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We extend our analysis of quasidistributions onto the pion distribution amplitude. Using the formalism
of parton virtuality distribution amplitudes, we establish a connection between the pion transverse
momentum dependent distribution amplitude Ψðx; k2⊥Þ and the pion quasidistribution amplitude (QDA)
Qπðy; p3Þ. We build models for the QDAs from the virtuality-distribution-amplitude-based models for soft
transverse momentum dependent distribution amplitudes, and analyze the p3 dependence of the resulting
QDAs. As there are many models claimed to describe the primordial shape of the pion distribution
amplitude, we present the p3-evolution patterns for models producing some popular proposals: Chernyak-
Zhitnitsky, flat, and asymptotic distribution amplitude. Our results may be used as a guide for future studies
of the pion distribution amplitude on the lattice using the quasidistribution approach.
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I. INTRODUCTION

The parton distribution functions (PDFs) fðxÞ, and two-
body distribution amplitudes (DAs) φðxÞ are related to
matrix elements of bilocal operators on the light cone
z2 ¼ 0, which prevents a straightforward calculation of
these functions in a lattice gauge theory formulated in the
Euclidean space. The usual way out is to calculate their
moments. In particular, high precision lattice calculations
of the second moment of the pion distribution amplitude
φπðxÞwere reported in Ref. [1]. However, recently, X. Ji [2]
suggested a method allowing us to calculate PDFs and DAs
as functions of x. To this end, he proposes to use purely
spacelike separations z ¼ ð0; 0; 0; z3Þ.
The matrix elements of equal-time bilocal operators

produce distributions Qðy; p3Þ in the momentum p3

component (quasidistributions). The crucial point is that
they tend to the light-cone distributions fðyÞ, φðyÞ in the
p3 → ∞ limit. In case of PDFs, the results of lattice
calculations of the parton quasidistributions (PQDs) were
reported in Refs. [3–8]. It is expected [9] that PQDs
Qðy; p3Þ should have a mild perturbative evolution
[10–13] with respect to p3 for large p3. However, the
values of p3 used in the cited lattice calculations are not
very large, and the observed strong variation of PQDs with
p3 does not have a perturbative form.
In our recent paper [14] we have studied nonperturba-

tive evolution of PQDs using the formalism of virtuality
distribution functions [15,16]. We found that PQDs can
be obtained from the transverse momentum dependent
distributions (TMDs) F ðx; k2⊥Þ. Then we built models
for the nonperturbative evolution of PQDs using
simple models for TMDs. Our results are in qualitative
agreement with the p3-evolution patterns obtained in
lattice calculations [3–8] and also in diquark spectator
models [17–19].

As emphasized in Ref. [14], because of the relation
between PQDs and TMDs, the nonperturbative evolution of
PQDs reflects the k⊥ dependence of the TMDs F ðx; k2⊥Þ,
and thus its study provides a new approach to the inves-
tigation of the three-dimensional structure of hadrons.
Our goal in the present paper is to perform a similar

analysis of the pion quasidistribution amplitude (QDA)
Qπðy; p3Þ that produces the pion DA φπðyÞ in the large-
p3 limit. The basic ingredients of our analysis are virtual
distribution amplitudes (VDAs) and transverse momentum
dependent amplitudes (TMDAs) introduced in Refs. [15,16].
The paper is organized as follows. We start in Sec. II with

an introductory overview of the basic concepts involved.
First, we recall a covariant definition of the twist-2 pion
distribution amplitude. After that, we discuss its definition
within the light-front (LF) formalism. Then we outline the
basics of the VDA/TMDA approach. In Sec. III, we discuss
the quasidistribution amplitudes. In particular, we show that
QDAs are completely determined by TMDAs through a
rather simple transformation. Since the basic relations
between the parton distributions are rather insensitive to
complications brought by spin, in Sec. III we refer to a
simple scalar model. In Sec. IV, we discuss modifications
related to quark spin and the gauge nature of gluons in
quantum chromodynamics (QCD). In Sec. V we discuss the
VDA-based models for soft TMDAs, and present our results
for nonperturbative evolution of QDAs obtained in these
models. The large-p3 limit of perturbative evolution is
discussed in Sec. VI. Our conclusions are given in Sec. VII.

II. PION DISTRIBUTION AMPLITUDE

A. Covariant definition

The pion DA φπðx; μ2Þwas originally introduced [20] as
a function φπðx; μ2Þ whose xn moments
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fnðμ2Þ ¼
Z

1

0

xnφπðx; μ2Þdx ð1Þ

are given by reduced matrix elements of twist-2 local
operators

inþ1Rμ2h0jd̄ð0Þγ5fγνDν1…Dνnguð0Þjπþ; Pi
¼ fPνPν1…Pνngfnðμ2Þ: ð2Þ

As usual f…g denotes the twist-2 projection of a Lorentz
structure, i.e., symmetrization of indices and subtraction of
traces. Since matrix elements of local operators with n > 0
diverge, one needs to supply them by a renormalization
procedure denoted above by Rμ2, with μ2 being the
renormalization scale. In QCD, the standard choice of
Rμ2 is based on the dimensional regularization and the
modified minimal subtraction scheme MS. As a result of
such a renormalization, the zeroth moment f0ðμ2Þ does not
have μ2 dependence since the anomalous dimension of the
axial current is zero. Hence, f0ðμ2Þ for all μ2 is equal to the
pion decay constant fπ

f0ðμ2Þ ¼
Z

1

0

φπðx; μ2Þdx ¼ fπ ð3Þ

known experimentally, fπ ≈ 130 MeV.
This definition of DA is oriented on the use of the

operator product expansion and a description of the pion in
terms of the twist-2 DA φπðx; μ2Þ that gives the collinear
distribution of the pion momentum p among its two
valence constituents. The dependence of φπðx; μ2Þ on μ2

is governed by perturbative evolution [21–23] and does not
reflect the primordial (nonperturbative) pion’s structure in
the direction transverse to p.
As is well known, for very large μ2, the pion DA tends to

the “asymptotic DA” φas
π ðxÞ ¼ 6fπxð1 − xÞ [24]. In gen-

eral, φπðx; μ2Þ may differ from its asymptotic form. Over
the years, several forms were proposed for the pion DA
“at low normalization point,” e.g., Chernyak-Zhitnitsky DA
φCZ
π ðxÞ¼30fπxð1−xÞð1−2xÞ2 [25], “flat DA” φflat

π ðxÞ ¼
fπ [26–30], “root DA” φroot

π ðxÞ¼8fπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞp

=π [31], etc.

B. Light-front formalism definition

A different definition [23] is used in the LF quantization
framework, where the pion distribution amplitude ϕπðx; μ2Þ
is understood as the k⊥ integral

ϕπðx; μ2Þ ¼
ffiffiffi
6

p

ð2πÞ3
Z
k2⊥≤μ2

ψðx; k⊥Þd2k⊥ ð4Þ

of the light-front wave function (LFWF) ψðx; k⊥Þ. We
intentionally use here a different notation ϕπðx; μ2Þ to

emphasize the fact that ψðx; k⊥Þ is an object of the
Hamiltonian light-front framework, while the pion DA
φπðx; μ2Þ in Eq. (1) is defined within the covariant
Lagrangian formulation of the quantum field theory
(QFT).
Another difference is the use of a straightforward cutoff

k2⊥ ≤ μ2 rather than a more sophisticated MS-like sub-
traction. As a result, ϕπðx; μ2Þ has a nonperturbative
evolution with μ2 even if the perturbative evolution is absent.
Take a simple example ψðx; k⊥Þ ∼ ϕðxÞe−k2⊥=Λ2

. Then the
zeroth x moment of ϕπðx; μ2Þ has the ∼½1−e−μ

2=Λ2 �
dependence, i.e. it is not constant, reaching fπ in the
μ2 → ∞ limit only.
Of course, if one has in mind only the applications in

which nonperturbative part of the μ2 dependence may be
ignored, then ϕπðx; μ2Þ of the LF definition is very similar
to the covariantly defined φπðx; μ2Þ, and the difference
between them may be treated as the use of different
renormalization schemes.
As a matter of fact, in actual LF calculations one

encounters LFWFs integrated to some process-dependent
scale μ, i.e., the choice of the renormalization prescription
and the scale μ is dictated by diagrams. Moreover, if the
relevant μ2’s are not extremely large, the simple example
above shows that one may need to take into account the
nonperturbative μ2 dependence of ϕπðx; μ2Þ reflecting the
transverse momentum behavior of the LFWF ψðx; k⊥Þ, i.e.,
the three-dimensional structure of the pion, which may be
essential for some processes.
In particular, the photon-pion transition form factor

involves ϕπðx; μ2 ¼ x2Q2Þ=½xQ2�, i.e., LFWF ψðx; k⊥Þ
integrated over k⊥ until xQ [32,33]. As a result, the
remaining x integral in the LF formula has a finite
Q2 → 0 limit: the infrared small-x divergence is eliminated
by a cutoff provided by ϕðx; μ2 ¼ x2Q2Þ. On the other
hand, a formula involving MS-based DA φðx; μ2Þ with a
fixed scale μ2 is singular in the Q2 → 0 limit. One may
question the applicability of the LF formula down to
Q2 ¼ 0, but at least it does not give an infinite result for
a quantity that is known to be finite. For this reason, the LF
formula looks as a more attractive tool for modeling the
form factor behavior at moderate Q2 than the perturbative
QCD 1=Q2 twist expansion.
Still, a problem with the LF formalism is that LFWFs

are not directly connected with the usual objects of the
covariant field theory, such as matrix elements of local or
nonlocal operators.
In our papers [15,16], we have developed the formalism

of VDAs that is fully based on the covariant field theory
concepts. In the VDA approach, the pion is described by
the TMDA which has a direct connection with the objects
of the covariant QFT. On the other hand, just like the LF
wave functions, the TMDAs give a three-dimensional
description of the pion structure.
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C. Pion TMDA

To omit inessential complications related to spin, we
illustrate the ideas underlying TMDAs using a simple
example of a scalar theory. The key element of our
approach [15] is the VDA representation

h0jψð0ÞψðzÞjpi¼
Z

∞

0

dσ
Z

1

0

dx×Φðx;σÞe−ixðpzÞ−iσðz2−iϵÞ=4

ð5Þ

that basically reflects the fact that the matrix element
h0jψð0ÞψðzÞjpi depends on z through ðpzÞ and z2. It
may be treated as a double Fourier representation with
respect to these variables.
The main nontrivial feature of this representation is in its

specific limits of integration over x and σ. They hold for
any contributing Feynman diagram [16], so we assume that
this property is true in general. Note that starting with the
first loop, the diagram contributions are nonanalytic in z2

due to ln z2 factors, but the VDA representation, unlike the
Taylor expansion in z2, is valid nevertheless.
While the VDA representation is a fully covariant

expression, it is convenient to use a frame in which the
pion momentum p is purely longitudinal p ¼ ðE; 0⊥; PÞ.
Choosing some special cases of z, one can get representa-
tions for several parton functions, all in terms of one and the
same universal VDA Φðx; σÞ. In particular, choosing z on
the light front zþ ¼ 0 and with z⊥ ¼ 0 (i.e., taking z ¼ z−)
gives the twist-2 distribution amplitude φðxÞ

h0jψð0Þψðz−Þjpi ¼
Z

1

0

dxφðxÞe−ixpþz− : ð6Þ

Comparing this relation with the VDA representation we
have

φðxÞ ¼
Z

∞

0

Φðx; σÞdσ; ð7Þ

provided that the z2 → 0 limit is finite, e.g., in the super-
renormalizable φ3 theory. In the renormalizable φ4 theory,
the function Φðx; σÞ has a ∼1=σ hard part, and the integral
(7) is logarithmically divergent, reflecting the perturbative
evolution of the DA in such a theory. In this case, one may
arrange a regularization of the σ integral characterized by
some parameter μ2. Then φðxÞ → φðx; μ2Þ.
Light-cone singularities are avoided if we choose a

spacelike z, e.g., take z that has z− and z⊥ components
only. Then we can introduce the transverse momentum
dependent distribution amplitude Ψðx; k2⊥Þ as a Fourier
transform

h0jψð0Þψðz−; z⊥Þjpi ¼
Z

1

0

dxe−ixpþz−

×
Z

d2k⊥Ψðx; k2⊥Þeiðk⊥z⊥Þ ð8Þ

of the matrix element with respect to z− and z⊥. Because of
the rotational invariance in the z⊥ plane, TMDA depends
on k2⊥ only, the fact already reflected in the notation. The
TMDA may be written in terms of the VDA as

Ψðx; k2⊥Þ ¼
i
π

Z
∞

0

dσ
σ
Φðx; σÞe−iðk2⊥−iϵÞ=σ: ð9Þ

The integrated TMDA

fðx; μ2Þ≡ π

Z
μ2

0

dk2⊥Ψðx; k2⊥Þ ð10Þ

is analogous to the μ2-dependent pion distribution ampli-
tude ϕðx; μ2Þ of the LF formalism [but, of course, being an
object of the covariant QFT, fðx; μ2Þ does not coincide with
it]. In terms of the VDA,

fðx; μ2Þ ¼
Z

∞

0

dσ½1 − e−iðμ2−iϵÞ=σ�Φðx; σÞ: ð11Þ

Since it is defined by a straightforward cutoff, fðx; μ2Þ
evolves with μ2 even if the limit μ2 → ∞ is finite, e.g., in a
super-renormalizable theory. The evolution equation

μ2
d
dμ2

fðx; μ2Þ ¼ πμ2Ψðx; μ2Þ ð12Þ

follows from the definition (10). When the TMDA
Ψðx; k2⊥Þ vanishes faster than 1=k2⊥ (such a TMDA will
be called “soft”), evolution essentially stops at large μ2.
In a renormalizable theory, it makes sense to treat

Φðx; σÞ as a sum of a soft part Φsoftðx; σÞ, generating a
nonperturbative evolution of fðx; μ2Þ, and a ∼1=σ hard tail.
To avoid nonperturbative evolution, one may choose an
M̄S-type construction, e.g., regularize the σ integral in
Eq. (7) by a σ−ϵ factor and then subtract 1=ϵ poles.
However, just like in the LF formalism, the objects that

appear in actual calculations are exactly the integrated
TMDAs rather than their MS-type sisters. In particular,
the photon-pion transition form factor is given in the
VDA approach by the x integral of fðx; μ2Þ=½xQ2� taken
at μ2 ¼ xQ2 [15], i.e., it involves TMDA Ψðx; k2⊥Þ inte-
grated over k2⊥ until xQ2. As a result, the TMDA formula
has a finite Q2 → 0 limit. Furthermore, using simple
models for soft TMDAs one can get a very close descrip-
tion of experimental data by the nonperturbative evolution
of the integrated TMDA [16].
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For very large μ2, the perturbative evolution dominates
and eventually brings fðx; μ2Þ to its asymptotic form
6fπxð1 − xÞ. The question, however, is what kind of shape
fðx; μ2Þ has at low scales μ ∼ 1 GeV, and also how this
shape changes with μ2. As we have discussed, this non-
perturbative μ2 evolution reflects the k⊥ dependence of the
soft part of the pion TMDA.
Below, we shall see that there is another function,

the pion quasidistribution amplitude Qπðy; PÞ whose P
dependence is also determined by the k⊥ dependence of the
pion TMDA. The quasidistributions have been introduced
recently by X. Ji [2] to facilitate a calculation of light-front
functions (PDFs, DAs, etc.) on the lattice.

III. QUASIDISTRIBUTION AMPLITUDE

A. Definition

The basic proposal of Ref. [2] is to consider equal-time
bilocal operators corresponding to z ¼ ð0; 0; 0; z3Þ (or,
for brevity, z ¼ z3). Incorporating the VDA representation,
we have

h0jψð0Þψðz3Þjpi ¼
Z

∞

0

dσ
Z

1

−1
dxΦðx; σÞeixp3z3þiσz2

3
=4:

ð13Þ

Using again the frame in which p ¼ ðE; 0⊥; PÞ, and
introducing the pion quasidistribution amplitude through

h0jψð0Þψðz3Þjpi ¼
Z

∞

−∞
dyQπðy; PÞe−iyPz3 ; ð14Þ

we get a relation between QDA and VDA,

Qπðy; PÞ ¼
ffiffiffiffiffiffiffi
iP2

π

r Z
∞

0

dσffiffiffi
σ

p
Z

1

0

dxΦðx; σÞe−iðx−yÞ2P2=σ:

ð15Þ

It is easy to see that, for large P, we have

ffiffiffiffiffiffiffi
iP2

πσ

r
e−iðx−yÞ2P2=σ ¼ δðx − yÞ þ σ

4P2
δ00ðx − yÞ þ… ð16Þ

and Qπðy; P → ∞Þ tends to the integral (7) leading to
φπðyÞ. This observation suggests that one may be able to
extract the “light-cone” distribution amplitude φπðyÞ from
the studies of the purely “spacelike” function Qπðy; PÞ for
large P [2].

B. Evolution

Again, to study the P evolution of Qπðy; PÞ it makes
sense to split Φðx; σÞ into the soft part, for which the
integral over σ is finite, and the hard tail that generates
perturbative evolution.

The nonperturbative evolution ofQsoftðy; PÞwith respect
to P has the area-preserving property. Namely, since

Z
∞

−∞
dye−iðx−yÞ2P2=σ ¼

ffiffiffiffiffiffiffi
πσ

iP2

r
ð17Þ

we have

Z
∞

−∞
dyQsoft

π ðy; PÞ ¼
Z

1

0

dxφsoft
π ðxÞ ¼ fπ: ð18Þ

In other words, Qsoft
π ðy; PÞ for any P has the same area

normalization as φsoft
π ðxÞ. In this respect, the pion QDA

pleasantly differs from the integrated TMDA fsoftðx; μ2Þ
whose zeroth moment is μ2 dependent.
Similarly, we have the momentum sum rule

Z
∞

−∞
dyyQsoft

π ðy; PÞ ¼
Z

1

0

dxxφsoft
π ðxÞ: ð19Þ

C. Relation to TMDA

Comparing the VDA representation (16) for Qπðy; PÞ
with that for the TMDA Ψðx; k2⊥Þ (9) (note that they are
valid both for soft and hard parts) we conclude that

Qπðy; PÞ ¼
Z

∞

−∞
dk1

Z
1

0

dxPΨðx; k21 þ ðx − yÞ2P2Þ: ð20Þ

Thus, the quasidistribution amplitude Qπðy; PÞ is com-
pletely determined by the form of the TMDA Ψðx; k2⊥Þ.
This formula may be also obtained if one takes z ¼

ð0; z1; 0; z3Þ in the VDA representation and introduces the
momentum k1 conjugate to z1. Then

Z
∞

−∞
dyeiyPz3h0jψð0Þψðz1; z3Þjpi

¼
Z

∞

−∞
dk1e−ik1z1

Z
1

0

dxΨðx; k21 þ ðx − yÞ2P2Þ: ð21Þ

Taking z1 ¼ 0 gives Eq. (20). Furthermore, introducing the
variable k3 ≡ ðx − yÞP, we have

Qπðy; PÞ ¼
Z

∞

−∞
dk1

Z ð1−yÞP

−yP
dk3Ψðyþ k3=P; k21 þ k23Þ:

ð22Þ

Thus, Qπðy; PÞ is given by an integral over a stripe
of width P in the two-dimensional ðk1; k3Þ plane. When
P → ∞ for a fixed nonzero y, the stripe covers the whole
ðk1; k3Þ plane. Moreover, for a soft TMDA Ψðx; k2Þ that
rapidly decreases outside a region k2 ≲ Λ2, only the
values of k3 ≲ Λ are essential, and for large P one may
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approximate the first argument of the TMDA by y. Hence,
the P → ∞ limit gives φsoft

π ðyÞ.
For comparison, the integrated TMDA fðy; μ2Þ is

obtained by integrating Ψðy; k2⊥Þ over a circle of radius
μ in the k⊥ plane. Again, the circle covers the whole plane
when μ → ∞, and fsoftðy; μ2Þ → φsoft

π ðyÞ.
Thus, while the patterns of the nonperturbative

evolution of Qsoft
π ðy; PÞ and fsoftðy; μ2Þ are different, they

become more and more close for large P and μ, eventually
producing the same function φsoft

π ðyÞ.

IV. QCD

A. Spinor quarks

In the spinor case, one deals with the matrix element

Bαðz; pÞ≡ h0jψ̄ð0Þγ5γαψðzÞjpi: ð23Þ

It may be decomposed into pα and zα parts: Bαðz; pÞ ¼
pαBpðz; pÞ þ zαBzðz; pÞ, or in the VDA representation

Bαðz; pÞ ¼
Z

∞

0

dσ
Z

1

−1
dx

× ½pαΦðx; σÞ þ zαZðx; σÞ�e−ixðpzÞ−iσðz2−iϵÞ=4:
ð24Þ

If we take z ¼ ðz−; z⊥Þ in the α ¼ þ component of Oα,
the purely higher-twist zα part drops out and we can
introduce the TMDA Ψðx; k2⊥Þ that is related to the
VDA Φðx; σÞ by the scalar formula (9).
In the QDA case, the easiest way to avoid the effects

of the zα admixture is to take the time component of
Bαðz ¼ z3; pÞ and define

B0ðz3; pÞ ¼ p0

Z
1

−1
dxQπðy; PÞeiyPz3 : ð25Þ

The connection between Qπðy; PÞ and Φðx; σÞ is given
then by the same formula (15) as in the scalar case. As a
result, we have the sum rules (18) and (19) corresponding
to charge and momentum conservation. Furthermore, the
quasidistribution amplitude Qπðy; PÞ is related to TMDA
Ψðx; k2⊥Þ by the scalar conversion formula (20).

B. Gauge fields

In QCD, for πþ one should take the operator

Oαð0; z;AÞ≡ d̄ð0Þγ5γαÊð0; z;AÞuðzÞ ð26Þ

involving a straight-line path-ordered exponential

Êð0; z;AÞ≡ P exp

�
igzν

Z
1

0

dtAνðtzÞ
�

ð27Þ

in the quark (adjoint) representation. As is well known, its
Taylor expansion has the same structure as that for the
original ψ̄ð0Þγ5γαψðzÞ operator, with the only change that
one should use covariant derivatives Dν ¼ ∂ν − igAν

instead of the ordinary ∂ν ones.
Again, the zα admixture is avoided if the pion quasidis-

tribution amplitude is defined through the time component
of Oα. Then we have the same relation between the VDA
and QDA as in the scalar case. Because of Eq. (18), this
results in the area-preserving property for the soft part

Z
∞

−∞
dyQsoftðy; PÞ ¼ fπ: ð28Þ

Also, due to Eq. (19) we have the momentum sum rule

Z
∞

−∞
dyðy − 1=2ÞQsoft

q ðy; PÞ ¼ 0: ð29Þ

Since the VDA Φðx; σÞ is defined through the matrix
element of a gauge-invariant operator, it is gauge invariant
also. For this reason, TMDA Ψðx; k2⊥Þ is a gauge-invariant
object as well. It should not be confused with the
kT-dependent (and gauge-dependent) “underintegrated
distributions” that appear in perturbative loop calculations
based on the Sudakov decomposition of the integration
momentum k.

V. MODELS FOR SOFT PART

A. Models

To get an idea about patterns of the nonperturbative
evolution of the QDAs, we need some explicit models of
the k⊥ dependence of soft TMDAs Ψðx; k2⊥Þ. We will use
here the same models as in our papers [14,16]. While
TMDAs are functions of two independent variables x and
k2⊥, we take, for simplicity, the case of factorized models

Ψðx; k2⊥Þ ¼ φπðxÞψðk2⊥Þ; ð30Þ

in which x dependence and k⊥ dependence appear in
separate factors.
If we assume a Gaussian dependence on k⊥,

ΨGðx; k2⊥Þ ¼
φπðxÞ
πΛ2

e−k
2⊥=Λ2

; ð31Þ

the conversion formula (20) results in

QG
π ðy; PÞ ¼

P
Λ

ffiffiffi
π

p
Z

1

0

dxφπðxÞe−ðx−yÞ2P2=Λ2

: ð32Þ

In the space of impact parameters z⊥, the Gaussian
model gives a e−z

2⊥Λ2=4 falloff that is too fast for large z⊥.
As an alternative extreme case, we take a model with the
1=ð1þ z2⊥Λ2=4Þ dependence on z⊥, whose falloff at large
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z⊥ is too slow. It corresponds to the “slow” model for
the TMDA

ΨSðx; k2⊥Þ ¼ 2φπðxÞ
K0ð2jk⊥j=ΛÞ

πΛ2
ð33Þ

that has a logarithmic singularity for small k⊥ reflecting a
too slow falloff for large z⊥. For the QDA, we have

QS
πðy; PÞ ¼

P
Λ

Z
1

0

dxφπðxÞe−2jx−yjP=Λ: ð34Þ

Note that the Gaussian model and the slow model have
the same ∼ð1 − z2⊥Λ2=4Þ behavior for small z⊥, i.e., they
correspond to the same value of the h0jφð0Þ∂2φð0Þjpi
matrix element (in the scalar case), provided that one takes
the same value of Λ in both models. For large z⊥, however,
the Gaussian model has a falloff that is too fast, while the
falloff of the slow model is too slow. Thus, they look like
two extreme cases, and provide a good illustration of the
nonperturbative evolution of the pion QDA, with expect-
ation that other models would produce results somewhere
in between these two cases.

B. Numerical results

To compare evolution patterns induced by the
Gaussian and slow models, we take the ansatz (30) with
φπðxÞ having a drastic shape of the Chernyak-Zhitnitsky
(CZ) DA φCZ

π ðxÞ ¼ 30fπxð1 − xÞð1 − 2xÞ2. As one can see
from Fig. 1, for P=Λ ¼ 1 the Gaussian model shows no
indication of humps visible for higher P=Λ ratios. In the
slow model, small humps are present even for P=Λ ¼ 1.
For high ratios P=Λ ¼ 5 and 10, the two models give close
results, with strong humps.
Assuming Λ ∼ 0.6 GeV suggested by the VDA-based

fits of the photon-pion transition form factor in Ref. [16],
we expect that P ∼ 3 GeV would be required to support (or
rule out) the CZ-type shape of the pion DA.

It is also interesting to note that the nonperturbative
evolution pattern here is exactly opposite to the perturbative
one. In the latter case, the humps of the initially CZ-shaped
DA become less pronounced as the normalization scale
increases and eventually disappear, with the DA tending to
the asymptotic ∼xð1 − xÞ shape.
To compare patterns of the QDA’s nonperturbative

evolution for different shapes of the limiting DA, we take
three models for φπðxÞ: Chernyak-Zhitnitsky φCZ

π ðxÞ, flat
φflat
π ðxÞ ¼ fπ , and asymptotic φas

π ðxÞ ¼ 6fπxð1 − xÞ. The
results in the Gaussian and the slow models are rather
similar. To avoid plotting too many graphs, we take, for
definiteness, the slow model. Then, for the flat limiting DA
we have

1

fπ
QS;flat

π ðy; PÞ ¼ P
Λ

Z
1

0

dxe−2jx−yjP=Λ: ð35Þ

This integral can be calculated analytically. Writing
y ¼ ð1þ ηÞ=2 in terms of a symmetric variable η, we get

1

fπ
QS;flat

π ðy; PÞ ¼ ð1 − e−P=Λ coshðPη=ΛÞÞθðjηj ≤ 1Þ

þ sinhðP=ΛÞe−Pjηj=Λθðjηj ≥ 1Þ: ð36Þ

Similar, but more lengthy expressions may be obtained
for two other models. As one can see from Fig. 2, for
small P ¼ Λ we have very close curves. For larger P ¼ 3Λ
the difference becomes visible, and for large P ¼ 5Λ and
P ¼ 10Λ the curves shown in Fig. 3 are distinctly different.
In fact, the P ¼ 10Λ curves are very close to their limiting
forms. Again, the nonperturbative evolution pattern in
case of the flat DA is opposite to the perturbative one: as
P increases, Qflat

π ðy; PÞ broadens from a rather narrow
function for P ¼ Λ and becomes almost constant for
P ¼ 10Λ.

FIG. 1. Quasidistribution amplitude QCZ
π ðy; PÞ for P=Λ ¼ 1, 3, 5, 10 in the Gaussian (left) and slow models (right).
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VI. LEADING-ORDER HARD TAIL

The nonperturbative evolution of Qπðy; PÞ essentially
stops for P=Λ≳ 20, and for larger values of P the
dominant role is played by the perturbative evolution
induced by the hard part. In our papers [15,16], it was
suggested to take a purely soft TMDA (or VDA) as a
starting approximation, and then “generate” hard tail by
adding one-gluon exchanges. The only new parameter is
the overall factor αs, while the k⊥ dependence of the hard
tail of the TMDA Ψðx; k2⊥Þ is completely determined by
the soft part.
For large k⊥, the generated hard part of the TMDA has a

∼1=k2⊥ behavior, but its explicit functional form is much
more complicated. In particular, it is finite in the k⊥ → 0

limit [16]. The infrared cutoff for the naive 1=k2⊥ extrapo-
lation is provided by the finite size of the pion encoded
in the parameters, like Λ, present in the soft TMDA.
Postponing the analysis of the interplay between the
nonperturbative and perturbative evolution for future
studies, we just outline below the VDA treatment of the
hard tail.

For large σ, the lowest-order (in αs) hard tail has the form

Φhardðx; σÞ ¼ ΔðxÞ=σ; ð37Þ

with ΔðxÞ given by

ΔðxÞ ¼
Z

1

0

dzVðx; zÞφsoft
π ðzÞ; ð38Þ

where Vðx; zÞ is the perturbative evolution kernel [21–23].
The asymptotic form (37) corresponds to a ∼1=k2⊥ TMDA,
which is singular for k⊥ ¼ 0. As explained above, this
singularity is absent in the exact (rather complicated)
expression for the hard tail. For illustration purposes, we
take now the simplest regularization 1=k2⊥ → 1=ðk2⊥ þm2Þ.
It corresponds to the change 1=σ → e−im

2=σ=σ in the hard
part of VDA,

Φhardðx; σÞ → ΔðxÞ
σ

e−im
2=σ: ð39Þ

FIG. 2. Quasidistribution amplitudes Qπðy; PÞ in the slow model for P ¼ Λ (left) and P ¼ 3Λ (right) evolving to CZ, flat
and asymptotic DAs.

FIG. 3. Quasidistribution amplitudes Qπðy; PÞ in the slow model for P ¼ 5Λ (left) and P ¼ 10Λ (right) evolving to CZ, flat
and asymptotic DAs.
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To proceed with the conversion formula, one needs the
integral over σ

Iðx; y; PÞ ¼
Z

∞

0

dσffiffiffiffiffiffi
πσ

p P
σ
e−ðx−yÞ2P2=σ−m2=σ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − yÞ2 þm2=P2

p : ð40Þ

This gives the hard part of the quasidistribution amplitude

Qhard
π ðy; PÞ ¼

Z
1

0

dx
ΔðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − yÞ2 þm2=P2
p : ð41Þ

It generates evolution with respect to P2 in the form

P2
d

dP2
Qhard

π ðy; PÞ ¼ m2

2P2

Z
1

0

dx
ΔðxÞ

½ðx − yÞ2 þm2=P2�3=2 :

ð42Þ
Taking the m=P → 0 limit we have

m2

2P2

Z
1

0

dx
Vðx; zÞ

½ðx − yÞ2 þm2=P2�3=2
¼ Vðy; zÞ þOðm2=P2Þ; ð43Þ

i.e., for large P2 the quasidistribution amplitude evolves
according to the perturbative evolution equation with
respect to P2. This evolution is completely determined
by the form of the soft DA φsoftðxÞ. When the model for the
latter is fixed, the particular choice of the soft TMDA
Ψsoftðx; k2⊥Þ does not affect the form of the hard part and the
perturbative P evolution of the pion QDA Qðy; PÞ.

VII. CONCLUSIONS

In this paper, we extended the approach of Ref. [14],
where we have been dealing with the parton distribution

functions, the basic ingredients of perturbative QCD
analysis of hard inclusive processes. Now we have dealt
with the pion distribution amplitude, the basic ingredient
of hard exclusive processes involving the pion. We
applied the formalism of virtuality distribution ampli-
tudes to study the p3 dependence of quasidistribution
amplitudes Qπðy; p3Þ.
Just like in Ref. [14], we have established a simple

relation between QDAs and TMDAs that allows us to
derive models for QDAs from the models for TMDAs.
Unlike the PDF case, there are many drastically different
models claimed to describe the primordial shape of the pion
DA. We have presented the p3-evolution patterns for
models producing some popular proposals: Chernyak-
Zhitnitsky, flat, and asymptotic DAs. Our results may be
used as a guide for future studies of the pion distribution
amplitude on the lattice using the quasidistribution
approach.
As our estimates show, one would need P of the order of

a few GeV for the nonperturbative evolution to settle. It is
natural to expect that perturbative evolution will be rather
important at such scales. Thus, an interesting and techni-
cally challenging question for future studies is the interplay
between the nonperturbutive and perturbative evolution of
the pion quasidistribution amplitude.
Another interesting problem for future studies is the

analysis of more complicated models for TMDAs, in
particular, models with nonfactorized k⊥ and x depend-
ence. As the simplest generalization of the models used in
the present paper, one can take x-dependent functions ΛðxÞ
instead of the constant values Λ.
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