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We present the generalization to nonpositive definite spectral functions of a recently proposed Bayesian
deconvolution approach (BR method). The novel prior used here retains many of the beneficial analytic
properties of the original method; in particular, it allows us to integrate out the hyperparameter α directly.
To preserve the underlying axiom of scale invariance, we introduce a second default-model related
function, whose role is discussed. Our reconstruction prescription is contrasted with existing direct
methods, as well as with an approach where shift functions are introduced to compensate for negative
spectral features. A mock spectrum analysis inspired by the study of gluon spectral functions in QCD
illustrates the capabilities of this new approach.
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I. INTRODUCTION

The determination of real-time properties of strongly
interacting quantum field theories is a key aspect in many
areas of modern theoretical physics. It ranges from compu-
tations of transport properties [1] of ultracold atomic gases
(see e.g. [2,3]) at very low T ∼ 10−9 K to the screening of
color charges in a quark-gluon plasma created in a relativ-
istic heavy-ion collision [4] at T ∼ 1012 K (see e.g. [5–7]).
Only if we can compute dynamical observables in
Minkowski time can our knowledge about the fundamental
laws of physics be connected to real-world experiments.
Despite tremendous progress in both analytic and numeri-

cal computational strategies, the majority of approaches,
which treat quantum field theory from first principles, are
formulated in unphysical Euclidean time or, as advocated
recently e.g. in [8], in the imaginary frequency domain. In
the context of the strong interactions, lattice QCD is the
prime example. In turn, one repeatedly encounters the need
to perform analytic continuations of correlation functions in
order to access the sought after real-time information.
Analytic continuations are often implemented by use of

spectral functions; i.e., many phenomenologically relevant
correlation functions permit a representation as integral
convolutions of a purely real (or purely imaginary) spectral
function ρðωÞ over a kernel function K. The variable we
wish to continue appears only in the kernel, which is
analytically known. The Euclidean kernel and the Källén-
Lehmann kernel represent two important examples:

DðτÞ ¼
Z

∞

−∞
dω

e−ωτρðωÞ
1 ∓ e−βω

;

DðμÞ ¼ T
Z

∞

−∞
dω

ρðωÞ
ω − iμ

: ð1Þ

Such spectral representations are employed in two ways.
If the spectra are known, they allow us to carry out the

analytic continuation by simply substituting τ → −it or
μ → −iω into K. On the other hand, they provide the
basis of how to extract spectral information from comput-
able correlation functions in the first place, i.e. via a
deconvolution.
The input for the deconvolution are correlation functions

D, evaluated on a finite number Nd of points with a
nonvanishing uncertainty ΔD:

Di ¼
XNω

l¼1

ΔωlKilρl; i ∈ ½0; Nd�: ð2Þ

The task to extract from such a limited set of data a
continuous spectral function sampled at Nω ≫ Nd frequen-
cies is clearly ill posed. This is apparent if we try to carry
out a naive χ2 fit of the Nω parameters ρl, which would
yield an infinite number of degenerate solutions all repro-
ducing Di within errors.
In order to give meaning to the inversion task, we turn

to Bayesian inference [9,10], starting out from Bayes
theorem:

P½ρjD; I� ∝ P½Djρ; I�P½ρjI�: ð3Þ

It tells us that the probability of a candidate spectral
function ρ to represent the spectral function of a specific
correlator D is proportional to the product of the likelihood
probability P½Djρ; I� and the prior probability P½ρjI�. The
former encodes how probable it is that the correlator data
actually arise from the test spectrum, while the latter
denotes how compatible this test function is to prior
information we possess about the spectrum. If we assume
that the Di are obtained from a sampling algorithm with a
Gaussian distribution, then P½Djρ� ¼ exp½L�, where
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L ¼ 1

2

XNd

i;j¼1

ðDi −Dρ
i ÞC−1

ij ðDj −Dρ
jÞ ð4Þ

with the covariance matrix Cij amounts to the well-known
χ2 functional, which in turn is regulated by the prior
P½ρjI� ¼ exp½−S�.
To set up a viable reconstruction prescription we need to

devise a regulator functional S that both encodes as much as
possible relevant prior information, while at the same time
interferes as little as possible with the actual information
encoded in the data. This is achieved in two ways: on the
one hand, the functional form of S½ρ; m� itself favors certain
spectra, on the other hand it depends on a function mðωÞ,
the so called default model, at which it is extremal; i.e., by
definition, in the absence of data, mðωÞ must represent the
correct spectrum. Conventionally one further introduces a
hyperparameter α to weight the influence of prior infor-
mation versus that of the data [9]. In our approach, due to
the particular form of the prior S and similar to the BR
method [11], we will integrate out α,

P½ρjD; I;m� ∝ P½Djρ; I�
Z

∞

0

dαP½ρjm; α�P½α�; ð5Þ

assuming complete ignorance about its values P½α� ¼ 1.
After choosing both S and m, the optimization of the

posterior probability,

δP½ρjD; I�
δρ

����
ρ¼ρBayes

¼ 0; ð6Þ

provides a point estimate of the most probable Bayesian
spectrum, given the correlator data and our prior information.
We would like to remind the reader that for any finite Nd

and finite ΔD, two different Bayesian prescriptions will, in
general, give differing answers. Some parts of the recon-
structed spectrummay already be fixed by the data, then the
variation of either S or m will leave them intact. Other
spectral features are governed by prior information and can
be identified as such by appropriately varying that input.
Due to Bayes theorem, all Bayesian methods, if imple-

mented correctly, must converge to the correct result in
the limit Nd → ∞ and ΔD → 0. How quickly they do so
depends both on the kernel present in the problem, as well
as the choice of S. In particular we will see that exponen-
tially damped kernels present a major challenge to reaching
this “Bayesian continuum limit”.
In most circumstances, the spectra one wishes to extract

are a priori known to be positive or negative definite. In such
cases, the number of possible solutions to the inversion
problem reduces dramatically. On the other hand, there are
both technical and physical reasons why we may encounter
spectra with mixed contributions. Computing correlators
with mixed source and sink operators for use e.g. in a
generalized eigenvalue problem [12] or subtracting the

perturbatively computed high-frequency behavior during a
renormalization procedure [13] are two pertinent examples.
On the other hand, there exists a whole class of

phenomenologically relevant spectral functions, which are
known to exhibit positivity violation, in particular, the single
particle spectra of quarks and gluons in Landau gauge QCD
[14,15]. For the latter, it has been shown that, even at weak
coupling, the spectrum at high frequency approaches zero
from below. These spectra not only provide by themselves
vital information about the dynamical structure of QCD but
also can function as input for real-time computations of e.g.
transport properties in QCD or condensed matter physics.
Therefore, in the following, we will eventually relax the
requirement of positive definiteness leaving us exposed to
the full severity of the inverse problem.
In case we assume the positive definiteness of the

spectrum, several Bayesian approaches have been put
forward, the most popular being the maximum entropy
method (MEM) [16–18]. Based on arguments from two-
dimensional image reconstruction, it proposes to use the
Shannon-Jaynes entropy,

SSJ ¼
Z

dω
�
ρ −m − ρ log

hρ
m

i�
; ð7Þ

as a prior functional. In its state-of-the art implementation
by Bryan, one in addition restricts by hand the dimension-
ality of the solution space around the default model to Nd.
This restriction is controversially discussed in the literature,
and extensions towards using the full search space have
been proposed (see e.g. [19]). Other approaches, such as
Tikhonov regularization [20], if reinterpreted in a Bayesian
language, amount to an approach similar to historic MEM
but instead with a quadratic prior and a vanishing default
model. The choice ofm ¼ 0 tells us that this approach does
not exploit the positive definiteness of the spectrum, and it
may hide the fact that implicitly a default model has been
chosen.
Recently, a novel Bayesian approach has been developed

(BR method [11]), which is specifically geared towards the
one-dimensional reconstruction problem following from
Eq. (1). Similar to the MEM, it is based on four axioms. It
attempts to describe a prior that penalizes deviations from
the default model as weakly as possible, while still
providing a unique global answer:

SBR ¼
Z

dω
�
1 −

ρðωÞ
mðωÞ þ log

hρðωÞ
mðωÞ

i�
: ð8Þ

While it appears to be closely related to the Shannon-
Jaynes entropy, it differs in essential ways. Note that only
ratios of ρ and m contribute and that the logarithm is not
multiplied with the spectrum itself. The latter avoids the
problem of flat directions inherent in the Shannon-Jaynes
entropy if ρ=m ≪ 1 and allows us to easily compute the
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normalization of the corresponding prior probability
ZS ¼

R
dρ exp½−αS�.

Now let us have a look at existing strategies on how to
accommodate spectra with negative contributions in a
Bayesian fashion. The most straight forward is the case
of the quadratic prior used e.g. in the Tikhonov approach
[20], which from the outset permits such spectra. One needs
to keep in mind, however, that this choice of prior leads to a
relatively strong penalty of deviations from the default
model, which in practice leads to significant smoothing
effects that need to be compensated for by an increased
number of provided data points.
The MEM has been generalized [21] by assuming a

decomposition of the spectrum into a positive and negative
definite part ρ ¼ ρþ − ρ−, for each of which a separate
prior probability of Shannon-Jaynes type is introduced.
This requires the specification of two default models mþ
and m−, which together can be combined in a single
regulator functional,

Sþ−½ρ; mþ; m−� ¼
Z
dω

�
ψ −mþ −m− − ρ log

hψ þ ρ

2mþ

i�
;

ð9Þ

with the abbreviation ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þmþm−

p
. While the

derivation based on multiplication of probabilities is
straightforward, the requirement to provide an a priori
decomposition of the spectrum into positive and negative
parts is challenging, if not impractical. Often the point of
crossing from the positive to the negative domain is
information we wish to obtain by carrying out the spectral
reconstruction in the first place. In addition, we will see that
also Sþ−, similar to SSJ, leads to a stronger penalty for
deviations from the default model, compared to the
generalized BR method we will introduce here.
Let us note that, due to the linearity of integrals, we may

also attempt to circumvent the issue of negative spectra by
adding to the correlator data points, which arise from a
spectrum that only contains positive contributions. The idea
(see e.g. [22]) is to overcompensate any possible negative
spectral contributions in the original data set. In Euclidean
time, e.g., the convexity of correlators is intimately con-
nected with spectral positivity; i.e., one can always construct
a shift function with a large enough amplitude so that
convexity is restored in the sum of data and shift.Wewill see
that while this approach is straightforward in principle, in
practice the dependence on the choice of shift function
introduces uncertainties that require a large number of data
points to be controlled.
With the goal to devise a Bayesian reconstruction for

general spectra that does not require an explicit decom-
position into positive and negative domains and which
leaves as much as possible freedom for the information in
the data to manifest itself in the reconstructed spectrum, we
introduce in Sec. II a generalization of the BR method.

Section III provides a detailed mock data analysis for the
reconstruction of spectra inspired by gluon spectral func-
tions in QCD before concluding in Sec. IV.

II. THE GENERALIZED BR PRIOR

The starting point of the original BR method are four
axioms, two of which are specifically tailored to the one-
dimensional reconstruction of positive definite spectra. The
first of these is scale invariance, which is related to the fact
that by definition the default model must possess the same
dimensionality or units as the reconstructed spectrum. It
leads one to consider only ratios of ρ=m in the construction
of the prior.
Now that we allow negative contributions in ρ and m

and, in particular, m ¼ 0 is possible, we may not form a
simple ratio of these two quantities. If we wish to determine
the deviation of the spectrum from the default model in this
case, we can use the difference instead ρ −m. Since this
quantity is not dimensionless it would not satisfy scale
invariance and thus needs to be amended by an additional
function which carries the same dimensions as both ρ
and m. Just as in the case of the likelihood, where the
covariance matrix took on a similar role, we may introduce
a generalized default model hðωÞ, which encodes how
confident we are in our default model. This leads us to the
ratio ðρ −mÞ=h that satisfies scale invariance.
The second of the axioms in the original BR method is

related to a smoothness assumption, designed to constrain the
reconstruction uniquely, where data alone are not able to do
so. It is introduced by comparing thevalues of the ratio ρ=m at
neighboring frequencies. Since we wish to use the same path
of deriving the analytic form of the generalized prior from a
similar argument, we construct a suitable substitute for the
ratio.Our ansatz is jρ−mj=hþ1, since itmeasures aweighted
deviation between ρ and m with minimal value unity.
Following the smoothness argument of the original BR
method, we thus end up with a generalized prior function:

SgBR½ρ; m; h�

¼
Z

dωsgBR½ρ; m; h�

¼
Z

dω

�
−
jρðωÞ −mðωÞj

hðωÞ þ log

�jρðωÞ −mðωÞj
hðωÞ þ 1

�	
:

ð10Þ

One might worry that the appearance of an absolute value
in the integrand will lead to nondifferentiability at the
extremum ρ ¼ m; however, both the first and second
derivative are well defined everywhere. In particular,
∂2
ρs

g
BR > 0, which means that the proof of the existence

of a unique maximum of P½ρjD; I� and thus a unique
Bayesian spectral reconstruction still holds, as discussed
in [16]. The normalization for P½ρjI� ¼ eαS

g
BR=ZS reads
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ZS¼
Z

exp½αSgBR�

¼
Y
l

2hleΔωlαðΔωlαÞ−1−ΔωlαΓð1þΔωlα;ΔωlαÞ; ð11Þ

where Γða; zÞ ¼ R
∞
z ta−1e−tdt denotes the incomplete

gamma function.
Let us see how this functional compares to other

regulators. To this end, we plot in Fig. 1 for m ¼ 1 the
ρ dependence of minus the integrand s of the prior S at a
single frequency. Besides the original BR method (orange
solid), a generalization of the MEM based on the a priori
positive-negative decomposition sþ−ð2; 1Þ (light blue long
dashed) is shown. The generalized BR prior for two choices
of the generalized default model h ¼ 1, 2 corresponds to
the blue dashed lines. As required by Bayes theorem, all
curves show an extremum at ρ ¼ m (gray vertical line). sBR
forbids negative spectral components; thus, it diverges at
ρ ¼ 0.
If h ¼ m and m > 0, we have the special case that sBR

and sgBR coincide for ρ > m, one essentially mirrors the left-
hand side of the original BR prior. In the more general case
that h ≠ m, we find

d2

dρ2
sgBR½ρ; m; h� ¼ 1

ðhþ jρ −mjÞ2 ; ð12Þ

d2

dρ2
sþ−½ρ; mþ; m−� ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2 þ ρ2

p ; ð13Þ

telling us that, away from the extremum, the new gener-
alized prior sgBR shows a weaker curvature than sþ−, while
still rising faster than linear in ρ.

This fact is important as it means that, among the
available approaches for arbitrary spectra, it imprints the
prior information encoded in m most weakly, while still
providing a unique answer. In other words, it lets the data
speak most freely. Conversely, this also means that the
generalized BR method, just as in the positive definite case,
is also the most susceptible method to numerical ringing,
which needs to be appropriately identified and distin-
guished from possible peak structures actually encoded
in the correlator data Di. In the next section, we will find
out through a realistic mock data analysis where the
benefits and drawbacks of this new prior lie.

III. MOCK DATA ANALYSIS

Among others, we plan to deploy this generalized BR
method in the future for the study of gluon spectra in
Landau gauge QCD using correlation functions obtained
from lattice QCD [23] and the functional renormalization
group [24]. Therefore, we thoroughly test our approach
here with mock spectra, which qualitatively resemble the
expected functional form of the gluon spectral function;
i.e., we take these spectra to be antisymmetric around the
frequency origin and, as shown in Fig. 2, they all start out
with a quadratic rise and exhibit a peak before entering a
negative region.
For large frequencies the mock spectra approach the ω

axis from below with a tail of different strength. The most
difficult (and unphysical) test case is an asymptotic 1=x
falloff (ρmock

1 , solid) the second most challenging amounts
to a quadratic behavior (ρmock

2 , long dashed) and the easiest
one is exponentially damped (ρmock

3 , short dash). To
accommodate the tail behavior, the reconstruction is
performed on a relatively large frequency interval of
ω ∈ ½0; 3000� GeV, over which the tails close in on the
ω axis. Such a large frequency range represents an extreme

FIG. 1. Shapes of (minus) the original BR method prior
integrand sBR (orange solid) and its extension to nonpositive
spectra sgBR for m ¼ 1. The latter is plotted for two different
values of the generalized default model h ¼ m, 2m (blue dashed,
solid). As comparison we show the generalized MEM prior
sþ−ð2m; 2Þ for a particular positive-negative decomposition
(light blue long dash).

FIG. 2. Low frequency region of the three mock spectra used.
They all contain a positive peak close to the origin, as well as a
negative tail structure with either linear (mock1, solid) quadratic
(mock2, long dash) or exponential (mock3, short dash) falloff.
The full frequency range covers ω ∈ ½0; 3000� GeV to allow the
tail to approach the ω axis appreciably.
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choice, which will not become necessary when e.g.
reconstructing from lattice QCD correlators. On the other
hand if reconstructions are carried out using correlation
functions obtained from continuum computations, weakly
damped UV tail structures may be encoded in the data, and
we wish to ascertain the robustness of our method even in
such cases.
We will in the following pit the generalized BR method

against another popular approach, where shift data Dσ
i are

added to the original correlator Di to overcompensate
eventual negative spectral contributions. Subsequently
the reconstruction is carried out with a method for positive
definite spectra, subtracting in the end the spectrum σ
corresponding to the shift. Here the original BR method
will be deployed to reconstruct the shifted spectrum1 using
the ten different shift functions given in Fig. 3.
All of these exhibit a quadratic rise at the origin, which

smoothly flattens off around different ω1 ∈ ½0.02; 0.2� GeV
to a common constant of sðω1Þ ¼ 30. At a given ω2 ¼
20 GeV σ smoothly goes over into a positive falloff, similar
in strength to the high frequency perturbative gluon tail.
Such a shift fully compensates the negative tail in each of
the mock spectra. Note that we will not use any shifts when
performing the reconstruction with the generalized BR
method later on.
The mock analysis will also allow us to investigate the

dependence of the reconstruction on the kernel involved.
Since in functional renormalization group computations the
correlator can be equally well be evaluated in Euclidean
time or imaginary frequency, we will contrast the two cases.
Let us start with the more common case of using data along
Euclidean time.

A. Reconstruction from Euclidean data

To generate an ideal set of data points, we integrate the
spectra of Fig. 2 according to Eq. (1) over the exponential
kernel. To each Di we assign an errobar with constant
relative magnitude ΔD=D ¼ const. Since the Euclidean
correlator data are symmetric around τ ¼ β=2, it is only
necessary to use the first half of the interval, which in turn
speeds up the numerics. As in the actual studies, where we
will deploy this method, sum rules for the area of the
spectrum are available, we replace the first data point τ ¼ 0
with the integral over the spectrum. This value will be used
as an additional constraint on the reconstructed spectrum
with equal relative uncertainty.
To obtain the shift data, the functions of Fig. 3 are

integrated over as well. We use the Newton-Coates method

in Mathematica, which provides explicit control over the
error made. This is particularly important for carrying out
the reconstruction from shifted correlators, since the shift
data might be 1 to 3 orders of magnitude larger than the
original data; i.e., after adding Dσ

i to Di, we also need to
appropriately combine their errors, where that of the former
may not swamp the relevant signal in the latter. We make
sure that ΔDσ

i is at least an order of magnitude smaller
than ΔDi. In the following the frequency interval is
sampled at Nω ¼ 4000 points within three subintervals

[0, 2] GeV with Nð1Þ
ω ¼ 500, (2, 60] GeV with Nð2Þ

ω ¼ 1500

and (60, 3000] GeV with Nð3Þ
ω ¼ 2000.

In the case of Euclidean time data, the integral kernel
actually depends on the temperature itself, since the
physical length of the imaginary time direction is directly
linked to its inverse β. We test our reconstructions with a
kernel corresponding to temperatures between T ¼ 0.1
and 1 GeV.

1. Based on shifted data (E)

We begin our mock data analysis at the lowest temper-
ature T ¼ 0.1 GeV, supplying Nτ ¼ 64 shifted data points
to the original BR method. As a default model, we take
the shift function itself, as we know that it provides a
significant contribution to the combined spectrum. The
results of the reconstruction are compared for diminishing
relative errorbars ΔD=D ¼ 10−1, 10−2 and 10−3 in the left,
center and right column of Fig. 4. Each row shows the low
frequency regime for of one of the three different mock
spectra reconstructions. In each panel there are ten curves
shown, each representing the outcome for a different shift
function.
We find that the reconstruction at this lowest temperature

is numerically stable in contrast to previous MEM
based analyses [22], where the necessary SVD proved
challenging at low T. Even with relatively large errors

FIG. 3. The ten different shift functions used in the mock
analysis based on the standard positive definite BR method. At
small frequencies they exhibit a quadratic rise, which is smoothly
cut off at increasing values of ω. At higher frequencies the shift
goes over into a 1=ω log½ω�35=22 tail.

1We do not provide a comparison to MEM-related approaches
for two reasons. Conceptually the MEM handles both the α
integration and the choice of search space differently, which
introduces additional systematic uncertainties. On the other hand
technically it requires a Singular Value Decomposition, which
even with 768bit precision becomes unstable if such a large
frequency range is considered.
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ΔD=D ¼ 10−1 the qualitative structure of the spectrum is
reproduced correctly, showing indications of a lowest lying
peak, as well as the negative dip and tail. As expected, the
overall agreement is best for the mock spectrum with the
exponential tail and the largest absolute deviations occur
when the asymptotic −1=x tail is considered.
Reducing the errorbars alone only improves the

reconstruction in parts of the frequency region, but may
at the same time also lead to the appearance of artificial
structures in other regions. For the asymptotic −1=x tail
(bottom row), decreasing toΔD=D ¼ 10−3 actually empha-
sizes ringing around the correct result at large frequencies,
which depending on the shift function may also influence
the small ω region.
In the simplest case of the exponential tail mock

spectrum (top row) the situation appears better at first
sight, with the functional form of the spectrum being
reproduced rather well at ΔD=D ¼ 10−3. A closer inspec-
tion, as shown in the left panel of Fig. 5, reveals however
that we can both significantly diminish the amplitude of the
fist peak, as well as the depth of the negative dip by the
choice of shift function. In general we find that different σ’s
allow us to easily shift the reconstructed peak position from
below to above the actual value.

Now we may ask whether increasing the number of data
points will help to remedy the dependence on σ. While it
does so in principle, since due to Bayes theorem in the limit
Nτ → ∞ and ΔD=D → 0 we must recover the correct
result, we find that the presence of the exponential kernel
hampers us to attain this limit. Indeed, as shown in the right
panel of Fig. 5, even if we quadruple the number of data
points used, there is almost no visible difference in the
outcome. In particular, the result remains as susceptible to σ
as before, hinting at the need for an exponentially larger
number of data points for significant improvement.
Let us continue by presenting the reconstructions per-

formedon the samenumber of data points, nowusing akernel
at T ¼ 1.0 GeV as shown in Fig. 6. The difference to the
low T case is striking. For ΔD=D ¼ 10−1 we both miss the
negative trough completely and only find a shallow enhance-
ment close to the origin, no matter what mock spectrum is
chosen. While decreasing the errorbars slightly improves the
outcome for ρmock

2 (middle row) and ρmock
3 (top row) it leads to

very strong ringing artifacts for ρmock
1 (bottom row).

If we focus in more detail on the reconstruction of the
very low frequency regime shown in the left panel of Fig. 7,
we find that indeed even at ΔD=D ¼ 10−3 the negative
trough for ρmock

3 is barely visible and the position and width

FIG. 4. Low frequency regime of the spectral reconstructions of mock spectra with asymptotic −1=x (ρmock
1 , bottom row),

−1=x2 (ρmock
2 , middle row) and exponential tail (ρmock

3 , top row) from Euclidean data at T ¼ 0.1 GeV. Only the first half of the
symmetric Nτ ¼ 64 data points is used. The reconstructions are based on shifted data with relative errors ΔD=D ¼ 10−1 (left column),
ΔD=D ¼ 10−2 (center column) and ΔD=D ¼ 10−3 (right column). Each panel shows ten colored curves corresponding to a different
shift function σ used.
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of the lowest lying peak depend strongly on the shift
function. Just as at T ¼ 0.1 GeV, without knowledge of
the solution it is difficult to choose a priori, which shift
function is most appropriate. In particular since choosing a
σ, which leads to a low accuracy for the peak position, does
not necessarily induce extra artificial ringing.
As we may expect from the findings at low temperature,

increasing the number of available data points by a factor
four also at T ¼ 1 GeV does not lead to a significant

improvement. As shown in the right panel of Fig. 7 going to
Nτ ¼ 256 leads to a slightly better signal for the lowest
lying peak and the existence of the negative trough at least
seems to be hinted at in the reconstruction. Nevertheless
position and width of the lowest lying peak remain strongly
dependent on the choice of shift function σ. This indication
of a very slow approach to the “Bayesian continuum limit”
again emphasizes the challenge posed by an exponentially
damped kernel.

FIG. 5. Comparison of the very low frequency regime of the reconstructions (colored solid) for the mock spectrum (gray dashed) with
exponential tail (ρmock

3 ) atΔD=D ¼ 10−3 for Nτ ¼ 64 (left) and Nτ ¼ 256 (right). We find that even a quadrupling of the number of data
points does not lead to a visible improvement of the reconstruction, in particular the strong dependence on the shift functions remain.

FIG. 6. Low frequency regime of the spectral reconstructions of mock spectra with asymptotic−1=x (ρmock
1 , bottom row),−1=x2 (ρmock

2 ,
middle row) and exponential tail (ρmock

3 , top row) from Euclidean data at T ¼ 1 GeV. Only the first half of the symmetric Nτ ¼ 64 data
points is used. The reconstructions are based on shifted data with relative errors ΔD=D ¼ 10−1 (left column), ΔD=D ¼ 10−2 (center
column) and ΔD=D ¼ 10−3 (right column). Each panel shows ten colored curves corresponding to a different shift function σ used.
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Note that the systematic uncertainty in the reconstruc-
tions above consists not only of the influence of the shift
function, but as well increases due to possible different
choices of default models. Up to here we have always
chosen m ¼ σ, which we would need to vary to estimate
the full error budget. However we have seen that the
choice of σ alone already leads to significant changes
in the position and width of the reconstruction even for
high quality Euclidean data Nτ ¼ 256 and ΔD=D ¼ 10−3.
An investigation of different default models is hence
superfluous.
With these findings in mind we continue by deploying

the novel generalized Bayesian reconstruction method on
unshifted Euclidean data.

2. Generalized BR method (E)

The generalized BR method does not require us to add a
shift contribution to the original ideal Euclidean data and
we may choose a default model that also can take arbitrary
values, in particularm ¼ 0 is admissible. On the other hand
it asks us to specify a generalized default-model h, which
may be interpreted as the confidence we have in the values
of m. While the dependence on a shift function is absent in
this approach, we must still elucidate how the choice of m
and h influences the outcome. Therefore in the following
we will always show nine curves corresponding to the
combination ofm ¼ −2, 0, 2 GeVand h ¼ 2, 4 GeV, which
gives a rough estimate of the full systematic uncertainties.
The reason is that since we integrate out the hyperparameter
α in Eq. (5) no further free parameters enter in our
generalized approach.
In Fig. 8 we show the outcome of the reconstructions

from unshifted Nτ ¼ 64 Euclidean data points for
T ¼ 0.1 GeV. One may wonder that these curves appa-
rently show more variation than those for the shifted
reconstruction in Fig. 4. But bear in mind that here the
different curves correspond to the default model depend-
ence, which we did not take into account before.

The negative trough is well exposed in these
reconstructions, however for e.g. ΔD=D ¼ 10−1 the infor-
mation on the lowest lying peak seems to manifest itself
only in a very narrow structure close to the origin. While
this appears worse than in the case for the shifted
reconstruction, note that through the choice of shift
function with a quadratic initial rise, we predisposed the
shifted reconstruction to show a peaked structure at low
frequencies. In that sense the generalized BR method is
less biased.
Unfortunately the loss of information due to the

exponential Euclidean kernel is independent from the
method used to reconstruct the spectrum, which is why
as shown in Fig. 9, going over to Nτ ¼ 256 also does not
improve the reconstruction with the novel generalized
approach.
Just as we expect from the shifted analysis, going to

higher temperatures leads to an even worse reconstruction
result as shown in Fig. 10. Even with the smallest errorbars
ΔD=D ¼ 10−3 the lowest lying peak is virtually absent
in all reconstructions and the negative trough not even
qualitatively captured satisfactorily.
All the mock tests we have performed so far paint a

rather bleak picture regarding a successful reconstruction
of nonpositive spectra from Euclidean data sets. While
in principle increasing Nτ and reducing ΔD=D will
ultimately allow us to arrive at the correct solution, the
exponential information loss induced by the Euclidean
kernel makes the approach by any practical means
prohibitively expensive, especially the higher the temper-
ature is.
We therefore continue by investigating as an alternative

the reconstruction performance in the case, where imagi-
nary frequency data are available. The relation of Eq. (1)
with a rational kernel and thus a much weaker information
loss bodes well in this regard. In particular the functional
approach to QCD to be used to compute data in Ref. [24]
allows one to evaluate the correlators directly in the
variable μ.

FIG. 7. Comparison of the very low frequency regime of the reconstructions (colored solid) for the mock spectrum (gray dashed) with
exponential tail (ρmock

3 ) at ΔD=D ¼ 10−3 for Nτ ¼ 64 (left) and Nτ ¼ 256 (right). We find that while quadrupling of the number of data
points slightly improves the reconstruction of the lowest peak, it does not lead to a significantly better result for the negative trough. In
particular the strong dependence on the shift functions remains.
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B. Reconstruction from imaginary frequency data

Similar to the behavior of actual gluon spectra, we
consider here antisymmetric spectral functions, which
allows us to rewrite the corresponding relation in Eq. (1) as

Z
∞

0

dω
2ω

ω2 þ μ2 þ ϵ
ρðωÞ; ð14Þ

where we regularize the kernel with ϵ2 ¼ 10−15 GeV2 for
consistent limits ω → 0 and μ → 0. If imaginary frequency
data are available, the polynomial falloff of the kernel
promises a much better reconstruction success, compared
to the exponential decay in the Euclidean case. We
discretize the imaginary frequency domain μ∈ ½0;8�GeV
with Nμ ¼ 64. The shift functions if used, as well as the
choice of default model remains the same as in the

FIG. 8. Low frequency regime of the spectral reconstructions of mock spectra with asymptotically −1=x (ρmock
1 , bottom row),

−1=x2 (ρmock
2 , middle row) and exponential tail (ρmock

3 , top row) from Euclidean data at T ¼ 0.1 GeV. Only the first half of the
symmetric Nτ ¼ 64 data points is used. The reconstructions are based on the generalized BR method using unshifted data with relative
errors ΔD=D ¼ 10−1 (left column), ΔD=D ¼ 10−2 (center column) and ΔD=D ¼ 10−3 (right column). Each panel shows nine colored
curves corresponding to different combinations of m and h.

FIG. 9. Comparison of the very low frequency regime of the reconstructions (colored solid) for the mock spectrum (gray dashed) with
exponential tail (ρmock

3 ) atΔD=D ¼ 10−3 for Nτ ¼ 64 (left) and Nτ ¼ 256 (right). We find that even a quadrupling of the number of data
points does not lead to a visible improvement of the reconstruction, in particular the strong dependence on the shift functions remain.

BAYESIAN INFERENCE OF NONPOSITIVE SPECTRAL … PHYSICAL REVIEW D 95, 056016 (2017)

056016-9



Euclidean case. Note that the Källén-Lehmann kernel
does not intrinsically depend on the temperature of the
system, so that we only need to consider a single set
of reconstructions for a given Nμ and ΔD=D in the
following.

1. Original BR method (I)

We also start here by presenting first reconstructions
using the original BR method on shifted correlator data,
using the same ten shift functions σ as before. The outcome
for Nμ ¼ 64 is shown in Fig. 11. The results are consis-
tently at least as good as those obtained from the Euclidean
data based on a kernel corresponding to T ¼ 0.1 GeV.
Hence they are much more accurate than the previous
reconstructions at T ¼ 1 GeV. In particular the dependence
of the reconstructed peak position and width on the used
shift function is weaker when using imaginary frequency
data. Nevertheless we find that the use of shift functions
may still lead to the occurrence of significant ringing e.g.
for ρmock

1 at larger frequencies.
The most important difference to the Euclidean based

reconstructions lies in the fact that increasing the number
of data points here allows us to much more efficiently

approach the “Bayesian continuum limit”, as can be seen
from the comparison in Fig. 12. Quadrupling the number
of data points from Nμ ¼ 64 to Nμ ¼ 256 significantly
reduces the dependence of the reconstruction on the shift
functions used.
Once the uncertainty from the shift functions is under

control, we may ask what is the residual dependence on the
choice of default model, which we investigated by modi-
fying the default model in two distinct ways. On the one
hand we simply scale the shift function by a factor
γ ¼ 0.25, 0.5, 1, 2, 4 before assigning it as default model
m ¼ γσ, on the other hand we change the default model to a
constant with either m ¼ 15 or m ¼ 5. We find that
rescaling the default model away from the shift function
γ ≠ 1 leads to the appearance of very strong ringing
artifacts, which distort not only the high but also the
low frequency regime, in which the relevant peak structures
reside. Whilem ¼ σ is the most natural choice, the residual
influence of the default model even at Nτ ¼ 256 and
ΔD=D ¼ 10−3 must be taken seriously, as the agreement
between reconstruction and mock spectrum in the right
panel of Fig. 12 can be an accident of our choice of setup
and may not persist if a more realistic spectrum is
considered.

FIG. 10. Low frequency regime of the spectral reconstructions of mock spectra with asymptotic −1=x (ρmock
1 , bottom row), −1=x2

(ρmock
2 , middle row) and exponential tail (ρmock

3 , top row) from Euclidean data at T ¼ 1 GeV. Only the first half of the symmetric
Nτ ¼ 64 data points is used. The reconstructions are based on the generalized BR method using unshifted data with relative errors
ΔD=D ¼ 10−1 (left column), ΔD=D ¼ 10−2 (center column) and ΔD=D ¼ 10−3 (right column). Each panel shows nine colored curves
corresponding to different combinations of m and h.
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In preparation of the investigation of actual gluon
spectra, we learn that one should anticipate to provide
around Nμ ¼ 256 imaginary frequency data points with
precision of around ΔD=D ¼ 10−3 to diminish the influ-
ence of the shift function to a level, where only the residual
dependence on the choice of default model needs to be
considered.

2. Generalized BR method (I)

Last but not least we investigate how the generalized BR
method fares when deployed on nonshifted imaginary
frequency data. Again we will show here nine reconstruc-
tions each, corresponding to different combinations of the
default model m and the function h. Figure 13 contains the

FIG. 11. Low frequency regime of the spectral reconstructions of mock spectra with asymptotic −1=x (ρmock
1 , bottom row), −1=x2

(ρmock
2 , middle row) and exponential tail (ρmock

3 , top row) from imaginary frequency data. The reconstructions are based on shifted data
with relative errors ΔD=D ¼ 10−1 (left column), ΔD=D ¼ 10−2 (center column) and ΔD=D ¼ 10−3 (right column). Each panel shows
ten colored curves corresponding to a different shift function σ used.

FIG. 12. Comparison of the very low frequency regime of the reconstructions (colored solid) for the mock spectrum (gray dashed)
with exponential tail (ρmock

3 ) at ΔD=D ¼ 10−3 for Nμ ¼ 64 (left) and Nμ ¼ 256 (right). Contrary to the Euclidean case, increasing the
number of imaginary frequency data points significantly improves the reconstruction and reduces the dependence on the shift
functions σ.
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results for Nμ ¼ 64 and we can see that decreasing the
errorbars to ΔD=D ¼ 10−3 already leads to a very good
quantitative reproduction of the mock spectrum with only a
mild dependence on the default model.
The generalized BR method does not require the

specification of a shift function and hence avoids σ as a
source of uncertainty. This in turn means that compared to
the shift approach we may obtain quantitatively robust
results already with a smaller number of imaginary fre-
quency data points, as shown in Fig. 14. Note that in

the generalized BR reconstruction, once we are at
ΔD=D ≤ 10−2, we do not find artificial ringing around
the lowest lying peak; i.e., below ω ¼ 2 GeV, there is a
single positive peak and a single negative trough present in
the reconstruction.
While ringing at low frequencies appears well under

control, it can still affect the approach of the reconstruction
to the asymptotic tail behavior encoded in the mock spectra.
In Fig. 15 we show the difference jρgBR − ρmockj between the
mock spectrum and the reconstructions from Nμ ¼ 64 data

FIG. 13. Low frequency regime of the spectral reconstructions of mock spectra with asymptotic −1=x (ρmock
1 , bottom row), −1=x2

(ρmock
2 , middle row) and exponential tail (ρmock

3 , top row) from imaginary frequency data. The reconstructions are based on the
generalized BR method using unshifted data with relative errors ΔD=D ¼ 10−1 (left column), ΔD=D ¼ 10−2 (center column) and
ΔD=D ¼ 10−3 (right column). Each panel shows nine colored curves corresponding to different combinations of m and h.

FIG. 14. Comparison of the very low frequency regime of the reconstructions (colored solid) for the mock spectrum (gray dashed) with
exponential tail (ρmock

3 ) at ΔD=D ¼ 10−3 for Nμ ¼ 64 (left) and Nμ ¼ 256 (right). We find that the reconstruction at Nμ ¼ 64 already
shows very robust behavior and the increase to Nμ ¼ 256 appears unnecessary.
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points at ΔD=D ¼ 10−3. As expected, the faster the tail in
the mock spectrum damps, the better the reconstruction is
able to capture it. Far in the UV, at ω ¼ 1000 GeV the
exponential tail reconstruction shows a deviation of ≲10−5,
while for the quadratic tail we have deviations between
10−4–10−5. In case of the unphysical −1=x tail, the
deviation varies around 10−3. The presence of sharp dips
in the logarithmic plot indicates that artificial oscillations
around the correct answer do occur, albeit with diminishing
amplitude, for most choices of the default models up to
very high frequencies. These artifacts however do not
appear to significantly impede the reconstruction of the
low lying spectral features as discussed in regard to Fig. 13
and Fig. 14.
The application of the generalized BR method thus

bodes well for the study of gluon spectra from functional
QCD methods, as it appears to provide an efficient
prescription to already extract nonpositive definite spectra
using a relatively small number of data points Nμ ¼ 64

at ΔD=D ¼ 10−3.

IV. CONCLUSION

We have introduced a novel Bayesian approach to the
reconstruction of general spectral functions, which contain
both positive and negative contributions. It is closely
related to the recently developed Bayesian reconstruction
(BR) method and based on a similar set of axioms. In
particular it retains the quality that it imprints the prior
information in the default model in a very weak fashion
while still leading to a unique reconstruction.
We were lead to a different functional form of the

prior SgBR compared to the original BR method, since for
general spectra ρ ¼ 0 and m ¼ 0 are admissible values
and we hence replaced ρ=m by jρ −mj=hþ 1 as measure
of deviation between spectrum and default model. To
maintain scale invariance, i.e. the independence of the
end result from the units of ρ, we needed to introduce an
additional function h, which may be interpreted as our
confidence in the values of m.

In anticipation of the study of gluon spectra from Landau
gauge correlators computed in lattice QCD [23] and from
functional methods in QCD [24], we performed an exten-
sive set of mock data tests, comparing our novel direct
approach to a standard strategy based on shift functions.
Since in functional computations correlators can be evalu-
ated both in Euclidean time and imaginary frequency space,
we checked how the form of the kernel influences the
success of the spectral reconstruction.
We found a striking manifestation of the exponential

information loss induced by the Euclidean kernel, when
reconstructing from imaginary time data. In case of the shift
method, even for ΔD=D ¼ 10−3 and Nτ ¼ 256 the results
remained strongly dependent on the choice of shift function
and increasing the number of data points lead to virtually
no visible improvements. The higher the temperature, the
more severe this issue becomes.
Since this loss of information is independent from the

method used for spectral reconstruction also the general-
ized BR method was found to struggle with these recon-
structions. While it avoids the additional uncertainty
introduced by shift functions, its results may depend
significantly on the choice of default models m and h.
Also here increasing the number of data points does not
lead to a visible improvement.
The situation is very different when instead using

imaginary frequency data. The method based on shifted
data already shows a much weaker dependence on the
choice of shift function for Nμ ¼ 64 than in the Euclidean
case, and increasing the number of data points actually
leads to a significant improvement of the accuracy and
precision in the reconstruction.
Nevertheless the shift method carries an inherent uncer-

tainty due to the choice of shift function σ, which to be
brought under control requires us to use at least Nμ ¼ 256

points. In contrast the novel generalized BR method avoids
this additional source of systematic error and thus shows a
robust quantitative reconstruction of spectral features
already for Nμ ¼ 64 with only a very mild dependence
on the variation of default models m and h.

FIG. 15. Approach of the reconstructed spectra to the asymptotic tail behavior at high frequencies. We show the difference jρgBR−ρmockj
at ΔD=D ¼ 10−3 for ρmock

3 (left), ρmock
2 (center) and ρmock

1 (right) each for six different choices of the default model parameters. As
expected for most choices of the default model, the approach improves the faster the tail dampens. Nevertheless artificial oscillations
around the correct result, manifest on the logarithmic scale as sharp dips, do persist up to high frequencies, even for the exponential tail.
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We therefore are confident that the generalized BRmethod,
when applied to imaginary frequency data, will provide a
useful and efficient tool for deconvolution problems in
quantum field theory and beyond. In light of a recently
proposed approach [8] to simulating thermal quantum fields
directly in imaginary frequencies, it promises to benefit not
only reconstructionswithin continuumapproaches toQCDbut
also those based on correlators from numerical simulations.
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