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We consider polarizable sheets, which recently received some attention, especially in the context of the
dispersion interaction of thin sheets like graphene. These sheets are modeled by a collection of delta
function potentials and resemble zero-range potentials, which are known in quantum mechanics. We
develop a theoretical description and apply the so-called TGTG formula to calculate the interaction of two
such lattices. Thereby, we make use of the formulation of the scattering of waves off such sheets provided
earlier. We consider all limiting cases, providing a link to earlier results. Also, we discuss the relation to the
pairwise summation method.
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I. INTRODUCTION

This paper is a contribution to the discussion of van der
Waals and Casimir forces between surfaces. Last year,
much attention was paid to the interaction between slabs of
finite, and especially small, thickness. This was triggered
by a growing interest in two-dimensional structures
(sheets), like 2D electron gas, monotonic layers, and
graphene, as well as to the interaction between them. As
discussed in [1], the situation with sheets having only in-
plane polarizability is relatively clear. Here one can for-
mulate a hydrodynamic plasma model and calculate the
quantities of interest [2]. The same holds for graphene
described by the Dirac equation model for the π electrons
[3], which are responsible for the interaction with the
electromagnetic field.
The situation with perpendicular polarizability is more

complicated. While in [4] no response to the electromag-
netic field was found, in [5] it was shown that such a
response takes place. In that paper the sheet was modeled as
a lattice of harmonic oscillators (dipoles), vibrating in the
direction perpendicular to the sheet, and the limit of zero
spacing of this lattice was investigated. This was extended
in [6] to a sheet, continuous from the very beginning,
having parallel or perpendicular polarizabilities. Later,
a similar setup was considered using point dipoles [7].
These can be represented by Dirac delta functions forming
a so-called “Dirac lattice.” In fact, they represent point
scatterers.
Such lattices, taken alone, have a well-known internal

dynamics, the simplest case being the Kronig-Penney
model (“Dirac comb”) [8]. In quantum mechanics their

use is known as the “method of zero-range potential” [9].
As is well known, in more than one dimension a Hamilton
operator with a delta function potential is not self-adjoint
[10]. In electrodynamics, the self-energy of a delta function
potential is singular and one needs a renormalization. In
terms of quantum field theory, this setup was considered
in [11].
Recently, a sheet of delta function potentials was used in

[7] to model a polarizable sheet. For instance, scattering off
such a sheet was investigated and subsequently the tran-
sition to a continuous sheet was as well.
In the present article we consider a setup of two such

sheets, held in parallel at some separation. This is a typical
situation for the Casimir effect. We use the well-known
scattering approach, also called “TGTG” formula, which
can be considered also as a generalization of the Lifshitz
formula. Making use of the translational invariance of the
lattice, the T-matrices can be calculated in a momentum
representation, for a one-dimensional lattice even explicitly.
Further, we allow for a displacement of one lattice with
respect to the other. Also we study the limiting cases of
small and large separation, respectively, of large and small
lattice spacing. For large separation, the limiting case
corresponds to the interaction of two sheets carrying the
delta function potential, and for small separation the
limiting case corresponds to the interaction of two points
carrying the delta function potential. In this paper we
consider only a scalar field. Extensions to the electromag-
netic field should be quite straightforward. It is also an
intention of this paper to provide a framework for calcu-
lating dispersion forces in realistic, experimentally relevant
situations, where the atomistic structure must be
accounted for.
The paper is organized as follows. In the next section we

provide the necessary formulas to calculate the vacuum
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energy for two- and one-dimensional lattices. In the third
section we derive all limiting cases and discuss their
interrelations. In the fourth section we compare the results
with pairwise summation. Some conclusions and two
Appendices complete the paper.

II. VACUUM ENERGY FOR POINT SCATTERERS

We consider two types of lattices. First, two dimensional
lattices, A and B, are given by the lattice vectors

~aAn ¼
�
an þ c

b

�
; ~aBn ¼

�
an
0

�
: ð1Þ

For these, we use the following notations. A three-
dimensional vector is denoted by an arrow, a two-
dimensional vector parallel to the ðx; yÞ plane is denoted
in bold, for instance

~x ¼
�

x

x3

�
:

The lattice sites are given by

an ¼ a

�
n1
n2

�
;

where n1 and n2 are integers, a is the lattice spacing; the
lattice is rectangular. The lattice B is in the ðx; yÞ plane and
the lattice A is parallel to B on a separation b and shifted
within that plane by the displacement vector c.
Second we consider one-dimensional lattices (chains),

A and B, given by the lattice vectors

~aAn ¼

0
B@

anþ c

0

b

1
CA; ~aBn ¼

0
B@

an

0

0

1
CA; ð2Þ

where n is a (single) integer. These chains are on the
x axis (B), respectively, parallel to it (A). Both are in the
plane y ¼ 0. Their separation is b as above; the displace-
ment c is a number.
With these notations, we consider a scalar field ϕð~xÞ,

whose wave equation after the Fourier transform in time is�
−ω2−Δþg

X
n

ðδð~x− ~aAn Þþδð~x− ~aBnÞÞ
�
ϕð~xÞ¼ 0; ð3Þ

where ~aAn and ~aBn are given by (1). In this equation, the delta
functions are three dimensional, hence the coupling g has
the dimension of length. As mentioned in the Introduction,
one should remember that the above equation is not well
defined and g must be viewed as a bare coupling which
needs to undergo a renormalization.

The vacuum energy of the interaction of two lattices is
given by the mentioned TGTG formula,

E0 ¼
1

2π

Z
∞

0

dξTr lnð1 −MÞ; ð4Þ

and ξ is the imaginary frequency, ω ¼ iξ. The kernel M is
the product of two other kernels,

Mð~x; ~x0Þ ¼
Z

dx00N Að~x; ~x00ÞN Bð~x00; ~x0Þ; ð5Þ

each of which is given by

N A;Bð~x; ~x0Þ ¼
Z

dx00G0ð~x; ~x00ÞTA;Bð~x00; ~x0Þ; ð6Þ

in terms of the T-operators of the corresponding lattice.
Further, the free Green’s function,

G0ð~x − ~x0Þ ¼
Z

d3k
ð2πÞ3

ei~kð~x−~x0Þ

ω2 − k2 − k23 þ i0
; ð7Þ

enters this formula. We will use below also the following
two representations:

G0ð~xÞ ¼
eiωj~xj

4πj~xj ¼
Z

d2k
ð2πÞ2

eikðx−x
0ÞþiΓjx3−x03j

2iΓðkÞ ; ð8Þ

with ΓðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2 þ i0

p
and k ¼ jkj.

The T-operators can be defined from

Gð~x;~x0Þ¼G0ð~x−~x0Þ

−
Z

dz
Z

dz0G0ð~x−~zÞTð~z;~z0ÞG0ð~z0−~x0Þ; ð9Þ

whereGð~x; ~x0Þ is the Green’s function of Eq. (3) and can be
related to the ansatz

Gð~x; ~x0Þ ¼ G0ð~x − ~x0Þ −
X
n;n0

G0ð~x − ~anÞΦ−1
n;n0G0ð~an0 − ~x0Þ:

ð10Þ

Inserting this ansatz into the equation�
−ω2 − Δþ g

X
n

ðδðx − ~aAn Þ þ δðx − ~aBnÞÞ
�
Gð~x; ~x0Þ

¼ δð~x − ~x0Þ ð11Þ

and using the equation

ð−ω2 − ΔÞG0ð~x; ~x0Þ ¼ δð~x − ~x0Þ ð12Þ

for the free Green’s function, one comes to the equation
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−Φ−1
n;n0 þ gδn;n0 − g

X
m

G0ð~an − ~amÞΦ−1
m;n0 ¼ 0: ð13Þ

With the definition

Φn;n0 ¼ 1

g
δn;n0 þ G0ð~an − ~an0 Þ ð14Þ

Eq. (13) becomesX
m

Φn;mΦ−1
m;n0 ¼ δn;n0 ð15Þ

and Φ−1
n;n0 is the inverse matrix to Φn;n0 .

The diagonal elements of Φn;n0 contain G0ð0Þ which is
not well defined. Referring to [7] for a discussion, we
renormalize the coupling,

1

g
þ G0ð0Þ →

1

g
; ð16Þ

and after that we get

Φn;n0 ¼
(

1
g ; ðn ¼ n0Þ
þG0ð~an − ~an0 Þ; ðn ≠ n0Þ

ð17Þ

which is well defined.
Now, comparing Eqs. (9) and (10), we identify the

T-operator to be

TAð~z; ~z0Þ ¼
X
n;n0

δð~z − ~aAn ÞΦ−1
n;n0δð~aAn0 − ~z0Þ ð18Þ

for one lattice and by the same formula with B in place of A
for the other. Inserting this expression into (6) we get

N Að~x; ~x0Þ ¼
X
n;n0

G0ð~x − ~aAn ÞΦ−1
n;n0δð~aAn0 − ~x0Þ ð19Þ

and, again, the same with A → B. Further, inserting these
into (5), we get

Mð~x; ~x0Þ ¼
Z

dx00N Að~x; ~x00ÞN Bð~x00; ~x0Þ; ð20Þ

for the kernel M. Equations (19) and (20) represent the
general expressions for the kernel entering the TGTG
formula (4) for a generic lattice of delta functions. In the
following we consider first two-dimensional lattices as
given by (1), and, subsequently one-dimensional lattices
(chains) as given by Eq. (2).

A. Vacuum energy for two-dimensional lattices

In this subsection we consider lattices as given by
Eq. (1). These have translational invariance with respect

to a lattice step. Equivalently, we have an − an0 ¼ an−n0 ,
and the quantities entering Eq. (14) and (15) depend only
on differences, Φn;n0 ¼ Φn−n0 , and the same for its inverse.
As a consequence, the inversion of this matrix can be
calculated by Fourier transform,

fn ¼ a2
Z

dk
ð2πÞ2 e

ikan ~fðkÞ; ~fðkÞ¼
X
n

e−ikanfn: ð21Þ

This way we get

Φ−1
n;n0 ¼ a2

Z
dk

ð2πÞ2 e
ikðan−an0 Þ 1

~ϕðkÞ ð22Þ

with

~ϕðkÞ ¼
X
n

e−ikanΦn: ð23Þ

Here we insert (17) and come to

~ϕðkÞ ¼ 1

g
þ
X

n
0e−ikanG0ðanÞ;

¼ 1

g
þ 1

4π
J1ðω;kÞ; ð24Þ

where Eq. (8) was used and we introduced

J1ðω;kÞ ¼
X

n
0 1

janj
eiωjanjþikan : ð25Þ

As usual, in the primed sum the term with n ¼ 0 is
dropped. Finally, we mention the relation

X
m

eikamΦ−1
m;m0 ¼ 1

~ϕðkÞ e
ikam0 ; ð26Þ

which follows with the Fourier transform (21).
Now we return to the kernelN (19) and insert (8) for the

Green’s function,

N Að~x; ~x0Þ ¼
X
n;m

Z
d2k
ð2πÞ2

eikðx−an−cÞþiΓjx3−bj

2iΓðkÞ
×Φ−1

n−mδðam þ c − x0Þδðb − x03Þ: ð27Þ
Next we use (26) and get

N Að~x; ~x0Þ ¼
Z

d2k
ð2πÞ2

eikðx−cÞþiΓjx3−bj

2iΓðkÞ ~ϕðkÞ
×
X
m

e−ikamδðam þ c − x0Þδðb − x03Þ: ð28Þ

The corresponding expression for N Bð~x; ~x0Þ follows
from here with c ¼ 0 and b ¼ 0. Using these, we can
write down the kernel Mð~x; ~x0Þ, Eq. (5),

CASIMIR EFFECT FOR DIRAC LATTICES PHYSICAL REVIEW D 95, 056017 (2017)

056017-3



Mð~x; ~x0Þ ¼
Z

dx00
Z

d2k
ð2πÞ2

eikðx−cÞþiΓjx3−bj

2iΓðkÞ ~ϕðkÞ
×
X
m

e−ikamδðam þ c − x00Þδðb − x003Þ

·
Z

d2k0

ð2πÞ2
eik

0x00þiΓ0jx00
3
j

2iΓðk0Þ ~ϕðk0Þ
×
X
m0

e−ik
0am0 δðam0 − x0Þδðx03Þ: ð29Þ

Carrying out the integration over ~x00 using the delta
functions, we come to a sum over m. Before doing this
sum, we split the momenta k and k0 into a quasimomentum
and integer part,

k ¼ qþ 2π

a
N; k0 ¼ q0 þ 2π

a
M; ð30Þ

where N and M are integer vectors like n in an. The
integration becomes

R
d2k ¼ R

d2q
P

N and the compo-
nents of q ¼ ðq1; q2Þ are restricted to − π

a ≤ q1;2 <
π
a. Now

the sum over m appearing in (29) gives

X
m

e−iðk−k0Þam ¼
�
2π

a

�
2

δð2Þðq − q0Þ; ð31Þ

where the dependence on N andM dropped out. Then (29)
turns into

Mð~x; ~x0Þ ¼ 1

a2

Z
d2q
ð2πÞ2

X
N

eixðqþ2π
aNÞ−i2πaNcþiΓjx3−bj

2iΓðkÞ ~ϕðkÞ

×
X
M

ei
2π
aMcþiΓ0jbj

2iΓðk0Þ ~ϕðk0Þ
X
m0

e−iqam0 δðam0 − x0Þ

× δðx03Þ: ð32Þ

This expression for Mð~x; ~x0Þ must be inserted into the
generalized Lifshitz formula (4) under the sign of the trace.
In doing so, the delta function in one factor Mð~x; ~x0Þ turns
the x in the next factor into am0 . Again, the summation over
m0 gives a delta function for the quasimomenta. In this way,
the products of the factorsMð~x; ~x0Þ is diagonal in q and we
can define

hðω;qÞ ¼ 1

a2
X
N

eiΓðkÞbþi2πaNc

2iΓðkÞ ~ϕðkÞ ð33Þ

with k given by (30), and we rewrite (32) in the form

Mð~x; ~x0Þ ¼ a2
Z

d2q
ð2πÞ2 e

iqxhðω;qÞhðω;qÞ�

×
X
m

e−iqamδðam − x0Þδðx03Þ: ð34Þ

In this way, the factors Mð~x; ~x0Þ entering (9) become
diagonal. The x integration in the trace is to be taken over
one cell and it turns the sum into unity,

Z
d~xeiqx

X
m

e−iqamδðam − xÞδðx3Þ ¼ 1: ð35Þ

As a consequence, for the vacuum energy per lattice cell we
get the expression

E0 ¼
1

2

Z
∞

0

dξ
π
a2

Z
d2q
ð2πÞ2 ln ð1 − jhðiξ;qÞj2Þ: ð36Þ

This is the final general formula for the vacuum energy of
two lattices as given by Eq. (1). The numerical result for the
vacuum energy for one cell of the lattices is presented
at Fig. 1.

B. Vacuum energy for one-dimensional lattices (chains)

In this subsection we consider lattices as given by
Eq. (2). The calculations are mostly in parallel to the
preceding subsection. The Fourier transform is now one
dimensional,

fn ¼ a
Z

dk1
2π

eik1an ~fðk1Þ; ~fðk1Þ¼
X
n

e−ik1anfn; ð37Þ

where we used for the momentum the notation k1 since the
lattice is parallel to the x axis. Following Eqs. (22) and (23),
we get

FIG. 1. The vacuum energy per unit as a function of distance
between lattices for different values of the coupling. Here lattices
are exactly opposite to one another, c ¼ 0. From left to right
g=a ¼ 0.01, 0.05, 0.1. Inset: The same for two parallel Dirac
chains.
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~ϕðk1Þ ¼
X
n

e−ik1anΦn; ð38Þ

which after renormalization gives

~ϕðk1Þ ¼
1

g
þ 1

4π

X
n≠0

eiωjnjþik1an

ajnj : ð39Þ

The sum is one dimensional and can be done explicitly,

~ϕðk1Þ ¼
1

g
þ 1

4πa
ln ð1þ e2iωa − 2 cosðk1aÞeiωaÞ: ð40Þ

By the way, the zeros of this function determine the zones
in the Kronig-Penney model.
Now we consider the kernel N A, Eq. (6), and insert the

Green’s function from (8) and the relation

X
n

eik1anΦ−1
mm0 ¼ 1

~ϕðk1Þ
e−k1am

0 ð41Þ

to get

N Að~x; ~x0Þ ¼
Z

d2k
ð2πÞ2

eik1ðx1−an−cÞþiΓjx3−bj

2iΓðkÞ ~ϕðk1Þ
×
X
m

e−ik1amδðamþ c − x01Þδðx02Þδðb − x03Þ:

ð42Þ

In parallel to (29), but carrying out the integration over x00,
we get further

Mð~x; ~x0Þ ¼ 1

a

Z
d2k
ð2πÞ2

eik1ðx1−cÞþik2x2þiΓjx3−bj

2iΓðkÞ ~ϕðk1Þ
X
m

e−ik1am

·
Z

d2k0

ð2πÞ2
eik

0
1
ðamþcÞþiΓ0jx00

3
j

2iΓðk0Þ ~ϕðk01Þ
×
X
m0

e−ik
0
1
am0

δðam − x01Þδðx02Þδðx03Þ: ð43Þ

We introduce a splitting of the momenta like (30), but
now only for k1,

k1 ¼ qþ 2π

a
N; k01 ¼ qþ 2π

a
M; ð44Þ

where N and M are integers, and come to

Mð~x; ~x0Þ ¼ 1

a

Z
dq
2π

Z
dk2
2π

X
N

eiqðx1−cÞþi2πa Ncþik2x2þiΓjx3−bj

2iΓðkÞ ~ϕðk1Þ

·
Z

dk02
2π

X
M

eiqcþi2πaMcþiΓ0jbj

2iΓðk0Þ ~ϕðk01Þ
×
X
m

e−iqamδðam − x01Þδðx02Þδðx03Þ: ð45Þ

Following the same discussion concerning the trace as
in the preceding subsection, we are lead to introduce the
notation

hðω; qÞ ¼ 1

a

Z
dk2
2π

X
N

ei
2π
a NcþiΓjbj

2iΓðkÞ ~ϕðk1Þ
ð46Þ

with

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k21 − k22 þ i0

q
; k1 ¼ qþ 2π

a
N: ð47Þ

Finally, we get the vacuum energy for one cell of the chains,

E0 ¼
1

2

Z
∞

0

dξ
π
a
Z

π=a

−π=a

dq
2π

ln ð1 − jhðiξ; qÞj2Þ: ð48Þ

This is the final general formula for the vacuum energy of
two lattices as given by Eq. (2).
It should be mentioned that the formula for hðiξ; qÞ can

be simplified since the integration over k2 in (46) can be
carried out. First, we perform the Wick rotation and define

Γ ¼ iγ; γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k21 þ k22

q
: ð49Þ

We get

hðiξ; qÞ ¼ 1

a

Z
dk2
2π

X
N

ei
2π
a Nc−γb

−2γ ~ϕðk1Þ
: ð50Þ

Changing the integration from k2 for γ and using the
integral representation

K0ðzÞ ¼
Z

∞

0

ez coshðθÞdθ ð51Þ

one comes to

hðiξ; qÞ ¼ 1

2πa

X
N

K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k21

p
bÞ

−2 ~ϕðk1Þ
ei

2π
a Nc ð52Þ

with ~ϕðk1Þ given by Eq. (40). The numerical result for the
vacuum energy for one cell of the chains is presented at
Fig. 1 (inset).
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The influence of the displacement c on the interaction
between the chains is shown in Fig. 2. Similar profiles may
be found in [12] for the Casimir-Polder potential between
an atom and a one-dimensional grating.

III. LIMITING CASES

In this section we discuss the limiting cases of the
interaction lattices of delta functions. There are two limit-
ing cases for each, two- and one-dimensional lattices. One
limiting case is for large separation, or equivalently for

dimensional reasons, for the small lattice step. The other is
for small separation, or equivalently, the large lattice step.
For large separation, the two-dimensional lattices turn

into planes, carrying a delta function potential. For these
the Casimir effect was first investigated in [13]. The one-
dimensional lattices (chains) turn into lines, carrying a
(two-dimensional) delta function potential. This case was
not considered so far. However, it turns out that it is
equivalent to the finite size cylinders with Dirichlet
boundary conditions for turning their radius to zero, as
considered in [14] and [15].
For small separation, in the limit, only one delta function

for the one lattice interacts with the closest one in the other
lattice. This is equivalent to the Casimir-Polder interaction
of two points carrying a delta function potential each.
This is the scalar version of the well-known interaction of
two dipoles, which was considered within the scattering
approach in [16]. Also, it can be considered as a limiting
case of the interaction of two spheres carrying the delta
function potential for vanishing radius of the spheres. The
corresponding calculation is shown in the Appendices.
The considered cases and their interrelations are shown

in Fig. 3.

A. Two-dimensional lattices at large separation

We start from Eq. (36) for the vacuum energy and
consider the limit of lattice spacing a → 0, or equivalently,

FIG. 2. The factor η ¼ Eðc ≠ 0Þ=Eðc ¼ 0Þ is plotted as a
function of c=a for g=a ¼ −0.1 and different separations
β ¼ b=a of the chains. From bottom to top β ¼ 0.1, 0.2, 0.4, 0.6.

FIG. 3. Possible transitions from one-dimensional lattices (chains) and two-dimensional lattices of delta functions for large and small
separation. For convenience, the two-dimensional lattices are shown for c ¼ 0, i.e., without displacement. For large separation, the
lattices turn into continuous plates and the chains into wires. For small separation both turn into the closest points. Also shown are the
transitions from spheres and cylinders to plates and wires.
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separation b → ∞. At the end, we will get two parallel
continuous sheets for which we need the energy density per
unit area which is 1

a2 E0. The integration region in q, given
by − π

a ≤ q1;2 <
π
a, turns into a whole R2. The function

hðω;kÞ, (33), reads with imaginary frequency,

hðiξ;qÞ ¼ 1

a2
X
N

e−γðkÞbþi2πaNc

−2γðkÞ ~ϕðkÞ ð53Þ

with γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2

p
, ki ¼ qi þ 2π

a Ni (i ¼ 1, 2). For a → 0

all contributions except that for N ¼ 0 vanish and we get
ki ¼ qi. Also, we need the function ~ϕ, given by (24), and
the function J1 (25), which reads now

J1ðiξ;kÞ ¼
X

n
0 1

janj
e−ξjanjþikan : ð54Þ

For a → 0, the sum turns over into an integral, which can be
calculated easily,

J1ðiξ; kÞ!
a→0

2π

a2γ
; ð55Þ

see Eq. (134) in [7]. This way we get

hðiξ; kÞ!
a→0

re−ξb; ð56Þ

where

r ¼ 1

1þ a2
g 2γ

: ð57Þ

The vacuum energy (36) becomes

1

a2
E0 !

a→0

1

2

Z
∞

0

dξ
π

Z
dq

ð2πÞ2 ln ð1 − ðre−γbÞ2Þ: ð58Þ

In fact, r, Eq. (57), is the well-known reflection coefficient
for a plane carrying a delta function potential and (58) gives
the Casimir effect for two such sheets. The ratio g=a2,
having the meaning of coupling per unit area, is the strength
of the delta function potential in the corresponding equa-
tion, where the delta function is one dimensional and well
defined such that this strength carries over from the
equation to the reflection coefficient without change.
This is in opposite to the strength g in Eq. (36) which,
after renormalization (16), has little to do with the g in
Eq. (3). The other way around, one can use the established
above relation to the continuous sheets as a normalization
of the coupling g after renormalization.

B. One-dimensional lattices (chains) at the
large separation

This case is to a large extend in parallel to the preceding
subsection. We start from (48) and consider the energy
per unit length, 1

a E0. Further, we substitute ξ → ξ=b and
q → q=b. This way we get a factor 1=b2 in front and all
further dependence is on a=b.
Again in the function hðiξ; k1Þ, Eq. (40), accounting

for (44), only N ¼ 0 gives a nonvanishing contribution. A
somehow different feature appears from ~ϕ, (40), which has
a logarithmic behavior now,

~ϕðk1Þ ¼
1

g
þ b
4πa

�
−
a
b
ξþ ln

�
2

�
cosh

�
a
b
ξ

�
2

− cos

�
a
b
k1

�
2
���

;

¼ 1

g
þ b
4πa

�
2 ln

�
a
b

�
−
a
b
ξþ lnðξ2 þ k21Þ þ � � �

�
;

!
a→0

þ lnðabÞ
2πa=b

: ð59Þ

The last line is the leading order and one observes that
the dependence on the coupling g is lost. Inserting into (52)
we get

hðξ; k1Þ !
a→0

−b
lnða=bÞK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k21

q �
: ð60Þ

Finally, inserting into (48), we get

1

a
E0 !

a→0

1

2b2

Z
∞

0

dξ
π

Z
dk1
2π

ln

×

�
1 −

�
1

lnða=bÞK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k21

q
Þ
�

2
�
; ð61Þ

and further expanding the logarithm,

1

a
E0 !

a→0
−

1

8πb2
1

lnða=bÞ2 ; ð62Þ

where
R∞
0 dppK0ðpÞ2 ¼ 1

2
was used.

It is to be mentioned, that this result coincides with the
large separation limit of the interaction between two
parallel cylindrical shells carrying δ potentials (see
Appendix B), considered also in [17]. The same limit
may be reproduced from [15], Eq. (88), for the interaction
of a conducting cylinder with a conducting plane after
taking into account the different geometries and a factor of
2 for the polarizations.
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C. Two-dimensional lattices at short separation

Here we consider the vacuum energy (36) for the
interaction of two-dimensional lattices for small separation,
or equivalently for large lattice steps. In this case the
integration region for the integration over q in (36) shrinks
to zero and this integral gives

a2
Z

d2q
ð2πÞ2 fðqÞ !a→∞

fð0Þ; ð63Þ

where fðqÞ is some arbitrary function. In the function
hðω;qÞ (24), we first consider the function J1ðω;kÞ (25).
For a → ∞, it simply vanishes. As a consequence, ~ϕðkÞ
(24) turns into

~ϕðkÞ !
a→∞

1

g
: ð64Þ

Now in the function hðω;qÞ, the sum over N turns into an
integration according to

2π

a
N !

a→∞
k;

1

a2
X
N

!
a→∞

Z
dk

ð2πÞ2 : ð65Þ

This way, we get

hðiξ;qÞ !
a→∞

Z
dk

ð2πÞ2
g

−2γ
e−ξbþikc: ð66Þ

The integration can be carried out and after some calcu-
lation we arrive at

hðiξ;qÞ !
a→∞

g
4πd

e−ξd; ð67Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
is the separation between the closest

delta functions from the two lattices. With these, the
vacuum energy turns into

E0 !
a→∞

1

2

Z
∞

0

dξ
π
ln
�
1 −

�
g

4πd
e−ξd

�
2
�
; ð68Þ

which is the Casimir-Polder interaction of two points at
separation d carrying a delta function potential each. It
coincides with the interaction of two spheres carrying the
delta function potential at the large separation (or small
radius). The corresponding formula is displayed in
Appendices. Again, we remark that the coupling g in
(68) is after renormalization and, therefore, is not fixed.

D. One-dimensional lattices (chains) at short separation

We consider the vacuum interaction of two chains as
given by Eq. (48) for short separation. Similar to the
preceding subsection the integration over q shrinks to a
point,

a
Z

dq
2π

fðqÞ !
a→∞

fð0Þ: ð69Þ

Next we consider the function ~ϕðk1Þ (40) and have

~ϕðk1Þ !
a→∞

1

g
ð70Þ

in the function hðω;qÞ. The sum over N turns into an
integration according to

2π

a
N !

a→∞
;

1

a

X
N

!
a→∞

Z
dk
2π

ð71Þ

and we get from (52)

hðiξ; qÞ !
a→∞

g
Z

∞

−∞

dk
2π

K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2

p
bÞeikc;

¼ g
4πd

e−ξd; ð72Þ

where again the integration over k was carried out and
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
is the separation between the closest delta

functions from the two chains.
Now, inserting (69) and (72) into (48), we get

E0 !
a→∞

1

2

Z
∞

0

dξ
π
ln

�
1 −

�
g

4πd
e−ξd

�
2
�
; ð73Þ

which is the same expression as (68) and represents the
Casimir-Polder interaction of two points carrying the delta
function potential as discussed at the end of the preceding
subsection.

IV. COMPARISONWITH PAIRWISE SUMMATION

A special feature of van der Waals and Casimir forces is
their multiparticle character. While in certain cases a
pairwise summation may give a good approximation, in
general, it will not. In this section we compare the results of
the exact calculation for point scatterers with the result of
pairwise summation, i.e., without multiparticle forces.
To this end we perform a pairwise summation of all

individual Casimir-Polder interactions

FðzÞ ¼
X
n

Fn cosðφnÞ; FnðzÞ ¼ −
dECPðrÞ

dr

����
r¼rn

; ð74Þ

where ECP is given by (68). For two chains n ¼ n,
rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ n2a2

p
and cosðφnÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðan=zÞ2

p
; for

two 2D-lattices a double summation is required
n ¼ fn1; n2g, rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ n21a

2 þ n22a
2

p
and cosðφnÞ ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðan1=zÞ2 þ ðan2=zÞ2

p
. And finally, the interaction

energy per one δ function is
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EpwðbÞ ¼
Z

∞

b
FðzÞdz ¼

X∞
n¼−∞

ECPðrnÞ: ð75Þ

As follows from Sec. III, Eqs. (68) and (73), the pairwise
summation is a good approximation at short distances,
where the exact formulas tend to a two-point Casimir-
Polder interaction. At medium and large distances the
pairwise summation overestimates the vacuum energy.
The corresponding curves for Dirac chains at medium
distances are presented in Fig. 4. Here, the pairwise
summation of Casimir-Polder interactions is performed
for N ¼ 1000 Dirac δ’s. The evaluation according to the
exact formula, Eq. (48), was also truncated at N ¼ 1000 in
Eq. (40), though the result only weakly depends on N at
medium and large distances.
The result of pairwise summation depends considerably

on the coupling g at large separations, while the asymptote
of the exact result, Eq. (62), is coupling independent.

V. CONCLUSIONS

We considered T-operators for a two-dimensional and a
one-dimensional lattices of δ functions. These involve
lattice sums, which can be expressed in terms of the
Hurwitz zeta function. Further we used this T-operator
to formulate the kernel in the TGTG formula for the
dispersion interaction of two such lattices. This can be
viewed as a kind of generalized Lifshitz formula and
represents a finite (converging) expression for the inter-
action energy. We considered the cases of the interaction
of two parallel two-dimensional lattices and, of one-
dimensional parallel lattices (chains). The generalization
to rotations is left for future work.
We consider, in detail, limiting cases and show the

transition from lattices to planes for large separation and to
the Casimir-Polder interaction of two lattice sites at small
separation. These limiting cases are in agreement with
earlier results. Our formulas appear to interpolate between
these and establish the link between these.
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APPENDIX A: THE CASIMIR EFFECT FOR
TWO SPHERES CARRYING DELTA

FUNCTION POTENTIALS

In this appendix we display basic formulas for the
interaction of two spheres carrying delta function
potentialS (“semitransparent” spheres) using the by now
well-known scattering approach (TGTG formula).
Although such kinds of calculations are, in much a more
general form, contained in a number of papers, for example
in [18], specific formulas for one of the most simple special
cases may be of use. The first calculation involving delta
function potential is in [19], which was focused on the
corrections beyond proximity force approximation.
The basic setup is given by the following equation:�
−ω2−Δþ g

4πR2
ðδðj~xj−RÞþδðj~x− ~dj−RÞÞ

�
ϕð~xÞ¼ 0;

ðA1Þ

where R is the radius of the spheres, one at the origin, the

other at separation d ¼ j~dj. These delta functions are one
dimensional and the coupling g does not undergo any
renormalization.
Within the chosen approach, we need the T-operator for

a single sphere. In this case the equation is

�
−ω2 − Δþ g

4πR2
δðj~xj − RÞ

�
ϕð~xÞ ¼ 0: ðA2Þ

The scattering problem for a single sphere was considered,
for example, in [20] and we use some notations from there.
The Green’s function for Eq. (A2), in a spherical basis, is

Gð~x; ~x0Þ ¼
X
lm

YlmðΩÞdlðr; r0ÞYlmðΩ0Þ� ðA3Þ

and the free radial Green’s function is

dð0Þðr; r0Þ ¼ 1

rr0
jlðωr<Þhð1Þl ðωr>Þ; ðA4Þ

where jlðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2zÞp

Jlþ1=2ðxÞ and hð1;2Þl ðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2zÞp

Hð1;2Þ
lþ1=2ðxÞ are spherical Bessel functions. Their

Wronskian is j0lðzÞhlðzÞ − jlðzÞh0lðzÞ ¼ 1=iz2. The delta
function in (A2) results in matching conditions on the
radial function dlðr; r0Þ, which must be continuous and
obey

FIG. 4. The difference between exact result (48) (dashed line)
and pairwise summation of individual Casimir-Polder inter-
actions for chains (73), g=a ¼ 0.1.
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∂rdlðr; r0Þjr¼Rþ0
− ∂rdlðr; r0Þjr¼R−0 ¼ −

g
4πR2

dlðR; r0Þ:
ðA5Þ

With the ansatz

dlðr;r0Þ ¼ dð0Þðr;r0Þ−dð0Þðr;RÞΦ−1ðωÞdð0ÞðR;r0Þ ðA6Þ

we get

Φ−1ðωÞ ¼ iωg=4π
1þ g

4πR iωjlðωRÞhlðωRÞ
: ðA7Þ

After Wick rotation, this expression becomes

Φ−1ðiξÞ ¼ −gR=4π
1þ g

4πR2 Ilþ1
2
ðξRÞKlþ1

2
ðξRÞ ðA8Þ

with the modified Bessel functions IνðzÞ and KνðzÞ.
Equation (A8) is in agreement with Eq. (23) in [20].
The TGTG formula can be written in a spherical basis,

E0 ¼
1

2

Z
∞

0

dξ
π
Tr lnð1 −MÞ; ðA9Þ

where the kernel is

Ml;l0;m ¼
Xlþl0

l00¼jl−l0j
N l;l00;mN l00;l0;m ðA10Þ

and the trace is over the orbital momenta. All expressions
are diagonal in the magnetic quantum number m. The
kernels in (A10) are

N l;l0;m¼ 1

R3

ffiffiffiffiffiffiffiffi
π

2ξR

r
Kl00þ1

2
ðξdÞHl00

l;l0 Ilþ1
2
ðξRÞIl0þ1

2
ðξRÞΦ−1ðiξÞ

ðA11Þ

with the factors Hl00
l;l0 resulting from the matrix elements for

the transition between the two centers. These are given,
e.g., by Eq. (10.129) in [21] or Eq. (5) in [22], and
correspond to the U in [18], Eq. (2.25). For g → ∞, this
formula turns into that for Dirichlet boundary conditions on
the spheres.
For us, the important property is that for d → ∞,

the leading order comes from l ¼ l0 ¼ l00 ¼ 0 and with
H0

0;0 ¼ 1 we get

N 00 !
d→∞

g
4πd

E−ξd: ðA12Þ

The dependence on the radius R of the spheres drops out in
this limit. By inserting this into (A9) we get

E0 !
d→∞

1

2

Z
∞

0

dξ
π
ln

�
1 −

�
g

4πd
e−ξd

�
2
�

ðA13Þ

for the interaction of two spheres carrying the delta function
potential in the limit of the large separation.

APPENDIX B: THE CASIMIR EFFECT FOR
TWO CYLINDERS CARRYING DELTA

FUNCTION POTENTIALS

The derivation of the vacuum energy for two parallel
cylinders carrying delta function potentials may be found,
for example, in [17] or [23],

E
L
¼ 1

4π

Z
∞

0

dξξTr lnð1 −MÞ; ðB1Þ

with M given by (A10) and

N l;l0;m ¼ gRKlþl0 ðξdÞI2l0 ðξRÞ
1þ gRIl0 ðξRÞKl0 ðξRÞ

: ðB2Þ

Here we compute the large distance limit of this vacuum
energy. The leading contribution for the large separation d
comes from the s wave. After the substitution, ξ → ξ=d in
(B1), the relevant matrix elements entering the trace may be
rewritten in the form

Mll0 ¼ δ0l δ
0
l

g2R2K2
0ðξÞI40ðξR=dÞ

ð1þ gRI0ðξR=dÞK0ðξR=dÞÞ2
: ðB3Þ

With allowance for the behavior of the Bessel functions
at small arguments, I0ðxÞ ¼ 1þOðz2Þ and K0ðxÞ ¼
−γ − lnðx=2Þ þOðz2Þ, one arrives at the expression

Mll0 ¼
δ0l δ

0
l0K

2
0ðξÞ

ln2ðR=dÞ
�
1þ γ þ lnðξ=2Þ − ðgRÞ−1Þ

lnðR=dÞ
	−2

þOððR=dÞ2Þ; ðB4Þ

which can be easily expanded in powers of small
1= lnðR=dÞ. This expansion we substitute into (B1) and
in the leading order arrive at

E
L
¼−

1

4πd2

Z
∞

0

dξξ
K2

0ðξÞ
ln2ðR=dÞ¼−

1

8πd2ðlnðR=dÞÞ2 ; ðB5Þ

which coincides with (73) which was obtained from the
chains.
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