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The next generation of surveys will greatly improve our knowledge of cosmological gravity. In this
paper we focus on how Stage IV photometric redshift surveys, including weak lensing and multiple
tracers of the matter distribution and radio experiments combined with measurements of the cosmic
microwave background will lead to precision constraints on deviations from general relativity. We use a
broad subclass of Horndeski scalar-tensor theories to forecast the accuracy with which we will be able
to determine these deviations and their degeneracies with other cosmological parameters. Our analysis
includes relativistic effects, does not rely on the quasistatic evolution and makes conservative
assumptions about the effect of screening on small scales. We define a figure of merit for cosmological
tests of gravity and show how the combination of different types of surveys, probing different length
scales and redshifts, can be used to pin down constraints on the gravitational physics to better than a
few percent, roughly an order of magnitude better than present probes. Future cosmological experiments
will be able to constrain the Brans-Dicke parameter at a level comparable to Solar System and
astrophysical tests.
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I. INTRODUCTION

The future of observational cosmology holds great
promise. Not only will it be possible to refine our
understanding of many of the ingredients of our current
standard cosmological model (such as, for example, the
geometry of space-time or the constituents of the mass
density of Universe), but these observations will also
allow us to explore truly foundational aspects in
physics. In particular, it should be possible to test some
of the most essential assumptions that go into construct-
ing our working relativistic model of the Universe. One
of the most fundamental assumptions is that gravity is
perfectly described by Einstein’s general theory of
relativity.
General relativity (GR) has been exquisitely tested on

noncosmological scales in the weak-field limit (see [1]
for a recent review) and, more recently, has been shown
to be broadly consistent with the first direct detection of
gravitational waves from the merger of two black holes
[2]. The common-sense approach has been to assume
that we can safely extrapolate GR to cosmological
scales and proceed to accurately calculate various
properties of the Universe. This is, of course, an
ambitious extrapolation, over 15 orders of magnitude
in length scale and probing a completely new regime of
gravitational potential and curvature [3]. Furthermore,
there are a number of alternative theories that are

consistent with noncosmological tests but which can
lead to a variety of cosmic histories [4]. Given all of
this, it makes sense to construct cosmological tests of
gravity which will be able to distinguish between GR
and its alternatives.
The time is right to do so. A battery of large-scale

surveys are planned to roll out over the next decade.
More specifically we expect a new generation of photo-
metric and spectroscopic galaxy redshift surveys, weak-
lensing surveys, continuum surveys of radio galaxies,
intensity mapping surveys of neutral hydrogen (HI), and
a concerted campaign to map the temperature and
polarization of the cosmic microwave background.
These surveys will access a wide range of redshifts
and scales with different sensitivities and will be
affected by different systematic uncertainties. Cross-
correlating these surveys will allow us to mitigate these
effects and extract precise information on the morphol-
ogy and evolution of large-scale structure. Indeed, as
was shown in [5–8], combinations of various future
data sets can be used to great effect to detect horizon-
scale, general relativistic corrections to cosmological
observables.
The next generation of surveys will deliver further tests

of fundamental physics beyond the nature of gravity. For
example, an important program in this direction is the
determination of the mass scale of neutrinos, which is,
arguably, easier to read off from their imprint on large-scale
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structure and the cosmic microwave background (CMB) [9]
than from laboratory experiments [10]. The minimal mass
scale of neutrinos (

P
mν;i ≳ 0.06 eV in the normal hier-

archy) is set by oscillation experiments. Despite its small-
ness, it falls in the range of sensitivity for future
experiments [11,12] and it is hence necessary to include
it as a cosmological parameter. This is even more important
in tests of gravity, whose signatures have been shown
to be degenerate with neutrino masses in a range of
models [13–15].
In this paper we look forward and forecast how this

step changes in observational cosmology will affect our
understanding of cosmological gravity. In broad terms,
we will try to understand how our constraints on GR
will improve over the next decade and how they will
compare with constraints on other length scales. Ideally
we would like to be completely agnostic about the
theory of gravity. That is, we would like to make as few
assumptions as possible about the space of theories
within which we explore deviations. There has been
great progress in characterizing gravity on linearly
perturbed cosmological scales, from completely general
approaches [16–24] to ones focused around scalar-tensor
theories [25–29]. While we would like to be completely
general, as a first step we will focus on a large, subclass
of scalar-tensor theories described by the Horndeski
action [30,31]. This will allow us to see how future
constraints will improve our knowledge of what is
currently a well-understood swathe of model space.
The Horndeski action encompasses all scalar-tensor

theories (with one scalar field) that have second order
equations of motion. It includes quintessence, K-
essence, Jordan-Brans-Dicke [32] and its variants, and
generalized covariant Galileons. Substantial effort has
already gone into studying the cosmological dynamics
of these theories [33] as well as attempts at constraining
them [34–36] or forecasting future constraints from
specific future surveys [37–39]. In this paper we will
include key surveys that are planned to come online in
the next decade or so. Considering this subclass of
models will allow us to better understand the role that
priors play in forecasting constraints and, in particular,
how priors on the gravitational theories will interact
with the priors on the usual cosmological parameters. It
will also allow us to compare directly with constraints
on smaller scales, i.e. with the fabled precision con-
straints from the Solar System, and binary systems [1].
This paper is structured as follows. In Sec. II we

present Horndeski’s formulation of scalar-tensor theories
and identify the class of theories we will be considering
in our analysis. We take particular care in identifying
three different levels of parametrizations which we will
be forecasting for. In Sec. III we list the surveys we will
be considering and the forecasting method we will be
using; our focus is primarily on tomographic surveys

supplemented with intensity mapping experiments. We
do briefly consider the added value of spectroscopic
measurements of the baryon acoustic oscillation scale
(BAO) and of the growth rate via redshift-space dis-
tortions. In Sec. IV we present our results, taking
particular care to identify the optimal combination of
surveys, identifying the degeneracies between parame-
ters and contrasting the future with the current state of
play. In Sec. V we discuss our findings.

II. HORNDESKI’S FORMULATION
OF SCALAR-TENSOR THEORIES

A general scalar-tensor action, constructed from a
metric, gμν and scalar field, ϕ was proposed in [30,31]
and takes the following form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li½ϕ; gμν� þ LM½gμν;φ�
�
; ð1Þ

where LM is the minimally coupled matter action
(φ represents a general “matter” field) and the building
blocks of the scalar field Lagrangian are

L2 ¼ K;

L3 ¼ −G3□ϕ;

L4 ¼ G4RþG4Xfð□ϕÞ2 −∇μ∇νϕ∇μ∇νϕg;
L5 ¼ G5Gμν∇μ∇νϕ

−
1

6
G5Xfð∇ϕÞ3 − 3∇μ∇νϕ∇μ∇νϕ□ϕ

þ 2∇ν∇μϕ∇∇
ν ϕ∇μ∇αϕg: ð2Þ

We have that K and GA are functions of ϕ and
X ≡ −∇νϕ∇νϕ=2, and the subscripts X and ϕ denote
derivatives. The four functions, K and GA completely
characterize this class of theories. It is possible to extend
this action by including extra terms (to generate what has
been dubbed the “beyond Horndeski” action [40–42])
“extended scalar-tensor theories” [43–45] or nonminimal
coupling to matter [46].
From the point of view of cosmology, one can greatly

reduce the number of degrees of freedom one needs to
focus on to the homogeneous mode of the metric,
ds2 ¼ −dt2 þ a2ðtÞd~x2, and scalar field, ϕ̄ðtÞ, and their
linear perturbations. In [47] it was shown that, on top of
a convenient choice of the background expansion
history (described by the effective equation of state,
w, of the Horndeski field), one can completely charac-
terize the evolution of linear perturbations in Horndeski
cosmologies in terms of a set of free functions of time
given by
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M2� ≡ 2ðG4 − 2XG4X þ XG5ϕ − _ϕHXG5XÞ;

HM2�αM ≡ d
dt

M2�;

H2M2�αK ≡ 2XðKX þ 2XKXX − 2G3ϕ − 2XG3ϕXÞ þ 12 _ϕXHðG3X þ XG3XX − 3G4ϕX − 2XG4ϕXXÞ
þ 12XH2ðG4X þ 8XG4XX þ 4X2G4XXXÞ − 12XH2ðG5X þ 5XG5ϕX þ 2X2G5ϕXXÞ
þ 14 _ϕH3ð3G5X þ 7XG5XX þ 2X2G5XXXÞ;

HM2�αB ≡ 2 _ϕðXG3X −G4ϕ − 2XG4ϕXÞ þ 8XHðG4X þ 2XG4XX −G5ϕ − XG5ϕXÞ þ 2 _ϕXH2ð3G5X þ 2XG5XXÞ;
M2�αT ≡ 2X½2G4X − 2G5ϕ − ðϕ̈ − _ϕHÞG5X�: ð3Þ

Each of these functions can be tied to its own underlying
physical aspect of scalar-tensor theories: M2� and αM are
related to time variations in the background Newton’s
constant, αK (dubbed “kineticity”) generalizes the canoni-
cal kinetic term of simple DE models while αB (dubbed
“braiding”) quantifies kinetic mixing between ϕ and the
scalar perturbations of the metric. Finally, αT is associated
to modifications to the speed of propagation of tensor
modes, but it is also responsible for anisotropic stress in the
scalar sector, i.e. γ defined in Eq. (6).1

Furthermore, one can infer from this parametrization,
emergent scales which define how perturbations evolve. As
originally discussed in [47] and further elaborated in [36],
the “braiding scale,”

kB ¼ D
α2B

½ð1 −ΩMÞð1þ wÞ þ 2ðαM − αTÞ� þ
9

2
ΩM; ð4Þ

(where the time-varying Planck mass has been absorbed
into the definition of ΩM and D≡ αK þ 3

2
α2B) determines

the scale dependence in the growth factor.
The set of α’s are a remarkably compact and efficient

way of characterizing this large subclass of scalar-tensor
theories. On the one hand, it greatly restricts the possible
structure and evolution of non-GR cosmologies; this finite-
dimensional subspace of theories can be easily parame-
trized by a handful of numbers characterizing their time
evolution. One obvious, simplified, approach is to associate
the onset of modifications to GR with the emergence of
dark energy; indeed one of the motivations to consider such
theories is a possible explanation for the late-time accel-
eration of the Universe. Thus a possible parametrization is

αX ¼ f

�
ΩDE

ΩDE0

�
; ð5Þ

where ΩDE is the fractional energy density in dark energy
(and the additional subscript “0” denotes its value today)

and fðxÞ is a function such that f → 0 as x → 0. To
describe gravity at low redshift we can Taylor expand this
function and, for example, simply keep the leading order
term, so that f ≃ f0ð0Þx. A recent analysis of this class of
theories using this parametrization was undertaken in [36]
where the uncertainty, from current data, on αB and αM was
found to be Oð1Þ.
As stated, this is a simplified approach and does not

necessarily capture the correct behavior of the α’s arising in
Horndeski theory [51]. Simply put, if one were to start with
the Horndeski action for the background evolution, choos-
ing a physical range of initial conditions and free functions,
one would then derive a set of theoretical priors for the time
evolution of the α’s. One would then construct a para-
metrization of this prior space of α’s to be used in an
accurate forecast analysis. This is analogous to what was
shown for the case of the simple (w0,wa) parametrization of
dark energy where a reasonably tight correlation between
the two parameters exists already at the level of the priors
[52]. Nevertheless, our simple parametrization does allow
us to get a sense of how constraining future data sets will be
in comparison with current data. In addition, this para-
metrization describes exactly the behavior on their attractor
of simple shift-symmetric models as the imperfect fluid
[53], and approximately more complicated models as the
best fit of covariant Galileons without a cosmological
constant [13,54].
Within this restricted class of models, we can also map

directly onto a set of parameters which are of particular use
in the quasistatic regime, when csak=H ≫ 1 (where k is the
wave number of a given perturbation, a is the scale factor,
H is the Hubble rate and cs is the sound speed of the
additional degree of freedom). The linear perturbation
equations in the Newtonian gauge greatly simplify to

−k2Φ ¼ 4ϕGμρ̄δ;
Φ
Ψ

¼ γ; ð6Þ

where Φ and Ψ are the gravitational potentials, ρ̄ is the
background energy density of nonrelativistic matter with
perturbations δ. It has been shown that the two quasistatic
parameters—the modified Newton’s constant, Geff ¼ μG0

1Both αM and αT affect the propagation of gravitational waves
and can be constrained by the period decay in binary systems [48]
and future detections from systems with electromagnetic or
neutrino counterparts [49,50].
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and the gravitational slip, γ—can be expressed as rational
functions of k with time dependence uniquely determined
by the α’s. While we will not actually forecast constraints
on (μ, γ) in this paper, it is useful to assess what are current
constraints. The most complete analysis of quasistatic
parameters can be found in [35] where a set of somewhat
paradoxical constraints were found. On the one hand, the
current uncertainty in (μ, γ) is of Oð1Þ, although these
parameters do suffer from a strong degeneracy; if we look
at the direction orthogonal to that degeneracy, we can bring
down the uncertainty to Oð10−1Þ. On the other hand, the
use of these quasistatic parameters provided the first clear
indication of a deviation from GR. While it is reasonably
robust to different permutations of data sets, the authors of
[35] have opted to claim that this is a signal of systematic
effects in the data. Future data sets, such as the ones we
consider should unambiguously resolve this issue.
So far we have explained how we will use the Horndeski

parametrization to explore a broad subclass of theories.
We can also do the converse and consider a very narrow
subclass of well-known theories that are embedded in
Horndeski. We will thus also focus on Jordan-Brans-
Dicke (JBD) theories [32] which are described in terms of

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϕR −

ωBD

ϕ
∇μϕ∇μϕþ V þ LM½gμν;φ�

�
:

ð7Þ

When V ¼ 0, these theories are completely described in
terms of one parameter, ωBD, and GR is recovered when
ωBD → ∞. This theory is the workhorse of modern tests of
GR on a wide range of scales and allows us to compare the
potential of future cosmological surveys with other astro-
physical tests. This theory will trace out a particular slice in
the space of α’s.
JBD theories are exquisitely constrained. The current

tightest constraint on ωBD is on astrophysical scales from
the Shapiro time delay [55]: ωBD > 4 × 104. The most up-
to-date cosmological constraints using the Planck data are
in [34] where it was found that ωBD > 6 × 102. See also
[56,57]). Naturally, the question arises whether it is
possible to get cosmological constraints on ωBD compa-
rable to those found on astrophysical scales.
Many alternative theories of gravity are equipped with

screening mechanisms, nonlinear effects by virtue of
which the departures from GR fade in short scales or
high-density environments [58]. This feature helps recon-
cile such theories with the stringent astrophysical and Solar
System tests while leaving room for detectable signatures
in the large-scale structure of the Universe. However,
screening typically kicks in on small cosmological scales,
suppressing the modified gravity effects relative to the
linear prediction (see [59–61] and for an extensive cross
comparison, see [62]). This feature of modified gravity has
been studied in a model-by-model basis using nonlinear

techniques, but has been often ignored in forecasts for
future experiments. We will use linear cosmological per-
turbation theory and hence the screening effects have to be
included in a phenomenological fashion. We will model the
small-scale recovery of GR through a scale dependence of
the αs

αXðtÞ → αXðt; kÞ ¼ αXðtÞS
�
k
kV

�
; ð8Þ

where X ¼ ðM;B;K; TÞ and such that Sðx ≪ 1Þ ≈ 1 and
Sðx ≫ 1Þ ¼ 0. We will model the screening using a
Gaussian function S ¼ expð− 1

2
ðk=kVÞ2Þ with a fiducial

value kV ¼ 0.1 h=Mpc, in agreement with simulations of
Vainshtein-screened models (cf. Fig. 4 of [60]). This is a
minimal, one-parameter prescription. More sophisticated
prescriptions can be added as needed based on model-
specific studies. We note that this or other prescription
needs to be introduced whenever screened scales are
included in the analysis. If they can be properly modeled,
nonlinear scales contribute greatly to constraint other
cosmological parameters, but not accounting for screening
can largely overestimate the surveys capacity to test gravity.
The situation with regards to baryonic physics is even

more open: while there have been attempts at understand-
ing the impact of, for example, active galactic nuclei
feedback on specific models [63], a complete understand-
ing is still lacking. In order to account for the effect of
baryonic effects to some extent, we have used the model
proposed by [64], determined by two quantities,Mc and ηb,
parametrizing the mass dependence of the halo gas fraction
and the ejected gas radius. For these we use the fiducial
values Mc ¼ 1.2 × 1014 M⊙=h and ηb ¼ 0.5. In Sec. IV C
we will study the impact of the uncertainties on both
screening mechanisms and baryonic physics by marginal-
izing over the values of these parameters as well as kV .

III. STAGE IV COSMOLOGICAL SURVEYS

In the next decade, a number of astronomical facilities
will cover a large portion of the sky visible from the
Southern Hemisphere in multiple wavelengths and with
almost perfect angular overlap. We will thus have at our
disposal a large volume of the Universe where cosmologi-
cal structures will have been covered by a large variety
of observational probes. In this section we describe the
forecasting method that we use to predict the combined
constraining power of a representative subset of these
experiments, the nature of the main cosmological probes
pursued by them, and the main advantages of combining
probes.

A. Forecasting formalism

Each probe a considered in this paper can be represented
by a set ofNa

maps sky maps fully described by their spherical
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harmonic coefficients aða;iÞlm (i ∈ ½1; Na
maps�). These may

correspond, for instance, to the perturbations in the number
density of galaxies in a set of redshift bins or to the
temperature and polarization perturbations of the CMB.
Each sky map is labeled by a combined index ða; iÞ → A,
and to first approximation we will assume that the anisot-
ropies aAlm are Gaussianly distributed, such that the
combined likelihood of the observed maps is given by

−2 logpðalmÞ ¼
X
l

Xl
m¼−l

faTlmClalm þ log½detð2πClÞ�g:

ð9Þ

Here we have grouped all the sky maps into a vector alm,
and we have defined the power spectrum matrix Cl as the
covariance of this vector:

halma†l0m0 i ¼ δll0δmm0Cl: ð10Þ

The information on cosmological parameters is encoded
in the power spectrum. Expanding this likelihood around
the maximum we can find the now usual expression for the
Fisher matrix F, describing the inverse of the covariance
matrix of a set of parameters θ:

Fμν ¼
Xlmax

l¼2

fskyðlþ 1=2ÞTrð∂μClC−1
l ∂νClC−1

l Þ; ð11Þ

where fsky is the sky fraction covered by the considered
probes, and ∂μ implies differentiation with respect to the
parameter θμ. The maximum multipole lmax included in the
constraints is a map-dependent choice, corresponding to
the smallest scale for which sensible information can be
extracted, and can be limited by noise and observational or
theoretical systematics.
We will assume that the observed anisotropies contain

both a cosmological signal and a noise component,
alm ¼ slm þ nlm, and that both components are uncorre-
lated. Thus the power spectrum can also be decomposed
into two components, Cl ¼ CS

l þ CN
l ¼ hslms†lmi þ

hnlmn
†
lmi. The form of the signal and noise components

for each probe will be described below.
The partial derivatives in Eq. (11) were computed using

finite central differences:

∂μfðθÞ ¼
fðθμ þ δθμÞ − fðθμ − δθμÞ

2δθμ
; ð12Þ

where the optimal value for the intervals δθμ was found by
iteratively halving the initial guesses until convergent
results were found beyond the second significant digit.
All power spectra were computed using a modified version

of hi_class2 [65], a code based on the Cosmic Linear
Anisotropy Solving System (CLASS) [66]. hi_class
computes the evolution of linear cosmological observables
without assuming the quasistatic approximation and includes
relativistic corrections to galaxy clustering [67]. This ensures
the validity of the computation on scales larger than the scalar
field sound horizon [68] and all the way to ultralarge scales.
In order to retain the correct large-scale shape, all power
spectra were computed without adopting the Limber
approximation. hi_classwas run adding a constant value
to the kineticity αK, i.e. 10−4, to protect the computation
against numerical singularities in the evolution of the
perturbations that happen when the kinetic term D → 0.
In addition, hi_class uses a set of precision parameters
which is improved with respect to the ones in CLASS [66].

B. Cosmological surveys

1. Stage-4 CMB

The current CMB data sets, consisting of a combination
of large-scale, full-sky experiments such as WMAP [69]
and Planck [70], and high-resolution ground-based
observatories (e.g. ACTPol [71], SPT-Pol [72], are cur-
rently being upgraded through Stage 3 (S3) ground-based
experiments (e.g. AdvACT [73] and SPT-3G [74]) with a
larger numbers of detectors, multiple frequency channels,
and covering larger sky fractions.
S3 experiments will eventually be superseded by a Stage

4 (S4) experiment, likely to be built by combining the
observing power of different ground-based facilities, with
similar potential for wide sky coverage and significantly
lower noise levels. It is expected that S4 will cover ∼40%
of the sky, with a reduced noise level of around
σT ¼ 1 μK-arcmin in temperature [75].
S4 will measure three main types of anisotropies: the

primordial CMB perturbations in temperature and polariza-
tion (aTlm, a

E
lm

3), as well as the reconstructed CMB lensing
convergence aκlm. For the CMB anisotropies, the noise power
spectrum is determined by two regimes. On small scales, the
measurements are limited by the beam size of S4, which here
we assume to be Gaussian with a width θFWHM ¼ 30. In this
regime the noise can be approximated as being white (before
noise deconvolution [76]), and thus given by

NT;E
l ¼ σ2T;E exp½lðlþ 1Þθ2FWHM=ð8 ln 2Þ�; ð13Þ

with σ2T;E in units of μK2 sr (we assume σE ¼ σT
ffiffiffi
2

p
). On

the other hand, ground-based facilities such as S4 are

2www.hiclass‑code.net
3Although both the E- and B-modes contribute to the total

polarized anisotropies, here we will set the primordial tensor
perturbations (and hence the B-modes) to zero. The contribution
of the lensing B-modes is therefore fully accounted for by
considering the reconstructed CMB lensing convergence.
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limited on large scales by a number of statistical and
systematic uncertainties, such as the effect of atmospheric
noise or ground pickup. For this reason we assume that S4
will not be able to probe the CMB anisotropies on scales
l < 30, and in those multipoles we assume noise levels
corresponding to Planck as given in [70]. Furthermore, we
set the maximum multipoles for these probes at lmax ¼
3000 in temperature and lmax ¼ 5000 in polarization.4

In order to compute the noise power spectrum for the
lensing convergence, we assume a reconstruction process
based on quadratic combinations of the lensed CMB maps
[77], and estimate the reconstruction noise as detailed in
[78]. In doing this we assume a minimum-variance noise
achieved by combining the TT, TE, TB, EE and EB
estimators, using only the multipole range 30 < l < 3000.
It is worth noting that our formalism accounts for the

nonzero correlation between overlapping CMB and large-
scale structure measurements, both those caused by CMB
lensing and by the late-time integrated Sachs-Wolfe effect.

2. The Large Synoptic Survey Telescope

Photometric redshift (photo-z) surveys have been pro-
posed as a practical means to achieve simultaneously dense
and deep galaxy catalogs. In this approach, the redshift of
each galaxy is inferred from its flux in a small number of
wide frequency bands, and although the corresponding
redshift uncertainties prevent any efficient measurement of
the radial clustering pattern, the large number density of
tracers attainable by these surveys makes them ideal for
weak-lensing studies as well as multitracer analyses.
Although large-scale photometric surveys, such as the

Dark Energy Survey [79], are already underway, we will
focus our discussion on the Large Synoptic Survey
Telescope (LSST), a Stage-IV experiment aiming at cover-
ing ∼20; 000 deg2 on the sky to with a magnitude limit
r ∼ 27. We will concentrate here on two of the main
cosmological science cases covered by the LSST: galaxy
clustering and cosmic shear.

Galaxy clustering.—The main cosmological observable in
galaxy clustering studies is the shape of thepower spectrumor
two-point correlation function of the galaxy number density.
In the case of LSSTwewill focus on a tomographic approach
in which the galaxy sample is first separated into a number
of bins of photo-z, and all auto- and cross-correlations
between these bins are analyzed simultaneously.
Since the galaxy number density is known to be a biased

tracer of the matter density field (δg ≃ bδ), the uncertainties
in the redshift- and possibly scale-dependent bias b prevent
us from using the amplitude of perturbations in the galaxy
overdensity to make an independent measurement of the

growth of structure. As a result, most of the information in
the angular galaxy-galaxy power spectrum resides in robust
features such as the angular BAO scale. Other “secondary”
contributions to the power spectrum, such as that of
redshift-space distortions can also be used to make a
suboptimal measurement of the growth rate and, although
subdominant, a number of relativistic contributions to the
clustering pattern, such as that of lensing magnification
[80–82] could potentially contain relevant information
about deviations from GR. Further details can be found
in [6]. These expressions are general for minimally coupled
theories of gravity in the linear regime [54].
Under the assumption that galaxies are a Poisson sample

of the underlying biased density field, we can model the
noise power spectrum as a white component with an
amplitude of 1=NΩ, where NΩ is the angular number
density of sources in each redshift bin in units of sr−2.
As was done in [7], we separate the clustering sample into
two subsamples of “red” (early-type, ellipticals, high-bias)
and “blue” (late-type, disks, low-bias) galaxies. The spe-
cific models for the power spectrum, photo-z uncertainties,
nuisance bias parameters and sample definitions are
described in detail in [6].
Although a linear, scale-independent bias parameter is in

most cases a good approximation to the relation between
the galaxy and matter power spectra on large scales, on
small nonlinear scales it becomes necessary to resort to
more sophisticated models, which often prevents the use of
the small-scale galaxy power spectrum for cosmology. In
order to avoid these complications we define a minimum
angular scale for each redshift bin down to which the
corresponding map is used. At the mean redshift of each bin
z̄ we start by defining a threshold comoving scale kmax by
requiring that the variance of the matter overdensity on
larger scales be below a given threshold σ2thr, i.e.,

σ2thr ¼
1

2π2

Z
kmax

0

dkk2Pðk; z̄Þ: ð14Þ

We then translate this comoving scale into an angular
multipole lmax ¼ χðz̄Þkmax. For our fiducial constraints we
used a threshold variance of σthr ¼ 0.5. This value corre-
sponds to a cutoff scale kmax ∼ 0.1h Mpc−1 at z ¼ 0, which
is a conservative estimate of the scales up to which a
reliable estimate of the covariance matrix of the matter
power spectrum can be obtained using perturbation
theory [83].

Cosmic shear.—The observed projected shapes of galaxies
are distorted due to the weak gravitational lensing of the
photons they emit caused by the intervening matter
perturbations. Thus it is possible to probe those perturba-
tions by analysing the correlated galaxy ellipticities. The
constraining power of weak lensing can be summarized
into the power spectrum of the traceless part of the cosmic

4The different small-scale cutoff in temperature and polariza-
tion is motivated by the contamination from extragalactic fore-
grounds on small scales in the temperature power spectrum.
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shear tensor computed for galaxies lying in a set of photo-z
bins (labeled here by an index i):

γiðn̂Þ≡
Z

χH

0

dχ0Wi
γðχÞðððΦþΨÞðχ; n̂Þ;

Wi
γðχÞ≡

Z
χH

χ
dχ0

dpi

dχ0

�
χ0 − χ

χχ0

�
; ð15Þ

where dpi=dχ is the selection function of the redshift bin,
and ð is the spin-raising differential operator defined by
their action on a spin-s function fs:

ðfsðn̂Þ ¼ −ðsin θÞsð∂θ þ i∂ϕ= sin θÞðsin θÞ−sfsðn̂Þ: ð16Þ

We see that, at any particular redshift, weak-lensing traces
the density perturbations integrated along the line of sight
down to the observer weighed by the lensing kernel. Thus,
good redshift precision is not necessary for this probe, since
the large support of the lensing kernel erases all structure
along the line of sight, making photometric redshift surveys
ideal for this task.
Since the shear tensor is effectively estimated by

averaging over the ellipticities of all galaxies laying in a
given pixel, the noise in this estimate is directly propor-
tional to the variance of the intrinsic galaxy ellipticities, and
inversely proportional to the angular galaxy number den-
sity. We thus use a white noise model in which the noise
power spectrum for the ith redshift bin is given by
Ni

l ¼ σ2γ=Ni
Ω, where σ2γ is the per-component dispersion

in the intrinsic galaxy ellipticities (including measurement
noise), for which we use σγ ¼ 0.3 [84].
Since weak lensing directly probes the matter perturba-

tions, theoretical uncertainties on nonlinear scales are in
principle far less cumbersome than in the case of galaxy
clustering. However, even using numerical simulations
and emulators [85], the uncertainties in the modeling of
baryonic effects prevent an accurate description of the
matter power spectrum on very small scales [86–89,89,90].
For these reasons, for weak lensing we use a small-scale
cutoff lmax ¼ 2000, corresponding to kmax ∼ 1 at z ¼ 1
(note that we will use a different prescription in Sec. IV C,
with lmax defined as above for galaxy clustering).
Cosmic shear is not free from systematic uncertainties:

shape-measurement uncertainties are known to affect the
broadband shape of the lensing power spectrum, and
multiplicative and additive bias parameters have been used
to model the effects in the first cosmological lensing
analyses [91–93]. Furthermore, intrinsic galaxy orientations
are known to be correlated with each other, and there are
hints that the local tidal field (i.e. the Hessian of the
gravitational potential) is responsible for these intrinsic
alignments, at least in the case of elliptical galaxies. This
effect can also be modeled at the cost of introducing extra
nuisance parameters. This work aims at forecasting the
best achievable constraints on scalar-tensor theories, and

therefore we will ignore shape-measurement systematics,
assuming that tight priors on the corresponding nuisance
parameters can be found below the science requirements of
LSST. We have also neglected the systematic uncertainties
associated with the use of photometric redshifts, which
would also affect galaxy clustering. We have, however,
included the effect of intrinsic alignments following the so-
called nonlinear alignment model [94], marginalizing over
the alignment amplitude at z ∈ f0.5; 1.0; 1.5; 2.0g.We defer
a more thorough study of the effect of systematic uncer-
tainties on modified gravity constraints for future work.

3. The Square Kilometre Array

Awide-area radio astronomy facility such as the Square
Kilometre Array (SKA) offers a large variety of unique as
well as synergistic cosmological science cases, which have
recently received a lot of attention in the literature [95–98].
Three types of cosmological surveys can be carried out in
this range of frequencies:

(i) In an HI galaxy survey [99], individual sources are
spatially resolved, and their 21 cm, neutral hydrogen
detected with significantly high signal-to-noise, thus
producing a spectroscopic catalog of galaxies. The
low intensity of this line makes it very challenging to
reach high number densities and redshifts with this
technique, and it is expected that only a hypothetical
“Phase 2” of the SKAwould be able to produce a HI
catalog competitive with planned Stage-IV surveys
such as Euclid [100].

(ii) Dropping the requirement of resolving the HI line, a
continuum survey [101] simply integrates the total
radio flux of all sources in a wide frequency band.
This allows the detection of much fainter sources,
and a continuum survey with a flux limit of 5μJy
would be able to cover a wide range of redshifts
(z≲ 4). The main drawback of this technique is the
lack of redshift estimates for the detected sources,
which in the best-case scenario makes them depen-
dent on external data sets and optical follow-up, and
in the worst renders them useless for cosmological
studies. It is also worth noting that, given the good
control over the point-spread function achievable
with a radio interferometer, radio weak-lensing
surveys from continuum catalogs could potentially
be more robust against shape-measurement system-
atics than their optical counterparts [102].

(iii) Conversely, the novel technique of intensity map-
ping [96] sacrifices angular resolution, avoiding the
detection of individual sources by integrating the
combined 21 cm emission in wider angular scales,
thus producing three-dimensional maps of the dis-
tribution of neutral hydrogen in the Universe with
good radial resolution. Intensity mapping is there-
fore complementary to the use of photometric red-
shift surveys in the coverage of the k⊥–k∥ plane.
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Given its complementarity with the science cases
covered by LSST, we will focus here on intensity mapping
only. The cosmological observable in this case is the HI
antenna temperature measured in a set of frequency bins,
related to the corresponding redshift as ν ¼ ν21 cm=ð1þ zÞ.
We will assume that the observations will be done using the
SKA1-MID as described in [6,103] wewill dub this data set
SKA-IM. We consider the frequency band 350–1050 MHz,
dividing it into 200 frequency channels, corresponding to a
comoving width of ∼16 Mpc=h. The models used to
describe the signal and noise power spectrum of this
observable, including the models for the HI bias and
background temperature, are presented in detail in [6].
We assume a 10,000-hour survey covering 40% of the sky
carried out with a set of 200 15 m antennas in single-dish
observation mode with a system temperature of 25 K. The
noise power spectrum is modeled as white (before beam
deconvolution):

NlðνÞ ¼ σ2NðνÞ exp½lðlþ 1Þθ2FWHMðνÞ=ð8 ln 2Þ�; ð17Þ

where the noise variance σN and beam width θFWHM are
determined by the parameters listed above as described in
[6]. The beam size of the SKA (θFWHM ∼ 2° at z ∼ 1) is
large enough that we do not need to impose a strict high-l
cut, since the measurements become noise dominated well
before the scale of nonlinearities (in practice we impose a
cut lmax ¼ 200).
Since individual sources are not detected, the faint 21 cm

emission needs to be separated from the much brighter
(∼5 orders of magnitude) diffuse galactic and extragalactic
foregrounds. Although, given the smooth frequency
dependence of the foregrounds, it should be possible to
isolate the cosmological signal based on its different
spectral properties (see [104,105]), foreground residuals
will necessarily dominate the measurements on large radial
scales, and it is expected that foreground contamination
coupled with instrumental miscalibration will be the largest
source of systematic uncertainties. Another cause of con-
cern specific to single-dish observations is the effect of gain
fluctuations in the time domain, which could be an
important source of systematic uncertainties on large
angular scales, although the effect may depend on the
survey scanning strategy. As before, we will, for the most
part, ignore these systematics in this work, in an attempt to
present the best achievable constraints on scalar-tensor
theories from future experiments.

4. Spectroscopic surveys

In our analysis we have not included constraints from
wide spectroscopic such as DESI [106] or Euclid [100]. For
this type of experiment, with good angular and radial
resolution, the most efficient way to carry out Fisher
forecasts is to use the Fourier coefficients of the galaxy
overdensity δgðz;kÞ as an observable in a discrete set of

redshift bins within which evolution effects are effectively
frozen. In this formalism it is however not straightforward
to account for inter-bin correlations [107] and correlations
with overlapping lensing and CMB experiments, a key
aspect of our analysis. On the other hand, the option of
modeling spectroscopic observations as a set of angular
maps at different redshift becomes computationally intrac-
table without losing radial information. Furthermore, given
that the experiments listed above cover the main science
cases that a spectroscopic survey would be able to approach
(geometric radial and angular BAO measurements and
redshift space distortions), we do not expect dramatic
improvements in the final uncertainties due to the inclusion
of spectroscopic data.
Nevertheless, and in order to estimate both the reach

of future spectroscopic observations and the amount of
information lost in our formalism, we have included
constraints from an independent (i.e. uncorrelated)
DESI-like spectroscopic survey using the expected uncer-
tainties on the radial and angular BAO scales and the
growth rate of structure estimated by [11]. Besides sim-
plicity, lack of correlation is an optimistic assumption that
lets us evaluate how much the constraints may improve by
the addition of this type of survey. We do not include these
additional constraints as part of our fiducial forecasts, but
discuss their relevance in Sec. IVA.

IV. RESULTS

The class of theories we are considering can, as we have
seen, be parametrized in terms of 5 free function of time, w,
αM, αK , αB and αT (we fix the initial Planck mass, i.e. the
integration constant needed to obtain M2� from αM, to 1).
For the bulk of this analysis we assume that deviations from
GR are intimately tied to the onset of accelerated expansion
and hence, for now, we Taylor expand expression 5 and
adopt a parametrization of the form:

αX ¼ bX þ cX
ΩDEðzÞ

ΩDEðz ¼ 0Þ ; ð18Þ

where ΩDE is the fractional energy density in dark energy
(or whatever is responsible for the onset of accelerated
expansion) which itself depends on w. For our fiducial
constraints we fix the early terms to zero (bX ¼ 0), and
concentrate only on cX. In a latter subsection we will
consider bX, as well as a different time dependence.
As a fiducial model we choose a point in the space of cX

that is close enough to Λ GR to be compatible within 1σ
given our most optimistic constraints (this is done to avoid
the numerical singularities at cX ¼ 0). The fiducial model
we chose is fw ¼ −1; cK ¼ 0.1; cB ¼ 0.05; cM ¼ −0.05;
cT ¼ −0.05g. Beside these, we vary over the basic param-
eters of the flat Lambda cold dark model (ΛCDM) model:
the dark matter and baryon densities ωc and ωb, the local
expansion rate h, the amplitude and tilt of primordial scalar
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fluctuations (As, ns) and the optical depth to reionization τ.
For these, we set their fiducial values to the best-fit
cosmology of [9] (with τ ¼ 0.06 as per the latest measure-
ment of [108]). Furthermore, we consider a single massive
neutrinowith amass of 60meV.When considering extended
models with free early-time parameters, we set their fiducial
values to bX ¼ 0.

A. Overall constraints

We begin by considering the combination of our three
main data sets (S4, LSST and SKA1-IM) to identify the
space of parameters on which the tightest constraints can be
drawn. Table I summarizes the forecast constraints on the
most relevant parameters, and Fig. 1 shows the covariance
between them. The analysis of [36], gives us an idea of the
overall structure of the constraints for fixed equation of
state, w ¼ −1, with cM and cB being more tightly con-
strained than cK and cT (note that in [36] the constraints on
cT are heavily affected by theoretical priors, such as
stability conditions). Our results show that, while the future
generation of surveys we consider will also be able to pin
down cT to a similar degree of precision, cK will remain a
highly uncertain parameter. Fortunately, cK shows little or
no degeneracy with any of the other Horndeski parameters,
and therefore it can be marginalized over without degrading
the constraints on cB;M;T . This is explicitly shown in
Table II, which summarizes the degeneracies on these
parameters for fixed or marginalized cK . We see, however,
that the uncertainties on cB;M;T grow between 10% and
30% when considering an evolving dark energy component
with w ≠ −1.
We can explore the full set of relevant degeneracies

in Fig. 1, which shows that cB and cM are tightly correlated
along the direction cB ≃ 2.5cM. The dark energy equa-
tion of state also shows significant degeneracy with all
the Horndeski parameters, especially cB and cM, and
our numerical results show also a non-negligible correlat-
ion with the fractional dark matter density ωc. These

degeneracies are primarily driven by constraints on the
growth of perturbations via the weak-lensing measurements
in LSST (and less significantly through the redshift space
distortion measurement from intensity mapping with
SKA1). We can understand this from a brief analysis of
the evolution equation for the growth rate, f ¼ d ln δ=d ln a:

df
d ln a

þ qf þ f2 ¼ 3

2
ΩM

μ

γ
; ð19Þ

where qðaÞ ¼ 1

2
½1 − 3wðaÞð1 −ΩMðaÞ�; ð20Þ

δ is the matter density contrast and ΩM is the fractional
matter density. Note that ΩM and μ=γ are time dependent
and, as μ=γ is a function of the α’s, we expect there to be a
degenerate effect between these different parameters. The
equation of state w will affect ΩM as well as q leading to a
further degeneracy. This also shows how crucial is to have
precise distance measurements (specifically via the BAO) to
be able to constrain this degeneracy.
While there is no significant degeneracy with the sum of

neutrino masses[(through their effect on ΩM, modifying
Eq. (20)], it is worth noting that, as has been found in other
works, we predict a ∼3σ measurement of the total neutrino
mass (assuming the normal hierarchy lower bound) by
combining S4 and low-redshift information from LSST
[σðPmνÞ ¼ 22 meV].5 The lack of degeneracy is in
contrast with previous studies based on specific models
such as fðRÞ [14,15]. In this case the effect of neutrino
masses (washing out perturbations on scales smaller than
free-streaming scale) and modified gravity (enhanced
growth due to the scalar force on scales shorter than the
inverse mass of the field) can cancel partially. This
cancellation is easier to achieve in restricted models [such

TABLE I. 1σ constraints on the Horndeski parameters cB and cM, the dark-energy equation of state parameter w and the sum of
neutrino masses

P
mν for different combinations of experiments. The last column shows the constraints assuming a modified gravity

fiducial model given by the best fit in [36], in which case ΛCDMwould be ruled out by more than 7σ from cM alone. The corresponding
values for the figure-of-merit defined in Sec. V are shown in the last column.

Case
>ωBD,

95% C.L. σðcBÞ σðcMÞ σðcTÞ σðcKÞ σðwÞ
σðPmνÞ
[meV]

FoM
ðcB; cM; cTÞ

S4 2.9 × 103 0.796 0.746 1.26 4.9 0.112 71 1.3
LSST 1.2 × 104 0.193 0.089 0.205 8.8 0.016 45 61
SKA1-IM 9.5 × 103 13.3 6.0 8.6 106 0.018 74 1.0
S4þ LSST 1.3 × 104 0.169 0.072 0.179 3.5 0.011 22 88
S4þ SKA1-IM 1.0 × 104 0.305 0.238 0.786 3.5 0.0085 23 9.0
S4þ LSSTþ SKA1-IM 1.7 × 104 0.161 0.070 0.151 3.1 0.0069 15 121
S4þ LSSTþ SKA1-IMþ Spec. 1.7 × 104 0.123 0.056 0.146 3.1 0.0061 13 143

Best fit of [36] as fiducial not applicable 0.063 0.076 0.201 4.23 0.0059 13 � � �

5This sensitivity could be increased to a ∼5σ detection if an
external, cosmic-variance-limited measurement of τ could be
carried out [σðPmνÞ ¼ 11 meV] [12].
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as fðRÞ) due to the interdependences existing in the α
functions (cf. [47]). In more general models such as the one
considered here [Eq. (5)] most of the parameter space does
not allow for this cancellation.

Figure 1 also shows, in green, the constraints achievable
after adding independent BAO and growth rate information
from a DESI-like spectroscopic survey. As discussed in
Sec. III B 4, even though we observe a non-negligible
improvement in the final uncertainties, the inclusion of
spectroscopic information does not provide enough addi-
tional information to qualitatively change our results.
Finally, by comparing our forecast constraints with the

analysis of [36] with current data, we find that it will be
possible to constrain cB and cM a factor of ∼5 better with
next-generation surveys and, as reported above, cT will be
measured with similar accuracy. It is worth noting that the
specific constraints on cX depend mildly on the fiducial
cosmology used in the forecast. The forecast uncertainties
assuming the best-fit point of [36] are shown in the bottom
row of Table I, and would correspond to a detection of
deviations from Λ GR with a significance above 7σ.

B. Ultralarge scales and relativistic effects

It is also important to understand the dependence
of the forecast constraints on the scales probed by each
experiment. The interest is twofold: firstly, a number
of relativistic effects are known to leave an imprint on

FIG. 1. Cosmological constraints for the combination of CMB S4 with LSST (galaxy clustering and shear) and an intensity mapping
experiment carried out by Phase 1 of the SKA (red ellipses). The green ellipses show the additional constraining power achievable by
combining these observations with measurements of the BAO scale and the growth rate of structure carried out by an independent DESI-
like experiment.

TABLE II. 1σ constraints for the Horndeski parameters for a
combination of CMB-S4, LSST and SKA intensity mapping.
Results are shown for cB, cM and cT , with cK and w fixed or
marginalized over. Results for cK are likewise shown for fixed
and marginalized w.

Parameter Fixed Parameters 68% Uncertainty

cB cK , w 0.128
cB cK 0.161
cB none 0.167
cM cK , w 0.065
cM cK 0.070
cM none 0.072
cT cK , w 0.146
cT cK 0.151
cT none 0.151
cK w 3.11
cK none 3.13
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large-scale-structure observables on scales of the order of
the horizon at the source redshift [7,54,109], and their
purely relativistic nature suggests that they may be relevant
in constraining deviations from GR. Secondly, a large
fraction of the sources of systematic uncertainty that
Stage-IV surveys will be sensitive to, such as the problem
of CMB and radio foregrounds, or star contamination in
galaxy surveys, affect the measurement of density fluctua-
tions on large angular and radial scales. This analysis
therefore helps us quantify the amount of information lost
by the anticipated loss of sensitivity on large scales.
Figure 2 shows the 1σ uncertainties on the Horndeski

parameters as a function of the minimum multipole (i.e.
largest angular scale) included in the analysis. We see that,
while most of the constraining power on cK come from
multipoles l≲ 10, it is the larger statistical power borne
by small-scale perturbations (given the larger number of
available small-scale modes) that drives the constraints on
cB, cM and cT . As shown in the Appendix, this is under-
standable, given that the leading order on subhorizon
scales, i.e. ak=H ≫ 1, of the quasistatic parameters does
not depend on αK .
It is possible to directly quantify the actual constraining

power of the relativistic effects in large-scale structure
[80–82]. In order to do so, we recomputed our forecasts
after canceling the contribution from these effects to the
total fluctuations on number counts; specifically we discard
contributions from the integrated Sachs-Wolfe, the Doppler
correction to the Kaiser effect, the gravitational time delay,

the effect of local gravitational potentials and the lensing
magnification effect. Comparing the resulting uncertainties
with our nominal results we only observe a negligible
improvement in the final constraints of up to ∼1%, even in
the case of cK . Although this result may come as a surprise,
given the direct relation of these effects with GR, it is
actually understandable, given the small relative contribu-
tion of these effects to the overall fluctuations (e.g. see
[109]), which is comparable to the effect of primordial non-
Gaussianity on the large-scale clustering of a biased tracer
with bias b ∼ 2 and fNL ∼ 1.
Unlike other relativistic effects, the impact of lensing

magnification correction on galaxy number counts persists
on small scales. In Horndeski models it leads to distinct
signatures on the cross-correlation between galaxies with
large redshift separations [54]. Nonetheless, other probes of
the gravitational potential such as shear measurements or
CMB lensing probe the lensing potential with much higher
signal-to-noise ratio. Hence, including or removing the
lensing effect does not improve the sensitivity when
clustering measurements are combined with lensing. For
an LSST clustering-only forecast the constraints on the
Horndeski parameters benefit from the inclusion of lensing
magnification, with the 1-sigma bounds on cB, cM, cT
improving respectively by a factor 7, 2 and 3, but still
considerably worse than the full LSST results including
shear measurements.

C. Small scales

Smaller scales have smaller cosmic variance and hence
much larger statistical weight than large scales. However it
is on small scales that nonlinear gravity and baryonic
effects will play a significant role. For example, at z ¼ 0,
nonlinear corrections to the power spectrum are of order
1% at k ∼ 0.01 [110]. There is concerted effort under way
to accurately model nonlinear corrections to sufficient
precision so that one will be able to use small-scale modes
in future analysis (attempts at doing this with current data
can be found in [111] and a variety of approaches can be
found in [112–114]). There have also been attempts at
constructing phenomenological models which would
include baryonic effects, including feedback [90,115].
While there is some hope that, within the context of

standard models (with a cosmological constant and evolv-
ing under GR), it should be possible to harness some
nonlinear modes, the case for models with modified gravity
is less promising. A suite of N-body codes exists for
particular subclasses of theories beyond general relativity,
and there has been an attempt at cross-calibrating them to
better than 1% on a wide range of scales [62]. Yet, the range
of models which have been compared is still relatively
restricted and is not sufficiently general that we have a firm
understanding of the nonlinear regime.
A further complication of these models is the accurate

modeling of nonlinear screening mechanisms. Lacking an

FIG. 2. Constraints on the Horndeski parameter as a function of
the minimum multipole lmin included in the analysis. Except for
cK , most of the information on the Horndeski parameters is
encoded in the smaller scales, due to their higher statistical
weight. Furthermore, we do not find a significant improvement in
the constraints by including relativistic effects in galaxy cluster-
ing, given their relatively small contribution to the galaxy power
spectrum and their redundance after including weak-lensing
observations.

OBSERVATIONAL FUTURE OF COSMOLOGICAL SCALAR- … PHYSICAL REVIEW D 95, 063502 (2017)

063502-11



analytical treatment, we have opted modeled these effects as
an scale dependent modulation of the “α” functions, as
described in Eq. (8), to effectively suppress any deviation
from GR in the nonlinear regime while retaining the
information gain of nonlinear scales on the remaining
cosmological parameters. Note that including nonlinear
scales without accounting for screening could severely
overestimate the constraining power of future surveys.
Note that the inclusion of a finite cutoff kV eliminates the
effects ofmodified gravity on smaller scales, as expected due
to screening mechanisms, but also introduces a feature in the
matter power spectrum that can lead to a stronger measure-
ment of the gravitational parameters. Although the signal-to-
noise ratio is higher, this procedure actually slightly improves
the constraints on the Horndeski parameters. The reason is
that the screening cutoff effectively introduces a feature in the
power spectrum that becomes sharper with stronger mod-
ifications of gravity. Similarly to theBAO feature, this feature
is not degenerate with galaxy bias and its detection is more
robust than the broadband amplitude. The fact that the
constraints improve indicates that the existence of a screen-
ing feature effectively compensates the loss of signal-to-
noise from weakening the modifications on smaller scales.
To explore the dependence of the constraints on the

choice of smallest scale to include in the analysis, we have
recomputed our forecasts for more optimistic and pessi-
mistic values of σthr [see Eq. (14)]. Figure 3 shows the
dependence of the final constraints on this choice. Even
though the final uncertainties on e.g. cB or cT may decrease
by a factor of ∼2 with respect to the constraints found
for our fiducial choice (displayed by a vertical dashed line),
we find that significant information can still be gained

assuming a correct modeling of the matter power spectrum
down to scales k ∼ 0.1h Mpc−1 at z ¼ 0.
We have also quantified the impact of uncertainties on

parametrization of the nonlinear screening and the effect of
baryonic physics on the power spectrum by marginalizing
over the values ofMc, ηb (see [64]) and kV . Figure 4 shows
the 1σ constraints on the Horndeski parameters assuming
perfect knowledge of these parameters (red ellipses) and
marginalizing over them (blue ellipses). The degradation in
the final constraints is kept at a reasonable level due to the
conservative cut on small scales used in this work.

D. The relative importance of the different surveys

One can broadly characterize a cosmological survey in
terms of its ability to measure two main observables: the
angular diameter distance relation and growth of structure.
The former will be sensitive to the background expansion
and therefore, the equation of state w, while the latter will
depend on all parameters. It should also be possible to
constrain the shape of the power spectrum as a function of
redshift and thus pick out scale-dependent effects on the
growth rate [e.g. the braiding scale in Eq. (4) and the k
dependence in the quasistatic parameters, the Appendix].
But this will be, for now, a subdominant effect and, in the
case of a galaxy redshift survey, is very sensitive to
assumptions about bias.
At early times, a measurement of the primary anisotro-

pies in the CMB will serve as an anchor for both distance
measurements as well as for the growth rate: it fixes the
angular diameter distance at z≃ 1000 as well as the overall

FIG. 3. Forecast constraints on cM, cB, cT and ωBD (the latter
given as the upper bound at 95% C.L.) as a function of the
maximum mode included, lmax, set by maximum amplitude of
clustering σthr as described in Sec. III.

FIG. 4. Forecast constraints on cM, cB and cT assuming
perfect knowledge of baryonic physics and screening effects
(red ellipses) and marginalizing over them (blue ellipses) as
parametrized in Sec. II.
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primordial amplitude of fluctuations. Per se it will not
tightly constrain the gravitational parameters but it will play
a crucial role in breaking degeneracies. In addition, S4 will
supply us with a high-significance map of the projected
matter fluctuations (with a radial kernel peaking around
z ∼ 2) via weak lensing. As such it will help to calibrate
measurements of the growth rate at lower redshift as well as
to pin down the neutrino mass.
Complementing early-time constraints from the CMB

are late-time measurements of large-scale structure from
galaxy clustering and weak lensing with LSST as well as
intensity mapping with SKA. Specifically, an intensity
mapping survey such as SKA1-IM will give us a biased
measurement of the matter power spectrum as a function of
redshift and therefore a distance measurement via the
baryon acoustic oscillation features. To a lesser degree
of importance, it will also give us a measurement of the
growth rate via redshift-space distortion, but only if an
independent measurement of the background HI temper-
ature can be made. The LSST survey will have two
complementary data sets. On the one hand it will supply
us with a map of the galaxy distribution and therefore a
measurement of the angular diameter distance as well as a
low-significance measurement of redshift-space distortions
over a range of redshifts. On the other hand it will supply us

with a tomographic set of weak-lensing maps which will
give us an unbiased measurement of the growth of structure
through the matter power spectrum.
In Fig. 5 we can see the important role that the

complementarity between early-time and late-time con-
straints. It is already well established that the CMB and late
time measurements (such as LSST) will combine to supply
powerful constraints on the equation of state, the matter
density and neutrino masses. The degeneracies broken by
this combination thus improve the uncertainties on the
gravitational parameters, as can be seen in the ∼30%
increase in the figure-of-merit shown in the last column
of Table I between rows 2 an 4. There are two reasons for
this. First of all, the CMB will anchor the distance
measurement so that with LSST, it is possible to greatly
reduce the uncertainty on w. This will feed into the
degeneracy between cM, cB and w in the growth rate.
Second, the CMB weak lensing will pin down the matter
power spectrum, complementing the measurements of the
growth rate via the LSST clustering survey and the matter
power spectrum via the LSST weak-lensing survey.
As independent probes of geometry (through the BAO

scale) and growth (through the power spectrum), it is also
useful to look at the individual contributions of galaxy
clustering and cosmic shear to the constraints. In Fig. 6 we

FIG. 5. 1σ cosmological constraints achievable by a Stage-4 CMB experiments (red), LSST (green) and the combination of the two
(blue).
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show how clustering and shear complement each other in
the cB–cM plane. In particular, the ability of the shear
catalogue to give us an unbiased measurement of the matter
power spectrum as a function of time leads to an improved
measurement of the standard cosmological parameters and
the dark energy equation of state, and thus helps break
some of the degeneracies that arise from galaxy clustering
alone. The figure also shows how, unsurprisingly, the
contributions the two clustering probes individually (inten-
sity mapping and LSST clustering) are similar.

E. More complex time dependence

Throughout our analysis we have assumed a simplified
fiducialmodel inwhich the time evolution of theα’s is tightly
correlated with the emergence of an accelerated expansion
phase. Given that our goal is to forecast how our constraints
on the α’s will improve with Stage IVand given that current
constraints are undertaken with such an assumption, we
believe this is a sensible approach. The forecast constraints
we obtain are meaningful and give us an idea of how much
better constraints on Horndeski theory will be.
Nevertheless, we are well aware that, when focusing on

specific models, our fiducial parametrization may not be
ideal. It does correctly capture the time evolution for a large
subclass of Horndeski models but it has been shown that for
some subsets ofmodel space, it is a poor approximation [51].
In fact, as we will see, in the case of the simplest nontrivial
Horndeski model—Jordan-Brans-Dicke theory—the α’s
are approximately constant and, thus, their evolution is

completely decoupled from the onset of accelerated expan-
sion. Moreover, in models based on a covariant Lagrangian,
such as Eq. (1), the background and perturbation evolution
will depend on the same set of parameters, and their
evolution will be related. In contrast, we are effectively
decoupling the background [wðzÞ] from the growth [αXðzÞ],
effectively granting the model more freedom to simulta-
neously fit different observables.
A favoured approach to achieve full generality is to

construct an orthogonal basis which is completely agnostic
about the time evolution of the α’s using, for example,
principal component analysis or some form of eigenbasis
[17,116,117]. This approach is systematic and, in some
sense, complete, and will clearly be useful when actually
analyzing the data. However it is very difficult to interpret
forecasted errors on such parametrizations in a meaningful
way and so, in what follows, we will choose an alternative
parametrization which incorporates some features that
escape our fiducial model. Doing so will allow us to assess
how dependent our forecasts are on our assumptions.
A first, straightforward modification is to incorporate a

constant term that allows us to forecast constraints from
epochs prior to the accelerated expansion era. This allows us
to generalize the idea of early dark energy [118] and to place
bounds on the properties of gravity at early times.Models that
attempt to unify cosmic acceleration in inflation and the late
universe will be severely constrained by the data if they
present with residual departures from GR between those
stages. Thus, we start by reintroducing the constant term in
our parametrization, given by bX in Eq. (18). This term
modifies the dynamics throughout cosmic history (see
[119,120] for the effect of modifications only on the matter
era and [121] for CMBeffects in a reduced parameterization).
For small early-time departures from GR the super-horizon
adiabatic perturbations evolve as in the standard case,
allowing us to set the standard initial conditions [122]. We
shall see, when assessing constraints on Jordan-Brans-Dicke
theories, that indeed these early-time, nontrivial values of α
are present.
Additionally, we have also considered an alternative

parametrization where the transition between the early-time
and late-time terms is characterized by a redshift zH and a
transition width ΔzH:

αX ¼ bX þ ðcX − bXÞ
1 − tanh½ðz − zHÞ=ð2ΔzHÞ�

1þ tanh½zH=ð2ΔzHÞ�
: ð21Þ

By marginalizing over zH and ΔzH, this model thus allows
us to assess the impact of uncertainties on the precise time
evolution of the Horndeski parameters on the final con-
straints on their early-time and late-time values. Here we
will use fiducial values for these parameters zH ¼ 0.5,
ΔzH ¼ 0.5. The corresponding time evolution of the α’s
roughly mimics that of ∝ ΩDE, although the effects of the

FIG. 6. Complementarity between clustering observables (SKA
intensity mapping in orange and LSST clustering in green),
providing measurements of expansion like the BAO scale, and
weak lensing (LSST shear in blue), providing measurements of
the growth of structure. The final constraints improve massively
after combining both observables (red).
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late-time modifications are more prominent for a slightly
larger period of time.
Columns 2 and 4 in Table III show the forecast 1σ

uncertainties from the combination of S4 and LSST for
the early-time parameters for both parametrizations, while
the late-time constraints are shown in columns 3 and 5. We
find that early-time modification are much more tightly
constrained than late-time modifications. This is to be
expected, as early modifications will have an impact on
CMB observables and induce modification to the growth
rate which will then persist over a much longer period of
time. Furthermore, the effects of late and early times are
almost entirely uncorrelated. This can be seen if we
compare the fourth row of Table I with the fourth column
of Table III, where the uncertainty on cX account for
marginalization over bX.
It is also worth noting that, while the achievable

uncertainties on both the early and late-time parameters
are similar in both models, the constraints improve for the
new parametrization (see below for the particular case of
cB). The reason for this is twofold: first, the effect of the
late-time terms is present for a larger period of time in this
model. Second, the time derivative of the α’s may be more
pronounced in this model (depending on the choice of
ΔzH), and since this time derivative enters in the evolution
equations the constraints are tighter.
Finally, Fig. 7 shows the effects of marginalizing over

the time-evolution parameters zH and ΔzH (without any
prior) on the final constraints on the late-time parameters.
While the effect on cM and cT is small, the uncertainty on
cB increases by a factor ∼3. This is likely because the
perturbation equations depend on the time derivative of αB
(as well as αK) and hence changing the width of the
transition is more degenerate with cB than αM, αT , whose
time derivative does not enter the perturbation equations
(cf. Appendix A2 in Ref. [65]). This shows that, when
constraining general classes of models, it will be important
to account for possible uncertainties in the time evolution
of the modifications, although tight constraints can still be
achieved after this marginalization.

F. Constraints on the Jordan-Brans-Dicke theory

We now focus on a very specific class of models: Jordan-
Brans-Dicke theory [32]. One can think of this as a very
restricted set of priors on the α’s in the Horndeski theory. In
fact we can express the α’s in terms of the background scalar
field evolution, ϕðtÞ and the Brans-Dicke parameter,ωBD as

αM ¼ d lnϕ
d ln a

;

αB ¼ −αM;

αK ¼ ωBDα
2
M;

αT ¼¼ 0: ð22Þ

In principle it should be possible to further restrict the
dependence of the α’s on ϕ by using the fact that ϕðtÞ, in
certain situations, will lock onto a tracking solution. In an
Einstein-de Sitter universe we have ϕ ¼ ϕ0a1=ðωBDþ1Þ [123]
where ϕ0 ¼ ð2ωBD þ 4Þ=ð2ωBD þ 3Þ and therefore
αM ¼ 1=ðωBD þ 1Þ. In other words, the Jordan-Brans
Dicke theory corresponds to a point in the space defined
by the α’s.
In the presence of dark energy, characterized by an

equation of state w, there will be very slight deviations from
the attractor due to late-time acceleration of the scalar field
[124], although it may still be possible to construct an
accurate, perturbative solution to the time evolution of ϕ
that only depends on ωBD and w. If that is the case, them the
α will be uniquely determined by ωBD and w. Note that, for
simplicity, we will set w ¼ −1 in this section.
We carry out a Fisher matrix analysis using 1=ωBD as a

parameter which we vary around the fiducial point

TABLE III. 1σ constraints on the Horndeski parameters cX
(late-time) and bX (early-time). Columns 2 and 3 give the errors
for the parametrization proportional to the normalized dark
energy density, Eq. (18). Columns 4 and 5 are for the time
parametrization given by Eq. (21), described in Sec. IV E. In the
latter case, forecasts include marginalization over the time-
dependence parameters zH and ΔzH [see Eq. (21)].

∝ ΩDE ∝ tanh

Term σb (early) σc (late) σb (early) σc (late)

αK 0.29 3.5 0.15 1.6
αB 1.3 × 10−3 0.17 2.3 × 10−3 0.21
αM 3.6 × 10−5 0.072 3.6 × 10−5 0.013
αT 0.12 0.18 2.7 × 10−2 0.070

FIG. 7. 68% constraints for the Horndeski parameters for a
fixed time dependence (green) and marginalized over the time-
dependence parameters zH and ΔzH [see Eq. (21)].
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ωBD ¼ 105 (we verified that the forecasts do not depend on
this choice). Assuming that the uncertainty on 1=ωBD is
Gaussianly distributed, it is straightforward to translate the 1σ
uncertainty on 1=ωBD into a 95% C.L. lower bound for ωBD.
The second column inTable I shows the forecast values of this
lower bound for a variety of combinations of data sets,
and Figure 8 displays the forecast 1D distribution of 1=ωBD
for a similar range of observations. For a start we can see that
the combined, most optimistic constraint is remarkable: we
will be able to place a lower bound,ωBD > 1.7 × 104, which
is comparable to current millisecond pulsar constraints and
just under current constraints from the Solar System.
The fact that different data sets probe very different

regimes plays a crucial role in our findings. Unlike in the
case of our simplified parametrization of the α’s (in terms of
cM, etc), in this case, for a given value of ωBD, the α’s are
nonzero throughout cosmic history. We see then that
combining the CMB S4 data, which primarily constrains
the α’s at z ∼ 1000 with late-time constraints from LSST
galaxy and weak-lensing surveys will improve the con-
straint on ωBD by a factor of 4 or more. It is also interesting
to note that, independently, both SKA-IM and LSST give
us a bound on ωBD of order 104. Given that each of these
data sets will be affected by their own set of systematics,
this will allow us a stringent cross-check on the bounds.
Finally, it is important to check how our ability to model

nonlinear scales will affect our constraint. In Fig. 3 we show
the projected lower bound on ωBD as function of the
maximum wave number (or density threshold). Reducing
what corresponds to kmax at z ¼ 0 from 0.1 Mpc−1 (our
fiducial value) to 0.05 Mpc−1 degrades the constrain onωBD
by more than a factor of 3. If cosmological constraints are to
be competitive with other, more local, constraints, it will be
important to model nonlinearities accurately for Jordan-
Brans-Dicke theory; given its dependence on one (constant)
parameter this should be amuch simpler problem than in the

general Horndeski scenario. Moreover, this theory does not
have a screening mechanism and hence reliably modeling
nonlinear scales significantly improves the constraints, as
can be seen in Fig. 3.

V. DISCUSSION

In this paper we have looked forward at what might be
achievable with future surveys, focusing on constraints on
scalar-tensor theories described by a broad subclass of
Horndeski theories as well as a very specific model: Jordan-
Bran-Dicke theory. Our results have been enlightening and
we can summarize them as follows:

(i) Constraints on the Horndeski parameters will greatly
improve.But, given theweak effectαK has on the data,
we only expect precise constraints on αM, αB and αT .

(ii) We find that, in the best-case scenario, through a
combination of Stage-IV CMB, photometric and
spectroscopic surveys, constraints on αM and αB will
improve (relative to current constraints) by a factor
of 5 to σðcMÞ≃ 0.06 and σðcBÞ≃ 0.12. Further-
more, αT will join the ranks of the well-constrained
parameters, with σðcTÞ≃ 0.15.

(iii) Relativistic effects and, more generally, ultralarge-
scale modes, will have negligible statistical weight
on the constraints on α’s compared to smaller-scale
fluctuations.

(iv) There are correlations between the gravitational
parameters, αB;M;T and the more conventional cos-
mological parameters, w and ωc, which can be
understood in terms of their joint effects on the
growth of structure.

(v) There is no apparent degeneracy between modified
gravity and the sum of neutrino masses.

(vi) The combined Stage-IV surveys will lead to a
lower bound on the Brans-Dicke parameter ωBD >
1.7 × 104, which is comparable with current milli-
second pulsar constraints and of the same order of
current Solar System constraints.

(vii) It will be important to find an accurate method for
modeling nonlinearities, although restricting the
analysis to purely linear modes still leads to mod-
erately tight constraints. Focusing on the Jordan-
Brans-Dicke theory, we find that the degradation in
the lower bound of ωBD can be substantial, even if
we discard a moderate number of nonlinear modes.

(viii) The model for the time evolution of the α’s can have
a substantial impact in the final constraints. While
the fiducial model we use here captures the correct
behavior at low redshift for a large subclass of the
Horndeski theories, the accuracy of the forecasts and
future constraints would be greatly improved with a
parametrization which reflects the correct, theoreti-
cally sound, underlying behavior of the parameters.

There are a few comments we can make, building on our
conclusions. For a start, the fact that ultralarge scales play a

FIG. 8. Marginalized distribution for the inverse of the Brans-
Dicke parameter ωBD for different combinations of experiments.
The constraints are mostly driven by late-time probes.
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negligible role in constraining the gravitational parameters
lends credence to the approach of [120,125]. There, the
authors suggest that, by looking at the values of the
quasistatic parameters, it is possible to efficiently rule
out large swathes of the Horndeski family. In a sense,
by establishing a clear classification of the effects of
Horndeski theories on the effective Newton’s constant
and the gravitational slip, it is possible to make definitive
quantitative statements about the values and ranges of the
α’s which are observationally viable.
It is interesting to compare different combination of

surveys and their ability to constrain the gravitational
parameters. We can define a figure of merit (FoM) from
the Fisher matrix6

FoMS ¼ ½det ðF−1ÞS�−1= dimðSÞ; ð23Þ
where S indicates the subspace of parameters that enter the
figure of merit (all others marginalized), which we have
chosen to be the set of currently constrainable Horndeski
parameters fcB; cM; cTg [36]. We do not include the
expansion rate of the Universe (captured by the commonly
used w − wa FoM) to focus instead on the impact of gravity
on LSS. The values for this figure of merit forecast for the
different experiments discussed in this work are shown in
the last column of Table I. It clearly displays the benefit
of combining different probes to test gravity: the figure of
merit for S4þ LSSTþ SKA1-IM increases by 2 orders of
magnitude relative to single-experiment S4 and SKA1-IM,
and roughly doubles with respect to LSST-only. Further
addition of a DESI-like spectroscopic survey increases this
FoM by about 15%. These values show a very significant
improvement with respect to current constraints. By
restricting ourselves to the cB–cM plane, constrained by
[36], we observe an increase of a factor ∼40 in the figure of
merit between current constraints and those achievable by
the combination of our three main experiments.
We have restricted ourselves to minimally coupled,

strictly Horndeski terms. It is straightforward to enlarge
our parameter space, as has been done in [38] and [128]. In
fact, it is now possible to go beyond scalar-tensor theories
and consider vector-tensor (such Einstein-Aether or
Maxwell-Proca) or tensor-tensor (such as bigravity models)
self-consistently on linear scales [129,130]. Furthermore,
we have not included spectroscopic redshift surveys in a
completely consistent way. As explained above, a com-
pletely consistent yet computational tractable way of
including future redshift surveys is still lacking although,
with inexorable improvement of computational speed and
memory, may be achievable within the next few years.
However, the result that ultralarge scales do not play a

significant role in the constraints means that it should be
possible to construct an approximate, but far more efficient,
forecasting apparatus using three-dimensional power spec-
tra (as opposed to angular cross-power spectra).
Our results are also incomplete with regards to the

treatment of systematic uncertainties. Even though, as
stated in the text, the availability of cross-correlations
between different surveys and probes ensures a robust
self-calibration of sources of systematic uncertainty such as
the effect of intrinsic alignments, a full treatment of shape-
measurement systematics in weak lensing, or a complete
characterization of photo-z uncertainties would allow us to
place forecasts on scalar-tensor theories at the same level as
the work currently done for standard cosmological scenar-
ios. We leave this for future work, but expect these effects
to somewhat weaken our forecasts.
On the other hand, even though we have considered most

of the relevant overlapping Stage-IV surveys, thus exploit-
ing the complementary coverage of the same patch of the
sky by multiple tracers of the matter density field, there are
other cosmological probes that might be used to further
constrain gravity. Notable examples are peculiar velocities
(nearby, via Tully-Fisher measurements or distant, via the
kinetic-Sunyaev-Zeldovich effect), cluster number counts
(using optical, x-ray or Sunyaev-Zeldovich measurements)
and distance measurements from supernovae and strong
lenses. All of these will add further statistical weight to our
forecast constraints and could reduce the uncertainties on
the gravitational parameters.
What is clear is that the future of gravitational physics in

the context of observational cosmology is very promising.
Over the next decade, constraints on cosmological scales
will match in precision those on astrophysical scales. This
will place GR as one of the most thoroughly tested theories
in the physical canon.
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APPENDIX: THE QUASISTATIC LIMIT

Consider the two quasistatic parameters

�
γ ¼ γ0ðtÞ þ γ1ðtÞðHk Þ2
Geff ¼ G0ðtÞ þG1ðtÞðHk Þ2:

6Our definition ensures that the FoM scales as a surface, rather
than the multi-dimensional volume of the parameter space
(cf. [126,127]). This facilitates comparion of FoMs involving
different number of parameters.
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We can relate them to the Horndeski parameters as follows.
At leading order we have

γ0 ≡ β3
β1 þ β2

; ðA1Þ

G0 ≡ 2ðβ1 þ β2Þ
M2�½2β1 þ ð2 − αBÞβ2�

: ðA2Þ

At second order in (H=k) we have

γN1
αM − αT

≡ 3αBβ2

�
1þ H00

aHH0

�
H0

aH2
ðA3Þ

− 3β1

�
β3 − 2ðαM − αTÞ

H0

aH2

�
ðA4Þ

− αK
β3
aH

�
H0

H
þ α0K
αK

�
ðA5Þ

− ð3αB þ αKÞβ3
�
3þ αM þ H0

aH2

�
;

γD1 ≡ ðβ1 þ β2Þ2; ðA6Þ

GN1 ≡ 2αBγN1
αM − αT

− 2ð6 − 6αB − αKÞðβ1 þ β2Þβ3 ðA7Þ

þ 6ðβ1 þ β2Þβ2
�
3
ðρm þ pmÞ
M2�H2

þ ð2 − αBÞ
H0

aH2

�
;

ðA8Þ

GD1 ≡M2�½2β1 þ ð2 − αBÞβ2�2; ðA9Þ

where G1 ≡ GN1=GD1, γ1 ≡ γN1=γD2 and

β1 ≡ −
3ðρm þ pmÞ

H2M2�
þ α0BH − ð2 − αBÞH0

aH2
; ðA10Þ

β2 ≡ αBð1þ αTÞ þ 2ðαM − αTÞ; ðA11Þ

β3 ≡ ð1þ αTÞβ1 þ ð1þ αMÞβ2: ðA12Þ

Here 0 represents the derivative with respect to conformal
time and H ¼ aH.
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