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Casimir effect for Dirac lattices

M. Bordag
Institut fiir Theoretische Physik, Universitit Leipzig, 04009 Leipzig, Germany

L. G. Pirozhenko'

Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
Dubna State University, 141982 Dubna, Russia
(Received 3 January 2017; published 21 March 2017)

We consider polarizable sheets, which recently received some attention, especially in the context of the
dispersion interaction of thin sheets like graphene. These sheets are modeled by a collection of delta
function potentials and resemble zero-range potentials, which are known in quantum mechanics. We
develop a theoretical description and apply the so-called TGTG formula to calculate the interaction of two
such lattices. Thereby, we make use of the formulation of the scattering of waves off such sheets provided
earlier. We consider all limiting cases, providing a link to earlier results. Also, we discuss the relation to the

pairwise summation method.
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I. INTRODUCTION

This paper is a contribution to the discussion of van der
Waals and Casimir forces between surfaces. Last year,
much attention was paid to the interaction between slabs of
finite, and especially small, thickness. This was triggered
by a growing interest in two-dimensional structures
(sheets), like 2D electron gas, monotonic layers, and
graphene, as well as to the interaction between them. As
discussed in [1], the situation with sheets having only in-
plane polarizability is relatively clear. Here one can for-
mulate a hydrodynamic plasma model and calculate the
quantities of interest [2]. The same holds for graphene
described by the Dirac equation model for the 7z electrons
[3], which are responsible for the interaction with the
electromagnetic field.

The situation with perpendicular polarizability is more
complicated. While in [4] no response to the electromag-
netic field was found, in [5] it was shown that such a
response takes place. In that paper the sheet was modeled as
a lattice of harmonic oscillators (dipoles), vibrating in the
direction perpendicular to the sheet, and the limit of zero
spacing of this lattice was investigated. This was extended
in [6] to a sheet, continuous from the very beginning,
having parallel or perpendicular polarizabilities. Later,
a similar setup was considered using point dipoles [7].
These can be represented by Dirac delta functions forming
a so-called “Dirac lattice.” In fact, they represent point
scatterers.

Such lattices, taken alone, have a well-known internal
dynamics, the simplest case being the Kronig-Penney
model (“Dirac comb”) [8]. In quantum mechanics their
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use is known as the “method of zero-range potential” [9].
As is well known, in more than one dimension a Hamilton
operator with a delta function potential is not self-adjoint
[10]. In electrodynamics, the self-energy of a delta function
potential is singular and one needs a renormalization. In
terms of quantum field theory, this setup was considered
in [11].

Recently, a sheet of delta function potentials was used in
[7] to model a polarizable sheet. For instance, scattering off
such a sheet was investigated and subsequently the tran-
sition to a continuous sheet was as well.

In the present article we consider a setup of two such
sheets, held in parallel at some separation. This is a typical
situation for the Casimir effect. We use the well-known
scattering approach, also called “TGTG” formula, which
can be considered also as a generalization of the Lifshitz
formula. Making use of the translational invariance of the
lattice, the T-matrices can be calculated in a momentum
representation, for a one-dimensional lattice even explicitly.
Further, we allow for a displacement of one lattice with
respect to the other. Also we study the limiting cases of
small and large separation, respectively, of large and small
lattice spacing. For large separation, the limiting case
corresponds to the interaction of two sheets carrying the
delta function potential, and for small separation the
limiting case corresponds to the interaction of two points
carrying the delta function potential. In this paper we
consider only a scalar field. Extensions to the electromag-
netic field should be quite straightforward. It is also an
intention of this paper to provide a framework for calcu-
lating dispersion forces in realistic, experimentally relevant
situations, where the atomistic structure must be
accounted for.

The paper is organized as follows. In the next section we
provide the necessary formulas to calculate the vacuum

© 2017 American Physical Society
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energy for two- and one-dimensional lattices. In the third
section we derive all limiting cases and discuss their
interrelations. In the fourth section we compare the results
with pairwise summation. Some conclusions and two
Appendices complete the paper.

II. VACUUM ENERGY FOR POINT SCATTERERS

We consider two types of lattices. First, two dimensional
lattices, A and B, are given by the lattice vectors

a= (") a-(%) o
b 0

For these, we use the following notations. A three-
dimensional vector is denoted by an arrow, a two-
dimensional vector parallel to the (x,y) plane is denoted

in bold, for instance
. X
X = .
X3

The lattice sites are given by

n
a,=a s
ny

where n; and n, are integers, a is the lattice spacing; the
lattice is rectangular. The lattice B is in the (x, y) plane and
the lattice A is parallel to B on a separation b and shifted
within that plane by the displacement vector c.

Second we consider one-dimensional lattices (chains),
A and B, given by the lattice vectors

an+c an
Zt{? = 0 , Zz],f‘ = o 1, (2)
b 0

where n is a (single) integer. These chains are on the
x axis (B), respectively, parallel to it (A). Both are in the
plane y = 0. Their separation is b as above; the displace-
ment ¢ is a number.

With these notations, we consider a scalar field ¢(x),
whose wave equation after the Fourier transform in time is

(-or= 243 0G-a0) oG- )ah =0, ()

where a4 and a¥ are given by (1). In this equation, the delta
functions are three dimensional, hence the coupling g has
the dimension of length. As mentioned in the Introduction,
one should remember that the above equation is not well
defined and g must be viewed as a bare coupling which
needs to undergo a renormalization.
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The vacuum energy of the interaction of two lattices is
given by the mentioned TGTG formula,

1 ©

and ¢ is the imaginary frequency, @ = i&. The kernel M is
the product of two other kernels,

Auayy_/ﬁwwggjﬂwg@myx (5)
each of which is given by
NaaG?) = [ d0GoEFTas@5). (O

in terms of the T-operators of the corresponding lattice.
Further, the free Green’s function,

Gui-7) = [ %

273 @ — K> — k3 +i0’

ik

(7)

enters this formula. We will use below also the following
two representations:

Go(¥)

iw|X| Ak ek (x=x)Fil[x;3—x]
e e
/ )

Tanlx ) a2 2itk)

with ['(k) = Va? — k* +i0 and k = [K|.

The T-operators can be defined from
G(}, }/) — GO

(F-¥)
[ / 42/ Go(i—3)T(2.2)Go(Z = %), (9)

where G(x, ') is the Green’s function of Eq. (3) and can be
related to the ansatz

G(X.X) = Go(x = ¥) = > _Go(¥ — )P, Gy — X').
n,n’
(10)

Inserting this ansatz into the equation

(—a)2 -A+ gZ(é(x —ay) +8(x — ZzE)))G(}, x')
n
=5(x-%) (11)
and using the equation
(—@? — A)Gy(%,X) = 5(x = X') (12)

for the free Green’s function, one comes to the equation
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—0, L+ GO — QZGO Gy — G) ;L =0, (13)

With the definition
1 5 -
q)n.n’ = g‘sn,n’ + GO(an - an’) (14)

Eq. (13) becomes
Z(Dn m(D 1 = (15)

and @ ln, is the inverse matrix to @, ;.

The diagonal elements of @, , contain G,(0) which is
not well defined. Referring to [7] for a discussion, we
renormalize the coupling,

1 1
=+ Go(0) — -, 16
g TG00~ (16)

and after that we get
l s n— n/
D =17 L ( ) (17)
+Go(an — ay). (n#n')

which is well defined.
Now, comparing Eqgs. (9) and (10), we identify the
T-operator to be

Zéz—an

for one lattice and by the same formula with B in place of A
for the other. Inserting this expression into (6) we get

ZGO - an

and, again, the same with A — B. Further, inserting these
into (5), we get

wéay =7)  (18)

SLs@s —%)  (19)

MG, ¥) = / AN LG TN (), (20)

for the kernel M. Equations (19) and (20) represent the
general expressions for the kernel entering the TGTG
formula (4) for a generic lattice of delta functions. In the
following we consider first two-dimensional lattices as
given by (1), and, subsequently one-dimensional lattices
(chains) as given by Eq. (2).

A. Vacuum energy for two-dimensional lattices

In this subsection we consider lattices as given by
Eq. (1). These have translational invariance with respect
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to a lattice step. Equivalently, we have a, —a, = a,_,,
and the quantities entering Eq. (14) and (15) depend only
on differences, ®, , = ®,,_,, and the same for its inverse.
As a consequence, the inversion of this matrix can be
calculated by Fourier transform,

fumt [ 2,

(2”)2 }(k) = Ze_ikanfn- (21)

This way we get

dk . 1
q)—l/ = az/—e’k(a"_an’> = 22
n,n (2”)2 ¢(k) ( )

with

P(k) =) ek, (23)

n

Here we insert (17) and come to

p(k) —+Z ‘e k™ Gy (a

1 1
=—+—Ji(w, k), 24
(0 (24

where Eq. (8) was used and we introduced

1 . .
_ Zn’ m eiolan|+ika, (25)
n

As usual, in the primed sum the term with n =0 is
dropped. Finally, we mention the relation

4 | B
ekam p—1 L == ezkam/, 26
2 = =

which follows with the Fourier transform (21).
Now we return to the kernel A/ (19) and insert (8) for the
Green’s function,
4’k ezk x—a,—c¢)+il|x;—b|

(&%) Z,;/ 20T (k)

X @5 md(am + ¢ —x)8(b—x).  (27)

Ji(w,K)

Next we use (26) and get

. 42k eik(x—c)+ir\x3—b|
Natex) = / 2r? 2 (k)p(k)

X Ze‘ikamé(
m
The corresponding expression for N g(x,x') follows

from here with ¢ =0 and » = 0. Using these, we can
write down the kernel M(x,x’), Eq. (5),

am +c—x)5(b—x,). (28)
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42k elk x—c)+il|x;—b|
(x,x) /dx/ / 5
(227 2 (k)§(k)

x Y e kang(ay, + ¢ - x")5(b — x})
m

AR eik’x”+iF’|x’3’|
/ (27)2 2i (K )p(K')
XZ “Kaw §(ag — x')5(x}). (29)

Carrying out the integration over x” using the delta
functions, we come to a sum over m. Before doing this
sum, we split the momenta k and k’ into a quasimomentum
and integer part,

2
k' =q + ;”M, (30)

k=q+ N,
a
where N and M are integer vectors like n in a,. The
integration becomes [d’k = [d’q)_y and the compo-
nents of q = (q,.q,) are restricted to —% < g;, < 2. Now
the sum over m appearing in (29) gives

_— 27\ ?
g eilk—K)a, _ <ﬂ> 5(2)((1—‘1/)’ (31)
a

where the dependence on N and M dropped out. Then (29)
turns into

MEF) ==

/ d’q X (A+EN)—ZENe+iT |x;—b|

(27)* 5 20T (k) (k)

Z eiza—”Mc+iF’|b\

X _—
20k )p(k') “=

x 6(x%). (32)

e—iqam/é(am, _ X/)

This expression for M (X, x’) must be inserted into the
generalized Lifshitz formula (4) under the sign of the trace.
In doing so, the delta function in one factor M (X, x’) turns
the x in the next factor into a,,. Again, the summation over
m’ gives a delta function for the quasimomenta. In this way,
the products of the factors M (X, x') is diagonal in ¢ and we
can define

b+12"Nc

= %Z (33)

2i"

with k given by (30), and we rewrite (32) in the form
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MEX)=a /(2 e*h(w,q)h(w,q)*

X Y e 5(ay, — X')5(x}). (34)

In this way, the factors M (X,X’) entering (9) become
diagonal. The x integration in the trace is to be taken over
one cell and it turns the sum into unity,

/ d}einZe_iqam 5(am
m

As a consequence, for the vacuum energy per lattice cell we
get the expression

1 [ed d?
== / & q2 In
2y & (27)
This is the final general formula for the vacuum energy of
two lattices as given by Eq. (1). The numerical result for the

vacuum energy for one cell of the lattices is presented
at Fig. 1.

—x)8(x3) = 1. (35)

(1-1|h(i&.q)P).  (36)

B. Vacuum energy for one-dimensional lattices (chains)

In this subsection we consider lattices as given by
Eq. (2). The calculations are mostly in parallel to the
preceding subsection. The Fourier transform is now one
dimensional,

dk,
fu=a [Gretnie). F) =3 ehes,  (37)

where we used for the momentum the notation k; since the
lattice is parallel to the x axis. Following Eqgs. (22) and (23),
we get

Ea
0_0| I — —— |_ I
“0.05- -~ 0.10 0.15 0.20

Rio

b
05 010 0.15 020 @

=03

FIG. 1. The vacuum energy per unit as a function of distance
between lattices for different values of the coupling. Here lattices
are exactly opposite to one another, ¢ = 0. From left to right
g/a = 0.01, 0.05, 0.1. Inset: The same for two parallel Dirac
chains.
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Plky) =) ek, (38)

n

which after renormalization gives

~ 1 1

¢(k1) =

eiolnltikian
g 4n o aln|

(39)

The sum is one dimensional and can be done explicitly,

Bl) = o+ gt (1 + et

ina —2cos(ka)e?). (40)

By the way, the zeros of this function determine the zones
in the Kronig-Penney model.

Now we consider the kernel N4, Eq. (6), and insert the
Green’s function from (8) and the relation

1 /
Zezklan -l = e~ kiam (41)
$(ky)

to get

ALk etk (xy—an—c)+il|x;—b|

Ny(x.X') = / 2r? 2i0(k)d(k,)
X Ze‘”‘l"mcS(am + ¢ —x})5(x5)8(b — x}).

(42)

In parallel to (29), but carrying out the integration over x”,
we get further

2 iky (x)—c)+ikyxo+il'|x3—b|
M(?c,?c’) _ l d’k e ~2 ’ Ze—iklam
al Q) 2rk)gk) 4

LK e ik (amA-c) il |xf
/ (27)° 2i0(K')p(k))
x Y e ian' s(am — x})5(xh)5(x4). (43)

We introduce a splitting of the momenta like (30), but
now only for &,

where N and M are integers, and come to

PHYSICAL REVIEW D 95, 056017 (2017)

€)+iZENe+ikyxy+il'|x3—b|

(&%) / / de = 2ilj(k)<27(k1)

2z 47 20T (K ) (k)
x Ze—iq“"’é(am — x1)8(x3)8(x3). (45)

Following the same discussion concerning the trace as
in the preceding subsection, we are lead to introduce the
notation

2”Nc+tr\b\

/ o Z 2iI'(k (46)

h(w, q)

with

2

F:\/a)z—k%—k%—ki(), ky=q+ ”N (47)

Finally, we get the vacuum energy for one cell of the chains,

/ ¢ /_/ (1= (e g)). (48)

lT/ll

This is the final general formula for the vacuum energy of
two lattices as given by Eq. (2).

It should be mentioned that the formula for (i€, ¢) can
be simplified since the integration over k, in (46) can be
carried out. First, we perform the Wick rotation and define

=iy, Y=/ + K+ k. (49)
We get
de Nc —yb
ig.a) =, [ 52 (50)
Z —21/(15 k1

Changing the integration from k, for y and using the
integral representation

Ko(z) = /) * zeoh(6) gg (51)

one comes to

h(ié, q) = zmzN: _\/2‘25 (+ ;<b eENe (52)

with <;§(k1) given by Eq. (40). The numerical result for the
vacuum energy for one cell of the chains is presented at
Fig. 1 (inset).
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FIG. 2. The factor 7 = E(c #0)/E(c =0) is plotted as a
function of c¢/a for g/a = —0.1 and different separations
p = b/a of the chains. From bottom to top § = 0.1, 0.2, 0.4, 0.6.

The influence of the displacement ¢ on the interaction
between the chains is shown in Fig. 2. Similar profiles may
be found in [12] for the Casimir-Polder potential between
an atom and a one-dimensional grating.

III. LIMITING CASES

In this section we discuss the limiting cases of the
interaction lattices of delta functions. There are two limit-
ing cases for each, two- and one-dimensional lattices. One
limiting case is for large separation, or equivalently for

iR
- o~
~4- 1
1 1
1 |
1
k= b
} | —_— “« »|
1 1
'l : R-0
| I or
! 22 b—co
lm\
or -
b—0 & N
_—
‘\\ d R-ox
T or
y -
d-0
R—-0 >
or o P
d-o d
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dimensional reasons, for the small lattice step. The other is
for small separation, or equivalently, the large lattice step.

For large separation, the two-dimensional lattices turn
into planes, carrying a delta function potential. For these
the Casimir effect was first investigated in [13]. The one-
dimensional lattices (chains) turn into lines, carrying a
(two-dimensional) delta function potential. This case was
not considered so far. However, it turns out that it is
equivalent to the finite size cylinders with Dirichlet
boundary conditions for turning their radius to zero, as
considered in [14] and [15].

For small separation, in the limit, only one delta function
for the one lattice interacts with the closest one in the other
lattice. This is equivalent to the Casimir-Polder interaction
of two points carrying a delta function potential each.
This is the scalar version of the well-known interaction of
two dipoles, which was considered within the scattering
approach in [16]. Also, it can be considered as a limiting
case of the interaction of two spheres carrying the delta
function potential for vanishing radius of the spheres. The
corresponding calculation is shown in the Appendices.

The considered cases and their interrelations are shown
in Fig. 3.

A. Two-dimensional lattices at large separation

We start from Eq. (36) for the vacuum energy and
consider the limit of lattice spacing a — 0, or equivalently,

a—()
or

b-oo

a—o0
or o 94
b—0
b / w
-—
A
a—0 a‘
or v
b-co
——
a

FIG. 3.

Possible transitions from one-dimensional lattices (chains) and two-dimensional lattices of delta functions for large and small

separation. For convenience, the two-dimensional lattices are shown for ¢ = 0, i.e., without displacement. For large separation, the
lattices turn into continuous plates and the chains into wires. For small separation both turn into the closest points. Also shown are the

transitions from spheres and cylinders to plates and wires.
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separation b — oo. At the end, we will get two parallel
continuous sheets for which we need the energy density per
unit area which is a%EO. The integration region in q, given
by —Z<¢q;, <Z tumns into a whole R”. The function
h(w, k), (33), reads with imaginary frequency,

k)b+iZNc

withy = /& + K%, k; = gq; +27”N,- (i=1,2).Fora—0
all contributions except that for V' = 0 vanish and we get

k; = g;. Also, we need the function g;ﬁ, given by (24), and
the function J; (25), which reads now

1 )
J,(i6.K) = Zn/me—ﬁlanlﬂkan' (54)

For a — 0, the sum turns over into an integral, which can be
calculated easily,

NGEk) — 2. (55)

a—»Oa 14

see Eq. (134) in [7]. This way we get

h(i&, k) —>0re_5b, (56)
where
1
=——. (57)
142y

The vacuum energy (36) becomes

! Ey—
a2 a—>0 2

In fact, r, Eq. (57), is the well-known reflection coefficient
for a plane carrying a delta function potential and (58) gives
the Casimir effect for two such sheets. The ratio g/a?,
having the meaning of coupling per unit area, is the strength
of the delta function potential in the corresponding equa-
tion, where the delta function is one dimensional and well
defined such that this strength carries over from the
equation to the reflection coefficient without change.
This is in opposite to the strength g in Eq. (36) which,
after renormalization (16), has little to do with the g in
Eq. (3). The other way around, one can use the established
above relation to the continuous sheets as a normalization
of the coupling g after renormalization.

dq

n(l—(re7)?). (58)
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B. One-dimensional lattices (chains) at the
large separation

This case is to a large extend in parallel to the preceding
subsection. We start from (48) and consider the energy
per unit length, %EO. Further, we substitute £ — £/b and
q — g/b. This way we get a factor 1/b” in front and all
further dependence is on a/b.

Again in the function h(i&, k), Eq. (40), accounting
for (44), only N = 0 gives a nonvanishing contribution. A
somehow different feature appears from (27, (40), which has
a logarithmic behavior now,

k) =+ (56 m(2(eon ()
~on(3n))):

1 b a a
z 2In(=) == In(&2 2
g+4m< n(b) HEt n(& + k7)) + >

ln(%)
2ra/b’

(59)

The last line is the leading order and one observes that
the dependence on the coupling ¢ is lost. Inserting into (52)
we get

k) oo Ko (VB R). (60)

Finally, inserting into (48), we get

é Mzzz / de /dk1
X<1 <ln(a/b) Kol 52+k?)>2), (61)

and further expanding the logarithm,

1 1
il N 62
a %0 8zbIn(a/b)? (62)

where [° dppKoy(p)* =5 was used.

It is to be mentioned, that this result coincides with the
large separation limit of the interaction between two
parallel cylindrical shells carrying & potentials (see
Appendix B), considered also in [17]. The same limit
may be reproduced from [15], Eq. (88), for the interaction
of a conducting cylinder with a conducting plane after
taking into account the different geometries and a factor of
2 for the polarizations.
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C. Two-dimensional lattices at short separation

Here we consider the vacuum energy (36) for the
interaction of two-dimensional lattices for small separation,
or equivalently for large lattice steps. In this case the
integration region for the integration over q in (36) shrinks
to zero and this integral gives

2
@ [ Gt (@), = /), (63)

where f(q) is some arbitrary function. In the function
h(w, q) (24), we first consider the function J, (@, k) (25).
For a — oo, it simply vanishes. As a consequence, (%(k)
(24) turns into

Je) — L. (64)

Now in the function 4(w, q), the sum over N turns into an
integration according to

2n 1 dk

—N —k, — / —. 65

a a:)oo a? %:a:)oo (27[)2 ( )
This way, we get

. dk g e
h(i€, Q)a:’w/w_—zye shike, (66)

The integration can be carried out and after some calcu-
lation we arrive at

; 9 e
h(ig.q) — e (67)

where d = v/b? + ¢? is the separation between the closest
delta functions from the two lattices. With these, the

vacuum energy turns into
g _ 2
Y = , 63

which is the Casimir-Polder interaction of two points at
separation d carrying a delta function potential each. It
coincides with the interaction of two spheres carrying the
delta function potential at the large separation (or small
radius). The corresponding formula is displayed in
Appendices. Again, we remark that the coupling ¢ in
(68) is after renormalization and, therefore, is not fixed.

1 d
a-?2 |y T

D. One-dimensional lattices (chains) at short separation

We consider the vacuum interaction of two chains as
given by Eq. (48) for short separation. Similar to the
preceding subsection the integration over ¢ shrinks to a
point,
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a [ $21(q) — 50). (69)

a—oo

Next we consider the function ¢(k;) (40) and have

k) — L (70)

a—oo g

in the function h(®,q). The sum over A turns into an
integration according to

2z 1 dk
=N -, - — 71
a4 ame aZN:ajoo/er (71)

and we get from (52)

o dk

h(ig, ‘1);;9/ 5. Ko(VE + kb,

g —&d
= —28 s 72

4rd (72)

where again the integration over k was carried out and
d = Vb* + ¢? is the separation between the closest delta

functions from the two chains.
Now, inserting (69) and (72) into (48), we get

n (1 - <$ e-ﬁd) 2), (73)

which is the same expression as (68) and represents the
Casimir-Polder interaction of two points carrying the delta
function potential as discussed at the end of the preceding
subsection.

1 [od
E()—) - —51
a—x?2 o 7

IV. COMPARISON WITH PAIRWISE SUMMATION

A special feature of van der Waals and Casimir forces is
their multiparticle character. While in certain cases a
pairwise summation may give a good approximation, in
general, it will not. In this section we compare the results of
the exact calculation for point scatterers with the result of
pairwise summation, i.e., without multiparticle forces.

To this end we perform a pairwise summation of all
individual Casimir-Polder interactions

_dECP(”)
dr '

r=ry

F(Z) = ZFn COS<(pn)an(Z) = (74)

where Ecp is given by (68). For two chains n = n,
r, = V7> +n*a* and cos(gp,) = 1/+/1+ (an/z)*; for
two 2D-lattices a double summation is required
n={n;,nm}, r,=+2>+nla® +na* and cos(p,) =

1/7/1+ (an;/z)?> + (any/z)*. And finally, the interaction
energy per one ¢ function is
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FIG. 4. The difference between exact result (48) (dashed line)
and pairwise summation of individual Casimir-Polder inter-
actions for chains (73), g/a = 0.1.

En0) = [TF@d= Y Eepln) (79

n=—oo

As follows from Sec. 111, Egs. (68) and (73), the pairwise
summation is a good approximation at short distances,
where the exact formulas tend to a two-point Casimir-
Polder interaction. At medium and large distances the
pairwise summation overestimates the vacuum energy.
The corresponding curves for Dirac chains at medium
distances are presented in Fig. 4. Here, the pairwise
summation of Casimir-Polder interactions is performed
for N = 1000 Dirac 6’s. The evaluation according to the
exact formula, Eq. (48), was also truncated at N = 1000 in
Eq. (40), though the result only weakly depends on N at
medium and large distances.

The result of pairwise summation depends considerably
on the coupling g at large separations, while the asymptote
of the exact result, Eq. (62), is coupling independent.

V. CONCLUSIONS

We considered T-operators for a two-dimensional and a
one-dimensional lattices of & functions. These involve
lattice sums, which can be expressed in terms of the
Hurwitz zeta function. Further we used this T-operator
to formulate the kernel in the TGTG formula for the
dispersion interaction of two such lattices. This can be
viewed as a kind of generalized Lifshitz formula and
represents a finite (converging) expression for the inter-
action energy. We considered the cases of the interaction
of two parallel two-dimensional lattices and, of one-
dimensional parallel lattices (chains). The generalization
to rotations is left for future work.

We consider, in detail, limiting cases and show the
transition from lattices to planes for large separation and to
the Casimir-Polder interaction of two lattice sites at small
separation. These limiting cases are in agreement with
earlier results. Our formulas appear to interpolate between
these and establish the link between these.
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APPENDIX A: THE CASIMIR EFFECT FOR
TWO SPHERES CARRYING DELTA
FUNCTION POTENTIALS

In this appendix we display basic formulas for the
interaction of two spheres carrying delta function
potentialS (“semitransparent” spheres) using the by now
well-known scattering approach (TGTG formula).
Although such kinds of calculations are, in much a more
general form, contained in a number of papers, for example
in [18], specific formulas for one of the most simple special
cases may be of use. The first calculation involving delta
function potential is in [19], which was focused on the
corrections beyond proximity force approximation.

The basic setup is given by the following equation:

(_wz_Aw%(aw—R>+6<I%—?ll—R>>)¢<?C>:0’

(A1)

where R is the radius of the spheres, one at the origin, the

other at separation d = |Zl |. These delta functions are one
dimensional and the coupling g does not undergo any
renormalization.

Within the chosen approach, we need the 7-operator for
a single sphere. In this case the equation is

—w? = A 9
<a) +471'R2

(5 —R))qb(fc) —0. (A2)

The scattering problem for a single sphere was considered,
for example, in [20] and we use some notations from there.
The Green’s function for Eq. (A2), in a spherical basis, is

G(E.X) =Y Y, (Q)d)(r.F)Y,, () (A3)
Im
and the free radial Green’s function is
1
dO(r.r) = — jl(wr)hM (wr.), (A4)
rr

where

i@) = Vel lplx)  and b (2) =

r/ (2z)Hﬁ'12}2(x) are spherical Bessel functions. Their
Wronskian is jj(z)h(z) — ji(z)h)(z) = 1/iz>. The delta
function in (A2) results in matching conditions on the
radial function d,(r,r"), which must be continuous and
obey
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g
Ord(r, r/)\r:R+0 = 0,dy(r, r/)|r=R—0 = —mdz(R, r).
(AS)
With the ansatz
d,(r,”)=dO (r,”)=dO (r,R)® " (0)d (R, ") (A6)
we get
_ iwg/4r
(D l(a) = i ; ; . (A7)
) 1+ Zpiwj(wR)h(wR)
After Wick rotation, this expression becomes
. —gR/4rn
-1(ig) = 9R/ (A8)

U+ e lia(GR)K 4 (ER)

with the modified Bessel functions 7,(z) and K,(z).
Equation (A8) is in agreement with Eq. (23) in [20].
The TGTG formula can be written in a spherical basis,

1 [eod
Ey— —/ % Trin(1 = M), (A9)
2 0 T
where the kernel is
I+l
Ml,l’;m = Z Nl.l”;le”,l’;m (AIO)

I'=|I-1|

and the trace is over the orbital momenta. All expressions
are diagonal in the magnetic quantum number m. The
kernels in (A10) are

1 u
Nirm= =\ 2§RK” W(EdH], T (ER) 1 (ER)® (i)
(A11)

with the factors H 5//1’ resulting from the matrix elements for
the transition between the two centers. These are given,
e.g., by Eq. (10.129) in [21] or Eq. (5) in [22], and
correspond to the U in [18], Eq. (2.25). For g — oo, this
formula turns into that for Dirichlet boundary conditions on
the spheres.

For us, the important property is that for d — oo,
the leading order comes from [ =1 =1" =0 and with
H{, =1 we get

(Al12)
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The dependence on the radius R of the spheres drops out in
this limit. By inserting this into (A9) we get

@ dg g ’
E, = 1—(-Z=e ¥
d:)oo 2 0o T ( (47[ d ¢ )
for the interaction of two spheres carrying the delta function
potential in the limit of the large separation.

(A13)

APPENDIX B: THE CASIMIR EFFECT FOR
TWO CYLINDERS CARRYING DELTA
FUNCTION POTENTIALS

The derivation of the vacuum energy for two parallel
cylinders carrying delta function potentials may be found,
for example, in [17] or [23],

E 1

2 4— dféTrln(] -M), (B1)
with M given by (A10) and
2
Nirm = 9RK 11 (2d)I;(ER) 52)

14 gRI; (ER)K(¢R)

Here we compute the large distance limit of this vacuum
energy. The leading contribution for the large separation d
comes from the s wave. After the substitution, £ — £/d in
(B1), the relevant matrix elements entering the trace may be
rewritten in the form

My = 850 — I REKGOIGER/d)

U T gRIo(Rjd)Ko(eRD) B

With allowance for the behavior of the Bessel functions
at small arguments, Iy(x) =1+ O(z?) and Ky(x) =
—In(x/2) + O(z?%), one arrives at the expression

SN [ v +1In(/2) - (9R))]
M = llnzl(R;d) b In(R/d)
+ O((R/d)?), (B4)

which can be easily expanded in powers of small
1/In(R/d). This expansion we substitute into (B1) and
in the leading order arrive at

I 4ﬂd2/ 551n2 R/d) "8z (in(R/d))

(BS)

which coincides with (73) which was obtained from the
chains.
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