density of the slow oscillation regime with the pseudo rest-
mass density of the fast oscillation regime, except when
σ ∼ 1. This suggests that the peculiar branch cannot be
connected to a stiff matter era when σ ≠ 1. On the other
hand, when σ ∼ 1 the domain of validity of the fast
oscillation regime is very small so this case is not very
relevant.

APPENDIX G: MASS AND LENGTH SCALES

In Sec. IVG we have obtained a relation between the
effective cosmological constant Λ associated with the
energy ϵΛ and the mass m and the scattering length
as < 0 of the SF [see Eqs. (190) and (192)]. The energy

scale ϵΛ corresponds to the maximum of the total potential
V tot [see Eq. (213)]. If we assume that jasj ∼ rS ¼ 2Gm=c2

(effective Schwarzschild radius), and substitute this relation
into Eqs. (190) and (192), we obtain a mass scale

mΛ ¼ ℏ
c2

ffiffiffiffiffiffi
Λ
8π

r
¼ ℏ

c2
ffiffiffiffiffiffiffiffiffi
GρΛ

p
ðG1Þ

and a length scale

rΛ ¼ Gℏ
c4

ffiffiffiffiffiffi
Λ
8π

r
¼ Gℏ

c4
ffiffiffiffiffiffiffiffiffi
GρΛ

p
: ðG2Þ

Of course, jasj can be different from rS but the scales (G1)
and (G2) can be introduced on a dimensional basis, just like
the Planck scales. Actually, they can be written as

mΛ ¼
�
ρΛ
ρP

�
1=2

MP; rΛ ¼
�
ρΛ
ρP

�
1=2

lP; ðG3Þ

so they reduce to the Planck mass MP ¼ ðℏc=GÞ1=2 ¼
1.22 × 1019 GeV=c2 and Planck length lP ¼ ðℏG=c3Þ1=2 ¼
1.62 × 10−35 m if we identify ρΛ to the Planck density
ρP ¼ c5=ℏG2 ¼ 5.16 × 1099 gm−3. However, we shall
consider here that ρΛ represents the cosmological
density. Writing ρΛ ¼ ΩΛ;0ϵ0=c2 and using the Friedmann
equation (5), we get

mΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3ΩΛ;0

8π

r
H0ℏ
c2

; rΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3ΩΛ;0

8π

r
GH0ℏ
c4

: ðG4Þ

Numerically (see Appendix E 4),

mΛ ¼ 4.11 × 10−34 eV=c2; rΛ ¼ 5.44 × 10−82 fm:

ðG5Þ

Other mass and length scales can be introduced similarly.
If we assume that jasj ∼ λC ¼ ℏ=mc (Compton wave-
length), and substitute this relation into Eq. (190), we
obtain a mass scale and a length scale

m�
Λ ¼

�
ρΛℏ3

c3

�
1=4

; r�Λ ¼
�

ℏ
ρΛc

�
1=4

: ðG6Þ

Numerically (see Appendix E 4),

m�
Λ ¼ 2.24 × 10−3 eV=c2; r�Λ ¼ 8.81 × 1010 fm:

ðG7Þ

The Compton wavelength of a particle of massMP is the
Planck length lP. It is also equal to the effective semi-
Schwarzschild radius rS=2. The Compton wavelength
of a particle of mass mΛ is the cosmological length
lΛ ¼ cð8π=ΛÞ1=2 ¼ 4.80 × 1026 m, i.e., the typical size
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of the visible Universe (since Λ ∼GρΛ ∼H2
0 implies

lΛ ∼ c=
ffiffiffiffi
Λ

p
∼ c=H0).

APPENDIX H: THE INITIAL CONDITION
FOR THE SF

The KG equation is a second order differential equation
in time. To solve this equation, we need to specify the
values of φ and _φ at t ¼ 0. In this appendix, we show how
they are related to the hydrodynamic variables used in
Secs. III C and IV C.
If we restrict ourselves to a spatially homogeneous SF,

we have

φðtÞ ¼ ℏ
m

ffiffiffiffiffiffiffiffi
ρðtÞ

p
eiStotðtÞ=ℏ: ðH1Þ

Taking the time derivative of Eq. (H1), we get

_φ ¼ ℏ
2m

ffiffiffi
ρ

p
�
_ρ − i

2ρ

ℏ
Etot

�
eiStot=ℏ: ðH2Þ

Substituting the results of Secs. III C and IV C into
Eq. (H2), we obtain the asymptotic behaviors of φ and
_φ for t → 0. Considering the modulus of the SF, we find

jφðtÞj ¼ ℏ
m

ffiffiffiffiffiffiffiffi
ρðtÞ

p
; _jφj ¼ ℏ

2m
ffiffiffi
ρ

p _ρ: ðH3Þ

For a SF with as > 0, using the results of Sec. III C, we get
for t → 0:

jφj ∝ t−1=2; j _φj ∝ −t−3=2: ðH4Þ

Therefore, jφj → þ∞ and j _φj → −∞ for t → 0. For a SF
with as < 0, using the results of Sec. IV C, we get for
t → 0:

jφj → jφij; j _φj ∝ �t−1=2: ðH5Þ

In that case, the initial value of jφj is finite while j _φj → −∞
on the normal branch and j _φj → þ∞ on the peculiar
branch. This is a very singular initial condition. The choice
of the branch is selected by the initial condition, i.e., by the
sign of j _φj.

APPENDIX I: THE CASE OF POWER-LAW
SF POTENTIALS

In this appendix, we briefly discuss the evolution of a
homogeneous SF with a general power-law potential. For a
power-law SF potential of the form (see Appendix C. 5. 2
of [127])

Vðjφj2Þ ¼ K
γ − 1

�
m
ℏ

�
2γ

jφj2γ; ðI1Þ

we obtain

VðρÞ ¼ K
γ − 1

ργ; hðρÞ ¼ V 0ðρÞ ¼ Kγ
γ − 1

ργ−1; ðI2Þ

PðρÞ ¼ Kργ; c2s ¼ Kγργ−1: ðI3Þ

The pressure law PðρÞ is that of a polytrope of index γ (h is
the enthalpy). For a quartic potential, we recover the
polytropic EOS (44) with the exponent γ ¼ 2. For a jφj6
potential, which is the next order term in an expansion
of the SF potential Vðjφj2Þ in powers of jφj2, we get a
polytropic EOS P ¼ Kρ3 with the exponent γ ¼ 3.
The equations of the problem are

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

c2
Kγ
γ − 1

ργ−1

s
¼ Qm

a3
; ðI4Þ

3H2

8πG
¼ ρþ γ þ 1

γ − 1

K
c2

ργ; ðI5Þ

ϵ ¼ ρc2 þ γ þ 1

γ − 1
Kργ; ðI6Þ

P ¼ Kργ; ðI7Þ

w ¼
K
c2 ρ

γ−1

1þ γþ1
γ−1

K
c2 ρ

γ−1
; ðI8Þ

Etot ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

c2
Kγ
γ − 1

ργ−1

s
: ðI9Þ

From Eqs. (I6) and (I7), we obtain

ϵ ¼
�
P
K

�
1=γ

c2 þ γ þ 1

γ − 1
P; ðI10Þ

which determines the EOS PðϵÞ of the SF under the inverse
form ϵðPÞ. The differential equation governing the tem-
poral evolution of the pseudo rest-mass density is

c2

24πG

�
_ρ

ρ

�
2

¼
ρc2 þ Kðγþ1Þ

γ−1 ργ

½1þ Kγργ−1

c2þ2Kγ
γ−1ρ

γ−1�2
: ðI11Þ

These equations can be used to determine the cosmological
evolution of a homogeneous SF for any value of K and γ.
This general study will be considered in a future work.
To be more specific, we now assume γ > 1 and K > 0.

For a → þ∞, the SF experiences a pressureless matterlike
era. For a → 0, we get
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ρ ∼
�ðγ − 1ÞQ2m2c2

2Kγ

�
1=ðγþ1Þ 1

a6=ðγþ1Þ ; ðI12Þ

ϵ ∼
γ þ 1

γ − 1
Kργ ∝

1

a6γ=ðγþ1Þ ; ðI13Þ

P ∼
γ − 1

γ þ 1
ϵ ∝

1

a6γ=ðγþ1Þ ; ðI14Þ

wi ¼
γ − 1

γ þ 1
; ðI15Þ

Etot

mc2
∼
�

γ

γ − 1

2K
c2

�
1=2

ρðγ−1Þ=2 ∝
1

a3ðγ−1Þ=ðγþ1Þ : ðI16Þ

In that limit, the SF behaves as a fluid with a linear EOS
P ¼ αϵ where α ¼ ðγ − 1Þ=ðγ þ 1Þ. For a quartic potential
(γ ¼ 2), we recover the EOS of radiation P ¼ ϵ=3. For a
jφj6 potential (γ ¼ 3), we get α ¼ 1=2. More generally, for
γ ≥ 1, the exponent α goes from 0 to 1. These results
coincide with those obtained in Refs. [51,86] for a real SF.
The case γ < 1 and K < 0 is interesting because it leads

to a model of Universe that behaves as pressureless DM for
a → 0 and as DE for a → þ∞. Therefore, it provides a
unification of DM and DE. For γ ¼ 0 we recover the
ΛCDM model and for γ ¼ −1 we recover the Chaplygin
gas model [128]. It is interesting that these two famous

models are selected by our approach among the infinite
family of polytropic models described by an EOS of the
form P ¼ Kϵγ [92,93]. For γ < 1 and K > 0 we obtain
models of Universe that oscillate (phoenix Universes). For
γ ¼ 0we recover the anti-ΛCDMmodel and for γ ¼ −1we
recover the anti-Chaplygin gas model (see, e.g., [92,93] for
more details).
Remark: Some of these results were previously obtained

by Bilic et al. [104] by considering the inverse problem.
Assuming an EOS of the form P ¼ −A=ϵ (Chaplygin gas)
and using Eq. (31), we easily obtain ϵ ¼ ρc2 and

V totðρÞ ¼
1

2

�
ρc2 þ A

ρc2

�
: ðI17Þ

This corresponds to Eq. (13) of [104] if we recall Eq. (7).
This is also a particular case of Eq. (I2) corresponding to
γ ¼ −1 and K ¼ −A=c2. If we consider a constant EOS
of the form P ¼ −ρΛc2 (ΛCDM model [93]), we obtain
ϵ ¼ ρc2 þ ρΛc2 and

V totðρÞ ¼
1

2
ρc2 þ ρΛc2: ðI18Þ

This is a particular case of Eq. (I2) corresponding to γ ¼ 0

and K ¼ −ρΛc2.
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