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We calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions
through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers.
We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino
spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for
different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter
the expected big bang nucleosynthesis light element abundance yields relative to those in the standard
Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energy spectra,
are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor.
We analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton
number.
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I. INTRODUCTION

In this paper we use the BURST neutrino-transport code
[1] to calculate the baseline effects of out-of-equilibrium
neutrino scattering on nucleosynthesis in an early universe
with a nonzero lepton number, i.e., an asymmetry in the
numbers of neutrinos and antineutrinos. Our baseline
includes a strong, electromagnetic, and weak nuclear
reaction network; modifications to the equation of state
for the primeval plasma; and a Boltzmann neutrino energy
transport network. We do not include neutrino flavor
oscillations in this work. Our intent is to provide a coupled
Boltzmann transport and nuclear reaction calculation to
which future oscillation calculations can be compared. In
fact, the outstanding issues in achieving ultimate precision
in big bang nucleosynthesis (BBN) simulations will revolve
around oscillations and plasma physics effects. These
issues exist in both the zero and nonzero lepton-number
cases, but are more acute in the presence of an asymmetry.
We self-consistently follow the evolution of the neutrino

phase-space occupation numbers through the weak-
decoupling-nucleosynthesis epoch. There are many studies
of the effects of lepton numbers on light element, BBN
abundance yields. Early work [2,3] briefly explored the
changes in the helium-4 (4He) abundance in the presence of
large neutrino degeneracies. Later work considered how
lepton numbers could influence the 4He yield [4,5] through
neutrino oscillations. In addition, other works employed
lepton numbers to constrain the cosmic microwave back-
ground (CMB) radiation energy density [6,7] or the sum of
the light neutrino masses [8]. References [9,10] simulta-
neously investigated BBN abundances and CMB quantities

using lepton numbers. The most recent work has used the
primordial abundances to constrain lepton numbers which
have been invoked to produce sterile neutrinos through
matter-enhanced Mikheyev-Smirnow-Wolfenstein reso-
nances [11–13]. Currently, our best constraints on these
lepton numbers come from comparing the observationally
inferred primordial abundances of either 4He or deuterium
(D) with the predicted yields of 4He and D calculated in
these models.
Previous BBN calculations with neutrino asymmetry

have made the assumption that the neutrino energy dis-
tribution functions have thermal, Fermi-Dirac (FD) shaped
forms. In fact, we know that neutrino scattering with
electrons, positrons, and other neutrinos and electron-
positron annihilation produce nonthermal distortions in
these energy distributions, with concomitant effects on
BBN abundance yields [1]. Though the nucleosynthesis
changes induced with self-consistent transport are small,
they nevertheless may be important in the context of high
precision cosmology. Anticipated Stage-IV CMB measure-
ments [14,15] of primordial helium and the relativistic
energy density fraction at photon decoupling, coupled with
the expected high precision deuterium measurements made
with future 30-m class telescopes [16–20] will provide new
probes of the relic neutrino history.
In the standard cosmology with zero lepton numbers,

neutrino oscillations act to interchange the populations of
electron neutrinos and antineutrinos (νe, ν̄e) with those of
muon and tau species (νμ, ν̄μ, ντ, ν̄τ) [21]. Once we posit
that there are asymmetries in the numbers of neutrinos and
antineutrinos in one or more neutrino flavors, then neutrino
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oscillations will largely determine the time and temperature
evolution of the neutrino energy and flavor spectra [22–30].
In this paper we ignore neutrino oscillations and provide a
baseline study of the relationship between neutrino spectral
distortions arising from the lengthy (∼10 Hubble times)
neutrino decoupling process and primordial nucleosynthe-
sis. This is an extension of the comprehensive study of
this physics in the zero lepton-number case with the BURST

code [1], and in other works [31–39]. We will introduce
alternative descriptions of the neutrino asymmetry to study
the individual processes occurring during weak decoupling.
Our studies in this paper, together with the methods in
other works, will be important in precision calculations
for gauging the effects of flavor oscillations in the early
universe.
As we develop below, a key conclusion of a comparison

of neutrino-transport effects with and without neutrino
asymmetries is nonlinear enhancements of spectral dis-
tortion effects on BBN in the former case. This suggests
that phenomena like collective oscillations may have
interesting BBN effects in full quantum kinetic treatments
of neutrino flavor evolution through the weak decou-
pling epoch.
The outline of this paper is as follows. Section II gives

the background analytical treatment of neutrino asymmetry,
focusing on the equations germane to the early universe.
Section III presents the rationale in picking the neutrino-
occupation-number binning scheme and other computa-
tional parameters. We use the same binning scheme
throughout this paper as we investigate how the occupation
numbers diverge from FD equilibrium, starting in Sec. IV.
In Sec. V, we present a new way of characterizing
degenerate neutrinos in the early universe. Section VI
details the changes to the primordial abundances from
the out-of-equilibrium spectra. We give our conclusions in
Sec. VII. Throughout this paper we use natural units,
ℏ ¼ c ¼ kB ¼ 1, and assume neutrinos are massless at the
temperature scales of interest.

II. ANALYTICAL TREATMENT

To characterize the lepton asymmetry residing in the
neutrino seas in the early universe, we use the following
expression in terms of neutrino ν, antineutrino ν̄, and
photon γ number densities to define the lepton number
for a given neutrino flavor:

Li ≡ nνi − nν̄i
nγ

; ð1Þ

where i ¼ e, μ, τ. The photons are assumed to be in a
Planck distribution at plasma temperature T, with number
density

nγ ¼
2ζð3Þ
π2

T3; ð2Þ

where ζð3Þ ≈ 1.202. The neutrino spectra have general
nonthermal distributions and their number densities are
given by the integration

nνi ¼
T3
cm

2π2

Z
∞

0

dϵϵ2fνiðϵÞ: ð3Þ

Here, Tcm is the comoving temperature parameter and
scales inversely with scale factor a

TcmðaÞ ¼ Tcm;i

�
ai
a

�
; ð4Þ

where the i subscripts reflect a choice of an initial epoch to
begin the scaling. In this paper, we will choose Tcm;i such
that Tcm is coincident with the plasma temperature when
T ¼ 10 MeV. For T > Tcm;i, the plasma temperature and
comoving temperature parameter are nearly equal as the
neutrinos are in thermal equilibrium with the photon-
electron-positron plasma. T and Tcm diverge from one
another once electrons and positrons begin annihilating into
photon and neutrino/antineutrino pairs below a temperature
scale of 1 MeV. The dummy variable ϵ in Eq. (3) is the
comoving energy and related to Eν, the neutrino energy, by
ϵ ¼ Eν=Tcm. The sets of fνi are the phase-space occupation
numbers (also referred to as occupation probabilities) for
species νi indexed by ϵ. In equilibrium the occupation
numbers for neutrinos behave as FD

fðeqÞðϵ; ξÞ ¼ 1

eϵ−ξ þ 1
; ð5Þ

where ξ is the neutrino degeneracy parameter related to the
chemical potential as ξ ¼ μ=Tcm. Unlike the lepton number
for flavor i in Eq. (1), the corresponding degeneracy
parameter ξi is a comoving invariant. If we consider the
equilibrium occupation numbers in the expression for
number density, Eq. (3), we find

nðeqÞν ¼ T3
cm

2π2

Z
∞

0

dϵ
ϵ2

eϵ−ξ þ 1
¼ T3

cm

2π2
F2ðξÞ; ð6Þ

where F2ðξÞ is the relativistic Fermi integral given by the
general expression

FkðξÞ ¼
Z

∞

0

dx
xk

ex−ξ þ 1
: ð7Þ

We can define the following normalized number
distribution:

F ðϵ; ξÞdϵ≡ dnR
dn

¼ 1

F2ðξÞ
ϵ2dϵ

eϵ−ξ þ 1
: ð8Þ
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Figure 1 showsF plotted against ϵ for three different values
of ξ.
The expressions for the number densities in Eqs. (2) and

(3) have different temperature/energy scales. As the tem-
perature decreases, electrons and positrons will annihilate
to produce photons primarily, thereby changing T with
respect to Tcm. As a result, Eq. (1) decreases from the
addition of extra photons. To alleviate this complication,
we calculate the lepton number at a high enough temper-
ature such that the neutrinos are in thermal and chemical
equilibrium with the plasma. We can take Tcm ¼ T at high
enough temperature and write Eq. (1) as

L⋆
i ¼ 1

4ζð3Þ
Z

∞

0

dϵϵ2½fνiðϵÞ − fν̄iðϵÞ�; ð9Þ

where we call L⋆
i the comoving lepton number.

Equation (9) simplifies further if we use the FD expression
in Eq. (5) and recognize that in chemical equilibrium the
degeneracy parameters for neutrinos are equal in magnitude
and opposite in sign to those of antineutrinos

L⋆
i ¼ π3

12ζð3Þ
�
ξi
π
þ
�
ξi
π

�
3
�
; ð10Þ

where ξi is the degeneracy parameter for neutrinos of flavor
i. Equation (10) provides an algebraic expression for
relating the lepton number to the degeneracy parameter
with no explicit dependence on temperature. We will give
our results in terms of the comoving lepton number and use
Eq. (10) to calculate the degeneracy parameter for input
into the computations. In this paper, we will only consider
scenarios where all three neutrino flavors have identical
comoving lepton numbers. Unless otherwise stated, we will
drop the i subscript and replace it with the neutrino symbol,
i.e., L⋆

ν , to refer to all three flavors.
Degeneracy in the neutrino sector increases the total

energy density in radiation. The parameterNeff is defined in

terms of the plasma temperature and the radiation energy
density

ρrad ¼
�
2þ 7

4

�
4

11

�
4=3

Neff

�
π2

30
T4: ð11Þ

Equation (11) can be used at any epoch, even one in
which there exists seas of electrons and positrons, e.g.,
Eq. (31) in Ref. [1]. We will consider ρrad and T at the
epoch T ¼ 1 keV, after the relic seas of positrons and
electrons annihilate. Assuming equilibrium spectra for all
neutrino species, the deviation of Neff , ΔNeff , from exactly
3 would be

ΔNeff ≡ Neff − 3 ¼
X
i

�
30

7

�
ξi
π

�
2

þ 15

7

�
ξi
π

�
4
�
; ð12Þ

where the summation assumes the possibility of different
neutrino degeneracy parameters for each flavor [34,40].
We begin by presenting the case of instantaneous

neutrino decoupling with pure equilibrium FD distribu-
tions. Table I shows the deviations in energy densities for
neutrinos and antineutrinos with respect to nondegenerate
FD equilibrium, the asymptotic ratio of Tcm to T, and
the change to Neff , for various comoving lepton numbers.
In this paper, we will colloquially refer to the asymptote of
any quantity as the “freeze-out” value. For the values of
L⋆
ν in Table I, a decade decrease in L⋆

ν produces compa-
rable decreases in δρν and jδρν̄j. L⋆

ν is related to the energy
densities through the degeneracy parameter derived from
Eq. (10), which is approximately linear in ξ for small L⋆

ν .
The change in Neff is quadratic in ξ which is discernible
for L⋆

ν ¼ 10−1 and L⋆
ν ¼ 10−2 at the level of precision

presented in Table I. The freeze-out value of Tcm=T is not
identically ð4=11Þ1=3, the canonical value deduced from

FIG. 1. Normalized number density plotted against ϵ for three
choices of degeneracy parameter: nondegenerate (ξ ¼ 0, solid
blue), degenerate with an excess (ξ ¼ 3.0, dashed red), and
degenerate with a deficit (ξ ¼ −3.0, dash-dotted green).

TABLE I. Observables and related quantities of interest for zero
and nonzero comoving lepton numbers without neutrino trans-
port. Column 1 is the comoving lepton number. Columns 2 and 3
give the relative changes of the ν and ν̄ energy densities compared
to a FD energy distribution with zero degeneracy parameter at
freeze-out. Column 4 shows the ratio of comoving temperature
parameter to plasma temperature also at freeze-out. For com-
parison, ð4=11Þ1=3 ¼ 0.7138. Column 5 gives Neff . Neff does not
converge to precisely 3.0 in the nondegenerate case due to the
presence of finite-temperature-QED corrections to the equations
of state for photons and electrons/positrons.

L⋆
ν δρν δρν̄ Tcm=T Neff

10−1 0.1485 −0.1300 0.7149 3.0479
10−2 1.401 × 10−2 −1.382 × 10−2 0.7149 3.0202
10−3 1.392 × 10−3 −1.390 × 10−3 0.7149 3.0199
10−4 1.391 × 10−4 −1.392 × 10−4 0.7149 3.0199
0 0 0 0.7149 3.0199
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covariant entropy conservation [41,42]. Although the
neutrino-transport processes are inactive for Table I
and therefore the covariant entropy is conserved, finite-
temperature quantum electrodynamic (QED) effects act
to perturb Tcm=T away from the canonical value [43,44].

III. NUMERICAL APPROACH

For this work, changes to the quantities of interest will be
as small as a few parts in 105. To ensure our results are not
obfuscated by a lack of numerical precision, we need an
error floor smaller than the numerical significance of a
given result. In BURST, we bin the neutrino spectra in linear
intervals in ϵ space. The binning scheme has two con-
straints: the maximum value of ϵ to set the range, and the
number of bins over that range. We denote the two
quantities as ϵmax and Nbins, respectively, and examine
how they influence the errors in our procedure.
The mathematical expressions for the neutrino spectra

have no finite upper limit in ϵ. We need to ensure ϵmax is
large enough to encompass the probability in the tails of the
curves in Fig. 1. As an example, consider the normalized
number density in Eq. (8). We would numerically evaluate
the normalization condition as

1≃
Z

ϵmax

0

dϵF ðϵ; ξÞ: ð13Þ

For large ϵ,F ∼ ϵ2e−ϵþξ, and sowe exclude a contribution to
the above integral on theorder of ϵmax

2e−ϵmax ifwe take ξ ¼ 0.
If we are using double-precision arithmetic, the contribution
becomes numerically insignificant for F ðϵmax; 0Þ < 10−16,
which corresponds to ϵmax ≃ 44. This value of ϵmax would
seem like the natural value to take without loss of a
numerically significant contribution to the integral in
Eq. (13). However, if we fix the number of abscissa in the
partition used when integrating Eq. (13) (i.e., fixing Nbins in
the binned neutrino spectra), we lose precision in the
evaluation of the contribution to the integral from each bin
as we increase ϵmax. Clearly, there is a trade off between ϵmax
and Nbins.
Figure 2 examines the ϵmax versus Nbins parameter space

by looking at the calculation of the equilibrium comoving
lepton number, in a scenario where ξ ≠ 0. We take L⋆

ν to be
exactly 0.1 and solve the cubic equation in Eq. (10) for ξ.
Next, we calculate neutrino and antineutrino spectra with
the equal and opposite degeneracy parameters. We proceed
to integrate Eq. (9) with the two spectra for different pairs
of ðNbins; ϵmaxÞ values. The integration is carried out using
Boole’s rule, a fifth-order integration method for linearly
spaced abscissas. Figure 2 shows the filled contours of
log10 values for the error in L⋆

ν

δL⋆
ν ¼

����L
⋆
ν ½ϵmax; Nbins� − 0.1

0.1

����; ð14Þ

for a given pair ðNbins; ϵmaxÞ. We immediately see the loss
of precision in the upper-left corner of the parameter space,
corresponding to small Nbins and large ϵmax. Furthermore,
for ϵmax ≲ 40, the error value flat lines with increasing
Nbins, implying that the error is a result of a too small choice
for ϵmax. The black curve superimposed on the heat map
gives the value of ϵmax with the lowest error as a function of
Nbins. It monotonically increases for 100 < Nbins ≲ 300, at
which point it reaches ϵmax ∼ 40 and begins to fluctuate.
The fluctuations are a result of reaching the double-
precision floor, implying that increasing Nbins adds no
more numerical significance.
The computation time required to run BURST scales as

N3
bins. In this paper, we attempt to be as comprehensive as

possible when exploring neutrino energy transport with
nonzero lepton numbers. Therefore, we will choose 100
bins for the sake of expediency. Figure 2 guides us in
picking ϵmax ¼ 25, and dictates a floor of ∼10−8 for our
best possible precision. It would appear that the choice
ðNbins; ϵmaxÞ≃ ð300; 40Þ would give the absolute best
precision for calculating L⋆

ν . This is valid if using the
linearly spaced abscissas as a binning scheme.We highlight
both the precision and timing needs for a comprehensive
numerical study on binning schemes. Such a study would
be germane for the more general problem which includes
neutrino oscillations and disparate lepton numbers in the
three active species [29,30,39].
For more details on the numerics of BURST, we refer the

reader to Ref. [1]. We have essentially preserved the
computational parameters except for a quantity related to
the determination of nonzero scattering rates. Reference [1]
used εðnet=FRSÞ ¼ 30, and in this work, we use
εðnet=FRSÞ ¼ 3.

IV. NEUTRINO SPECTRA

In this section we give a detailed accounting of how the
neutrino energy spectra evolve through weak decoupling in

FIG. 2. ϵmax versus Nbins for contours of constant error in L⋆
ν .

The exact value of L⋆
ν is 0.1. The black line on the contour space

gives the value of ϵmax with the smallest error as a function
of Nbins.
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the presence of zero and nonzero lepton numbers. In the
first subsection we integrate the complete transport net-
work, including all the neutrino scattering processes in
Table I of Ref. [1], from a comoving temperature parameter
Tcm ¼ 10 MeV down to Tcm ¼ 15 keV. In the second
subsection we investigate how the different interactions
between neutrinos and charged leptons affect the spectra.
We compare our results to that of FD equilibrium. For

the neutrino occupation numbers, we use the following
notation to characterize the deviations from FD equilibrium

δfξðϵÞ ¼
fðϵÞ − fðeqÞðϵ; ξÞ

fðeqÞðϵ; ξÞ : ð15Þ

Here, fðeqÞðϵ; ξÞ is the FD equilibrium occupation number
for degeneracy parameter ξ given in Eq. (5). When it is
obvious, we will drop the argument ϵ, i.e., δfξðϵÞ → δfξ.
As an example, δf0 gives the relative difference of the
occupation number from the nondegenerate, zero chemical
potential FD equilibrium value.
We also examine the absolute changes for the number

and energy distributions

Δ
�
dn
dϵ

�
ξ

≡ T3
cm

2π2
ϵ2½fðϵÞ − fðeqÞðϵ; ξÞ� ðnumberÞ; ð16Þ

Δ
�
dρ
dϵ

�
ξ

≡ T4
cm

2π2
ϵ3½fðϵÞ − fðeqÞðϵ; ξÞ� ðenergyÞ: ð17Þ

When using the absolute change expressions, we normalize
with respect to an equilibrium number or energy density in
order to compare to dimensionless expressions. For the
energy density, we use the appropriate degeneracy factor

ρξ ≡ T4
cm

2π2

Z
∞

0

dϵϵ3fðeqÞðϵ; ξÞ: ð18Þ

For the number density, we will exclusively use zero for the
degeneracy factor

n0 ≡ T3
cm

2π2

Z
∞

0

dϵϵ3fðeqÞðϵ; 0Þ

¼ 3

4

ζð3Þ
π2

T3
cm: ð19Þ

The out-of-equilibrium evolution of the neutrino occupa-
tion numbers driven by scattering and annihilation proc-
esses with charged leptons does not proceed in a unitary
fashion. Consequently, the total comoving neutrino number
density increases. The increase in number results in an
increase in energy density, and so we use ρξ to normalize
the absolute changes in differential energy density distri-
bution to compare with the initial distribution at high
temperature. However, the difference in number density
between neutrinos and antineutrinos, characterized by the
comoving lepton number in Eq. (9), does not change with
kinematic neutrino transport. In practice, BURST follows the
evolution of neutrino and antineutrino occupation numbers
separately, precipitating the possibility of numerical error.
We will use the same normalization for neutrino and
antineutrino differential number density distributions to
study the relative error in L⋆

i . We will take the normali-
zation quantity to be that of the nondegenerate number
density in Eq. (19).

A. All processes

Table II shows how neutrino transport alters neutrino
energy densities, Neff , the ratio of comoving temperature
parameter to plasma temperature, and entropy per baryon in
the plasma, spl. These quantities are computed for a range
of L⋆

i values and refer to the results at the end of the
transport calculation, Tcm ∼ 1 keV, well after weak decou-
pling. In this table, we focus on the energy-derived
quantities. The relative changes in energy density are with
respect to a nondegenerate FD distribution at the same
comoving temperature, i.e.,

δρi ¼
T4
cm

2π2

R
∞
0 dϵϵ3fiðϵÞ − ρ0

ρ0
; ρ0 ¼

7

8

π2

30
T4
cm: ð20Þ

TABLE II. Observables and related quantities of interest in zero and nonzero lepton-number scenarios with neutrino transport.
Column 1 is the lepton number. Columns 2, 3, 4, and 5 give the relative changes of the νe, ν̄e, νμ, and ν̄μ energy densities compared to a
FD energy distribution with zero degeneracy parameter. Comparisons are given for Tcm ∼ 1 keV, after the conclusion of weak
decoupling. Column 6 shows the ratio of comoving temperature parameter to plasma temperature also at the conclusion of weak
decoupling. For comparison, ð4=11Þ1=3 ¼ 0.7138. Column 7 gives Neff as calculated by Eq. (21). Column 8 gives the fractional change
in the entropy per baryon in the plasma, spl.

L⋆
ν δρνe δρν̄e δρνμ δρν̄μ Tcm=T Neff 103 × ðsðiÞpl =sðfÞpl − 1Þ

10−1 0.1576 −0.1213 0.1522 −0.1265 0.7159 3.0800 3.809
10−2 2.298 × 10−2 −4.888 × 10−3 1.760 × 10−2 −1.025 × 10−2 0.7159 3.0519 3.814
10−3 1.035 × 10−2 7.564 × 10−3 4.979 × 10−3 2.194 × 10−3 0.7159 3.0516 3.815
10−4 9.096 × 10−3 8.817 × 10−3 3.725 × 10−3 3.446 × 10−3 0.7159 3.0516 3.815
0 8.957 × 10−3 8.957 × 10−3 3.585 × 10−3 3.585 × 10−3 0.7159 3.0516 3.815
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Columns 2–5 of Table II show the relative changes in
energy density at Tcm ¼ 1 keV, once the neutrino spectra
have converged to their out-of-equilibrium shapes. We
see a monotonic decrease in δρν for the neutrinos, and a
monotonic increase in δρν̄ for the antineutrinos with
decreasing L⋆

ν . Column 6 gives the ratio of Tcm=T at the
end of the simulation. Tcm=T increases with decreasing
lepton number. However, the decrease is less than one
part in 105 between L⋆

ν ¼ 0.1 and L⋆
ν ¼ 0. The larger

lepton number implies a larger total energy density
which increases the Hubble expansion rate. The faster
expansion implies a smaller time window for the entropy
flow out of the plasma and into the neutrino seas. As a
result, the evolution of the plasma temperature is such that
larger lepton numbers will maintain T at higher values, and
the ratio Tcm=T at freeze-out will decrease, albeit by an
amount which is numerically insignificant. With the
changes in energy densities and temperature ratios, we
can calculate Neff

Neff ¼
�

Tcm=T

ð4=11Þ1=3
�
4 1

2
½ð2þ δρνe þ δρν̄eÞ

þ 2ð2þ δρνμ þ δρν̄μÞ�: ð21Þ

The coefficient in front of the second parenthetical expres-
sion, equal in value to 2, results from the approximation in
taking the μ and τ flavors to behave identically. The
approximation employed here is valid as there are no μ
and τ charged leptons in the plasma and Li is the same in all
flavors. Both Refs. [36,39] calculate weak decoupling with
a network featuring neutrino flavor oscillations, which are
absent in our calculation in Table II. However, Ref. [39]
states that oscillations have no affect on the value of Neff at
the level of precision which they use. The difference in our
value of Neff versus the standard calculation of Ref. [36] is
most likely due to a different implementation of the finite-
temperature QED effects detailed in References [43,44].
Reference [36] uses the perturbative approach outlined in
Ref. [45] compared to our nonperturbative approach. We
leave a detailed study of the finite-temperature-QED-effect
numerics to future work.
The final column of Table II shows the change in the

entropy per baryon in the plasma. The relative changes in
entropy for varying lepton numbers are large enough to see
a difference at the level of precision Table II uses, unlike
Tcm=T. With the faster expansion, neutrinos have less time
to interact with the plasma, yielding a smaller entropy flow.
An increase in lepton number implies a larger energy

density for the neutrinos over the antineutrinos. Figure 3
shows four neutrino spectra after the conclusion of weak
decoupling in a scenario where L⋆

ν ¼ 0.1. Plotted against ϵ
is the relative difference in the neutrino occupation number
with respect to a nondegenerate spectrum. As seen in the
first data row of Table II, δρνe obtains the largest difference

from equilibrium. The thick red line in Fig. 3 shows the
final out-of-equilibrium spectrum for νe. The νe spectrum
has the largest deviation from equilibrium, congruent with
Table II. The black dashed lines show equilibrium spectra
for nondegenerate (flat, horizontal line) and degenerate
cases. As ϵ increases, the neutrino curves diverge from
the positive ξν spectrum in much the same manner as the
antineutrino curves diverge from the negative ξν̄. The
primary difference in the out-of-equilibrium spectra is
due to the initial condition that the neutrinos have larger
occupation numbers over the antineutrinos for a positive
lepton number.
We would like to compare the out-of-equilibrium spectra

to their respective equilibrium spectra. Such a comparison
allows us to examine how the initial asymmetry propagates
through the Boltzmann network. Figure 4 shows the Tcm
evolution of δfξ for νe (thick solid lines) and ν̄e (thin solid
lines) for a scenario where L⋆

ν ¼ 0.1. We only show the
relative differences for three unique values of ϵ, namely,
ϵ ¼ 3, 5, 7. The νμ and ν̄μ spectra follow similar shapes, but
are suppressed relative to the electron flavors. For com-
parison, we also plot the out-of-equilibrium spectrum for νe
in the case of no initial asymmetry, i.e., L⋆

ν identically zero.
It is unnecessary to show the spectrum for ν̄e when L⋆

ν ¼ 0
because it is exceedingly near the νe spectrum (see Fig. 3 of
Ref. [1]). For the degenerate spectra, the ν̄e show a larger
divergence from equilibrium than the νe at these three
specific ϵ values. This is consistent with Ref. [34] (see
Figs. 8 and 9 therein) and is the case for all ϵ after the
neutrino spectra have frozen out. Figure 5 shows the final

FIG. 3. Relative differences in neutrino/antineutrino occupation
numbers plotted against ϵ at Tcm ¼ 1 keV. The relative
differences are with respect to FD with zero degeneracy param-
eter. The solid lines show the evolution for a scenario where
L⋆
ν ¼ 0.1. νe and ν̄e curves are colored red, and νμ and ν̄μ curves

are colored green. Neutrinos have thick line widths and anti-
neutrinos have thin line widths. Plotted for comparison are black
dashed curves representing the equilibrium relative differences.
The top dashed curve corresponds to a ν spectrum with
ξν ¼ 0.1458, the middle horizontal curve corresponds to a ν
spectrum with ξν ¼ 0, and the bottom dashed curve corresponds
to a ν̄ spectrum with ξν̄ ¼ −0.1458.
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freeze-out values of the relative changes in the neutrino
occupation numbers as a function of ϵ. Figure 5 is similar to
Fig. 3 except for the use of the general δfξ instead of δf0.
We have also included the transport-induced out-of-
equilibrium spectra for νe and νμ in the nondegenerate
scenario. For a given flavor, the relative changes in the
nondegenerate spectrum are nearly averages of those in
the ν and ν̄ spectra. We also note that for ϵ≲ 2, all of the
relative differences are negative, although this is obscured
in Fig. 5 due to the clustering of lines. For small ϵ, the
antineutrino occupation numbers are larger than those of

the neutrino, i.e., the δfðν̄Þξ are not as negative.

The weak interaction cross sections scale as σ ∼G2
FE

2,
whereGF is the Fermi constant (GF≈1.166×10−11 MeV−2)
and E is the total lepton energy. We would expect a larger
difference from equilibrium for increasing ϵ. Except for the
range 0 < ϵ≲ 1, Figs. 4 and 5 clearly show an increase.
The change in the energy distribution does not follow
from a scaling relation. Figure 6 shows the normalized
absolute difference in the energy distribution plotted
against ϵ at the conclusion of weak decoupling. The
nomenclature for the six lines in Fig. 6 is identical to that
of Fig. 5. The energy distributions all show a maximum at
ϵ ∼ 5. Similar to Fig. 5, the nondegenerate curves of Fig. 6
appear to be averages of the ν and ν̄ curves in the degenerate
scenario.
In the positive lepton-number scenarios, the ν̄ always

have larger occupation numbers than the ν, when compared
against the equilibrium degenerate spectrum/distribution.
This is not surprising as the occupation numbers for
antineutrinos are suppressed, implying less blocking.
When compared against its equilibrium distribution, the
ν̄ have larger rates, leading to a larger distortion. In Fig. 7,
we compare the out-of-equilibrium number density distri-
butions with those of the nondegenerate case solely. In
other words, the normalizing factor n0 is the same for
each of the six curves in Fig. 7. We have adopted this
nomenclature for the comparison of number density dis-
tributions to study the change in the comoving lepton
number. None of the weak decoupling processes modify the
lepton number in our model. The total change in number
density for ν should be identical to the total change in
number density for ν̄. Figure 7 shows this indirectly. We can
see a difference; the ν curves are skewed to higher ϵ and
have a larger maximum than the ν̄. The negative change in
the distributions for the range 0 ≤ ϵ≲ 2 is much more
noticeable in Fig. 7 than in Fig. 5. It is clear that the changes
in ν̄ become positive for smaller ϵ than those of ν, implying
there are more ν̄ than ν for ϵ≲ 2. Overall, when integrating

FIG. 4. Relative differences in electron neutrino/antineutrino
occupation numbers plotted against Tcm. The relative differences
are with respect to FD with the same degeneracy parameters as
Fig. 3. The solid lines show the evolution for a scenario where
L⋆
ν ¼ 0.1. The ν̄e (thin red curves) has a larger relative change

than the νe (thick red curves). Plotted for comparison is the
relative difference for νe in a L⋆

ν ¼ 0 scenario (blue dash-dot
curves). The relative differences are plotted for three values of ϵ,
from bottom to top: ϵ ¼ 3, 5, 7.

FIG. 5. Relative differences in neutrino/antineutrino occupation
numbers plotted against ϵ at Tcm ¼ 1 keV. The relative
differences are with respect to FD with the same corresponding
degeneracy parameters as Fig. 3. The solid lines are for a scenario
where L⋆

ν ¼ 0.1. Plotted for comparison is the relative difference
for νe (blue dash-dot curve) and for νμ (blue dotted curve) in a
L⋆
ν ¼ 0 scenario.

FIG. 6. Absolute change in the neutrino/antineutrino energy
distributions plotted against ϵ at Tcm ¼ 1 keV. The changes are
with respect to the same degeneracy parameters as those in Fig. 5.
Furthermore, the line colors and styles correspond to the same
species and scenarios as Fig. 5.
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the curves in Fig. 7, the total changes in number density for
ν̄ should be the same as for ν. We have calculated this
quantity and expressed it as a relative change in the L⋆

i ,
taken to be exactly 0.1

δL⋆
i ≡

1
4ζð3Þ

R∞
0 dϵϵ2½fνiðϵÞ − fν̄iðϵÞ� − 0.1

0.1
: ð22Þ

Equation (22) gives the relative error in our calculation.
We conserve the comoving lepton number for both electron
and muon flavor at approximately 7 × 10−6. Also plotted in
Fig. 7 are the absolute changes for νe and νμ in the
nondegenerate scenario. We do not directly compare the
lepton-number relative errors as the quantity is not defined
for the symmetric case. We do note that the nondegenerate
curves are close to the average of the ν and ν̄ distributions,
similar to that of Figs. 5 and 6.
In Figs. 3 through 7, we have only presented the

L⋆
ν ¼ 0.1 scenario. Figure 8 shows the relative differences

in occupation number for ν plotted against ϵ for other
values of L⋆

ν . The behavior of each curve is in line with
those of Fig. 5. Not plotted are the curves for ν̄. They also
behave in a similar manner, where δfν̄ becomes larger than
δf0 for increasing ϵ. The result is that with transport, L⋆

ν

acts to increase the asymmetries in the occupation num-
bers, which manifest in differences in the absolute changes
of the differential energy density.

B. Individual processes

Figures 5 and 6 demonstrate that the initial asymmetry
in the neutrino energy density is maintained and even
amplified by scattering processes. We can dissect the
relative contribution of various scattering processes to this
amplification.

Figures 9 and 10 show the absolute changes in the
number density distribution versus ϵ when we include only
certain transport processes. Fig. 9 contains three annihila-
tion processes, schematically shown as

νi þ ν̄i ↔ e− þ eþ; i ¼ e; μ; τ: ð23Þ

In this scenario, we have included only the annihilation
channel into electron/positron pairs when computing trans-
port. The changes are with respect to the same degeneracy
parameters as those in Fig. 5. The line colors in Fig. 9
correspond to the same species as Fig. 5. Because of the
close proximity of the neutrino and antineutrino curves, we

FIG. 7. Absolute change in the neutrino/antineutrino number
distributions plotted against ϵ at Tcm ¼ 1.0 keV. The changes are
with respect to the same degeneracy parameters, and the
nomenclature of line colors and line styles is the same as those
in Fig. 5. The numbers given on the plot (δL⋆

i for i ¼ e, μ) show
the relative error accumulated over the course of a simulation.

FIG. 8. Relative differences in neutrino occupation numbers
plotted against ϵ at Tcm ¼ 1 keV for various values of L⋆

ν . The
relative differences are with respect to FD with the corresponding
degeneracy parameter, namely, ξ ¼ 0.1458 (L⋆

ν ¼ 10−1), ξ ¼
0.0730 (L⋆

ν ¼ 5 × 10−2), ξ ¼ 0.0146 (L⋆
ν ¼ 10−2), and ξ ¼ 0

(L⋆
ν ¼ 0). Shown are two sets of curves: the set with the larger

relative differences correspond to the νe spectral distortions, and
the set with the smaller differences are νμ. Within each set, the
increase in L⋆

ν leads to a decrease in δfξ. For the antineutrinos, the
relative differences behave in the opposite manner: increase in L⋆

ν

leads to an increase in δfξ.

FIG. 9. Absolute change in the neutrino/antineutrino number
distributions plotted against ϵ at Tcm ¼ 1.0 keV. The numbers
given on the plot (δL⋆

i for i ¼ e, μ) show the relative error
accumulated over the course of a simulation.
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depart from the previous nomenclature of emphasizing the
ν curves with a thicker line width so as not to obscure the ν̄
curves. For this plot, the absolute differences are normal-
ized with respect to the equilibrium number density at
temperature Tcm with degeneracy parameter ξ ¼ 0. For a
given neutrino species, the total change in number density
should be equal to the change in number density for the
corresponding antineutrino.
Figure 10 shows the effect of including 12 elastic

scattering processes:

νi þ e− ↔ νi þ e−; ð24Þ

νi þ eþ ↔ νi þ eþ; ð25Þ

and the opposite-CP reactions, for neutrino flavors i ¼ e,
μ, τ. In this scenario, we have included only the elastic
scattering channel with electrons/positrons (while neglect-
ing the neutrino-antineutrino only channels) when comput-
ing transport. The changes are with respect to the same
degeneracy parameters as those in Fig. 5. Furthermore, the
line colors and styles in Fig. 10 correspond to the same
species and scenarios as Fig. 5. For this plot, the absolute
differences are normalized with respect to the equilibrium
number density at temperature Tcm with degeneracy
parameter ξ ¼ 0. In an identical manner to the processes
in Fig. 9, the total change in ν number density should be
equal to the change in number density for the correspond-
ing ν̄ in Fig. 10.
The elastic scattering processes of Eqs. (24) and (25)

(and the opposite-CP reactions) preserve the total number
of neutrinos and antineutrinos. The plasma of charged
leptons acts to upscatter low energy neutrinos and anti-
neutrinos to higher energies, precipitating an entropy flow.
Figure 10 vividly shows a deficit of neutrinos in the range
0 < ϵ≲ 4, and the corresponding excess for ϵ≳ 4. The
deficit is more pronounced in Fig. 10 but also appeared in

Figs. 5, 6, and 7 when computing the entire neutrino-
transport network. The annihilation processes, shown in
Fig. 9, do not preserve the total numbers of neutrinos and
antineutrinos and can fill the phase space vacated by the
upscattered neutrinos. The complete transport network,
which includes annihilation, elastic scattering on charged
leptons, and elastic scattering among only neutrinos/anti-
neutrinos, is able to redistribute the added energy by filling
the occupation numbers for lower epsilon.

V. INTEGRATED ASYMMETRY MEASURES

In our presentation to this point, we have used the
comoving lepton number to describe the asymmetry in the
early universe. L⋆

i does not evolve with temperature in our
model, except for errors in precision encountered by our
code. Therefore, we introduce two integrated quantities to
examine how the initial asymmetry propagates to later
times. The quantities provide newmeans to analyze the out-
of-equilibrium spectra.
The first integrated quantity we define is the lepton

energy density asymmetry

Ri ≡ ρνi − ρν̄i
π2

15
T4
cm

; ð26Þ

where i is the flavor index. Like the comoving lepton
number in Eq. (9), we divide Eq. (26) by T4

cm so that Ri is
comoving and dimensionless. This will allow us to follow
the evolution of Ri to later times. At large Tcm, all flavors
have identical equilibrium FD spectra and lepton numbers/
degeneracy parameters. For degeneracy parameter ξ, we
calculate the equilibrium value of R

RðeqÞ ¼ sgnðξÞ
�
7

8
þ 15

4

�
ξ

π

�
2

þ 15

8

�
ξ

π

�
4

−
90

π4
e−jξjΦð−e−jξj; 4; 1Þ

�
; ð27Þ

where sgnðxÞ is the sign function with real-number argu-
ment x, and Φðz; s; vÞ is the Lerch function (see Sec. 9.55
of Ref. [46])

Φðz; s; vÞ≡X∞
n¼0

zn

ðnþ vÞs ; jzj < 1;

v ≠ 0;−1;−2;…: ð28Þ

Figure 11 shows the relative changes in Ri from the RðeqÞ
baseline (δRi), plotted against Tcm for different combina-
tions of transport processes. Solid lines (All) are for the
complete calculation, whereas dash-dot curves only include
the annihilation channels (Annih.) of the reaction shown in
(23), and dotted curves only include the elastic scattering
channels (Scatt.) of the reactions shown in (24), (25),

FIG. 10. Absolute change in the neutrino/antineutrino number
distributions plotted against ϵ at Tcm ¼ 1.0 keV. The numbers
given on the plot (δL⋆

i for i ¼ e, μ) show the relative error
accumulated over the course of a simulation.
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and the opposite-CP reactions. Red lines correspond to δRe
and green lines to δRμ. δRi increases for all six combinations
of flavor and transport process, until an eventual freeze-out.
Indirectly, Figs. 7, 9, and 10 all show that the neutrinos have
larger changes in the energy density distributions, increasing
the asymmetry. Because of the charged-current process, δRe
experiences a greater enhancement. What is important to
note is that the total δRi, for either flavor, is not an incoherent
sum of the two transport processes taken individually. There
are two reasons for this.
First, there are other transport processes in the full

calculation. Neutrinos scattering on other neutrinos and
antineutrinos will redistribute energy density. Second, the
transport processes with the charged leptons are dependent
on one another. Positron-electron annihilation into
neutrino-antineutrino pairs populates the lower energy
levels. Those particles upscatter on charged leptons through
elastic scattering. Positron-electron annihilation is then
suppressed by the Pauli blocking of the upscattered
particles. Both reasons change the evolution of the total
Ri, but do so in a flavor-dependent manner. For δRμ, the
incoherent sum of annihilation and elastic scattering is
smaller than that of the total asymmetry. For δRe, the total
asymmetry is dominated by the contribution from elastic
scattering.
In analogy with the lepton energy density asymmetry, we

define the lepton entropy asymmetry as

Σi ≡ Sνi − Sν̄i
4
3
π2

15
T3
cm

ð29Þ

where Sj is the entropic density for particle j, given by

Sj ¼ −
T3
cm

2π2

Z
∞

0

dϵϵ2½fj ln fj þ ð1 − fjÞ lnð1 − fjÞ�;

ð30Þ

and we have suppressed the arguments of fjðϵ; ξÞ for brevity
in notation. Under the equilibrium assumptions, we find

ΣðeqÞ ¼ RðeqÞ −
45

2π4
ξ½ζð3ÞjL⋆

ν j þ e−jξjΦð−e−jξj; 3; 1Þ�:
ð31Þ

Figure 12 shows the evolution of the relative change in Σi

away from ΣðeqÞ when divided into processes. The nomen-
clature for the line styles and colors is identical to that in
Fig. 11. The evolution of the lepton entropy asymmetry
shows more features than that of the lepton energy density
asymmetry.
To understand the dynamics of Σi in Fig. 12, we begin by

considering how the entropy depends on perturbations to
the occupation numbers. We write the occupation numbers
as differences from FD equilibrium

fjðϵ; ξÞ ¼ fðeqÞj ðϵ; ξÞ þ Δfjðϵ; ξÞ: ð32Þ
We can calculate the change in the entropy produced by the
out-of-equilibrium occupation numbers by substituting
Eq. (32) into Eq. (30). After dropping the ϵ argument, ξ
argument, and species index for notational brevity, we find
for small Δf

S ¼ −
T3
cm

2π2

Z
∞

0

dϵϵ2½ðfðeqÞ þ ΔfÞ lnðfðeqÞ þ ΔfÞ

þ ð1 − fðeqÞ − ΔfÞ lnð1 − fðeqÞ − ΔfÞ� ð33Þ

≃ −
T3
cm

2π2

Z
∞

0

dϵϵ2
�
fðeqÞ ln fðeqÞ þ ð1 − fðeqÞÞ lnð1 − fðeqÞÞ

þ Δf ln
fðeqÞ

1 − fðeqÞ

�
ð34Þ

¼ SðeqÞ −
T3
cm

2π2

Z
∞

0

dϵϵ2Δf½ξ − ϵ� ð35Þ

¼ SðeqÞ − ξΔnþ Δρ=Tcm; ð36Þ

FIG. 12. The relative changes in Σ plotted against Tcm. Line
colors and styles correspond to the same transport processes and
neutrino flavors in Fig. 11.

FIG. 11. The relative changes in R plotted against Tcm for νe
and νμ with different processes included in the transport calcu-
lation. Red lines correspond to νe and green lines correspond to
νμ. The process scheme is all processes (solid curves), annihi-
lation only (dash-dot curves), or elastic scattering only (dotted
curves).
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where Δn and Δρ are the changes in number and energy
density, respectively, from equilibrium. The expression for
the lepton entropy asymmetry is

Σi ¼ ΣðeqÞ þ 45

4π2T3
cm

�
−ξðΔnνi þ Δnν̄iÞ þ

Δρνi − Δρν̄i
Tcm

�
:

ð37Þ

Lepton number is conserved in our scenarios, implying
Δnνi ¼ Δnν̄i . As a result, we can write the lepton entropy
asymmetry as

Σi ¼ ΣðeqÞ þ 45

4π2T3
cm

�
−2ξΔnνi þ

Δρνi − Δρν̄i
Tcm

�
: ð38Þ

Equation (38) shows how the lepton entropy asymmetry
changes for small perturbations to the occupation numbers.
Two trends are evident from this equation. First,
adding particles (Δnνi > 0) decreases the asymmetry.
Second, increasing the asymmetry in energy density
(Δρνi − Δρν̄i > 0) leads to an increase in the lepton entropy
asymmetry. For the annihilation processes, the changes in
the number density distribution for neutrinos and antineu-
trinos vary in the same way across ϵ space for all flavors
(see Fig. 9). Therefore, the corresponding changes in the
energy density will also be the same, and there will be no
contribution to the change in Σ from the energy density
terms. The dash-dot curves in Fig. 12 shows the relative
change in Σ for a run with only the annihilation channels
active. Both the e and μ flavors show a suppression in Σ
with decreasing Tcm. Figure 10 shows that for elastic
scattering of neutrinos and charged leptons, the neutrino
and antineutrino number density distributions are not
coincident. Overall, each neutrino species has zero net
change in number density, as elastic scattering can only
redistribute the number. Therefore, there will be no con-
tribution to the change in Σ from the number density term.
As there are more neutrinos over antineutrinos for L⋆

ν > 0,
elastic scattering enhances the neutrino spectra over the
antineutrino spectra. The result is a net positive change in
the energy density differences. Figure 12 shows an increase
in the relative change in Σ for the elastic-scattering-only
runs for both flavors. When we add the elastic-scattering
and annihilation channels together, along with the other
transport processes which do not involve charged leptons,
we see that the two processes essentially cancel, leaving
only a modest change in Σi as shown by the solid lines
in Fig. 12.
The interesting thing to note in Fig. 12 is the asymmetry

between flavors. Figure 13 is a zoomed-in version of the
solid lines in Fig. 12. We see that δΣμ is monotonically
increasing for decreasing Tcm. The incoherent sum of the
relative changes from the annihilation and elastic-scattering
processes in Fig. 12 nearly gives the relative change in Σμ

that we obtain when all transport processes are active.

The same cannot be said for δΣe. The sum of the two
transport processes is not incoherent, the evolution of δΣe is
not monotonic, and the final freeze-out value of δΣe is of
opposite sign from δΣμ. Although the elastic scattering
would appear to produce a larger enhancement of δΣe over
the suppression of annihilation, the two processes do not
have equal weight. We observe this by looking at the
maxima in the number density distributions in Figs. 9
and 10. The ratio of maxima in Fig. 9 for annihilation is

�
dnνe
dϵ

���
dnνμ
dϵ

�
≃ 3.5 ðAnnihÞ: ð39Þ

The ratio of maxima in Fig. 10 for elastic scattering is

�
dnνe
dϵ

���
dnνμ
dϵ

�
≃ 3.0 ðScattÞ: ð40Þ

This shows that annihilation is more dominant in the
electron neutrino/antineutrino sector than it is in the μ
sector. In Figs. 9 and 10, we have only showed the final
distributions at freeze-out. Electron-positron annihilation
into neutrinos is not always so dominant, as evidenced by
the positive values of Σe for Tcm ≳ 400 keV.
The analysis of the lepton entropy asymmetry focused on

the transport processes which involve the charged leptons.
The other scattering processes redistribute occupation
number and therefore change Σi. However, we have
verified that the contributions from the transport processes
which involve only neutrinos or antineutrinos do not alter
Σi enough to explain the full evolution shown in Fig. 13.
The transport processes which involve the charged leptons
play the dominant roles.
We have considered the evolution of the integrated

asymmetry measures for L⋆
ν ¼ 0.1 only. Table III gives

the relative changes in Ri and Σi at freeze-out for various
values of L⋆

ν . Note that the positive relative changes for
L⋆
ν < 0 imply an absolute decrease in either quantity. We

see that the differences between the various values of L⋆
ν

are beneath the error floor.

FIG. 13. Same as Fig. 12 except zoomed in on the solid curves.
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VI. ABUNDANCES

Our calculations show potentially significant changes in
lepton-asymmetric BBN abundance yields with neutrino
transport relative to those without. With the inclusion of
transport we find that the general trends of the yields of 4He
and D with increasing or decreasing lepton number are
preserved: positive L⋆

ν decreasing the yields of both, while
negative lepton numbers increase both. In a broad brush,
Boltzmann transport makes little difference for helium, but
gives a ≥ 0.3% reduction in the offset from the FD, zero
lepton-number case with transport. This change in the
reduction is comparable to uncertainties in BBN calcula-
tions arising from nuclear cross sections and from plasma
physics and QED issues. For all BBN calculations, the
baryon to photon ratio is fixed to be nb=nγ¼6.0747×10−10

(equivalent to the baryon density ωb ¼ 0.022068 given
by Ref. [47]). In addition, the mean neutron lifetime is
taken to be 885.7 s.
Table IV contains relative differences in the primordial

abundances with and without transport. Columns with the
label “FD Eq.” are the calculations without any active
transport processes. The spectra freeze-out at high

temperatures where they are in FD equilibrium with a
degeneracy parameter corresponding to L⋆

ν . Columns with
the label “Boltz.” are the calculations in the full Boltzmann
neutrino-transport calculation. Relative differences are
with respect to the appropriate abundance in the zero-
degeneracy Boltz. calculation. The relative changes in the
abundances for the two different calculations are quite close:
δYP differs by 2–3 parts in 104, and δD=Hdiffers by 3–4 parts
in 103. Both differences are consistent across L⋆

ν . We caution
against any interpretation that links the two calculations
together, as the FD Eq. calculations ignore important physics
related to non-FD spectra, entropy flow, and the Hubble
expansion rate.
We have examined the detailed evolution of the spectra

and integrated asymmetry measures in the Boltz. calcu-
lations. The electron neutrinos and antineutrinos behave
differently compared to muon and tau flavored neutrinos.
This behavior will have ramifications for the neutron-to-
proton ratio and nucleosynthesis. To facilitate the analysis
of the effects of neutrino transport on BBN, we will
introduce a model which uses additional radiation energy
density. We will try to determine whether this simplistic
“dark radiation” model [48,49]—which includes radiation
energy density distinct from photons and active neutrinos,
but does not include transport—can mock up the effects
of the extra energy density which arise from neutrino
scattering and the associated spectral distortions. We will
compare this dark-radiation model to the full neutrino-
transport case. For ease in notation when comparing
the two scenarios, we will abbreviate the dark-radiation
model as “DR” and the full Boltzmann neutrino-transport
calculation as Boltz.
In the DR model, we introduce extra radiation energy

density, ρdr, described at early times by the dark-radiation
parameter δdr

TABLE IV. Relative changes in primordial abundances of 4He and D in two calculations of BBN with nonzero
comoving lepton numbers L⋆

ν . FD Eq. signifies the calculation without transport. Boltz. signifies the full Boltzmann
neutrino-transport network calculation. The abundances are given as relative changes from the zero degeneracy, full
Boltzmann calculation. Column 1 is the comoving lepton number. Column 2 gives the relative change of YP at
freeze-out in the no-transport model. Column 3 gives the relative change of YP at freeze-out in the Boltz. calculation.
The relative changes for D=H are given in columns 4 and 5. The four rows where jL⋆

ν j is not a power of 10 are
projected sensitivity limits for 1% changes in the primordial abundances.

L⋆
ν δYP (FD Eq.) δYP (Boltz.) δðD=HÞ (FD Eq.) δðD=HÞ (Boltz.)

10−1 −0.1333 −0.1331 −6.972 × 10−2 −6.654 × 10−2

10−2 −1.425 × 10−2 −1.400 × 10−2 −1.101 × 10−2 −7.618 × 10−3

10−3 −1.678 × 10−3 −1.409 × 10−3 −4.206 × 10−3 −7.815 × 10−4

7.139 × 10−3 −1.027 × 10−2 −1.001 × 10−2 −8.867 × 10−3 −5.463 × 10−3

1.364 × 10−2 −1.931 × 10−2 −1.906 × 10−2 −1.371 × 10−2 −1.033 × 10−2

−10−1 0.1475 0.1479 8.566 × 10−2 8.947 × 10−2

−10−2 1.384 × 10−2 1.415 × 10−2 4.352 × 10−3 7.825 × 10−3

−10−3 1.133 × 10−3 1.407 × 10−3 −2.669 × 10−3 7.630 × 10−4

−7.071 × 10−3 9.692 × 10−3 9.968 × 10−3 2.047 × 10−3 5.495 × 10−3

−1.240 × 10−2 1.724 × 10−2 1.756 × 10−2 6.253 × 10−3 9.740 × 10−3

TABLE III. Relative changes in integrated asymmetry
measures at freeze-out for select values of comoving lepton
number L⋆

ν .

L⋆
ν 104 × δRe 104 × δRμ 104 × δΣe 104 × δΣμ

10−1 17.20 8.802 −0.8211 1.714
10−2 17.26 8.825 −0.8804 1.692
10−3 17.27 8.828 −0.8729 1.694
−10−1 17.20 8.802 −0.8214 1.714
−10−2 17.26 8.825 −0.8820 1.691
−10−3 17.24 8.828 −0.9001 1.694
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ρdr ¼
7

8

π2

15
δdrT4

cm: ð41Þ

The FD equation calculation in Table IV used δdr ¼ 0. We
mandate that the dark radiation be composed of relativistic
particles which are not active neutrinos. We have chosen
the specific form of Eq. (41) for conformity with Neff ,
namely, ΔNeff ≈ δdr. The relation is not a strict equality due
to the presence of finite-temperature-QED corrections to
the electron rest mass [1,43,44,50,51]. The DR model
differs from the Boltz. calculation in multiple respects.
First, the DR model fixes the neutrino spectra to be in
degenerate FD equilibrium. Second, neutrino transport
induces an entropy flow from the plasma into the neutrino
seas, absent in the DR model. Third, the entropy flow
changes the phasing of the plasma temperature with the
comoving temperature parameter as compared to the case
of instantaneous neutrino decoupling in the DR model. The
phasing is dependent on the Hubble expansion rate and the
flow of entropy. Although the expansion rates are identical
in the two scenarios, the entropy flows are not.
For all calculations, we will fix δdr ¼ 0.03149. We pick

this specific value to match Neff between the DR model and
Boltz. calculation for the single case L⋆

ν ¼ 0.1. The change
in Neff depends on the Hubble expansion rate, which
depends on the initial degeneracy. Therefore, our choice
of δdr will not ensure equal values of Neff between the two
scenarios for L⋆

ν ≠ 0.1. Although our DR model is not
consistent across all L⋆

ν , the changes in Neff are small for
the range of L⋆

ν we explored.
Figure 14 shows the relative changes in abundances

versus the comoving lepton number for both calculations.
Our baselines for comparison are the abundances in the
nondegenerate case, L⋆

ν ¼ 0, from the Boltz. calculation.
As a result of the choice of baseline, the relative changes in
abundances for the DR model will not converge to zero as
L⋆
ν → 0. We use a mass fraction to describe the helium

abundance, YP, and relative abundances with respect to
hydrogen to describe deuterium (D), helium-3 (3He), and
lithium-7 (7Li). The solid lines in Fig. 14 show the relative
changes in the DR model. Positive relative changes in the
abundances correspond to negative comoving lepton
numbers, and negative changes to positive L⋆

ν . We also
show individual points using the Boltz. calculation at three
decades of L⋆

ν , namely, log10jL⋆
ν j ¼ −1, −2, −3. Squares

correspond to L⋆
ν > 0, and circles to L⋆

ν < 0.
All abundances decrease with increasing L⋆

ν . A nonzero
comoving lepton number changes the occupation numbers
in the neutron-proton interconversion rates, and also
changes the Hubble expansion rate. The neutron-to-proton
ratio (n=p) is sensitive to both quantities [52,53], and YP is
the abundance most sensitive to n=p. In Fig. 14, we see that
YP has the largest change from the nondegenerate baseline,
while 3He has the least sensitivity to L⋆

ν . Deuterium and 7Li
have a more intricate relationship with L⋆

ν . As we increase

L⋆
ν from large negative values towards zero, we see that the

relative change for D is larger than that for 7Li until
L⋆
ν ∼ −5 × 10−2. At this point, 7Li appears to be more

sensitive to L⋆
ν . The trend continues for L⋆

ν > 0, as the
relative change in 7Li is more negative than that of D. The
asymmetry between L⋆

ν > 0 and L⋆
ν < 0 in the relative

changes of D and 7Li is present in YP and 3He also. With
the exception of 7Li, all abundances are more sensitive to
negative L⋆

ν . All trends occur in both the DR model and
Boltz. calculation. These trends are similar but have minor
differences than those discussed in Ref. [54].
Table V gives the relative changes of YP and D=H for

various values of L⋆
ν in both scenarios. Columns with the

label (DR) are relative changes calculated with the dark-
radiation model and columns with the label (Boltz.) are
relative changes in the full Boltzmann neutrino-transport
calculation. The Boltz. columns in Table V are identical to
the Boltz. columns in Table IV. For all four abundance
columns, the relative changes are with respect to the
abundance calculated with the full Boltzmann-transport
network with degeneracy parameter set to zero, consistent
with the lines and points in Fig. 14. For the Boltz. columns,
the relative changes in YP tend to be twice as large as those
in D=H. Each decade change in L⋆

ν induces close to a
decade change in both relative abundances. We have
included calculations for sets of lepton numbers which
aim for �1% changes in both YP and D=H in the Boltz.
calculation. For the DR model, the relative changes for 4He
and deuterium are in line with the Boltz. calculation
for L⋆

ν ¼ þ0.1. Transport enhances the νe occupation

FIG. 14. Relative changes in the primordial abundances plotted
against the absolute value of the comoving lepton number.
Positive changes in abundances correspond to negative comoving
lepton numbers, and negative changes correspond to positive
comoving lepton numbers. The solid lines use the dark-radiation
model described in the text. Individual points using the full
Boltzmann-transport calculation are plotted for three decades of
L⋆
ν . Squares correspond to L⋆

ν > 0, and circles for L⋆
ν < 0. The

baryon density is fixed to be ωb ¼ 0.022068 (equivalent to a
baryon-to-photon ratio nb=nγ ¼ 6.0747 × 10−10) for all calcu-
lations in both scenarios [47]. The mean neutron lifetime is taken
to be 885.7 s.
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numbers over the ν̄e if L⋆
ν ¼ þ0.1. The extra probability in

the νe spectrum enhances the rate of νe þ n → pþ e−. As a
result, the helium abundance decreases further in the Boltz.
calculation, which is evident in Table V. Conversely,
for L⋆

ν ¼ −0.1, transport will enhance the ν̄e over the νe
and we would expect an increase in the 4He abundance.
This is not the case in Table V; the DR model has a larger
δYP than the Boltz. calculation.
The error in the above logic resides in the treatment

of the rate which changes protons to neutrons, namely,
ν̄e þ p → nþ eþ. This reaction has a threshold of
Q≡ δmnp þme ≃ 1.8 MeV, where δmnp and me are the
neutron-to-proton mass difference and electron rest mass,
respectively. If we define the appropriate ϵ value forQ to be
q≡Q=Tcm, we can see where and how the threshold plays
a role in ϵ and Tcm space. Figure 7 shows the freeze-out
distortion to the differential number density distributions
for L⋆

ν ¼ þ0.1. The νe and ν̄e spectra would be switched if
we had plotted L⋆

ν ¼ −0.1, i.e., a “mirror” of Fig. 7. At the
start of the calculation at Tcm ¼ 10 MeV, the distortions
are identically zero. The calculation proceeds and the peaks
in Δðdn=dϵÞ for νe and ν̄e grow. The locations of the peaks
do change with decreasing Tcm, but we have verified that
the shift in position is small compared to peak location of
ϵ ∼ 4. We claimed above that the extra number density of ν̄e
over νe would increase the rate ν̄e þ p → nþ eþ, but it is
only the number density with ϵ value larger than q which is
able to increase the rate, thereby decreasing the neutron
abundance. At Tcm ¼ 1 MeV, q≃ 2 which is large enough
to exclude a portion of the left-hand side of the peak,
effectively limiting the number of antineutrinos which
could participate in the channel ν̄e þ p → nþ eþ. At
Tcm ¼ 500 keV, q≃ 4 which is nearly coincident with
the central location of the peak. This is the point in Tcm

where the 4He abundance begins to depart from nuclear
statistical equilibrium [55]. Although the abundance is ∼15
orders of magnitude smaller than its freeze-out value, the
integration of the nuclear reaction network is sensitive to

the initial conditions, and already half of the peak width in
the mirror of Fig. 7 is unavailable to enhance the rate and
modify the neutron-to-proton ratio. The formation of 4He
nuclei is typically ascribed to the epoch Tcm ¼ 100 keV,
where q≃ 20 and well larger than the range where the
distortions in the mirror of Fig. 7 could affect the rate for
ν̄e þ p → nþ eþ. Meanwhile, neutrino transport is induc-
ing an increased population on the high-energy tail of the νe
spectrum, which would increase the neutron to proton rate
νe þ n → pþ e−. This reaction has no threshold, and so
the entire peak in the mirror of Fig. 7, integrated over the
full range of Tcm, would increase the rate. Incidentally,
eþ þ n → pþ ν̄e has no threshold and this process is also
important in setting n=p. However, in this case, the spectral
distortion effects we described above would tend to hinder
this process by producing extra ν̄e blocking. The ν̄e in
eþ þ n → pþ ν̄e has a minimum energy of Q, and so the
expected suppression of this rate from additional ν̄e number
density suffers from the same sequence of events as
mentioned above.
To summarize, transport-induced νe and ν̄e spectral

distortions develop over such a long time span that the
threshold-limited ν̄e number density cannot overcome the
νe number density when calculating the neutron-proton
interconversion rates in the L⋆

ν ¼ −0.1 case. The result is a
decrease in δYP for the Boltz. calculation compared to the
DR model.
The DR model is tuned to have the same total energy

density as produced in the full Boltzmann calculation when
L⋆
ν ¼ �0.1. If jL⋆

ν j ≠ 0.1, the radiation energy density, and
by extension Neff , is slightly different. The abundances are
sensitive to the change in Neff , and as a result we see
significant differences between the two models in Table V.
An especially egregious example is the L⋆

ν ¼ 10−3 sce-
nario, where the relative changes in 4He are 2 orders of
magnitude different and have different signs. We conclude
that mocking up the effect of neutrino transport in this
model with dark radiation fails for small lepton numbers.

TABLE V. Relative changes in primordial abundances of 4He and D in two calculations of neutrino transport with
nonzero comoving lepton numbers L⋆

ν . DR signifies the dark-radiation model of neutrino transport and Boltz.
signifies the full Boltzmann neutrino-transport network calculation. The columns are the same as Table IV with the
replacement of “FD Eq.” by DR.

L⋆
ν δYP (DR) δYP (Boltz.) δðD=HÞ (DR) δðD=HÞ (Boltz.)

10−1 −0.1318 −0.1331 −6.589 × 10−2 −6.654 × 10−2

10−2 −1.257 × 10−2 −1.400 × 10−2 −6.823 × 10−3 −7.618 × 10−3

10−3 2.683 × 10−5 −1.409 × 10−3 2.054 × 10−5 −7.815 × 10−4

7.139 × 10−3 −8.576 × 10−3 −1.001 × 10−2 −4.467 × 10−3 −5.463 × 10−3

1.364 × 10−2 −1.762 × 10−2 −1.906 × 10−2 −9.540 × 10−3 −1.033 × 10−2

−10−1 0.1494 0.1479 9.038 × 10−2 8.947 × 10−2

−10−2 1.556 × 10−2 1.415 × 10−2 8.627 × 10−3 7.825 × 10−3

−10−3 2.840 × 10−3 1.407 × 10−3 1.566 × 10−3 7.630 × 10−4

−7.071 × 10−3 1.141 × 10−2 9.968 × 10−3 6.309 × 10−3 5.495 × 10−3

−1.240 × 10−2 1.897 × 10−2 1.756 × 10−2 1.054 × 10−2 9.740 × 10−3
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However, if we had tuned the DR model for Neff to agree
when L⋆

ν ¼ 10−3, we would have had better agreement for
smaller L⋆

ν . We note that for all cases with jL⋆
ν j ≤ 7 × 10−3,

the changes in the abundances are below current and
projected error tolerances [14].

VII. CONCLUSION

We have done the first nonzero neutrino chemical
potential calculations of weak decoupling and BBN
with full Boltzmann neutrino transport simultaneously
coupled with all relevant strong, weak, and electromagnetic
nuclear reactions. We have performed these calculations
with a modified version of the BURST code. This code and
the physics it incorporates is described in detail in Ref. [1].
By design, our calculations here do not include neutrino
flavor oscillations. Our intent was to provide baseline
calculations for comparison to future neutrino flavor
quantum kinetic treatments (see Refs. [56,57] in the early
universe, and Refs. [58–60] in core-collapse supernova
cores, for a discussion on the quantum kinetic equations in
their respective environments). One objective of this base-
line Boltzmann study was to identify how a significant
lepton number would affect out-of-equilibrium neutrino
scattering and the concomitant neutrino scattering-induced
flow of entropy out of the photon-electron-positron plasma
and into the decoupling neutrino component. A related
objective was to assess whether (and how) the scattering-
induced neutrino spectral distortions develop differently in
the case of a significant neutrino asymmetry. The third
objective was to use a new description to connect the two
previously mentioned phenomena: macroscopic thermody-
namics of entropy flow, and microscopic spectral distor-
tions. Finally, the last objective was to assess the impact of
these neutrino spectral distortions and the accompanying
changes in entropy flow and temperature/scale factor
phasing on BBN light element abundance yields. A key
finding of our full Boltzmann neutrino-transport treatment
is that the presence of a lepton-number asymmetry enhan-
ces the processes which give rise to distortions from
equilibrium, FD-shaped neutrino and antineutrino energy
spectra. Our transport calculations show a positive feed-
back between out-of-equilibrium neutrino scattering and
any initial distortion from a zero chemical potential FD
distribution (see the elastic scattering of neutrinos with
charged leptons in Fig. 10). An initial distortion, for
example, stemming from a nonzero chemical potential,
is amplified by neutrino scattering, at least for higher values
of the comoving neutrino energy parameter ϵ ¼ Eν=Tcm.
Of course, overall lepton asymmetry is preserved by the
nonlepton number violating scattering processes we
treat here.
In broad brush, as the Universe expands entropy is

transferred from the electron-positron component into
photons, with neutrinos receiving only a small portion of
this entropy largess. The magnitude of this small entropy

increase to the decoupling neutrinos is governed largely by
the out-of-equilibrium scattering of neutrinos and antineu-
trinos on the electrons and positrons, which are generally
“hotter” than the neutrinos. The neutrino scattering cross
sections scale like σ ∼ ϵ2, and therefore higher energy
neutrinos are able to extract entropy from the photon-
electron-positron component more effectively than neutri-
nos with lower energy. The result is that a “bump” or
occupation excess (see Fig. 7) on the higher energy end of
the neutrino energy distribution function grows with time.
Our transport calculations have allowed us to track both
entropy flow between the neutrinos and the plasma and the
simultaneous development of neutrino spectral distortions,
all for a range of initial lepton asymmetries. For the larger
values of lepton asymmetry considered here we found that
the entropy transferred to neutrinos is decreased by a few
tenths of a percent over the zero lepton-number case
(see Table II).
The enhanced neutrino spectral distortions and entropy

transfer revealed by our full Boltzmann-transport calcu-
lations might be expected to translate into corresponding
nuclear abundance changes emerging from BBN. Our full
coupling between neutrino scattering and the weak
interaction sector and the nuclear reaction network is
uniquely adapted to treat this physics. Indeed, for the zero
neutrino chemical potential cases, the full Boltzmann
neutrino transport resulted in a deuterium BBN yield
∼1% different than a calculation with no neutrino trans-
port and a sharp weak decoupling approximation (see
Table V of Ref. [1]). The baseline Boltzmann-transport
calculations with significant lepton asymmetries reported
here show that the shift in BBN abundances with nonzero
neutrino chemical potentials are closely in line with those
reported in sharp weak decoupling studies [54], but with a
few peculiarities. The enhanced spectral distortions dis-
cussed above for the lepton asymmetry cases do alter the
charged-current weak interaction neutron-to-proton inter-
conversion rates and, in turn, this leads to altered
abundance yields over the no-transport, sharp decoupling
treatment. To put these alterations in perspective, our full
Boltzmann calculations of BBN show that the 4He
abundance yield is sensitive at the one percent level to
an initial, comoving lepton number of L⋆

ν ≈ 7 × 10−3,
while the deuterium abundance yield is similarly sensitive
to L⋆

ν ≈ 1.5 × 10−2. This is significant because the next
generation CMB experiments, e.g., proposed Stage-
4 CMB observations [14], target precisions for indepen-
dent primordial helium abundance determinations at
roughly the two percent level. Likewise, the next gen-
eration of large optical telescopes, for example 30-m class
telescopes [61–64], are touted as providing a comparable
level of precision in determining the primordial deu-
terium abundance from quasar absorption lines in high
redshift damped Lyman-alpha systems. Our calculations
show that we would need ∼0.1% precision in these
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primordial abundance determinations to probe different
treatments of neutrino scattering in the weak decoupling
epoch, at least for the case with no neutrino oscillations.
Though our calculations show that the bulk of the

alteration in abundances stems from the initial lepton
asymmetry itself, transport does produce offsets in absolute
abundances yields comparable to those with zero lepton
numbers. We found that sometimes we can adequately
capture the BBN effects of full Boltzmann neutrino trans-
port by using a dark radiation model of extra radiation
energy density added by neutrino scattering. However, this
approximation, tuned to agree with the Boltzmann calcu-
lation results at one value of comoving lepton number, fails
for other lepton asymmetry values.
We showed in Table V how neutrino transport alters the

primordial abundances in degenerate cases. Both 4He and
D are sensitive to n=p, which itself is sensitive to the νe
and ν̄e occupation numbers. Table IV showed that the FD
Eq. treatment of BBN closely matches the Boltz. calcu-
lation of YP. Transport induces a relative change in D/H
nearly an order or magnitude larger than that of YP. This
finding is consistent with findings in the zero-degeneracy
case [1]. Tables II and V show that the primordial
abundances are more sensitive to neutrino degeneracy
than Neff . Moreover, 4He is twice as sensitive to the
degeneracy than D. CMB Stage-IV experiments [14,65]
and 30-m-class telescopes will probe YP, D=H, and Neff at
the 1% level. If future observations were to find little
change in Neff from the standard prediction, but changes
in the abundances matching the patterns in Table V, then
this scenario would be consistent with a degeneracy in
the neutrino sector. However, the Boltz. calculations in
Table V do not include the physics of neutrino oscilla-
tions. In the presence of nonzero lepton numbers,
oscillations may alter the scaling relations of Table V
and will necessitate a full quantum kinetic equation
treatment [66,67].
This brings us to the question of our selection of initial

lepton asymmetries. We have chosen to examine values of
these at and below usually accepted limits, and we have
examined only situations where the asymmetries are the
same across all flavors. The trends our Boltzmann-transport
calculations reveal will likely hold for lepton asymmetries
outside of the ranges considered here. However, differences
in lepton numbers between different flavors will drive
medium-enhanced/affected neutrino flavor transformation
which could lead to different conclusions in the neutrino
sector. Comparing future quantum kinetic calculations
which include both coherent and scattering-induced flavor
transformation with our strict Boltzmann treatment might

reveal BBN and Neff signatures of neutrino flavor con-
version, although these may be at levels well below what
future observations and experiments can probe.
Nevertheless, many beyond-standard-model physics

considerations invoke quite small initial lepton numbers
[68–71]. Various models of sterile neutrinos in the early
universe, including dark matter models, rely on lepton
number-driven medium enhancements [72–74] or beyond-
standard-model physics to create relic sterile-neutrino
densities (see Refs. [75,76] and references therein for a
review of sterile neutrino dark matter). Sterile neutrinos are
an intriguing dark matter candidate [77], and could con-
ceivably be congruent with particle [78] and cosmological
bounds [79,80]. For resonantly produced sterile neutrino
dark matter, the models invoke lepton asymmetries in the
10−3 to 10−5 range to match the relic dark-matter abun-
dance, providing a motivation for our choice of values
for L⋆

ν.
In fact, many models for baryon and lepton-number

generation in the early universe [81–83], e.g., the neutrino
minimal standard model (νMSM) [84,85], can produce
lepton numbers in the ranges chosen for the present study.
It will be interesting to see if future quantum kinetic
calculations with neutrino flavor transformation will yield
deviations from the baseline calculations presented here.
Any such deviations would point to either a different
distribution of lepton numbers over neutrino flavor than
that considered here, or differences in the development of
scattering-induced spectral distortions and attendant BBN
abundance alterations over the standard scenario.
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