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One of the most intriguing hints of a departure from the standard cosmological model is a large-scale
dipolar power asymmetry in the cosmic microwave background (CMB). If not a statistical fluke, its origins
must lie in the modulation of the position-space fluctuations via a physical mechanism, which requires the
observation of new modes to confirm or refute. We introduce an approach to describe such a modulation in
k space and calculate its effects on the CMB temperature and lensing. We fit the k-space modulation
parameters to Planck 2015 temperature data and show that CMB lensing will not provide us with enough
independent information to confirm or refute such a mechanism. However, our approach elucidates some
poorly understood aspects of the asymmetry, in particular that it is weakly constrained. Also, it will be
particularly useful in predicting the effectiveness of polarization in testing a physical modulation.
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I. INTRODUCTION

The standard cosmological model, known as Λ cold
dark matter (ΛCDM), describes the large-scale and early
Universe remarkably well, with only a handful of parameters
(see, e.g., [1]). Very few hints of departures or tensions with
ΛCDM exist in the present cosmological data. Of these,
considerable attention has been paid to various so-called
“anomalies” in measurements of the cosmic microwave
background (CMB) radiation (see, e.g., [2–4]). In some
cases, the anomalies are known to become statistically
insignificant when correcting for the line-of-sight integrated
Sachs-Wolfe (ISW) contribution (see, e.g., [5–7]). In these
cases, due to the weak correlation between the ISW and
primary anisotropies, the anomalies are unlikely to be due to
some physical mechanism and, hence, are almost certainly
statistical flukes. However, in all cases, the anomalies are
of only weak to moderate statistical significance, which
typically is reduced further when correcting for a posteriori
selection effects (also known as the “look elsewhere
effect”) [2,3].
One intriguing feature of the CMB temperature (T)

anisotropies is a roughly dipolar power asymmetry [8].
Measurements with the Planck mission [3] indicate a
roughly 6% amplitude of asymmetry up to multipole
l≃ 65, with a significance (as measured by a p value)
of roughly 1%. Equivalently, the measured amplitude is
only about 2–2.5 times the expected level of asymmetry
due to cosmic variance in statistically isotropic skies [3].
The significance of the asymmetry becomes lower out to
higher l [3,9–11] and is reduced to of order 10% if we do

not consider the scale l≃ 65 as predicted and correct for
a posteriori effects [2,3].
However, despite its underwhelming statistical signifi-

cance, the dipolar power asymmetry remains interesting
because of its large-scale character. The asymmetry
involves scales that are roughly super-Hubble at last
scattering, and a number of early-Universe or inflationary
mechanisms might conceivably affect these scales prefer-
entially. For example, CDM isocurvature fluctuations
naturally imprint on scales l≲ 100. However, a particular
modulated isocurvature model [12] was recently tested [13]
and found not to be preferred to ΛCDM.
More generally, it appears to be very difficult to construct

a physical mechanism for generating a scale-dependent
dipolar modulation (see [14] for a thorough discussion and
summary of previous attempts). This contrasts with the
relative ease in producing a quadrupolar modulation (see,
e.g., [15–17]). The crucial difference is that a quadrupolar
asymmetry on the sky can be produced via a quadrupolar
statistical anisotropy in k space, associated, e.g., with a
homogeneous vector field. However, despite some claims
to the contrary [18], a k-space anisotropy cannot lead to a
dipolar asymmetry on the sky: the reality of the fluctuations
implies that the k-space power spectrum must have even
parity (see, e.g., [19]). Instead, a dipolar asymmetry must
be the result of statistical inhomogeneity, perhaps due to
modulation with a long-wavelength mode. Note that this
distinction holds more generally for any odd, compared
with any even, type of asymmetry. (Parity violation may
circumvent this argument; see, e.g., [20].)
It is clear that the important question of whether the

observed dipolar asymmetry in the CMB temperature
fluctuations is due to a statistical fluke or to a real,
physical modulation of the primordial fluctuations will
not be resolved through further study of the temperature
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fluctuations. This is simply because the large-scale T data
are already cosmic-variance limited, so there will be no
significant reduction of noise by remeasuring them. What
are needed are observations that can probe independent
fluctuation modes from those which source temperature.
The most obvious such observations are of the CMB
polarization. Although E-mode polarization is partially
correlated with temperature, it is largely sourced by
independent modes. Polarization has long been recognized
as useful for providing independent checks of “anomalies”
found in the T data (see, e.g., [21–24]).
It is worthwhile considering whether observations other

than polarization might also be able to address this
question. The essential difficulty is that the scales at which
the T asymmetry is observed are extremely large. To
illustrate this, we plot in Fig. 1 the Limber approximation
kernels for various cosmological observations in the k-r
plane. (See [25] for details on the calculations involved.)
The vertical line indicates the k scale corresponding
approximately to multipole l ¼ 65 in the primary CMB.
We can see that only the ISW effect and CMB lensing are
currently capable of reaching the required large scales.
(Nevertheless, limits on dipolar asymmetry in the quasar
distribution on much smaller scales were placed in [26].)

However, the ISWeffect is mainly sourced at low redshifts.
Therefore, for a primordial fluctuation modulation linear
in position, the modulation amplitude would be expected to
be very small for the ISW effect (we will see this explicitly
for the case of lensing in Sec. IV). In addition, the ISW
contribution mainly appears at the very smallest multipoles,
so will be heavily affected by cosmic variance.
Therefore, it appears that, after polarization, CMB

lensing offers the best chance at testing the asymmetry.
However, it should be apparent from Fig. 1 that, as with the
ISW effect, lensing is sourced considerably closer to us
than the primary CMB, and, hence, for a spatially linear
modulation, we expect a lower modulation amplitude. In
addition, the k scales modulated in the CMB will appear
at larger angular scales; i.e., we expect the asymmetry to
appear to lower maximum multipole, in lensing. Thus, we
expect fewer modulated modes for lensing than for temper-
ature. For these reasons, we expect the significance of
detection achievable with lensing to be lower than that from
temperature. On the other hand, the modes sourcing lensing
will be essentially completely uncorrelated with the pri-
mary CMB temperature, whereas CMB polarization shares
significant correlation with temperature.
While most previous studies of the CMB large-scale

asymmetry have been restricted to l or map space, if we
observe some amplitude of asymmetry out to some multi-
pole scale in temperature, we do not expect a CMB lensing
modulation of the same amplitude and scales, as just
explained. This same point will also apply to polarization,
due to the different kernels from k space to multipole
space for these observations. Therefore, in order to obtain
predictions for lensing or polarization we must proceed via
a k-space (or position-space) modulation model.
In this paper, we have two main goals. The first is to

present a formalism for fitting a k-space modulation to
CMB T data. This involves first describing a spatially linear
modulation in k space and then deriving its effect on the T
fluctuations. We show that this effect can be calculated
accurately in a very simple way. We then fit the modulation
to Planck T data using Bayesian parameter estimation.
Our next goal is to determine what the k-space model
predicts for CMB lensing. To do this, we must introduce a
formalism for calculating the effect of a k-space modulation
on lensing.
Our approach will also be applicable to predicting the

signal of modulation in CMB polarization based on the T
observations. However, besides providing such predictions,
our rigorous approach to fitting is important in its own right.
While grounding the study of the asymmetry firmly in k
space, we find that temperature data alone are not con-
straining enough to clearly define a k-space modulation.
In particular, the often-quoted 6%modulation out to l≃ 65
does not stand out in the data.
In previous related work, [28] predicted the polarization

asymmetry given a simplified procedure for fitting to the
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FIG. 1. Limber approximation kernels (in arbitrary units) for
various cosmological observations (contours) out to last scatter-
ing (r ¼ rLS). The grey box indicates very roughly the reach of
the planned Euclid survey [27]. Dotted magenta curves corre-
spond to fixed multipole scales, with the red hatched region
geometrically inaccessible. The vertical cyan line corresponds
approximately to the scale l ¼ 65 in the primary CMB (narrow
green box at the top); scales roughly to the left of it exhibit dipolar
asymmetry in the CMB. To test a modulation model, many more
modes are available in principle in our observable volume than in
the primary CMB source region. Adapted from [25].

J. P. ZIBIN and D. CONTRERAS PHYSICAL REVIEW D 95, 063011 (2017)

063011-2



T data, for modulations of various cosmological parame-
ters. Reference [29] considered what the T asymmetry
predicts for polarization asymmetry via modulated primor-
dial spectra, using a similar fitting procedure. Importantly,
they found that the polarization predictions are strongly
dependent on the k-space model. Refs. [30,31] performed
more careful fitting, but restricted their models. None of
these groups considered lensing. Ref. [9] looked for a
power asymmetry in the Planck lensing map, finding no
significant signal in the low-l T asymmetry direction.
Additionally, a recent study [32] claimed that lensing B
modes could confirm a physical modulation at high
significance, due to the mode mixing that takes low-l
lensing modes to high-l B modes. However, this paper
treated the statistics of the lensed B field as Gaussian,
whereas it is known that non-Gaussianity reduces the
total signal-to-noise ratio of the lensing B power spectrum
by a large factor (see, e.g., [33]). Also, [32] did not consider
a physical lensing modulation mechanism and simply
took the expected lensing modulation amplitude to be
7% to l ¼ 70.
In this paper, we approach this topic in a much more

rigorous way. In the first few sections, we lay out our
modulation formalism. Section II describes our treatment of
the k-space modulation, while Secs. III and IV derive the
effects of the k-space modulation on CMB temperature
anisotropies and the lensing potential, respectively. The
following sections present our approach to fitting the
k-space modulation to the CMB temperature data
(Sec. V) and describe the predicted effect of the modulation
on the CMB lensing (Sec. VI).
Throughout this paper, we use the set of ΛCDM cosmo-

logical parameters chosen for the Planck Collaboration Full
Focal Plane (FFP8) simulations; namely, we set Hubble
parameter H0 ¼ 100h km s−1Mpc−1, with h ¼ 0.6712,
baryon density Ωbh2 ¼ 0.0222, CDM density Ωch2 ¼
0.1203, neutrino density Ωνh2 ¼ 0.00064, cosmological
constant density parameterΩΛ ¼ 0.6823, primordial comov-
ing curvature perturbation power spectrum amplitude
As ¼ 2.09 × 10−9 at pivot scale k0 ¼ 0.05 Mpc−1 and tilt
ns ¼ 0.96, and optical depth to reionization τ ¼ 0.065.
However, we expect our results to be only very weakly
dependent on these parameters.

II. PRIMORDIAL ADIABATIC
k-SPACE MODULATION

Our basic premise is to ask: If the large-scale CMB
temperature dipolar asymmetry is due to a real, physical
modulation of the primordial fluctuations, then what would
this predict for CMB lensing (or polarization)? As dis-
cussed in the Introduction, a T asymmetry of, say, 6% to
l≃ 65 will not correspond to a lensing (or polarization)
modulation of the same amplitude and angular scales.
To proceed, we must specify a form for a primordial
modulation in position or k space. This could take the form

of a modulation of the large-scale adiabatic fluctuations, or
alternatively a CDM isocurvature or tensor modulation.
The latter two are motivated by the fact that they naturally
give a contribution only on large scales. Tensor modes,
however, are expected to produce only tiny gradient-type
lensing [34]. CDM isocurvature modes produce consid-
erably less lensing than adiabatic modes, for comparable
large-scale CMB T contributions. Therefore, we will
restrict our analysis here to the modulation of adiabatic
modes. However, when considering the predictions for
polarization, it will be important to consider these other
fluctuation types as well [29].
It is clear that there is no significant scale-independent

dipolar asymmetry in the CMB temperature fluctuations
(see, e.g., [3]). Studies indicate an asymmetry amplitude of
roughly 6% out to multipoles l≃ 65, with decreasing
amplitude to larger l [3]. This apparent scale dependence
motivates us to treat the primordial adiabatic fluctuations as
the sum of a large-scale dipole-modulated part and a small-
scale statistically isotropic part. The scale dependence of
the large-scale part will be free, although the total sta-
tistically isotropic power will agree with ΛCDM. In the
following, we will indicate modulated fields by a tilde,
while statistically isotropic fields will have no tilde.
Therefore, we write the total primordial (and, hence,
time-independent) comoving curvature perturbation,
~RðxÞ, as

~RðxÞ ¼ ~RloðxÞ þRhiðxÞ; ð1Þ

where the high-k part is statistically isotropic,

hRhiðkÞRhi�ðk0Þi ¼ 2π2

k3
Phi

RðkÞδ3ðk − k0Þ: ð2Þ

On the other hand, the low-k part is taken to be linearly
modulated:

~RloðxÞ ¼ RloðxÞ
�
1þ AR

r
rLS

cos θ

�
ð3Þ

¼ RloðxÞ
�
1þ AR

z
rLS

�
; ð4Þ

where rLS is the comoving radius to last scattering, AR is a
constant, the “modulation amplitude,” and θ is the angle
from the modulation direction, which we here define to
coincide with the ẑ direction. Rlo satisfies

hRloðkÞRlo�ðk0Þi ¼ 2π2

k3
Plo

RðkÞδ3ðk − k0Þ: ð5Þ

Finally, we take Rlo and Rhi to be uncorrelated,

hRloðkÞRhi�ðk0Þi ¼ 0; ð6Þ

TESTING PHYSICAL MODELS FOR DIPOLAR … PHYSICAL REVIEW D 95, 063011 (2017)

063011-3



so that the total statistically isotropic fluctuations, RðkÞ≡
RloðkÞ þRhiðkÞ, must have the usual ΛCDM power
spectrum,

hRðkÞR�ðk0Þi ¼ 2π2

k3
PΛCDM

R ðkÞδ3ðk − k0Þ; ð7Þ

where

PΛCDM
R ðkÞ ¼ Plo

RðkÞ þ Phi
RðkÞ: ð8Þ

In other words, the full-sky “average” (or “equatorial”)
power spectrum will agree with that of ΛCDM (at least to
lowest order in AR). As we explain below, treating the
fields as two uncorrelated components does not restrict the
generality of our approach.
Also, note that we have in mind thatRhi contributes only

negligibly to the largest scales, so that we expect AR ≃
0.06 when Plo

RðkÞ extends only to scales corresponding to
l≃ 65, according to the observed T asymmetry. In this
study, we will take the low-kmodulated component to have
the spectrum

Plo
RðkÞ ¼

1

2
As

�
k
k0

�
ns−1

�
1 − tanh

�
ln k − ln kc

Δ ln k

��
: ð9Þ

This spectrum approaches the standard ΛCDM spectrum
for small k and approaches zero for large k, with cutoff
scale kc and width of cutoff Δ ln k. Recall that the total
(isotropic) power spectrum is still constrained to have the
standard power-law form via Eq. (8). This particular tanh
scale dependence is not intended to model any particular
mechanism for the modulation of fluctuations. But it can
capture some interesting cases. For large kc, the modulation
becomes scale-invariant, and by decreasing kc, we can
represent a modulation only on large scales, e.g., scales that
are super-Hubble at last scattering, which may be related to
some early-Universe process. For kc ≃ 5 × 10−3 Mpc−1

and Δ ln k → 0, in particular, we produce a modulation on
the commonly quoted angular scales of l≲ 65 (keeping in
mind that the k–l kernels imply that there is no one-to-one
correspondence between k and l values).
The form of the modulation in Eq. (4), i.e., that of a

spatially linearly modulated primordial field, is an impor-
tant assumption here. We regard it as the simplest form that
would lead to a dipolar asymmetry. A linear modulation
can be considered the lowest-order term in an expansion,
for general modulations varying slowly on our Hubble
scale. Other choices add complexity and require more
parameters to specify, e.g., generalizing the linear form to
quadratic or higher order spatial dependence, or taking the
fluctuation spectrum to jump like a step function across a
“wall.” These more complicated scenarios could be tested
since they would predict asymmetry beyond dipolar,
but considering the low signal-to-noise ratio of the T

asymmetry, we restrict this study to the simplest possibility.
Crucially, the linear modulation means that CMB lensing,
which is mainly sourced at low redshifts, is expected to be
modulated with considerably lower amplitude than the
observed T amplitude of roughly 6%. This conclusion will
clearly be strongly dependent on the assumed form of the
k-space modulation. Also, note that we take the linear
modulation to act on the primordial field, R. This is what
would be expected in most proposed models where the
modulation originates in some very early physics, e.g.,
during inflation. Also, it leads to the linear dependence on
comoving distance in Eq. (4). Conversely, it seems very
unlikely that a late-time field (e.g., the zero-shear gauge
fluctuation ψσ; see below) would be directly modulated.
Such a scenario could involve an anisotropic dark energy,
which would be subject to strong constraints at the back-
ground level. Nevertheless, we will show that, insofar as
CMB T and lensing are concerned, to a good approxima-
tion we can equally consider either the early- or late-time
fields to be linearly modulated.
In k space, the modulation of Eq. (4) becomes

~RloðkÞ ¼ RloðkÞ þ i
AR

rLS

∂
∂kzR

loðkÞ: ð10Þ

This implies that the total ~RðkÞ covariance (to first order
in AR) is given by

h ~RðkÞ ~R�ðk0Þi ¼ 2π2

k3
PΛCDM

R ðkÞδ3ðk − k0Þ

þ 2π2i
AR

rLS

�
Plo

RðkÞ
k3

þ Plo
Rðk0Þ
k03

�
× δ2ðk⊥ − k0⊥Þδ0ðkz − k0zÞ; ð11Þ

where k⊥ is the projection of k orthogonal to ẑ and the
prime on the Dirac delta denotes a derivative with respect to
the argument. Note importantly that, for a Gaussian field ~R,
Eq. (11) is a complete statistical description. This means
that the details of our implementation, i.e. in terms of the
components Rlo and Rhi, are irrelevant: in the end we
obtain a covariance corresponding to a standard isotropic
part [the diagonal part of Eq. (11)], plus a dipole-modulated
part with arbitrary scale dependence, as determined by
Plo

RðkÞ (the off-diagonal, imaginary part of Eq. (11)). In
particular, our approach does not restrict us to some early-
Universe mechanism which produces two uncorrelated
components, Rlo and Rhi. The separation into those two
components is purely a convenient calculational device
which will make the analytical work considerably simpler,
as we will see next. We remain agnostic as to the physical
modulation mechanism. Note that Eq. (11) describes
statistically inhomogeneous fluctuations, whereas the effect
in l or map space will be statistical anisotropy.
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III. EFFECT ON CMB TEMPERATURE
ANISOTROPIES

A. Multipole covariance

In general, the effect of the modulation, Eq. (4), on the
CMB anisotropies would be very difficult to calculate
(see [31] for such a general approach). However, we will
show that, to a very good approximation, the effect will be
simply to introduce an l to l� 1 coupling with spectrum
determined by Plo

RðkÞ, as one might intuitively expect for
scales much smaller than the length scale of variation of the
modulation.
We begin by demonstrating this on the largest scales, for

which we can analytically write down the T anisotropies.
Since the observed modulation is on large scales, this is a
relevant regime. The large-scale approximation used here
will begin to break down on scales l ∼ 50, although in this
case a simple argument will allow us to write down the
multipole covariance immediately. Nevertheless, we will
provide a detailed examination of the small-scale case in
the Appendix.
On the largest scales, it is a good approximation to treat

the plasma as tightly coupled prior to an instantaneous
recombination. In this approximation, the T anisotropies
are determined entirely by the zero-shear (longitudinal)
gauge metric perturbation, ψσ , which is related to the
primordial comoving curvature perturbation, R, via

ψσðkÞ ¼ −
3

5
TðkÞRðkÞ; ð12Þ

where TðkÞ is the transfer function that captures the effect
of radiation domination (see, e.g., [35]). Since here we
are considering only the largest scales, we will ignore the
component Rhi in this subsection and drop the superscript
“lo” for brevity.
Note that, in general, a linear modulation of R will not

imply a linear modulation of ψσ; i.e., the operations of
linear modulation and filtering via TðkÞ will not commute.
An easy way to see this is to consider the extreme case
of a very narrow filtering around some scale k̄, TðkÞ≃
δðk − k̄Þ. Then applying TðkÞ to the linearly modulated R
will simply give a nearly-monospatial-frequency ψσ, which
will not be spatially modulated, as opposed to the case
of modulating the field filtered with TðkÞ. Therefore, in
general, a linear primordial modulation does not lead to a
corresponding linear modulation of ψσ , which is the field
that determines the T anisotropies. In practice, this will
mean that the calculation of the T anisotropies will be
very difficult. On the other hand, for constant TðkÞ, the
operations of modulation and filtering clearly commute.
So as long as TðkÞ is sufficiently slowly varying, we will be
able to assume commutativity to good approximation.
To determine the quantitative effect of the noncommu-

tativity, Eq. (10) implies

TðkÞ ~RðkÞ ¼
�
TðkÞ − i

AR

rLS

kz
k
T 0ðkÞ

�
RðkÞ

þ i
AR

rLS

∂
∂kz ½TðkÞRðkÞ�: ð13Þ

Comparing with Eq. (12), this tells us that if����i 1

rLS

kz
k
T 0ðkÞ

���� ≪ TðkÞ; ð14Þ

i.e., if ���� 1

TðkÞ
dTðkÞ
dkrLS

���� ≪ 1; ð15Þ

then the operations of modulation and filtering will
essentially commute, so that we can write the total ψσ

fluctuations to a good approximation as linearly modulated
according to

~ψσðxÞ ¼ ψσðxÞ
�
1þ AR

r
rLS

cos θ

�
: ð16Þ

For ΛCDM, we find numerically that T−1ðkÞdTðkÞ=
dðkrLSÞ≲ 3 × 10−3 on all scales, so that indeed it will
be a very good approximation to use Eq. (16), which will
simplify the calculations tremendously.
Equation (16) makes it very easy to determine the

effect of the modulation on large-scale anisotropies.
Those anisotropies take the form

fδTðn̂Þ
T

¼ ~SðtLS; rLSn̂Þ; ð17Þ

for direction n̂ and where tLS is the time of last scattering,
and the source function ~SðtLS; rLSn̂Þ is determined fully by
~ψσ and its first and second derivatives (see, e.g., [35]).
We have just shown that the linear modulation of R
corresponds to very good approximation to the linear
modulation of the ψσ part of SðtLS; rLSn̂Þ. Next, we will
examine each derivative term. The first spatial derivative
takes the form of a radial derivative:

1

aLSHLS

∂
∂r ~ψσðxÞ ¼

1

aLSHLS

∂ψσðxÞ
∂r

�
1þ AR

r
rLS

cos θ

�
þ ψσðxÞAR

1

aLSHLSrLS
cos θ: ð18Þ

The second term on the right-hand side of this expression
shows, interestingly, that the derivative of the modulation
gives a term degenerate with the modulation of ψσ itself.
However, for ΛCDM, we have aLSHLSrLS ¼ 66.4, so that
this degenerate term can be ignored (for sources near rLS)
and the first derivative of the linearly modulated field ~ψσ
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can be well approximated by the linear modulation of the
derivative of ψσ.
The second spatial derivative takes the form of a

Laplacian. In this case, it is trivial that the Laplacian
commutes with the modulation in Eq. (16), due to the
assumed linear nature of the modulation. The same is true
for the time derivatives, since the modulation is taken to
be time independent, as discussed in Sec. II. Therefore,
the temperature anisotropies, Eq. (17), become, to a good
approximation,

fδTðn̂Þ
T

¼ SðtLS; rLSn̂Þð1þ AR cos θÞ ð19Þ

¼ δTðn̂Þ
T

ð1þ AR cos θÞ: ð20Þ

In words, the modulated anisotropies are simply given by
the anisotropies calculated from the statistically isotropic
(“equatorial”) fields, i.e., SðtLS; rLSn̂Þ, modulated.
This leads directly to the simple temperature multipole

covariance of the form studied in [36], i.e. an l to l� 1
coupling. Expanding Eq. (20) into spherical harmonic
multipoles, we find

~alm ¼ alm þ AR

X
l0m0

al0m0ξ0lml0m0 : ð21Þ

Here, ξ0lml0m0 is the polar component of the coupling
coefficients ξMlml0m0 defined by

ξMlml0m0 ≡
ffiffiffiffiffiffi
4π

3

r Z
Y�
lmðn̂ÞYl0m0 ðn̂ÞY1Mðn̂ÞdΩn̂: ð22Þ

Explicitly,

ξ0lml0m0 ¼ δm0mðδl0l−1Al−1m þ δl0lþ1AlmÞ; ð23Þ

ξ�1
lml0m0 ¼ δm0m∓1ðδl0l−1Bl−1�m−1 − δl0lþ1Bl∓mÞ; ð24Þ

where

Alm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 −m2

ð2lþ 1Þð2lþ 3Þ

s
; ð25Þ

Blm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðlþmþ 2Þ

2ð2lþ 1Þð2lþ 3Þ

s
: ð26Þ

Equation (21) gives a multipole covariance

h ~alm ~a�l0m0 i ¼ Clδl0lδm0m þ ARðCl þ Cl0 Þξ0lml0m0 ; ð27Þ

to linear order in AR, where Cl is the power spectrum
calculated from Plo

RðkÞ. This covariance is a complete

statistical description of the modulated temperature anisot-
ropies on large scales.
When the scale of the fluctuations sourcing the

anisotropies is much smaller than the length scale of
variation of the modulation, i.e., rLS, then we would
expect the effect of the spatial variation of the modulation
to be small (see, e.g., [37]). In other words, we expect the
T anisotropies sourced by Plo

RðkÞ to be modulated to a
good approximation according to Eq. (20). Nevertheless,
it will be worthwhile to be more quantitative about this
expectation, so we examine small scales in detail in the
Appendix.
The simple behavior for small scales (and the detailed

calculations in the Appendix) indicate that to very
good approximation the modulated temperature fluctua-
tions on all scales are given by the generalization of
Eq. (20):

fδTðn̂Þ
T

≃ δT loðn̂Þ
T

ð1þ AR cos θÞ þ δThiðn̂Þ
T

: ð28Þ

Eq. (6) then implies the final result for the multipole
covariance:

h ~alm ~a�l0m0 i ¼ CΛCDM
l δl0lδm0m þ ARðClo

l þ Clo
l0 Þξ0lml0m0

ð29Þ

to first order in AR, where CΛCDM
l is the power spectrum

calculated from PΛCDM
R ðkÞ and Clo

l is the spectrum
calculated in the same way but using Plo

RðkÞ.
Notice that the statistical anisotropy in Eq. (29) can be

easily calculated using software such as CAMB [38] with
the primordial spectrum Plo

RðkÞ. This compares with the
approach of [31] who do not make the approximations we
have made and, hence, must calculate some new integrals
involving derivatives of internal CAMB variables, which is
considerably more work. Importantly, note that the form
of Eq. (29) is completely general, in that we have the
necessary standard ΛCDM form for the statistically iso-
tropic component, and we have a dipole-modulated part
with a scale dependence that is as free as possible, given
that it must originate from a k-space function (in this case
Plo

RðkÞ). This shows again that our approach of splitting the
primordial fluctuations into uncorrelated low- and high-k
parts, while facilitating the calculations, is not restrictive in
any way.
We have ignored the ISW effect in this calculation. With

the linear modulation model, the modulation amplitude at
the redshifts at which the ISWeffect is sourced is predicted
to be considerably smaller (by a factor rISW=rLS ∼ 1=5)
than the roughly 6% for the primary CMB. Considering
also that the ISW signal affects mainly the very largest
scales, and that smaller scales are generated at closer
distances (recall Fig. 1), it should be a very good
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approximation to ignore the ISW effect entirely for the
asymmetry. That is, the spectrum Clo

l can be calcu-
lated without the ISW component. Note also that the
effect of the modulated lensing field on the modulated
CMB can also be ignored because it is a second-order effect
in AR.

B. Connection to general asymmetry form

Using the notation of Ref. [36], the general form for the
multipole moment covariance given a polar (m ¼ 0)
modulation can be written

h ~alm ~a�l0m0 i ¼ Clδl0lδm0m þ 1

2
δCll0ΔX0ξ

0
lml0m0 : ð30Þ

The origin of this notation lies in the assumption that the
anisotropy power spectrum depends linearly on some
parameter, X, in which case the modulation spectrum,
δCll0 , satisfies

δCll0 ¼
dCl

dX
þ dCl0

dX
: ð31Þ

This means that we can formally write down the increment
in power between the modulation equator and the poles as

ΔCl ¼ 1

2
δCllΔX0; ð32Þ

where ΔX0 is the change in the parameter X from
modulation equator to pole. We will refer to δCll0

as the statistically anisotropic or modulation power
spectrum.
Comparing Eq. (30) to our final result, Eq. (29), we can

identify

ΔX0 ¼ AR ð33Þ

and

δCll0 ¼ 2ðClo
l þ Clo

l0 Þ: ð34Þ

Equation (32) then allows us to write an effective
increment in power between the modulation equator and
the poles as

ΔCl ¼ 2ARClo
l : ð35Þ

This is exactly what we would expect, since a fractional
modulation of the fluctuation amplitude by AR should
result in a modulation of power by 2AR. This also justifies
the approach for calculating the modulated l-space spectra
of Ref. [29].
Note that if there is a significant contribution of Phi

RðkÞ
to the lowest l’s, then according to Eq. (35) the actual

predicted asymmetry, ΔCl=ðClo
l þ Chi

l Þ, will be smaller
than 2AR. This is why we said we had in mind that
Phi

RðkÞ would have a negligible contribution to the largest
scales: when this is the case our parameter 2AR will
agree well with the actual large-scale asymmetry,
ΔCl=ðClo

l þ Chi
l Þ.

IV. EFFECT ON LENSING POTENTIAL

In this section we calculate the effect of a linear
modulation of the primordial fluctuations, R, on the
lensing potential. The (modulated) lensing potential is
determined by a line of sight integral,

~ψ lensðn̂Þ ¼ −2
Z

rLS

0

dr
rLS − r
rLSr

~ψσðtðrÞ; rn̂Þ ð36Þ

(see, e.g., [39]). Inserting Eq. (16), which we have shown to
be an extremely good approximation for the form of the
modulated zero-shear gauge fluctuations, and using Eq. (12),
an expansion in spherical harmonics and Bessel functions
gives

~ψ lensðn̂Þ ¼ 6

5

ffiffiffi
2

π

r Z
rLS

0

dr
rLS − r
rLSr

gðtðrÞÞ
Z

∞

0

dkkTðkÞ

×
X
lm

�
Rlo

lmðkÞ
�
1þ AR

r
rLS

cos θ

�
þRhi

lmðkÞ
�
jlðkrÞYlmðn̂Þ; ð37Þ

where gðtÞ is the growth suppression factor due to late-time
dark energy and

RlmðkÞ≡ ilk
Z

dΩkRðkÞY�
lmðk̂Þ: ð38Þ

Therefore, the lensing potential multipole moments are

ψ lens
lm ¼ 6

5

ffiffiffi
2

π

r Z
rLS

0

dr
rLS − r
rLSr

gðtðrÞÞ

×
Z

∞

0

dkkTðkÞRlmðkÞjlðkrÞ

þ 6

5

ffiffiffi
2

π

r
AR

Z
rLS

0

dr
rLS − r
rLSr

gðtðrÞÞ r
rLS

×
Z

∞

0

dkkTðkÞ
X
l0m0

Rlo
l0m0 ðkÞjl0 ðkrÞξ0lml0m0 : ð39Þ

Note the anisotropic part of Eq. (39), which contains the
r=rLS weighting factor. Finally, we can write the lensing
multipole covariance to OðARÞ,
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hψ lens
lm ψ lens�

l0m0 i ¼ 144π

25

Z
∞

0

dk
k
T2ðkÞPΛCDM

R ðkÞ
�Z

rLS

0

dr
rLS − r
rLSr

gðtðrÞÞjlðkrÞ
�
2

δl0lδm0m

þ
�
144π

25
AR

Z
∞

0

dk
k
T2ðkÞPlo

RðkÞ
Z

rLS

0

dr
rLS − r
rLSr

gðtðrÞÞjlðkrÞ
Z

rLS

0

dr0
rLS − r0

r2LS
gðtðr0ÞÞjlðkr0Þ

þ ðl ↔ l0Þ
�
ξ0lml0m0 : ð40Þ

Using the general definition for the multipole moment
covariance given a polar (m ¼ 0) modulation, Eq. (30), we
can identify the statistically isotropic part to be

Cl ¼ Clens
l ¼ 144π

25

Z
∞

0

dk
k
T2ðkÞPΛCDM

R ðkÞ

×

�Z
rLS

0

dr
rLS − r
rLSr

gðtðrÞÞjlðkrÞ
�
2

; ð41Þ

while the statistically anisotropic part is

δClens
ll0 ¼

288π

25

Z
∞

0

dk
k
T2ðkÞPlo

RðkÞ

×
Z

rLS

0

dr
rLS − r
rLSr

gðtðrÞÞjlðkrÞ

×
Z

rLS

0

dr0
rLS − r0

r2LS
gðtðr0ÞÞjlðkr0Þ

þ ðl ↔ l0Þ; ð42Þ

with ΔX0 again given by Eq. (33). The isotropic part, Clens
l ,

agrees with the standard result [39], while the anisotropic
part, δClens

ll0 , is new. It can be easily calculated numerically
for ΛCDM transfer function TðkÞ and growth function,
gðtÞ, given a modulation spectrum Plo

RðkÞ. Note that unlike
the case of the primary CMB anisotropies, for lensing the
anisotropic part is not simply the usual lensing spectrum
calculated with Plo

RðkÞ. The fact that lensing is sourced all
along the line of sight means that, instead, the last integral
in Eq. (42) is weighted by a factor of r=rLS, which reflects
the linear nature of the assumed modulation. As antici-
pated, this reduces the amplitude of the lensing asymmetry
relative to that of the primary CMB. The shift to larger
angular scales expected for the more closely sourced
lensing potential is also encoded in Eq. (42).
We stress that this lensing calculation is considerably

simpler than that for the temperature fluctuations, due to the
simpler relevant transfer function and simpler dependence
of the lensing potential on the primordial fluctuations.
Indeed, the only approximation made here is that of
Eq. (16), which we have shown to be extremely accurate.
To complete our description of lensing modulation, we

can again formally write down the increment in power
between the modulation equator and the poles as

ΔClens
l ¼ 1

2
ARδClens

ll : ð43Þ

V. FITTING THE k-SPACE MODULATION
TO TEMPERATURE DATA

A. Formalism

Next we describe how we fit the k-space modulation
spectrum Plo

RðkÞ, which we have assumed to take the tanh
form of Eq. (9), to CMB temperature data. The spectrum
depends on two free parameters: kc determines which
scales are modulated, and Δ ln k determines the sharpness
of the transition from modulated to statistically isotropic
scales. We denote these parameters by pi ¼ fkc;Δ ln kg,
for brevity. We begin with the likelihood function for
the CMB temperature multipoles given the modulation
parameters,

LðdjΔXM; piÞ ∝
1ffiffiffiffiffiffijCjp exp

�
−
1

2
d†C−1d

�
: ð44Þ

Here, d is the vector of multipole moments and the
dependence on the model parameters ðΔXM; piÞ is con-
tained in the multipole covariance matrix C. Previously we
had taken the modulation direction to coincide with the ẑ
direction, but now we must keep the direction free and fit
for it. Hence, the covariance matrix, Eq. (30), becomes [3]

Clml0m0 ≡ h ~alm ~a�l0m0 i ð45Þ

¼ Clδl0lδm0m þ 1

2
δCll0

X
M

ΔXMξ
M
lml0m0 : ð46Þ

The three model parameters ΔXM determine the amplitude
and direction of the modulation (see Eqs. (50)–(52) below),
while the two modulation parameters pi determine the
scale dependence of the modulation via Eq. (34), and so we
have in total five parameters which describe the statistical
anisotropy (we hold the main cosmological parameters
fixed).
For fixed pi, we can find the ΔXM which maximize the

likelihood from Eq. (44) to first order in AR. Specifically,
for dipole modulation, we use the estimator from [3], which
generalizes that of [36] (see Ref. [37] for related optimal
estimators):
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Δ ~X0 ¼
6

f10

P
lmδCllþ1AlmSlmlþ1mP
lδC

2
llþ1ðlþ 1ÞFlFlþ1

; ð47Þ

Δ ~X1 ¼
6

f11

P
lmδCllþ1BlmSlmlþ1mþ1P
lδC

2
llþ1ðlþ 1ÞFlFlþ1

; ð48Þ

and Δ ~X−1 ¼ −Δ ~X�
1. Here,

Slml0m0 ≡ T�
lmTl0m0 − hT�

lmTl0m0 i; ð49Þ

where the Tlm areC-inverse filtered temperature multipoles
and Fl is the mean power spectrum of the Tlm. The
expectation value in Eq. (49) is an average over a set of
realistic simulations, which provides a mean-field correc-
tion (described in great detail in [3,40,41]). The f1M factor
corrects for normalization errors introduced by masking (its
explicit form can be seen in [3]). The C-inverse filter is
identical to that used in [3,40,41], and optimally accounts
for masking effects. In practice, we bin the estimator,
Eqs. (47) and (48), into bins of widthΔl ¼ 1, which means
that the corrections to the data described above only need to
be calculated once. This gives exactly the same result as if
the estimators were computed for each set of pi from
scratch; however, it allows us to dramatically speed up the
exploration of the parameter space (this technique was also
employed in [13] for the same reasons). In the following
subsection, we describe the data and corresponding sim-
ulations used for obtaining these estimators. Given these
estimates of the ΔXM, we can write the best-fit amplitude
and direction as

~AR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ ~X2

0 þ 2jΔ ~X1j2
q

; ð50Þ

~θ ¼ cos−1
�
Δ ~X0

~AR

�
; ð51Þ

~ϕ ¼ −tan−1
�
ImðΔ ~X1Þ
ReðΔ ~X1Þ

�
: ð52Þ

The central limit theorem suggests that the ΔXM will be
Gaussian distributed (this has been verified explicitly with
the use of simulations), and specifically for statistically
isotropic skies they will have mean zero. Their variances
can be calculated exactly from Eqs. (47) and (48) to be

σ2XðpiÞ≡ hjΔX2
Mji ¼

12P
lðlþ 1ÞδC2

llþ1C
−1
l C−1

lþ1

: ð53Þ

The posterior for the ΔXM parameters for a fixed pi ¼ p̄i is
then given by

PðΔXM; p̄ijdÞ ¼
1

ð2πÞ3=2σ3X
exp

�
−
P

MjΔXM − Δ ~XMj2
2σ2X

�
:

ð54Þ

Using these relations, we can evaluate the log-likelihood
function at the maximum-likelihood values Δ ~XM to be

lnLðdjΔ ~XM; piÞ ¼
X
M

jΔ ~XMj2
2σ2X

; ð55Þ

to first order in AR and ignoring terms independent of the
statistical anisotropy. This tells us that the expectation of
the log-likelihood in statistically isotropic skies is inde-
pendent of pi. It also says that the expected increase of the
log-likelihood coming from the introduction of the ΔXM
parameters is 3, as expected. Note also that this relation
means that the likelihood will be very simple to evaluate
numerically.
Bayes’ theorem allows us to write the posterior for the

model parameters as

PðΔXM; pijdÞ ¼ LðdjΔXM; piÞPðΔXM; piÞ; ð56Þ

with prior PðΔXM; piÞ on the model parameters, up to an
overall normalization. We can calculate the posterior
marginalized over the ΔXM’s, with the result

PðpijdÞ ∝ σ3XLðdjΔ ~XM; piÞPðpiÞ: ð57Þ

Equation (55) then tells us that a natural choice for the prior
on the pi is

PðpiÞ ∝ σ−3X ; ð58Þ

which yields an expectation of a flat posterior PðpijdÞ in
statistically isotropic skies. Hence, this is the prior we
choose. We also choose a flat prior in the ΔXM’s, as is
usually done.
Once the best-fit modulation spectrum parameters

ðkc;Δ ln kÞ are found, it will be a simple matter to evaluate
the lensing asymmetry using the method laid out in Sec. IV,
and, in the future, the polarization asymmetry as well.

B. Results

The results presented here are based on the component-
separated temperature maps provided by the Planck
Collaboration [42]. Namely, we use the Commander,
NILC, SEVEM, and SMICA 2015 temperature maps
[43] at a HEALPix [44] resolution of Nside ¼ 2048 (for
brevity we only quote the results for SMICA; however, we
have checked that the other maps do not give substantially
different results). We also use the UT78 mask provided
by the Planck Collaboration, referred to as the common
mask. We use a set of 1000 FFP8 simulations [45,46],
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corresponding to each component separation method, in
order to make mean-field and normalization corrections to
the data, as was done in [3].
Using the relations of Eqs. (50)–(52), we can perform

a one-to-one linear transformation from the ΔXM to
Cartesian modulation components, fΔX;ΔY;ΔZg. The
fΔX;ΔY;ΔZg are simply the components of the dipole
modulation vector in Cartesian Galactic coordinates. In
what follows, we will present results in this coordinate
system for convenience. We scan the model space over the
following parameter ranges: lnðkc½Mpc−1�Þ ∈ ½−7.2;−3.2�,
Δ ln k ∈ ½0.01; 0.5�, and jΔXj, jΔYj, jΔZj ≤ 1. The lower
limit on kc is placed to ensure that we only look for
modulation on scales that are observable, while the lower
limit onΔ ln k corresponds essentially to an abrupt cutoff in
k space. The upper limits on kc and Δ ln k are somewhat

arbitrary: in multipole space they correspond approxi-
mately to limiting the modulation to l < 1000. We are
primarily interested in large-scale modulations, and pre-
vious l-space results [3,9–11] indicated no evidence for
modulation on scales smaller than this limit. For AR > 1
the fluctuations in Eq. (4) will go to zero somewhere within
our last scattering surface, and the details of the modulation
in this case will depend on the specific modulation mecha-
nism. For the tanhmodel,wedonot approach this regime: the
limits on the modulation amplitude components turn out to
be generous. We explore the parameter space using a simple
grid approach,which is adequate since the parameter space is
effectively only two dimensional via Eq. (54).
Results are summarized as the posterior of the full

parameter set fkc;Δ ln k;ΔX;ΔY;ΔZg in Fig. 2. We also
present results for a condensed version of the parameter

FIG. 2. Marginalized posteriors for the parameter set fpi;ΔX;ΔY;ΔZg; dark and light blue (solid) contours enclose 68% and 95% of
the likelihood, respectively. The black and grey (dashed) contours and curves represent the theoretical distributions of the parameters
coming solely from cosmic variance in statistically isotropic skies. The values ðkc;Δ ln kÞ ¼ ð5 × 10−3 Mpc−1; 0Þ would correspond
roughly to the often-considered l-space modulation to l≃ 65.
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space, i.e. the set fkc;Δ ln k; ARg, where the angular
variables have been marginalized over, in Fig. 3. We can
see from the distributions that no parameter is constrained
very well. In particular, Δ ln k is completely unconstrained
by the data, which suggests that there is no well-defined
transition in the data between modulated and unmodulated
scales. This is not surprising, since we have opened up the
parameter space in our formalism with respect to most
previous studies, which considered a sharp cutoff in l space
and only found apparently significant modulation when
that cutoff was fixed. In Table I, we quote the mean value
parameters and their uncertainties, which we take as the
mean of the marginalized posteriors and the area that
encloses 68% of the likelihood. We also quote the maxi-
mum-likelihood parameters. For comparison, when testing
for an l-space modulation to l ¼ 65, Ref. [3] found AR ¼
0.062þ0.026

−0.013 in the direction ðl; bÞ ¼ ð213°;−26°Þ � 28°.
The temperature anisotropy modulation spectrum Clo

l
and effective power spectrum difference from modulation
equator to pole, ΔCl, for the maximum-likelihood modu-
lation parameters from Table I, are plotted in Fig. 4. These
were calculated using CAMB with the corresponding best-
fit primordial spectrum Plo

RðkÞ and setting the ISW source
to zero for redshifts z < 30. (Negligible differences were
found when the ISW effect was included in the anisotropic
spectrum.) The modulation in amplitude is at a level of
roughly 7% to l≃ 50. Importantly, while this agrees
crudely with the often-quoted level of 6–7% to l≃ 65,
we stress that the temperature asymmetry is poorly

constrained: the kc posterior in Figs. 2 and 3 has significant
weight over a large range of values, corresponding to
l≃ 50–250. As the kc-AR panel in Fig. 3 shows, these two
parameters are anticorrelated, with a larger kc implying a
smaller AR. Furthermore, as the dashed contours in that
panel show, this anticorrelation follows the trend expected
from cosmic variance, which arises simply because larger
kc implies more modes and, hence, lower cosmic variance.
This poorly-defined character of the asymmetry may be
surprising, but has previously been found in l space (see in

FIG. 3. Marginalized posteriors for the parameter set fpi; ARg;
dark and light blue (solid) contours enclose 68% and 95% of the
likelihood, respectively. The black and grey (dashed) contours and
curve represent the theoretical distributions of the parameters
coming solely from cosmic variance in statistically isotropic skies.
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FIG. 4. Temperature anisotropy isotropic power spectrum,
CΛCDM
l (solid black curve), anisotropic power spectrum, Clo

l
(dashed red curve), and power spectrum increment from equator
to pole, ΔCl (dot-dashed green curve), for the case of the
maximum-likelihood modulation from Table I, which fits the
observed temperature asymmetry. The modulation in amplitude is
at a level of roughly 7% to l≃ 50.

TABLE I. Marginalized posterior mean values and their 68%
uncertainties for the modulation parameters of the model of
Eq. (9), along with their corresponding maximum-likelihood
values. The angles l and b are the Galactic longitude and latitude,
respectively, calculated via Eqs. (51) and (52). The final row is
the combined constraint including an ideal CMB lensing experi-
ment assuming a modulation with amplitude AR ¼ 0.122 and the
remaining temperature mean values. The addition of lensing does
not appreciably help to constrain the model.

Parameter Mean value Max likelihood

103kc½Mpc−1� 7.08þ12.56
−2.34 7.83

Δ ln k Unconstrained 0.5
ΔX −0.060þ0.054

−0.018 −0.0610

ΔY −0.063þ0.069
−0.010 −0.0414

ΔZ −0.056þ0.062
−0.004 −0.0347

AR 0.122þ0.014
−0.112 0.0871

l½°� 224þ43
−44 214

b½°� −31þ31
−16 −25

AR 0.095þ0.026
−0.080 � � �
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particular the peaks at l≃ 200–300 in figure 30 of [3] and
figure 15 of [2], which have similar significance to the
peaks at l≃ 65).
Finally, note that Fig. 4 shows that an origin to the T

asymmetry as a modulation of the ISW effect alone
(perhaps via an anisotropic sound speed for dark energy)
is unlikely to produce a good fit to the data, since the ISW
contribution is extremely weak for l≳ 50.

VI. PREDICTIONS FOR CMB LENSING

A. Modulation power spectrum

Having used the CMB temperature data to fit the k-space
modulation spectrum, Plo

RðkÞ, in the last section, we are
now ready to present the prediction for the CMB lensing
asymmetry. Once the fitting has been done, we know the
modulation direction via the Δ ~XM, and so we can write the
multipole covariance as Eq. (30) with the polar direction
along the modulation direction and amplitude ~AR.
Using the maximum-likelihood k-space modulation

spectrum parameters, kc, Δ ln k, and Δ ~XM, from Table I,
we calculated the statistically anisotropic lensing spectrum,
δClens

ll , using Eq. (42). The result is plotted in Fig. 5.
The lensing spectrum is modulated at a level of about 3%
and less in power (about 1.5% and less in amplitude),
out to scales as small as l≃ 50. As predicted in Sec. I on
geometrical grounds, the lensing potential is modulated to a
larger minimum angular scale and by a smaller amplitude
than the corresponding temperature best fit presented in
Fig. 4. This directly leads to a low modulation detection
significance for lensing, aswewill see in the next subsection.
Note that the anisotropic spectrum grows relative to the

isotropic spectrum at large to intermediate scales. This can

be understood with the help of Fig. 1, where it is apparent
that larger lensing multipoles are typically sourced at
greater distances. For our assumed linear modulation
form, larger distances, and hence larger multipoles, will
be modulated with larger amplitude. Compared with this
lensing case, the corresponding temperature anisotropy
spectrum in Fig. 4 exhibits a much more similar shape to
the isotropic spectrum, up to the cutoff kc and allowing for
the lack of the ISW contribution in the anisotropic spec-
trum. This is simply due to the fact that the primary CMB is
sourced at essentially a single distance, rLS, and, hence, is
modulated at a single amplitude for our linear model.

B. Detectability for ideal lensing map

In order to ascertain the detectability of the predicted
lensing potential modulation, we must compare the pre-
diction to the expected uncertainty in the measurement.
The expected variance of a CMB lensing measurement of
asymmetry will be determined by cosmic variance (of the
lensing potential modes) and lensing reconstruction noise.
It turns out that for a lensing reconstruction based on
cosmic-variance-limited temperature and polarization
anisotropy measurements, the reconstruction noise is small
compared to the lensing potential cosmic variance, at least
over the relevant scales [47,48]. Therefore, an ideal lensing
measurement can be considered essentially cosmic variance
limited. Realistic lensing experiments will have higher
noise which will necessarily reduce our ability to detect a
modulation. Hence, our conclusions will be conservative.
We can easily evaluate the cosmic variance of the

modulation amplitude ΔX0 given a lensing modulation
spectrum, δClens

ll0 , using Eq. (53). Using Eqs. (33), (41), and
(42) for the case of the maximum-likelihood parameters,

we find
ffiffiffiffiffiffiffiffiffiffi
hA2

Ri
q

¼ 0.111. This means that the maximum-

likelihood modulation amplitude determined from the T
anisotropies, AR ¼ 0.0871, is 0.0871=0.111 ¼ 0.8 stan-
dard deviations from zero for a lensing measurement along
the known T modulation direction. For the mean value
modulation parameters from Table I, we find an expected
measurement of 0.9σ. However, in this case the highly non-
Gaussian posterior (recall Fig. 3) means that the mean value
parameters are biased towards high significance. In fact,
given the likelihood from temperature we can determine
that the mean detection significance for AR by lensing is
0.7σ and the probability of obtaining a greater than 1σ
detection of AR in lensing is of order 10%. The probability
is of order 0.1% for finding a greater than 1.5σ detection of
AR and decreases quite rapidly for higher detection limits.
Therefore, even in this case of an ideal, cosmic-variance-
limited lensing map, lensing will tell us very little about
whether the asymmetry is real or not.
We can illustrate the weakness of CMB lensing for

testing a physical modulation in another way. The last row
of Table I lists the result of combining the constraint on AR
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FIG. 5. Lensing potential isotropic power spectrum, Clens
l (black

curve), predicted anisotropic power spectrum, δClens
ll (red curve),

and predicted power spectrum increment from equator to pole,
ΔClens

l (green curve), for the case of the maximum-likelihood
modulation from Table I, which fits the observed temperature
asymmetry. The modulation in amplitude is at a level of roughly
1.5% or less to l≃ 50.
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from the T anisotropies with the expected constraint for
lensing, assuming a modulation with parameters given by
the mean values of Table I, which were determined by the
T likelihood. It is apparent that lensing does not improve
the constraint on AR significantly. If we consider relaxing
the condition here that the pi be fixed, we can see that CMB
lensing will not be able to constrain the modulation model
significantly better than CMB T alone.

VII. DISCUSSION

In this paper, we have presented a rigorous formalism
for describing a linearly modulated primordial fluctuation
field in k space with arbitrary scale dependence, and have
calculated its effects on CMB temperature fluctuations as
well as the lensing potential, which probes independent
modes from the primary CMB. We performed a Bayesian
parameter estimation for the k-space modulation spectrum,
fitting to Planck temperature data. We then predicted the
corresponding CMB lensing modulation, and found that
even an ideal lensing experiment would expect to see the
modulation at only about 0.7σ. Hence, it appears that CMB
lensing will never tell us much about whether the observed
T modulation is a statistical fluke or is due to a real,
physical modulation of the primordial fluctuations. Also,
this means that the null result for asymmetry in the Planck
lensing map [9] is completely unsurprising, given that the
Planck lensing map contains substantially more noise than
an ideal map would.
In principle, correlating CMB lensing with other probes

should improve the attainable significance of the expected
modulation. However, recall from Fig. 1 that current galaxy
surveys have weak sensitivity at the required extremely
large scales. In addition, such surveys reach to relatively
low redshifts, and, hence, we would expect a low modu-
lation amplitude, at least for a linear modulation.
Nevertheless, it may be worth considering this more care-
fully, given our result that the upper limit for the cutoff is
near kc ≃ 0.02 Mpc−1. The ISW contribution reaches to
sufficiently large scales, but is sourced so close to us that,
again, its modulation amplitude is expected to be very small.
It is important to point out that, although it appears that

we cannot usefully probe the asymmetry with CMB
lensing, it will still be important to examine lensing maps
for departures from statistical isotropy. Lensing probes a
large fraction of our observable volume that is inaccessible
by other means. Hence, it provides a unique opportunity to
test the simplest models of fluctuations [25].
Our results also highlight a seldom-stressed aspect of

the temperature asymmetry. We found that no well-defined
k-space modulation exists, and instead that the modulation
cutoff scale, kc, is only weakly constrained. In particular,
there is no reason to single out an approximately 6%
modulation to l≃ 65. However, this poor constraint means
that our results should be only weakly sensitive to our
choice for Plo

RðkÞ, i.e., to departures from the tanh form.

It is clear that polarization will be our best opportunity in
the near term to test for a physical modulation. However,
even though polarization can sample about as many
independent modes as temperature, Ref. [29] finds strong
k-space model dependence for the predictions of polari-
zation. It will be important to examine this with our fitting
procedure. In particular, we will need to generalize our
approach to incorporate isocurvature and tensor mode
modulations.
In the distant future 21-cm surveys may have the

ability to reach to large distances and very large scales.
They will have, in principle, vastly many more modes
within reach via three-dimensional mapping than do the
two-dimensional CMB or lensing measurements. Hence,
they should finally resolve the status of the power asym-
metry and other anomalies.
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Note added.—After this work was nearly complete, a
related study appeared [49], which examines the effect
of dipole modulation on lensing. That study apparently
predicts considerably larger CMB lensing modulation
amplitudes than we find. However, it appears that it ignores
the spatial dependence of the modulation, replacing our
Eq. (3) with

~RloðxÞ ¼ RloðxÞð1þ AR cos θÞ: ð59Þ

Hence, they do not see the large reduction in modulation
amplitude due to the sourcing of lensing at relatively low
redshifts. In addition, [49] do not fit a modulation to T data
nor do they predict the detectability for lensing.

APPENDIX: EFFECT ON SMALL-SCALE
T ANISOTROPIES

As we mentioned in Sec. III A, when the scale of the
perturbations sourcing the anisotropies is much smaller
than the length scale of variation of the modulation, we
expect the effect of the spatial variation of the modulation
to be small. Nevertheless, it will be useful to be more
quantitative about this expectation.
There are three main changes to the temperature anisot-

ropies calculated in Sec. III A when sources on smaller
scales are considered. First, the relevant transfer functions
become oscillatory in k due to the acoustic oscillations.
Next, relaxing the tight-coupling approximation means
that anisotropic stress must be included. Finally, relaxing
the sudden-recombination approximation means that the
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anisotropies are sourced over a range of redshifts, rather
than just at zLS. We will consider each of these effects
in turn.
To a good approximation, the part of the anisotropy

proportional to R (sometimes referred to as the “monop-
ole”) takes on a term of order (see, e.g., [50])

cos ðkrsÞRðkÞ≡ T1ðkÞRðkÞ; ðA1Þ

where rs is the sound horizon. This term necessarily
approaches TðkÞRðkÞ in the large-scale limit. Similarly,
the part proportional to the radial derivative of R (the
“dipole”) becomes of order

sin ðkrsÞRðkÞ≡ T2ðkÞRðkÞ; ðA2Þ

which again must approach the large-scale limit TðkÞk=
ðaLSHLSÞRðkÞ. Recall that we can consider the linear
modulation to commute with the transfer function filtering
if Eq. (15) is satisfied. Here, we have���� 1

T1ðkÞ
dT1ðkÞ
dkrLS

���� ¼ rs
rLS

tanðkrsÞ≃ 0.01 tanðkrsÞ ðA3Þ

and ���� 1

T2ðkÞ
dT2ðkÞ
dkrLS

����≃ 0.01 cotðkrsÞ: ðA4Þ

Therefore, for most k scales, the condition for commuta-
tivity is met. For the dipole term, the cot dependence may
suggest a problem as k → 0. However, we showed explic-
itly in Sec. III A that the dipole term does, in fact, commute
to a good approximation with modulation on large scales.
Similarly, the periodic divergences in tanðkrsÞ and cotðkrsÞ
at larger k values may suggest that commutativity breaks
down at these scales. To examine the effect of these
divergences, consider the covariance of TðkÞ ~RðkÞ calcu-
lated using Eq. (13) for TðkÞ ¼ cosðkrsÞ. In addition to
the expected statistically isotropic term proportional to
cos2ðkrsÞPRðkÞ, we find an extra isotropic term propor-
tional to cosðkrsÞ sinðkrsÞPRðkÞrs=rLS. Very close to the
zeros of cosðkrsÞ this extra term will dominate. However,
its absolute contribution is weighted by the small factor
rs=rLS. The relatively broad kernel that takes us from k to l
space will mean that the extra term will alter the acoustic
peak structure only by a small amount, in proportion to
the factor rs=rLS. This tells us that the modulation com-
mutes to good approximation with the acoustic oscillation
processing.
The next small-scale effect is the presence of anisotropic

stress, i.e. the quadrupole Boltzmann terms. These terms

are suppressed by factors k=j_τj ∼ 10−3krLS, where τ is the
optical depth (see, e.g., [51]). The anisotropic stress is
sourced within distances of the order the mean free path
from the observed point on the last scattering surface,
which is much smaller than rLS and is determined by
gradients of the primordial field. Hence, as we showed for
the case of the derivative terms in Sec. III A, for these
contributions modulation will commute to a very good
approximation with filtering. Importantly, as polarization is
sourced entirely by anisotropic stress, this will mean that
we will be able to describe in a similar way the effect of
modulation on polarization.
The final small-scale effect is the sourcing over a range

of redshifts, weighted by the visibility function. Including
also the high-k part of the fluctuations, the anisotropy of
Eq. (17) becomes, in this case, the line-of-sight integral

fδTðn̂Þ
T

¼
Z

∞

0

dr½ ~SloðtðrÞ; rn̂Þ þ ShiðtðrÞ; rn̂Þ�: ðA5Þ

The previous arguments tell us that, to a good approxima-
tion, we can write

fSloðtðrÞ; rn̂Þ≃ SloðtðrÞ; rn̂Þ
�
1þ AR

r
rLS

cos θ

�
: ðA6Þ

Therefore, writing r ¼ rLS þ δr, the anisotropy becomes

fδTðn̂Þ
T

≃
Z

∞

0

dr½SloðtðrÞ; rn̂Þð1þ AR cos θÞ

þ ShiðtðrÞ; rn̂Þ� þOðδr=rLSÞ: ðA7Þ

Since the primary anisotropies are sourced over a range
of distances δr=rLS ∼ 10−3, we have to very good
approximation

fδTðn̂Þ
T

≃ δT loðn̂Þ
T

ð1þ AR cos θÞ þ δThiðn̂Þ
T

: ðA8Þ

Using Eq. (6), this leads immediately, as in Sec. III A, to the
final result for the multipole covariance:

h ~alm ~a�l0m0 i ¼ CΛCDM
l δl0lδm0m þ ARðClo

l þ Clo
l0 Þξ0lml0m0

ðA9Þ

to first order in AR, where CΛCDM
l is the power spectrum

calculated from PΛCDM
R ðkÞ and Clo

l is the spectrum calcu-
lated in the same way but using Plo

RðkÞ.
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