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We construct a piecewise model that gives a physical viable realization of finite-time future singularity
for a spatially flat Friedmann-Robertson-Walker universe within the interacting dark matter–dark energy
framework, with the latter in the form of a variable vacuum energy. The scale factor solutions provided by
the model are accommodated in several branches defined in four regions delimited by the scale factor and
the effective energy density. A branch starts from a big bang singularity and describes an expanding matter-
dominated universe until the sudden future singularity occurs. Then, an expanding branch emerges from a
past singularity, reaches a maximum, reverses its expansion, and possibly collapses into itself while another
expanding branch emerges from the latter singularity and has a de Sitter phase which is intrinsically stable.
We obtain a different piecewise scale factor which describes a contracting de Sitter universe in the distant
past until the finite-time future singularity happens. It emerges and continues in a contracting phase,
bounces at the minimum, reverses, and enters into a stable de Sitter phase without a dramatic final. Also, we
explore the aforesaid cosmic scenarios by focusing on the leading contributions of some physical quantities
near the sudden future singularity and applying the geometric Tipler and Królak criteria in order to inspect
the behavior of timelike geodesic curves around such singularity.

DOI: 10.1103/PhysRevD.95.063510

I. INTRODUCTION

Despite the overwhelming observational evidence sup-
porting the current cosmic acceleration of the Universe
coming from supernovae data, the cosmic microwave
background anisotropies, and a brand-new type of launched
satellite for exploring the dark side of gravity [1,2], quite
little is known about the nature of dark energy (DE). More
precisely, there is no a fundamental theory at the micro-
scopic level for explaining the origin of DE; only some
properties are known. For instance, astrophysical observa-
tions suggest that DE is dominated by a strongly negative
pressure acting as a repulsive force [1]. Another side of this
puzzle refers to what will be the ultimate fate of the
Universe [3]: could DE make the Universe undergo an
extremely violent final event as a big rip singularity [4,5,6].
This kind of singularity happens at a finite cosmic time
where the scale factor, the Hubble parameter, and its cosmic
time derivative diverge [5].
Sudden future singularity is a one-of-a-kind future

scenario that has gained great interest recently [7,8]
because it offers an alternative and smooth “ultimate” fate
for the Universe, opening the possibility for a noncata-
strophic transition which can lead to a new phase in the

Universe’s evolution. The latter type of doomsday happens
at a finite cosmic time where the scale factor and the
Hubble parameter remain finite but the cosmic time
derivative diverges [7]. Indeed, the scale factor along with
Hubble parameter both remain bounded which implies the
Christoffel symbols are regular at this singularity. Hence,
the geodesics are well behaved and they can cross the
singularity [9]. Moreover, it was found that a sudden future
singularity does not experience geodesic incompleteness
[10] and demonstrated that the Tipler and Królak con-
ditions do not hold [11,12]; as a result of that, finite objects
(string or membrane) are not crushed when crossing this
singularity and, therefore, it can be classified as a non-
harmful transversable singularity. Also, it was argued that
the particles crossing the singularity will generate the new
geometry of the spacetime, providing in such a way a“soft
rebirth” of the Universe after the singularity crossing [13].
Relaxing one of the conditions that characterizes a typical
sudden future singularity, another interesting realization of
sudden future singularity, dubbed “big brake” singularity
[14], was discovered that depends upon the Hubble
parameter vanishing at a finite cosmic time. The compat-
ibility of this doomsday with supernovae data was
addressed in [15], and an explicit example of the crossing
of this singularity was described in [13], where a tachyon
field passes through the singularity, continuing its evolution
until the Universe recollapses due to the existence of final
big crunch singularity.
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Some appealing models based on a mixture of anti-
Chaplygin gas plus dustlike matter exhibiting a soft
(sudden/big brake) future singularity were reported in
the literature [16]. In fact, the distributional version of
anti-Chaplygin gas was presented in Ref. [16], focusing in
the role played by these distributional quantities together
with the junction conditions at the singularity. Recently, the
issue of describing a big brake singularity in terms of a
scalar field model was analyzed in great detail in [17]. It
turned out that a big brake future singularity can be
obtained by a modified Chaplygin gas equation of state
using a unified (effective) scheme. Furthermore, this
singularity was accommodated in terms of an exotic
quintessence model and a full perturbation analysis was
carrried out near such event [17].
One of the aims of the present paper is to study some

reasonable cosmological models with a finite-time future
singularity when the Universe is filled with dark matter
(DM) and variable vacuum energy (VVE) accommodated
as dark energy. Contrary to the usual picture where the
aforesaid components are decoupled, we propose that both
fluids exchange energy [18–21], being the interaction a
nonlinear combination of the total density and its first
derivative. A physical motivation for selecting this kind of
nonlinear interaction is that the two interacting fluid model
can be mapped into an effective unified model character-
ized by the relaxed version of the Chaplygin gas equation
of state introduced in [22]. This equation of state produces
an energy density that can be separated into three branches,
one of them gives rise to a scale factor that interpolates
between a matter-dominated universe at early time and a de
Sitter phase dominated by VVE at late times while the other
two branches produce and energy density that vanishes o
diverges at a finite scale factor value as. These are attractive
characteristics to investigate finite-time future singularities
whenever as ¼ aðtsÞ is finite for a finite cosmic time ts. In
doing so, we can provide a physical description of the
behavior of the interacting components near the singularity
but also we can compare with the behavior of effective
quantities such as total energy and total pressure. In this
way, we will be able to establish a physical correspondence
between the critical behavior of interaction and the effective
equation of state. Having mentioned the physical motiva-
tion of the nonlinear interaction, we are going to use the so
called “source equation” to determine the effective density,
total pressure, and partial densities as well. Thus, We will
reconstruct the explicit dependence of the interaction, total
density, total pressure and partial densities in terms of the
scale factor. Such procedure has the virtue of keeping the
analysis simple but also it allows us to demonstrate
the critical behavior of the total pressure, the interaction
and the partial densities around the future singular event
[23]. A remarkable fact is that the appearance of finite-time
future singularity will be deeply connected with the critical
behavior of the dark components near such event; that is,

the total energy density remains finite whereas the dark
densities along with the total presssure will grow with-
out limit.
The layout of the paper is as follows. In Sec. II, we

introduce in detail the model of an interacting dark sector
composed of DM and VVE. In doing so, we solve the source
equation, reconstruct all the geometrical, source variables,
and provide a classification of the different interaction pieces
in terms of the scale factor and the energy density in the ða; ρÞ
plane. This analysis is followed in Sec. III by solving the
Friedmann equation and exploring all the possible types of
cosmic scenarios such as big bang singularity, bounce, big
crunch, sudden singularity, de Sitter, and anti-deSitter phases.
Also, we study the behavior of dark energy components: the
energy density, the equation of state and the stability of the de
Sitter phases. In Sec. IV, we present two piecewise nonlinear
models obtained after matching two interacting dark sector
models at the finite-time future singularity, which are char-
acterized by a relaxed Chaplygin gas equation of state, and
describe theUniverse’s evolution identifiedwith bothmodels.
In Sec. V, we examine those singular events in terms of
comoving observers approaching to thembyusing the criteria
of Królak and Tippler. Section VI is devoted to present a
summary of our main results.

II. NONLINEAR INTERACTION AND
FINITE-TIME FUTURE SINGULARITIES

IN THE FRW UNIVERSE

The purpose of our paper is to examine the existence
of finite-time future singularities from the interaction
point of view. In doing so, we investigate a two fluid
model for a spatially flat FRW metric, where the Universe
is filled with DM and an unknown component that we
choose as VVE. The former one has a linear equations of
state pm ¼ ðγm − 1Þρm, where the barotropic index γm is
assumed to be a constant such that γm ≃ 1, while the latter
one has a vacuum equation of state px ¼ −ρx with γx ¼ 0.
The energy density and the conservation equation of this
system are given by,

ρ ¼ ρm þ ρx; ð1Þ

ρ0 ¼ −γmρm; ð2Þ

while the pressure of the whole system is

p ¼ −ρ − ρ0; ð3Þ

and can be recast as p ¼ γmρm − ρ. The prime stands for
derivatives with respect to the variable η defined as
0≡ d=dη ¼ d=3Hdt ¼ d=d ln ða=a0Þ3, being a0 some
value of reference for the scale factor a. H ¼ _a=a is the
expansion rate and the dot means · ≡ d=dt. Solving the
linear algebraic system of Eqs. (2), one finds ρm and ρx as
functions of ρ and its derivative ρ0:
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ρm ¼ −
ρ0

γm
; ð4Þ

ρx ¼ ρþ ρ0

γm
: ð5Þ

We build a model of interacting DM and DE by splitting
the conservation equation (2) into two balance equations
and introducing the interaction term Q with a factorized
dependence as 3HQðη; ρ; ρ0Þ,

ρ0m þ γmρm ¼ −Q; ð6Þ

ρ0x ¼ Q; ð7Þ

so there is an exchange of energy between DM and VVE
components. From Eqs. (4) and (7), we obtain the “source
equation” [22] for the total energy density

ρ00 þ γmρ
0 ¼ γmQ: ð8Þ

Knowledge of the evolution of ρ requires to solve the
source equation (8) for a given Q. After having obtained ρ,
we are in a position to determine the energy densities of
DM and VVE components from Eqs. (4) and (5).
With the purpose of getting a solvable model and

showing the existence of finite-time future singularities
in the interacting dark sector, we present an interacting
scenario generated by a nonlinear interaction in the form

Qðρ; ρ0Þ ¼ −n
�
ρ0 þ ρ02

γmðρ − ρsÞ
�
; ð9Þ

where ρs is a constant positive energy density and n is the
coupling constant. Note thatQ diverges in the limit ρ → ρs.
Let us mention which are the physical motivations for
selecting this ansatz over other choices. Cosmological
scenarios where dark matter exchanges energy with a
modified holographic Ricci dark energy [18,19], can be
accommodated in terms of a nonlinear interaction, as that
represented by Eq. (9). In dealing with that interacting
framework, one finds that the effective one-fluid obeys the
equation of state of a relaxed Chaplygin gas. Therefore, the
Universe is dominated by pressureless dark matter at early
times and undergoes an accelerated expansion in the far
future driven by a strong negative pressure [18]. Another
interesting case where the nonlinear interaction takes place
is related with the evolution of a Universe that has an
interacting dark matter, a modified holographic Ricci dark
energy, plus a decoupled radiation term. The aforesaid
model seems to be consistent with the Hubble data, the
constraints coming from the amount of dark energy during
the recombination along with the abundance of light
elements obtained with the big bang nucleosynthesis
(BBN) data [19].

Combining Eqs. (8) and (9), we obtain the equation that
governs the dynamics of the energy density,

xx00 þ γmðnþ 1Þxx0 þ nx02 ¼ 0; ð10Þ

where a new dimensionless variable is defined as

x ¼ ρ − ρs
βρs

; ð11Þ

where this positive variable is such that xs ¼ xðρsÞ ¼ 0.
Here the role played by the parameter β is the following:
in the case β ¼ −1 the energy density and the variable x
range between 0 ≤ ρ < ρs and 0 < x ≤ 1, while for β ¼ 1
they define another physically admissible region given
by ρ > ρs and x > 0. Then, the energy density and its
derivative can be written as follows

ρ ¼ ρsð1þ βxÞ; ρ0 ¼ βρsx0: ð12Þ

Once the function x ¼ xðaÞ is known, we calculate the
interaction (9), the energy density and its derivative (12),
the equation of state (3) and the DM and VVE densities (4)
and (5) as functions of the scale factor. To this end, we find
the first integral of the source equation (10) and its general
solution which read,

x0 ¼ −γm½xþ αx−n�; ð13Þ

x ¼
�
α

��
as
a

�
3γmðnþ1Þ

− 1

�� 1
nþ1

; n > −1; ð14Þ

where α is an integration constant. The integration constant
appearing in the general solution (14), after integrating the
first integral (13), was chosen so that xs ¼ xðasÞ ¼ xðρsÞ ¼
0 for a finite value of the scale factor as ≠ 0, which is
equivalent to demand the existence of finite density at as,
namely ρs ¼ ρðxsÞ ¼ ρðasÞ. Such demand is well justified
provided we are seeking for a realization of a future
singularity and it must have a nonvanishing Hubble
function at finite time ts as we will see later on.
Besides, we must combine α > 0 with a < as or α < 0
with a > as in order to ensure that the square bracket in
Eq. (14) is defined positive. Finally, if Eqs. (13) and (14)
are combined, we can obtain how the first integral behaves
with the scale factor, x0 ¼ −αγmx−nðas=aÞ3γmðnþ1Þ.
In the particular case of a vanishing integration constant

α, the source equation (10) of the interacting dark sector in
presence of different forms of dark matter components
includes the ΛCDM model of the General Relativity
Theory. In fact, solving Eq. (13) and inserting the solution
into Eq. (12), we obtain the energy density

ρðα¼0Þ ¼ ρs

�
1�

�
a0
a

�
3γm

�
; ð15Þ
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with a0 an integration constant. From this equation, we get
ρ0ðα¼0Þ ¼ −γmðρðα¼0Þ − ρsÞ, so that inserting it into

Eqs. (3), (4), (5), and (9), we have the equation of state
pðα¼0Þ ¼ −γmρs þ ðγm − 1Þρðα¼0Þ, which reduces to
pðα¼0Þ ¼ −ρs for cold dark matter(CDM) when γm ¼ 1,
the dark energy densities ρm ¼ ρðα¼0Þ − ρs, ρx ¼ ρs and a
vanishing interaction term Qðα¼0Þ ¼ 0. The upper sign in
Eq. (15) corresponds to the ΛCDM model for γm ¼ 1 and
the lower one to a nonsingular bouncing model.
Equations (10)–(13) also admit a simple constant sol-

ution ρdS ¼ ρs½1þ βð−αÞ1=ðnþ1Þ�, which after having used
Eqs. (4)–(5) they lead to ρm ¼ 0 and ρx ¼ ρdS. Below, we
will return to this solution that is related with the branches
of solutions which have an initial contracting or a final
expanding de Sitter phase. These stages are in turn related
with an asymptotically vanishing interaction.
In order to study the most relevant outcome of our

model, we collect all the meaningful quantities which will
be used later on. From Eqs. (3)–(5), (9), and (12)–(14), we
find that

QðaÞ ¼ −nα2βρsγm
�
as
a

�
3γmðnþ1Þ

×

�
α

��
as
a

�
3γmðnþ1Þ

− 1

��−2nþ1
nþ1

; ð16Þ

ρ ¼ ρs

�
1þ β

�
α

��
as
a

�
3γmðnþ1Þ

− 1

�� 1
nþ1

�
; ð17Þ

ρ0 ¼ −αβρsγm
�
as
a

�
3γmðnþ1Þ�

α

��
as
a

�
3γmðnþ1Þ

− 1

�� −n
nþ1

;

ð18Þ

p ¼ −ρs þ ðγm − 1Þðρ − ρsÞ þ αβρsγm

�
βρs

ρ − ρs

�
n
; ð19Þ

ρm ¼ αβρs

�
as
a

�
3γmðnþ1Þ�

α

��
as
a

�
3γmðnþ1Þ

− 1

�� −n
nþ1

; ð20Þ

ρx ¼ ρs

�
1 − αβ

�
α

��
as
a

�
3γmðnþ1Þ

− 1

�� −n
nþ1

�
: ð21Þ

Now, we will focus our investigation in the family of
finite-time future singularities such that the scale factor and
the Hubble parameter remain finite at some finite cosmic
time called ts but the pressure diverges at this time.
Meaning that the scale factor as ¼ aðtsÞ, its first time
derivative _as ¼ _aðtsÞ are finite but its second derivative

äs ¼ äðt → tsÞ ¼ �∞; ð22Þ

diverging in the limit t → ts. As both the scale factor and
Hubble parameter remain bounded at t ¼ ts, the Christoffel

symbols are regular at this singularity and the geodesics are
well behaved and they can cross the singularity [8]. The
existence of this kind of future singularity in the interacting
dark sector requires that the pressure (19), relaxed version
of the well-known Chaplygin gas, diverges in the limit
ρ → ρs. Bearing this in mind and taking into account
Eq. (19), we restrict the coupling constant to be positive
n > 0, so that

ps ¼ pðρ → ρsÞ ¼ �∞; ð23Þ

as ρ → ρs.Thus, p → −2 _H → −2ä=as and the cosmic
acceleration diverges ä→−asps=2→∓∞ when ρ → ρs.
Also, the interaction Q, the η-derivative of the energy
density ρ0, the DM and VVE densities ρm and ρx diverge in
the limit a → as whereas their sign near as is determined by
the sign of the product αβ. In this scenario, the pressure
p ¼ γmρm − ρ diverges as a → as provided the DM and
VVE densities ρm → αβ∞ and ρx → −αβ∞ blows-up at
the limit a → as whereas the energy density remains finite,
namely ρ ¼ ρm þ ρx → ρs. Our conclusion is that the
appearance of a finite-time future singularity is directly
linked with the behavior of the dark energy densities near
the singularity given that they diverge at as together with
the pressure as well. Hence, the interaction between the
dark components plays an important role in the occurrence
of the future singularity. This simple fact shows a close
relation between a divergent interaction term and divergent
dark energy components at as.
One way to address the full analysis of this type of

singular event is to show more explicitly how it can be
crossed and by doing so one necessarily emerges in another
kind of Universe. In order to show how the matching of two
nonlinear interacting dark sector can be obtained, it is
useful to start by classifying all the physical distinctive
dynamical regions of the model. Such a task is tackle by
considering a generic point ðas; ρsÞ in the plane ða; ρÞ,
where Q, ρ0, p, ρm, ρx and the effective barotropic index
γ ¼ −ρ0=ρ diverge. The aforesaid analysis points out that
there are four regions in which the interaction term and the
others quantities change their specific forms (see for
example Fig. 1 for the energy density). These regions
are uniquely identified with the signs of the parameters α
and β [see Eqs. (11) and (14)]. Clearly, the identification of
these four interaction pieces is characterized by the signs of
α and β, so that we are going to define a new symbol
QðsignðαÞ;signðβÞÞ for that purpose. The four kinds of inter-
actions can be classified in the following way:

Qðþ;þÞðaÞ ¼ Qðα > 0; β ¼ 1; a < as; ρ > ρsÞ; ð24Þ

Qð−;−ÞðaÞ ¼ Qðα < 0; β ¼ −1; a > as; ρ < ρsÞ; ð25Þ

Qð−;þÞðaÞ ¼ Qðα < 0; β ¼ 1; a > as; ρ > ρsÞ; ð26Þ
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Qðþ;−ÞðaÞ ¼ Qðα > 0; β ¼ −1; a < as; ρ < ρsÞ: ð27Þ
In the forthcoming sections, we are going to explore with
enough detail two piecewise models, one will be driven by
interaction pieces (24)–(25) and the other will be associated
with (26) and (27), respectively.

III. SOLUTIONS FOR THE SCALE FACTOR

From the conclusions we have reached in Sec. II, we are
in a position to assert that the Universe may evolve to a
finite-time future singularity. We are going to take a closer
look at this possibility by inspecting the physical mecha-
nism behind the occurrence of such kind of event within the
interacting dark sector model. One way to achieve such a
goal is examining not only the source variables as energy
density and pressure as functions of the scale factor but also

studying some of these quantities, for example, the scale
factor and the energy density as functions of the cosmic
time and its subsequent time derivatives provided both
variables are related through the Einstein’s field equation.
In this direction, we will focus on the geometric part of the
interacting dark sector model and use the Friedmann
equation, 3H2 ¼ ρ, to describe the time evolution of the
scale factor along with the energy density. For that purpose,
we rewrite the Friedmann equation in terms of the dimen-
sionless variable x as

_x2 ¼ 3ρsð1þ βxÞx02: ð28Þ
Equation (28) suggests that we can find the approximate
solution for the scale factor along with the related quantities
in certain limiting cases as a useful manner to find some
connection between the interacting dark sector and the
existence of finite-time future singularities. We will exam-
ine how this procedure can be implemented in a consistent
manner in the forthcoming subsections.

A. Scale factor solution near the
sudden future singularity

Near the singularity at a ¼ as, where the interaction term
(9) diverges, ρ → ρs and x → 0, we consider only the
contribution of the term, αx−n, in the first integral (13) of
the source equation (10) provided it is the leading term, so
that the first integral reduces to the following one:

x0 ≈ −αγmx−n: ð29Þ
Combining Eqs. (28) and (29), we obtain the Friedmann
equation near as,

_x ≈ −3αγmHsx−n
�
1þ β

2
x

�
; ð30Þ

where the expansion rateHs ¼
ffiffiffiffiffiffiffiffiffi
ρs=3

p
and whose approxi-

mate implicit solution is given by

xnþ1

nþ 1
−

βxnþ2

2ðnþ 2Þ ≈ −3αγmHsðt − tsÞ: ð31Þ

Solving iteratively the last equation, we get the approxi-
mate time dependence of the scale factor, its first time
derivative, and the cosmic acceleration near the singularity
at t ¼ ts; these are

aðtÞ≃ as

�
1þHsΔt −

β½−3αγmðnþ 1ÞHsΔt�nþ2
nþ1

6αγmðnþ 2Þ þ � � �
�
;

ð32Þ

_aðtÞ≃ asHs

�
1þ β

2
½−3αγmðnþ 1ÞHsΔtÞ� 1

nþ1 þ � � �
�
;

ð33Þ

FIG. 1. Figure shows the energy density as a function of the
scale factor for the four regions characterized by the signs of α
and β parameters. Solutions II and IV tend to constant values ρdSþ
and ρdS− , while solutions III and V reach a bounce at ab and a
maximum at amax. In Sec. IV, we describe three different
piecewise models constructed by matching solutions I with IV,
I with V, and II with III at a ¼ as.

FIG. 2. Figure shows the qualitative behavior of the scale factor
as a function of the cosmic time obtained from the five energy
densities of the Fig. 1. The solid line represents the scale factor of
the piecewise model corresponding to energy densities I and V,
the dashed line to II and III, and both the solid and the dot-dashed
lines to I and IV.
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äðtÞ≃ −
3αβγmasH2

s

2
½−3αγmðnþ 1ÞHsΔtÞ� −nnþ1 þ � � � ;

ð34Þ

where Δt ¼ t − ts. For n > 0, we have that the scale factor
aðtsÞ ¼ as and its first time derivative _aðtsÞ ¼ asHs are
both finite but its second time derivative ä → −αβ∞ and
the subsequent time derivatives diverge in the limit t → ts.
When the parameters α and β involved in the interacting
piecewise model have the same signs a sudden future
singularity will occur at the cosmic time ts.
For the sake of completeness, we integrate the approxi-

mate first integral (29) and compose the solution with the
scale factor (32), in order to find a power expansion of
the energy density (17) as well as its time derivative near
the singularity at ts,

ρ ≈ ρs

�
1þ β½−3αγmðnþ 1ÞHsΔt� 1

nþ1

þ β2½−3αγmðnþ 1ÞHsΔt� 2
nþ1

2ðnþ 2Þ þ � � �
�
; ð35Þ

_ρ ≈ −3αβρsγmHs½−3αγmðnþ 1ÞHsΔt� −nnþ1 þ � � � : ð36Þ

Combining the cosmic acceleration (34) with the first time
derivative of the energy density (36), we obtain a simple
relation between them:

_ρ ≈ 6Hs
ä
as

: ð37Þ

From Eqs. (35)–(37), we have explicitly a finite energy
density ρðtsÞ ¼ ρs at the singularity while its time deriva-
tive _ρ → −αβHs∞ in the limit t → ts as long as the
coupling constant remains positive (n > 0). In this case,
a sudden future singularity happens for an expanding
universe, Hs > 0. In addition, from Eqs. (4) and (5), we
find that the dark energy densities and the barotropic index
ρm → �∞, ρx →∓ ∞ and γ ¼ −_ρ=3Hρ →∓ ∞ diverge in
the limit t → ts. At the same time, the interaction term Q
diverges at the cosmic time ts.

B. Big bang and big crunch singularities

The interacting dark sector model has an initial singu-
larity at t ¼ tBB when β ¼ 1, α > 0 and n > −1. In this
case, the leading term in the energy density (17) is given by
ρBB ≈ ρsα

1=ðnþ1Þðas=aBBÞ3γm ., since near the initial singu-
larity aBB → 0 and the energy density blows up. Then,
inserting ρBB into the Friedmann equation (28), we find that
the dominant term of the approximated solution is the
power law scale factor,

aBBðtÞ≃ as

�
3

2
γmHsα

1=2ðnþ1Þðt − tBBÞ
� 2

3γm þ � � � ; ð38Þ

with t > tBB and Hs > 0 for an expanding universe.
We have that ρ → ρBB → ∞ and a → 0 when t → tBB
while the equation of state (19) becomes linear pBB ≈
ðγm − 1ÞρBB and the pressure diverges in the same limit.
Then, the big bang singularity occurs at t ¼ tBB, where the
energy density ρ, the pressure p, _ρ, _p and their higher
derivatives diverge. Near this primordial singularity
ρm → ∞, ρx → ρs, the interaction term (16) has a vanishing
limit and dark components decouple in the limit t → tBB.
So the appearance of the initial singularity is essentially
caused by the growing without limit of the DM energy
density. In contrast, at the sudden future singularity, the
interaction Q diverges and the dark components become
strongly coupled. This is a very significant result because
the appearance of a finite-time future singularity appears to
be strongly linked with the divergence of the interaction
term at the limit t → ts. In the following, we will reinforce
such reciprocity.
Also there exists a possibility that a big crunch

singularity occurs at cosmic time tBC ¼ tBB when the
entire Universe contracts from the past and collapses in
the limit t → tBC, such that t < tBC and Hs < 0, under its
own gravity until all known structures are concentrated at
one point (see Fig. 2).

C. Bouncing scenario

For α > 0, β ¼ −1 and ρ ≤ ρs there exists a scale factor
value ae,

ae ¼ as½1þ α−1� −1
3γmðnþ1Þ; ð39Þ

such that the energy density (17) vanishes (ρe¼ρðaeÞ¼0)
and the scale factor has an extremum. To explore the
behavior of physical quantities near ae, it is useful to define
a small departure δ from ae as follows

δ ¼ a − ae
ae

; jδj ≪ 1: ð40Þ

Taking into account that ρe ¼ 0, we make a first order
Taylor expansion of the energy density (17) around ae,

ρðηÞ ≈ ρ0ðηeÞðη − ηeÞ þ � � � ; ð41Þ

ρ0e ¼ ρ0ðηeÞ ¼ ð1þ αÞρsγm; ð42Þ

where ρ0ðηeÞ is positive definite, ηe ¼ 3 ln ae and
η − ηe ¼ 3 ln a=ae ¼ 3 ln ð1þ δÞ ≈ 3δ. The integration of
the approximate Friedmann equation, _δ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ðaeÞδ

p
, leads

to the scale factor in terms of the cosmic time, and it reads
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aðtÞ≃ ae

�
1þ ρ0e

4
ðt − teÞ2 þ � � �

�
: ð43Þ

Then, ae represents a minimum of the scale factor where it
bounces at tb ¼ te and ab ¼ aðtbÞ ¼ ae.
FromEqs. (16)–(21), we have that the interaction term (16)

becomes constant at the bounceQðabÞ¼−nαβð1þαÞρsγm, a
similar result can be noticed for the DM and VVE densities
ρmb ¼ ρmðabÞ ¼ −ð1þ αÞρs ¼ −ρxb > 0 and the pressure
pb ¼ pðabÞ ¼ −ρ0b ¼ −ð1þ αÞγmρs turns negative. In
short, all the source variables have a constant nonvanishing
value at ab. Such signature can be used as a physical property
to distinguish a finite-time singularity from a bounce event.
On the other hand, the energy density also vanishes if

α < −1, β ¼ −1, and ρ ≤ ρs. The particular value α ¼ −1
is excluded from the analysis because the energy density
vanishes in the limit a → ∞. For the remaining values of α,
the extremum ae represents a maximum of the scale factor,
meaning that the scale factor expands until it reaches the
maximum value amax ¼ ae and then begins to contract
(see Fig. 2).

D. de Sitter phase

In Sec. II, we have obtained the simple constant solution,

ρdS ¼ ρs½1þ βð−αÞ1=ðnþ1Þ�; HdS ¼
ffiffiffiffiffiffiffi
ρdS
3

r
; ð44Þ

which includes a contracting de Sitter solutions for α < 0,
β ¼ 1 and an expanding one for −1 < α < 0, β ¼ −1. For
these solutions, we find that the dark energy densities are
ρmdS

¼ 0, and ρxdS ¼ ρdS with pdS ¼ −ρdS. In these cases,
the interaction term (9) vanishes and the model becomes
decoupled. We investigate the behavior of solutions x ¼
xdSð1þ ϵÞ of Eq. (13) near to xdS ¼ ρsð1þ βρdSÞ with
ϵ ≪ 1 by expanding the Eq. (13) to first order in ϵ,

_ϵ ¼ −3ð1þ nÞγmHdSϵ: ð45Þ

This shows that in the regions defined by α < 0 and
β ¼ �1, the contracting de Sitter phase (anti-de Sitter)
a ∝ exp ð−HdStÞ is unstable for n > −1 and the expanding
one a ∝ exp ðHdStÞ is stable. Then, the solution of the
source equation (10) approach to the stable de Sitter
solution (44) in the limit t → þ∞.

E. Comments on big brake and sudden
future singularities

In the last part of this section, we will make some
comments relative to the effective equation of state in the
interacting dark sector and put in evidence of the main
features of the big brake and the sudden future singularities
when they occur as a product of nonlinear interacting
processes. In particular, we will refer to two different cases
which might seem to share some similarities but they are

really different in nature as we will show later. In Ref. [23]
we have investigated the occurrence of the big brake
singularity when the dark sector includes two components,
dark matter and VVE coupled with an interaction term
having the form of Eq. (9) with ρs ¼ 0. On the other hand,
we have the sudden future singularity examined in the
present interacting model, where the nonlinear interaction
term is given by (9) with ρs ≠ 0. In the former case, the
effective equation of state has the form

pb ¼ ðγm − 1Þρþ αγmρ
−n; ð46Þ

of a modified Chaplygin gas while in the latter case the
effective equation of state is given by Eq. (19). Now, let us
explore the essential differences between both equation of
states which give rise to the big brake and the sudden future
singularities. To this end, we make use of the energy
density expansion (35) near the future singularity at the
cosmic time ts

ρ ≈ ρsf1þ β½−3αγmðnþ 1ÞHsΔt� 1
nþ1 þ � � �g; ð47Þ

where without loss of generality, we have taken into
account only the main contribution of the expansion (35)
in power of Δt, and inserted it into the effective equation of
state (19),

p ≈ −ρs þ βρsðγm − 1Þ½−3αγmðnþ 1ÞHsΔt� 1
nþ1

þ αβρsγm½−3αγmðnþ 1ÞHsΔt� −nnþ1 þ � � � : ð48Þ

Surprisingly, the pressure p → 0 in the limit ρs → 0; hence,
it does not reduce to equation of state (46) that characterizes
the big brake singularity. However, in the case that ρs ≠ 0,
we have a sudden future singularity provided 1=ðnþ1Þ>0
and −n=ðnþ 1Þ < 0, meaning that n > 0. In fact, when
t → ts in Eqs. (32)–(34), we obtain that the scale factor
a → as and its first time derivative _a → asHs are finite
while the acceleration ä → �∞ diverges. Also, taking into
consideration Eqs. (47) and (48) in the same limit, we have
that the energy density ρ → ρs is finite but the pressure
p → �∞ diverges. In conclusion, the big brake singularity
cannot be obtained by taking the limit ρs → 0 in the present
model driven by the nonlinear interaction (9). Therefore we
need to investigate the big brake and the sudden future
singularities separately, being the former one identified
with the nonlinear interaction (9) with ρs ¼ 0 while the
latter one must have ρs ≠ 0 due the physical definition of a
sudden singularity. The aforesaid results are indicating that
the parameter ρs plays a special role in describing a
Universe with a sudden singularity, namely ρs introduces
a discontinuity in the limit ρs → 0 for the effective equation
of state (9) which is linked with the own nature of sudden
singularity. In another words, the interacting model asso-
ciated with the sudden singularity cannot lead continuously
to the other interacting model related with the big brake
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singularity provided the own different physical nature of
both singularities, so both scenarios deserve to be explored
on their own merits. Indeed, new physical insights can be
gained by exploring this cosmological scenario and
because of that many authors devoted several efforts to
explore the emergence of the sudden singularity on general
grounds or alternative frameworks [7,8,10]. Here, we
explored other appealing aspects about the risen of sudden
singularity along with the possibility of crossing this soft
singularity within the interacting dark energy framework.
Regarding the second topic, we will examine the joining of
two universes connected by a sudden singularity in the next
section as a way to show the richness of the nonlinear
interaction chosen in this work.

IV. PIECEWISE NONLINEAR MODEL
IN THE DARK SECTOR

So far we have presented an interacting dark-sector
model in which DM interacts with VVE. The interaction
has been divided in four different pieces (24)–(25) accord-
ing to the four regions in the plane ða; ρÞ delimited by the
sign of the parameters α and β, where each one of these
pieces has a physcial meaning associated with a particular
region of that plane. In this section, we will extend our
previous analysis on the cosmological model generated by
those interaction pieces, in particular, we will match two
different kinds of interaction pieces in order to show a
possible extension of the Universe through the finite-time
future singularity at t ¼ ts. In doing so, we will examine the
interaction pieces near the future singularity, explore the
behavior of the energy density, its η derivative, the DM, and
VVE densities along with the equation of state of the
content of the Universe. In a way, wewill offer a connection
between two universes (one of these prior to the singularity
event) and another universe (posterior to that event)
emerging from the future singularity, taking into account
that in both cases the content of the Universe includes
interacting DM and VVE. Also, the interacting model will
produce several types of singularity events and different
kinds of cosmological scenarios that we will investigate in
detail.

A. Cosmological model driven by Qðþ;þÞ and Qð−;−Þ

As we mentioned earlier, the present interacting cosmo-
logical model has two parts; one is driven by Qðþ;þÞðaÞ,
which is defined by α > 0, β ¼ 1 and turns out to be
restricted to the region a < as and ρ > ρs in the plane
ða; ρÞ. However, there is another part driven by Qð−;−ÞðaÞ,
which is specified by α < 0, β ¼ −1, so it is associated with
the region a > as and ρ < ρs. The explicit dependence on
the scale factor for Qðþ;þÞ and Qð−;−Þ together with other
useful quantities of the model are listed in Eqs. (16)–(27).
For n > 0, the interaction piece Qðþ;þÞ < 0 and the

Universe starts from a big bang singularity at t ¼ tBB,

where Qðþ;þÞ → 0, ρ → ∞, ρ0 → −∞, the pressure
p → ∞, the DM energy density ρm → ∞, and the VVE
density ρx → ρs in the limit a → 0. Later, the model
describes a matter-dominated universe with a power-law
scale factor. Interestingly enough, the DM density
decreases until it reaches its minimum value at ρm;min ¼
ρsð1þ n−1ÞðαnÞ1=ðnþ1Þ, where ρ0m ¼ 0 and ρ has an inflec-
tion point. Then, the DM density begins to increase and,
finally, ρm → þ∞ when a → as. However, the VVE
density at the initial singularity is ρx ¼ ρs, later decreases
with the scale factor provided ρ0x ¼ Qðþ;þÞ < 0, so then
vanishes and finally ρx → −∞ as a → as while ρ ¼ ρm þ
ρx → ρs remains finite.
Near the cosmic time ts, the approximate scale factor

(32) takes the following form:

aðþ;þÞ ≃ as

�
1þHsΔt −

½−3αγmðnþ 1ÞHsΔt�nþ2
nþ1

6αγmðnþ 2Þ � � �
�
;

α > 0; β > 0; a < as;

ρ > ρs; Hs > 0; t < ts: ð49Þ

The sudden future singularity occurs at the finite time ts
where the scale factor as ¼ aðtsÞ and its first time deriva-
tive _as ¼ _aðtsÞ ¼ asHs are both finite but its second time
derivative ä → −∞ for t → ts. The Hubble expansion
rate Hs ¼ HðtsÞ and the energy density (35), ρs ¼ ρðtsÞ,
has a finite value at the singularity; however, the pressure
p ¼ γmρm − ρ → þ∞ diverges in the limit t → ts.
In the other part of the piecewise model driven by the

positive interaction piece Qð−;−Þ > 0, the scale factor (32)
near as can be recast as

að−;−Þ ≃ as

�
1þHsΔtþ

½−3αγmðnþ 1ÞHsΔt�nþ2
nþ1

6αγmðnþ 2Þ � � �
�
;

α < 0; β < 0; a > as;

ρ < ρs; Hs > 0; t > ts: ð50Þ

The DM and VVE densities (20) and (21) have the limits
ρm → þ∞ and ρx → −∞, respectively, when a → as.
However, the energy density ρ ¼ ρs remains finite although
the pressure p ¼ γmρm − ρ → þ∞ diverges. In addition,
we have that the scale factor and its first time derivative as
and _as ¼ asHs are finite whereas the cosmic acceleration
ä → −∞ in the limit t → ts.
Let us make a comment about the final piecewise model

based on the process of matching two interacting universes.
The scale factor and expansion rate (geometrical variable)
along with the DM and VVE densities, the energy density,
its time derivative, and pressure of the effective fluid
(source variables) have the same limits in the limit t→ts
independently whether the future singularity is reached by
the first part of the model which we have identified with
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Qðþ;þÞ or by the second part of the model identified with
Qð−;−Þ. So that, the evolution across the singularity at ts is
completely regular which in turn means that comoving
observers can transit from an expanding universe driven by
Qðþ;þÞ, passing through the sudden future singularity, and
emerging in an expanding universe driven by Qð−;−Þ where
the singularity now is located in its distant past.
Far away from the singularity, the solutions of the

model driven by Qð−;−Þ evolve in two different forms
according to the values assigned to the integration constant
α. For instance, when α < −1 there is a set of scale
factor solutions for which the energy density vanishes
ρ0 ¼ ρðamaxÞ ¼ 0 at a specific value of the scale factor,

amax ¼ as½1þ α−1� −1
3γmðnþ1Þ; ð51Þ

which is the maximum value reached by the scale factor
(43) belonging to that set of solutions, and its expression
near amax ¼ aðtmaxÞ is given by

aðtÞ≃ amax

�
1þ ð1þ αÞρsγm

4
ðt − tmaxÞ2 þ � � �

�
: ð52Þ

After that, the Universe reverses its expansion (Hs < 0) and
begins to collapse, possibly into a big crunch. In this case, it
seems that the catastrophic final of the Universe identified
with the present piecewise model would be unavoidable
anyway.
For the other set of solutions, for which the integration

constant ranges between −1 < α < 0, the energy density
always decreases and varies between ρdS < ρ < ρs. In this
case, this expanding branch of solutions emerge from a
singularity in the past and the interaction piece Qð−;−Þ
accelerates the expansion, driving the Universe to a final de
Sitter stage described by the Eq. (44) with β ¼ −1. From
Eqs. (20) and (21), we have that ρm → 0, the VVE density
increases asymptotically to achieve the final energy density
ρx → ρ → ρdS and the asymptotic equation of state turns in
pdS ≈ −ρdS, being the fuel that controls the final dynamic
of the Universe. Consequently, the interaction piece
Qð−;−Þ → 0 at late times and the dark sector becomes
decoupled in the remote future.
Summarizing, we have constructed a piecewise model

driven by the interaction pieces Qðþ;þÞ and Qð−;−Þ. This
model describes a universe that begins in the far past from a
big bang singularity in the region of the plane ða; ρÞ
identified with Qðþ;þÞ. Then it has a matter-dominated
era and exhibits an accelerated expansion until it reaches
the sudden future singularity at ts, where the DM and VVE
densities ρm → þ∞, ρx → −∞ and the pressure p ¼
γmρm − ρ diverge in the limit t → ts. This clearly shows
that the DM and VVE densities produce the sudden
future singularity. In the other region of the piecewise
model, the interaction piece Qð−;−Þ generates two branches

of solutions; one expanding branch emerges from a distant
past singular event, with the scale factor reaching a
maximum from which the Universe reverses and collapses
into itself, possibly in a big crunch with a catastrophic
finale. However, the other expanding branch ends in a
stable de Sitter phase, avoiding a dramatic final fate.

B. Cosmological model driven by Qð−;þÞ and Qðþ;−Þ

We will construct a different piecewise model by gluing
two interacting models. One part of the model is based on
the options α < 0 and β ¼ 1 so that a > as and ρ > ρs,
indicating that the exchange of energy is driven by the
interaction piece Qð−;þÞðaÞ. On the other hand, the choice
α > 0 and β ¼ −1 corresponds to a < as and ρ < ρs which
is related with the interaction piece Qðþ;−ÞðaÞ. The main
quantities involved in this piecewise model, as functions of
the scale factor, are obtained from Eqs. (16)–(27).
The Universe begins with a contracting de Sitter (infla-

tionary) phase in the far distant past, with a decoupled dark
sector, Qð−;þÞ ≈ 0, ρm ≈ 0, ρ ≈ ρx ≈ ρdS and equation of
state pdS ≈ −ρdS, until it nearly reaches the cosmic time ts
where the approximate scale factor (32) is given by

að−;þÞ ≃ as

�
1þHsΔt −

½−3αγmðnþ 1ÞHsΔt�nþ2
nþ1

6αγmðnþ 2Þ � � �
�
;

α < 0; β > 0; a > as;

ρ > ρs; Hs < 0; t < ts: ð53Þ

From this equation, we have that both a → as and _a →
_as ¼ asHs < 0 remain finite at t ¼ ts, while the cosmic
acceleration grows without (ä → þ∞) at the limit t → ts.
This points out that the piecewise model also has a finite-
time future singularity at ts. Regarding the dark energy
components, we find that ρm → −∞, ρx → þ∞ while
ρ → ρs, ρ0 → þ∞ and p → −∞ when t → ts. In addition,
the energy density ranges between ρdS ≤ ρ ≤ ρs, whereas
the scale factor varies from ∞ to as.
When the Universe emerges from the finite time future

singularity at ts, the other interaction piece Qðþ;−Þ takes the
control of the dynamics, leading to a contracting phase.
Consequently, the scale factor (32) is written as

aðþ;−Þ ≃ as

�
1þHsΔtþ

½−3αγmðnþ 1ÞHsΔt�nþ2
nþ1

6αγmðnþ 2Þ � � �
�
;

α > 0; β < 0; a < as;

ρ < ρs; Hs < 0; t > ts: ð54Þ

The interaction piece Qðþ;−Þ and the remaining relevant
quantities ρ, ρ0, p, ρm, ρx as functions of the scale factor
are given by Eqs. (16)–(21) together with (27). In this piece
of model, Qðþ;−Þ → þ∞, ρðasÞ ¼ ρs, ρ0 → þ∞ and the
pressure p → −∞, causing ä → þ∞ as t → ts. Taking into
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account that ρm < 0 and ρx > 0 in the aforesaid scenario,
we find that ρm → −∞ and ρx → þ∞ while the sum of
the partial densities remains bounded ρ ¼ ρm þ ρx ¼ ρs
in the limit t → ts. These outcomes are in agreement
with our previous results obtained for geometrical and
source variables which characterize a finite-time future
singularity.
The Universe continues as before until bounces at the

scale factor value ab, given by

ab ¼ as½1þ α−1� −1
3γmðnþ1Þ; ð55Þ

for which ρðabÞ ¼ 0, ab ≤ a ≤ as [see Eq. (39)] and the
approximated scale factor (43) near the bounce at t ¼ tb
takes the next form

aðtÞ≃ ab

�
1þ ð1þ αÞρsγm

4
ðt − tbÞ2 þ � � �

�
: ð56Þ

The Universe reverses its contraction at t ¼ tb, begins to
expand (Hs > 0) and possible will enter into a stable de
Sitter phase driven by the fuel provided by the VVE density
which dominates over the DM one.
Summing up, the piecewise model driven by the inter-

action pieces Qð−;þÞ and Qðþ;−Þ gives rise to a universe
which begins in the distant past in a contracting de Sitter
phase, then one can extend the evolution of the Universe
through the finite-time future singularity, emerges from that
singularity and reaches a bounce until reverses it. Then the
Universe begins to expand and the aforesaid dynamical
mechanism produces a stable de Sitter phase described by
the asymptotic equation of state of the dark sector (19),
pdS ≈ −ρdS, indicating that the VVE component becomes
the dominant contribution.

V. TIPLER AND KRÓLAK METHOD

In the previous sections, we extracted quite general
conditions for the existence of a finite-time future singu-
larity within the framework of an interacting dark sector
based on a given nonlinear interaction and a piecewise
nonlinear interaction counterpart. We elaborated some new
appealing cosmic scenarios by matching in a smooth way
two different interacting sectors with the idea of showing
how the finite-time future singularity can be continued,
offering a new scheme where the aforesaid singularity is
viewed as a two-door way to another phase of the Universe.
We have also mentioned why this ansatz is physically
relevant provided that the effective model is related with an
relaxed version of the Chaplygin gas equation of state. In
this section, we will try to focus on a geometrical aspect of
the previous findings. Thus, we would like to complete our
analysis of the future singularity by taking into account a
geometric point of view based on a method developed by
Tipler [11] and Królak [12]. To summarize these criteria

briefly, we recall that a spacetime is Tipler strong [11] if, as
the proper time t → ts, the integral

T ðtÞ ¼
Z

t

0

dt0
Z

t0

0

jRαβuαuβjdt00 → ∞: ð57Þ

In same manner, a spacetime is Królak strong [12] if, as the
proper time t → ts, the integral

KðtÞ ¼
Z

t

0

jRαβuαuβjdt → ∞; ð58Þ

where the components of the Ricci tensor are understood to
be written in a frame which is transported parallel along the
geodesic curves. A singularity or event can be strong by
Królak criteria but weak according to Tipler’s criteria;
however, the reverse situation always holds. Because weak
singularities can be extended beyond them, the method
developed by Tipler and Królak are useful tools for
determining the fate of the Universe in terms of the fate
of geodesic curves near potential strong singular point [24].
Let us consider timelike geodesic curves, xi ¼ c with i
spatial index and c a constant [25], associated with a
comoving observer; i.e., we take into account a comoving
worldline congruence with velocity uα ¼ ð∂tÞα ¼
ð1; 0; 0; 0Þ so that the proper time coincides with the
coordinate time. The components of the Ricci tensor
measured by the observer along this congruence lead to
Rαβuαuβ ¼ −3äðtÞ=aðtÞ [26]. Let us take into account the
first piecewise model. Using (49), calculating its second
derivative, and replacing in Eq. (58), we can demonstrate
that the Królak invariant yields KðtÞ ∝ ½κðt − tsÞ�m with
m > 0 provided the exponent satisfies the relation
ðnþ 2Þ=ðnþ 1Þ > 1, so the Krolak measure does not
diverge as t → ts; such fact indicates that the sudden event
is K-weak. On the other hand, the Tipler measure involves a
second integration, giving a T ðtÞ ∝ ½κðt − tsÞ�mþ1 regular
quantity as t → ts because n > −1; this shows that the
aforesaid event is T-weak also and, therefore, a trans-
versable singularity. The same kind of procedure can be
done for the second part of the piecewise model with (50).
The regularity of these invariants on the both sides of the
singularity ensures the continuity of the limits at the sudden
future singularity. This fact is closely related with the
regularity of the scale factor at both sides of the sudden
future singularity. We obtained similar results for the other
piecewise model associated with (53) and (54). Besides, the
weakness of sudden future singularity was recently
proved [10].
As a short comment, let us mention that at the bounce the

Tipler and Królak measures behave in a regular way
because äðηÞ=aðηÞ ∝ ½1 − pη2� with η ¼ t − tb, while for
the big bang or big crunch singularities, both invariants
diverge.
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VI. SUMMARY

We have investigated an interacting dark sector model
composed of DM and VVE with linear equations of state
for a spatially flat FRW spacetime and obtained the source
equation associated with this system. We have solved the
source equation and obtained the general solution for the
dark sector energy density, when the DM and VVE are
coupled with an extension of the nonlinear interaction
introduced in Ref. [22]. The general solution includes
several family of solutions, so with the purpose of con-
structing a finite-time future singularity at t ¼ ts within this
interacting framework, we have selected the family of
solutions which produces a divergence of the nonlinear
interaction for ρ → ρs ¼ ρðaðtsÞÞ, where ts is an specific
value of the cosmic time such that the scale factor
as ¼ aðtsÞ and the energy density ρs ¼ ρðasÞ are both
finite at the limit t → ts. For this family of solutions, we
have shown that the cosmic acceleration ä=a ¼ ρ=3þ
ρ0=2 → �∞ because ρ0 diverges as a → as. Additionally,
the pressure of the whole dark sector p ¼ −ρ − ρ0, that is
related with a relaxed version of the Chaplygin gas
equation of state, diverges in the limit ρ → ρs for t → ts.
In this interacting dark sector model, the pressure
p ¼ γmρm − ρ ¼ ðγm − 1Þρ − γmρx, diverges as a conse-
quence that both DM and VVE densities also diverge in the
limit t → ts. In the same manner, the occurrence of a finite-
time future singularity is strongly associated with the
divergent behavior of ρm and ρx. It was shown the
importance of considering a nonlinear coupling between
them in order to show how the behavior of dark energy
densities produces that singularity. After simple consid-
erations, we have separated the nonlinear interaction term
in four pieces according to the four regions in the plane
ða; ρÞ, defined by the scale factor, the energy density and
uniquely identified with the signs of the parameters α and β.
In each one of these regions the nonlinear interaction
changes its form and has a proper significance. In this
context, we have obtained the solution of the Friedmann
equation for the scaled factor which describes several types
of singularities and different kinds of scenarios which
we have investigated in enough detail. In particular, by
using the approximate scale factor we have studied its
behavior near the finite-time future singularity, big bang
and big crunch as well as power law, bounce, and de Sitter
scenarios.
We have constructed a piecewise cosmological model

driven by the interaction pieces Qðþ;þÞ and Qð−;−Þ, gluing
the corresponding scale factors at ts to extend the Universe
through the sudden future singularity located at ts. We have
explored the dynamics of the model by examining the
behavior of the energy density, its derivative, the DM and
VVE densities along with the equation of state of the
Universe. We have described an expanding matter-
dominated universe that starts from a big bang singularity
driven for Qðþ;þÞ and then continues to a sudden future

singularity. We have encountered that the scale factor
as ¼ aðtsÞ, its first time derivative _as ¼ _aðtsÞ and the
energy density ρs ¼ ρðaðtsÞÞ are finite when they are
evaluated at ts, but the acceleration ä diverges for
t → ts. Regarding the dark densities, we have found that
ρm → þ∞, ρx → −∞ while the total pressure p¼γmρm−ρ
diverge in the limit t → ts. This showed us the strong
relation that exists between sudden future singularity at ts
and divergent behavior of DM and VVE densities for
t → ts. After that, the Universe emerged from a singularity
in the past driven by Qð−;−Þ with two possible branches of
solutions. The branch α < −1, reaches a maximum at
amax ¼ aðtmaxÞ > as, then reverses its expansion, collapses
and possibly end in a big crunch singularity. Nevertheless,
the case with −1 < α < 0 represents an expanding scenario
and the Universe evolves asymptotically towards an accel-
erated de sitter phase. These solutions are asymptotically
stable and avoid a dramatic final fate.
We have generated a second piecewise model with the

interaction piecesQð−;þÞ andQðþ;−Þ, and gluing the respec-
tive scale factor solutions at ts. The Universe begins in the
distant past in a contracting de Sitter phase, with a nearly
vanishing interaction pieceQð−;þÞ ≈ 0 and a decoupled dark
sector. The DM energy density ρm ≈ 0, the energy density
ρ ≈ ρx ≈ ρdS and the VVE energy has an approximate de
Sitter equation of state pdS ≈ −ρdS. The Universe contracts
and then continues to a finite-time future singularity at
t ¼ ts, where the scale factor as ¼ aðtsÞ, its first time
derivative _as ¼ asHs < 0 and the energy density remain
finite at t ¼ ts, while the cosmic acceleration grows without
limit (ä → þ∞) in the limit t → ts, so these results indicate a
finite-time future singularity at ts. Then, the Universe
emerges driven by the interaction piece Qðþ;−Þ, bounces
at the scale value ab ¼ aðtbÞ, and after that reverses, begins
to expand, and subsequently the VVE density begins to
dominate over the DM one. Then, the expanding universe
has a stable de Sitter phase, described by the asymptotic dark
sector equation of state, p → px → pdS ≈ −ρdS. Notice that
the approximate scale factor can be extended at the finite-
time future singularity with the one obtained from the
interaction piece Qðþ;−Þ at t ¼ ts.
Using the approximate scale factor in the vicinity of this

singular event along with the geometric method developed
by Tipler and Królak for the case of timelike geodesic
curves (comoving observer), we have obtained a regular
behavior of Tipler and Krolak measures around the sudden
future singularity; that is, both measures are well behaved at
both sides of the singularity and matched continuously at ts,
which in turn ensures the regularity of these measures for
the piecewise model in the whole spacetime. In short,
timelike geodesic curves can be extended beyond such
singular event, turning into a traversable singularity.
In the near future, we will implement an analysis

of the classical stability associated with the sudden future
singularity for the piecewise models which will be mainly
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focused on the scalar modes of the perturbed metric. Such
analysis will complement the already known stability
studies of sudden future singularity [27].
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