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The self-energy of the Δ baryon is evaluated at a finite temperature and density using the real-time
formalism of thermal field theory. The Dyson-Schwinger equation is used to get the exact thermal
propagator followed by the spectral function of Δ. The πN scattering cross section obtained using an
explicit Δ exchange is normalized to the experimental data in the vacuum, and its medium modification is
implemented by means of the exact thermal propagator. A significant suppression of the peak of the cross
section is observed at a higher temperature and baryon density. Effects on the mean relaxation time of
nucleons and the temperature dependence of the shear viscosity of a pion nucleon gas are demonstrated.
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I. INTRODUCTION

The properties of hadrons under the conditions of high
temperature and/or baryon density have been widely studied
owing to the possibility of restoration of chiral symmetry of
QCD spontaneously broken by the vacuum [1]. Relativistic
collisions of heavy ions provide the unique opportunity to
actually produce hot and/or dense matter under controlled
conditions and provide experimental verification of such
studies (see, e.g., [2]). The spectral changes of hadrons as a
result of compression and/or heating thus play a very
significant role in unraveling the dynamics of the underlying
color degrees of freedom and the vacuum structure of QCD
[3]. The broadening of the vector spectral function in the
medium observed through the invariant mass spectra of
dileptons in heavy ion collisions at SPS [4] and RHIC [5] has
been interpreted (see, e.g., [6]) to have nontrivial, though
indirect, implications on chiral symmetry restoration. In this
connection, the study of spectral properties of baryon
resonances such as Δ and N�, etc., are important; though
not measurable directly because of final state interactions,
they provide valuable input to the evaluation of the self-
energies of low-mass vector mesons which can be measured
in heavy ion collision experiments through electromagnetic
probes. In addition to broad resonances, stable hadrons such
as the nucleon also develop considerable widths in the
medium [7], and this is mainly due to resonant scattering
with pions involving baryon resonances.
The in-medium self-energy of the Δ has played a key

role in the understanding of the dynamics of nuclear
interactions, particularly in the resonance region, where
it is excited as a πN resonance [8]. The propagation of π,N,
and Δ thus becomes intimately connected. The description
of pion-nucleus interaction, for example, depends on the
formation, propagation, and decay of the Δ in the nuclear
environment [9,10]. Models based on this picture, known

as Δ-hole models, successfully explain many scattering
phenomena in elastic as well as inelastic channels. The Δ
self-energy extracted using this approach has also found
applications in transport models describing the dynamical
evolution of nucleus-nucleus collisions [11,12].
The spectral modification of the Δ at a finite temperature

and density and the in-medium πN cross section remains an
interesting issue of discussion. A very useful and topical
application of this study is to investigate the medium
dependence of the shear viscosity of hot and dense hadronic
matter which is produced towards the later stages of relativ-
istic heavy ion collisions. In the kinetic theory approach of
evaluating transport coefficients like shear and bulk viscos-
ities, thermal conductivity, etc., the cross section enters as the
dynamical input. Since pions account for most of the
multiplicity in relativistic heavy ion collisions, the case of
pion gas has received some attention in recent times.
Scattering amplitudes evaluated using chiral perturbation
theory to lowest order have been used in Refs. [13,14],
and unitarization-improved estimates were employed in
Ref. [15] to evaluate the shear viscosity. Again, phenomeno-
logical scattering cross sections using experimental phase
shifts were utilized in Refs. [14,16–18] to obtain the viscous
coefficients. While in Refs. [19,20] the effect of number-
changing processes on the bulk viscosity of a pion gas has
been studied, inRef. [21] unitarized chiral perturbation theory
was used to demonstrate the breaking of conformal symmetry
by the pion mass. It is important to point out that in all these
approaches vacuum amplitudes have been used. However,
cross sections of scatteringbetween excitations in themedium
could be nontrivially affected by the presence of other
particles constituting it. It follows that, in addition to the
usual quantum fluctuations, thermal fluctuations modify
the propagation of mediating particles and consequently
the invariant amplitude. The case of the ππ cross section in
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a hot pion gas was studied by Barz et al. [22] obtaining a
substantial reduction of the magnitude in the region of the ρ
peak. With this motivating feature, recently [23], the ampli-
tudes for elastic ππ scattering were evaluated using in-
medium propagators for the exchanged ρ and σ mesons
incorporating loop graphswith π,ω, h1, and a1 mesons in the
internal lines [24]. The cross section so obtained showed a
substantial reduction in magnitude at the peak position at
higher values of temperature. When used in the collision
integral of the transport equation, these medium-modified
scattering amplitudes were found to significantly affect the
temperature dependence of the viscosities [25] and thermal
conductivity [26] of a hot pion gas.
Based on our experience with the pion gas and keeping

in view the upcoming compressed baryonic matter (CBM)
experiment at facility for antiproton and ion research
(FAIR), it is natural to ask how the presence of a finite
baryon density in addition to temperature is likely to
affect the shear viscosity. To study such effects, one has
to include nucleons, and consequently the πN cross section
becomes the principal dynamical factor in its evaluation.
Incorporating the in-medium πN cross section calculated
using the modified Δ self-energy, a more reliable estimate
of the shear viscosity, in particular its dependence on the
temperature and baryon density, can be obtained. When
used as an input in the viscous hydrodynamic equations, a
more realistic scenario of the space-time evolution of the
later stages of heavy ion collisions is likely to be achieved.
In this work, we obtain the Δ self-energy at a finite

temperature and baryon density evaluating several one-loop
diagrams with π, ρ, N, and Δ in the internal lines using
standard thermal field theoretic methods. The in-medium
propagator of the Δ is then used in the scattering ampli-
tudes to obtain the πN cross section. This is utilized to
evaluate the relaxation times in a hadronic gas mixture of
pions and nucleons. Finally, the temperature and density
dependence of the shear viscosity are obtained.
Medium modifications of the Δ resonance have been

studied mostly in nuclear matter [9,27–30]. Whereas a
many-body expansion in terms of particle-hole excitations
has been used in Ref. [9] to evaluate the Δ self-energy in
nuclear matter, in Refs. [27,29] its decay in the medium is
investigated using the quantum hadrodynamics model.
A self-consistent treatment of pions and Δ’s in nuclear
matter at zero and finite temperature may be found in
Refs. [30,31], respectively. In Ref. [28], the Δ self-energy
due to the πN loop in nuclear matter is obtained in a
relativistic approach. More recently, the modification of the
Δ spectral function at a finite temperature and density due
to resonant scattering off thermal pions has been obtained
in Ref. [32]. In addition to these theoretical studies,
properties of the Δ have been studied experimentally using
invariant mass analyses of πN pairs [33,34].
In the next section, we recall some basic features of the

real-time version of thermal field theory. Then we evaluate

the Δ self-energy and discuss numerical results. In the
subsequent section, we evaluate the amplitudes of πN
scattering leading to the cross section in the medium. This
is followed by a section on the shear viscosity of a πN gas
and finally by a summary and discussions. Some details of
the calculation is provided in the Appendixes.

II. THE Δ SELF-ENERGY IN THE MEDIUM

A. The in-medium propagators
in the real-time formalism

In the real-time formalism of thermal field theory, all
two-point functions including the self-energy take the form
of 2 × 2 matrices [35,36]. But each of the matrices may be
diagonalized, when it is given essentially by a single
analytic function which determines completely the dynam-
ics of the corresponding two-point function. This function
being given by any one, say, the 11-component of the
matrix, we need to evaluate only this component of the
self-energy matrix. In the following, we specify only
the 11-component of the thermal propagator for the
particles involved in the one-loop graphs that are consid-
ered in this work.
The 11-component of a free thermal propagator matrix

for a particle consists of its vacuum propagator and a term
depending on the on-shell distribution function of like
particles in the medium through which it propagates. The
form of the latter term depends only on whether the particle
in question is a boson or a fermion.
The 11-component of the thermal pion propagator is

given by

D11ðk;mπÞ ¼ Δðk;mπÞ þ 2πiN2
1ðk;mπÞδðk2 −m2

πÞ; ð1Þ

where

Δðk;mÞ ¼ −1
k2 −m2 þ iη

;

N1ðk;mÞ ¼ θðk0Þ
ffiffiffiffiffiffi
nkþ

q
þ θð−k0Þ

ffiffiffiffiffiffi
nk−

q
ð2Þ

with

nk� ¼ 1

eβðωk∓μkÞ − 1
; ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q
;

and θðk0Þ ¼ 1 for k0 > 1 and 0 for k0 < 1.
The thermal part remaining the same, the ρ propagator

with the familiar polarization sum follows as

Dμν
11ðk;mρÞ ¼

�
−gμν þ kμkν

m2
ρ

�
D11ðk;mρÞ: ð3Þ

We now consider the fermionic propagators whose
thermal (matrix) parts are different from the bosonic ones
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discussed above. The 11-components of the nucleon and Δ
propagators are, respectively, given by

S11ðpÞ ¼ðpþmNÞE11ðp;mNÞ ð4Þ

and

S11μνðpÞ ¼ ðpþmΔÞ
�
−gμν þ

2

3m2
Δ
pμpν þ

1

3
γμγν

þ 1

3mΔ
ðγμpν − γνpμÞ

�
E11ðp;mΔÞ; ð5Þ

where E11ðp;mÞ is given in Appendix A.
The complete propagator S0 is given by the Dyson

equation in terms of the free fermion propagator S and
self-energy Π:

S0 ¼ S − SΠS0; ð6Þ

where each is a 2 × 2 matrix in the thermal indices. They
can be diagonalized to get the respective analytic functions,
denoted by a bar, so that

S̄0 ¼ S̄ − S̄ Π̄ S̄0: ð7Þ

The self-energy function Π̄ can be obtained from any single
component of the self-energy matrix as discussed in
Appendix A. It is related to, say, the 11-component by

ImΠ̄ðpÞ ¼ ϵðp0Þ coth½βðp0 − μpÞ=2�ImΠ11ðpÞ;
ReΠ̄ðpÞ ¼ ReΠ11ðpÞ; ð8Þ

where ϵðp0Þ ¼ þ1 for p0 > 0 and −1 for p0 < 0.

B. The Δ self-energy

We begin by writing down the expressions for the
one-loop self-energy graphs for the Δ in the vacuum.
For the four cases shown in Fig. 1, they can be generally
expressed as

Πμν
vacðqÞ ¼ i

Z
d4k
ð2πÞ4N

μνΔðpÞΔðkÞ; ð9Þ

whereNμν contains terms coming from the two vertices and
the spin factors appearing in the propagators for the internal
lines. They can be read off from the expressions for Πμν

given in Appendix B and appear as

Nμν
πNΔ ¼ f2πNΔ

m2
π
F2ðp; kÞ½kαkβOνβðpþmpÞOαμ�; ð10Þ

Nμν
ρNΔ ¼ f2ρNΔ

m2
ρ
F2ðp; kÞ½Oνηγ5ðγβkη − gβηkÞ

× ðpþmpÞγ5ðγαkσ − gασkÞOμσAαβ�; ð11Þ

Nμν
πΔΔ¼

f2πΔΔ
m2

π
F2ðp;kÞ½gχψgηϕOνχγ5kOψσΣλσðpÞOληγ5kOϕμ�;

ð12Þ

Nμν
ρΔΔ ¼ f2ρΔΔF

2ðp; kÞ
�
gχψgηϕOνχ

�
γβ þ i

κρΔΔ
2mΔ

σβϵkϵ

�

×OψθΣλθðpÞOλη

�
γα − i

κρΔΔ
2mΔ

σαδkδ

�
OϕμAαβ

�
;

ð13Þ

where

AαβðkÞ ¼ − gαβ þ
kαkβ
m2

k

and

ΣαβðqÞ ¼ ðqþmqÞ
�
−gαβ þ

1

3m2
q
qαqβ þ

1

3
γαγβ

þ 1

3mq
ðγαqβ − γβqαÞ

�
: ð14Þ

We now proceed to write down the corresponding
expressions in the medium. As discussed above, we need
to evaluate only the 11-component Πμν

11, which is obtained
by replacing the vacuum propagators by the 11-component
of the thermal propagators given in the previous section.
The self-energy in the medium is thus given by

Πμν
11ðqÞ ¼ i

Z
d4k
ð2πÞ4N

μνE11ðpÞD11ðkÞ: ð15Þ

Expanding D11 and E11, we obtain, in addition to Πμν
vac,

two terms which are linear in the thermal distribution
function and the fourth term nonlinear in the distribution
function which is purely imaginary. Performing the k0

integral and using Eqs. (8), we obtain the imaginary and
real parts of the self-energy function asFIG. 1. Feynman diagrams for Δ self-energy.
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ImΠ̄μνðqÞ ¼ −πϵðq0Þ
Z

d3k
ð2πÞ3

1

4ωkωp
½Nμνðk0 ¼ ωkÞfð1þ nkþ − ~npþÞδðq0 − ωk − ωpÞ þ ð−nkþ − ~np−Þδðq0 − ωk þ ωpÞg

þ Nμνðk0 ¼ −ωkÞfð−1 − nk− þ ~np−Þδðq0 þ ωk þ ωpÞ þ ðnk− þ ~npþÞδðq0 þ ωk − ωpÞg� ð16Þ

and

ReΠ̄μνðqÞ ¼
Z

d3k
ð2πÞ3

1

2ωkωp
P
��

nkþωpNμνðk0 ¼ ωkÞ
ðq0 − ωkÞ2 − ω2

p

�
þ
�
nk−ωpNμνðk0 ¼ −ωkÞ
ðq0 þ ωkÞ2 − ω2

p

�

−
�
~npþωkNμνðk0 ¼ q0 − ωpÞ

ðq0 − ωpÞ2 − ω2
k

�
−
�
~np−ωkNμνðk0 ¼ q0 þ ωpÞ

ðq0 þ ωpÞ2 − ω2
k

��
; ð17Þ

respectively, where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ ~k2
q

and ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ ð~q − ~kÞ2
q

.

Each of the terms in the imaginary part can be related to
the scattering and decay of the Δ baryon. The delta
functions in the four terms define the kinematic domains
where these processes occur. The regions where these are
nonvanishing correspond to branch cuts in the complex q0
plane. The first and third terms in (16) are nonvanishing for
q2 > ðmk þmpÞ2. This is the usual unitary cut already
present in the vacuum. The second and fourth terms which
are nonzero for q2 < ðmp −mkÞ2 define the Landau cut
and are purely a medium effect. Confining ourselves to the
kinematic region q0 > 0 and q2 > 0, the first and fourth
terms only contribute. The first corresponds to absorption
of the Δ due to decay into a baryon-meson pair such as Nπ,
Nρ, etc., and is thus weighted by a thermal factor
1þnkþ− ~npþ ¼ ð1þnkþÞð1− ~npþÞþnkþ ~n

p
þ, indicating Bose

enhancement of the meson and Pauli blocking of the
baryon in the process Δ → πN plus the usual thermal
factors for the initial state in the time-reversed process
where the Δ is produced. The fourth term is due to
absorption of the Δ due to the scattering from a meson
producing a baryon in the final state and vice versa as
is evident from the thermal weight factor nk− þ ~npþ ¼
nk−ð1 − ~npþÞ þ ~npþð1þ nk−Þ.
To take into account the finite width of unstable particles

in the loop graphs, the self-energy is folded with their
spectral functions. As a consequence, the sharp thresholds
of the branch cuts get smeared. For unstable mesons (h), we
use [37]

Πðq;mhÞ ¼
1

Nh

Z ðmhþ2ΓhÞ2

ðmh−2ΓhÞ2
dM2

×
1

π
Im

�
1

M2 −m2
h þ iMΓhðMÞ

�
Πðq;MÞ ð18Þ

with Nh ¼
R ðmhþ2ΓhÞ2
ðmh−2ΓhÞ2 dM2 1

π Im½ 1
M2−m2

hþiMΓhðMÞ� and Γh ¼
ΓhðmhÞ. Here h≡ ρ so that

ΓρðMÞ¼Γρ→ππðMÞ¼
�

g2ρππ
48πM3

�
½M2−4m2

π�λ1
2ðM2;m2

π;m2
πÞ;

ð19Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ. This is
obtained usingLρππ ¼ gρππ~ρμ · ð~π × ∂μ~πÞwith gρππ ¼ 6.05.
For baryons (R) with a nontrivial decay width in the

loops, we use

Πðq;mRÞ ¼
1

NR

Z
mRþ2ΓR

mR−2ΓR

dM

×
1

π
Im

�
1

M −mR þ i
2
ΓRðMÞ

�
Πðq;MÞ ð20Þ

with NR¼
RmRþ2ΓR
mR−2ΓR

dM1
πIm½ 1

M−mRþi
2
ΓRðMÞ� and ΓR¼ΓRðmRÞ.

In this case, R≡ Δ for which the decay formula is given by
Eq. (22) in Sec. III.

C. Numerical results

Let us begin with the results for the Δ self-energy in the
medium. We show numerical results for the spin-averaged
real and imaginary parts of the function Π given by [27,29]

Π ¼ 1

4

X
sΔ

Ψ̄μΠ̄μνΨν; ð21Þ

where Ψ̄μ denote Rarita-Schwinger spinors. The factors
Nμν given in Eqs. (13) then go over to 1

4
Tr½NμνΣμν�. In

Fig. 2, we plot the Landau-cut contribution to the imaginary
part coming from the different loop graphs at T ¼
100 MeV for μN ¼ 200 MeV and μN ¼ 500 MeV in
panels (a) and (b), respectively. The corresponding results
for T ¼ 150 MeV are shown in panels (c) and (d). As
discussed in the last section, it follows that for ~q ¼ 0 the
Landau cut extends up to the difference of masses of the
baryon and the meson in the loop graph in the stable limit.
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These contributions at lower values of q0 are a result of
scattering processes in the thermal medium and are absent
in the vacuum. Comparing Fig. 2(a) with Fig. 2(b) [and
Fig. 2(c) with Fig. 2(d)], we see that the ρN and ρΔ loops
start contributing to the imaginary part only at larger baryon
densities.
The unitary-cut contributions to the imaginary part are

much larger in magnitude than the ones coming from the

Landau cut. The thresholds lie at higher energies, for stable
particles starting from the sum of the nominal masses of the
particles in the loop graph. Shown in Fig. 3 are the unitary-
cut contributions from the four loops at T ¼ 100 MeV. We
observe the sequential opening up of heavier decay
channels. These are the same as in the vacuum but are
now weighted by the Pauli blocking and Bose enhancement
factors in the final state. The form factor suppresses the
usual monotonic rise of these contributions at higher q0.
We now consider the thermal component of the real part

of the self-energy consisting of principal value integrals. As
seen in Fig. 4(a)–(d), the magnitudes are quite small
compared to the imaginary parts and are not expected to
contribute to a thermal shift in the pole position of the Δ.
Having obtained the imaginary and real parts of the self-

energy, we now plot the spectral function, which is the
imaginary part of the complete propagator (7). We do so in
two parts. The low q0 region depicting the Landau-cut
contribution shown in Fig. 5(a) is purely a thermal con-
tribution. The high q0 region in the vicinity of the bare Δ
mass consisting of the contributions from the unitary cuts is
shown in Fig. 5(b). The spectral density is seen to have a
significant dependence on the temperature and chemical
potential of the medium. However, comparing the curves
at T ¼ 70 and T ¼ 150 MeV, both for μN ¼ 500 MeV,
the effect of baryon density shows up only at higher
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temperatures and has its origin in the thermal distribution
functions for the baryons. In general, we find a gradual
suppression of the peak with increasing temperature and
density owing to the larger imaginary parts in the denom-
inator of the in-medium propagator. As seen from Eq. (16),
the increase in the imaginary part comes from two factors:
(i) the Bose enhancement factor for the pions and rho
mesons in the final state in the first term which is the
unitary-cut contribution and (ii) the Landau-cut contribu-
tion coming from the scattering of the mesons off the

propagating Δ as given by the fourth term. The second and
third terms do not contribute because of kinematic reasons.
In Fig. 6(a), we have made a comparison of the Δ

spectral function obtained in our approach with that of
Ref. [32] for two sets of values of temperature and nucleon
density representative of conditions likely to be achieved in
relativistic heavy ion collisions at the RHIC and in the
CBM experiment. A reasonable agreement is observed
between the present work and that of Ref. [32] as depicted
by the continuous lines and symbols, respectively.
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In addition to differences in the Lagrangian and associated
parameters used in the two approaches, the disparities in the
spectral functions in the two cases could arise due to
contributions coming from higher-order effects introduced
through dressed nucleon and pion propagators in theΔ self-
energy considered in Ref. [32], wherein vertex corrections
were included through Migdal parameters in the pion
propagator.
To take into account the finite size of the vertices, a

phenomenological hadronic form factor has been introduced.
The details are provided in Appendix B. The numerical
results presented here correspond to a monopole-type form
factor, denoted by form factor I in Fig. 6(b) with
Λ ¼ 600 MeV, which produces a good fit to the phase shift
data and πN cross section. We also plot the Δ spectral
function using form factor I with Λ ¼ 700 MeV and find a
small reduction at the peak, though the πN cross section
remains largely unchanged. This is because in the spectral
function the square of the form factor appears multiplica-
tively, but in the cross section its effect is largely canceled at
the s-channel pole position as seen from Eq. (23) in the next
section. For a comparison, we also plot the spectral function
using an exponential form factor denoted by form factor II
with Λ ¼ 1.25 GeV (as used in Ref. [28] with Λ ¼
0.97 GeV). No appreciable difference is found with the
one with Λ ¼ 600 MeV. All the plots in this figure corre-
spond to T ¼ 70MeV, μN ¼ 727MeV, and μπ ¼ 105MeV.
The symbols denote the results of Ref. [32].
At this point, a few comments on the hadronic form

factors at the vertices are in order. It is well known that in a
local field theory involving spin-3=2 fields the redundant
degrees of freedom associated with unphysical spin-1=2
fields are eliminated through the Rarita-Schwinger con-
straints [38]. The interacting case is more complex and
suffers due to the participation of the spurious spin-1=2
components. A coupling consistent with gauge invariance
of the Rarita-Schwinger field was constructed in Ref. [39]
preserving the correct number of degrees of freedom.
However, unphysical behavior in the computed tree-level

cross section results if the reaction is cut off by standard
hadronic form factors [40]. In this work, we have used the
conventional πNΔ vertex, which does suffer from a small
presence of spin-1=2 components both in vacuum and in
nuclear matter at saturation density [28]. As described
above, the cutoff in the form factor used here was obtained
by fitting the πN cross section. The spectral functions
evaluated using this (conventional) vertex were found [41]
to differ slightly from the ones calculated using the
consistent coupling discussed above if the same form
factor is applied in both cases. It was further shown that
this difference could be eliminated if the additional
momentum factor stemming from the higher derivative
nature of the consistent interaction [39] was compensated
either by an additional form factor term or by adjusting the
cutoff values of the original form factor.

III. THE π-N CROSS SECTION

Having studied the spectral modification of the Δ in the
medium, we are now in a position to investigate how these
changes affect the πN cross section. We aim to set up a
dynamical framework wherein medium effects can be
implemented using thermal field theoretic methods and
which at the same time is normalized to the experimental
data in the vacuum. We consider the πNΔ interaction (B5)
and first check with the phase shift data [42] defining
tanðδ33Þ ¼ Imf

Ref with the partial wave amplitude given by

fðEÞ ∼ 1=½E2 −m2
Δ þ imΔΓΔðEÞ�. The Δ → πN decay

width which follows from the imaginary part of
Eq. (B1) is

ΓΔðEÞ ¼
1

24π

�
fπNΔ

mπ

�
2

F2ðEÞ ~p
3

E2
½ðEþmNÞ2 −m2

π�; ð22Þ

where the c.m. momentum ~p2 ¼ ½E2 − ðmN þmπÞ2�×
½E2 − ðmN −mπÞ2�=4E2. As seen in Fig. 7, a reasonable
agreement is obtained using Λ ¼ 600 MeV and mΔ ¼
1234 MeV.
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Next we evaluate the matrix elements for elastic πN
scattering in the isospin basis in which we replace the free
vacuum Δ propagator by an effective one containing the
vacuum self-energy due to the loop diagrams mentioned
above. Averaging over isospin, the squared invariant ampli-
tude for the process πðkÞNðpÞ → πðk0ÞNðp0Þ is given by

jMj2 ¼
Pð2I þ 1ÞjMIj2Pð2I þ 1Þ

¼ 1

3

�
fπNΔ

mπ

�
4
�

F4ðk; pÞTs

js −m2
Δ − Πj2 þ

F4ðk; p0ÞTu

ðu −m2
ΔÞ2

þ 2F2ðk; pÞF2ðk; p0ÞTmðs −m2
Δ − ReΠÞ

3ðu −m2
ΔÞjs −m2

Δ − Πj2
�
; ð23Þ

where Ts, Tu, and Tm are given, respectively, by

Ts ¼ Tr½ðp0 þmNÞDsðpþmNÞγ0D†
sγ0�; ð24Þ

Tu ¼ Tr½ðp0 þmNÞDuðpþmNÞγ0D†
uγ0�; ð25Þ

Tm ¼ Tr½ðp0 þmNÞDsðpþmNÞγ0D†
uγ0�; ð26Þ

in which

Ds ¼ kαk0βO
βνΣμνðqsÞOμα; ð27Þ

Du ¼ k0αkβOβνΣμνðquÞOμα; ð28Þ

where Σμν is defined in (14).
The cross section given by σðsÞ ¼ 1

64π2s

R jMj2dΩ turns
out to be in good agreement with the isospin-averaged total
elastic cross section given in [16] (obtained using the phase
shift and inelasticity data from Refs. [42,43]) up to about
1.5 GeV as seen from the solid curve in Fig. 8. It is to be
noted at this point that we have considered only Δð1232Þ
exchange in the evaluation of the πN elastic scattering

amplitude with the aim of fixing the parameters (see
Appendix B) and thus obtaining a baseline for estimating
the effect of the modified Δ propagator on the cross section.
For a more general treatment, it is necessary to consider the
exchange of Nð938Þ as well as nearby resonances like the
Roper(1440), Δð1600Þ, etc., in the evaluation of the scatter-
ing amplitudes. In such a case, however, it could be quite
challenging to obtain a satisfactory agreement with the
experimental data especially in the regionbeyond theΔ peak.
Having thus normalized the framework with the exper-

imental data, we now turn on the medium effects. We
replace the vacuum self-energy in the above expressions by
the in-medium ones evaluated in the real-time formalism
described above. A significant suppression of the peak with
increasing temperature is obtained owing to the increase in
the imaginary part due to reasons explained earlier. The
small upward shift at higher baryon densities comes from
the small positive contribution of the real part of the self-
energy. As seen in Fig. 4, there are substantial cancellations
between the contributions from various loops depending
essentially on the attractive or repulsive nature of the
effective interactions considered.

IV. THE SHEAR VISCOSITY OF A π-N GAS

Transport coefficients can be obtained in (a) the kinetic
theory approach using the transport equation and (b) the
diagrammatic approach using Kubo formulas which relate
them to retarded two-point functions. The latter was used in
Ref. [44] to obtain the shear viscosity of a pion gas.
However, for our present purpose, which is to highlight the
effect of the in-medium πN cross section on the shear
viscosity, the kinetic theory approach is more suited (see,
e.g., [23,25]). The transport equation describing the evo-
lution of the phase space density of pions and nucleons in a
hadronic gas mixture slightly away from local equilibrium
is given by
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∂fn
∂t þ ~vn · ~∇fn ¼ C½fn�ðn ¼ π; NÞ; ð29Þ

where ~vn ¼ ~p=En is the particle velocity and C½fn� is the
collision integral. The distribution function for such a
system assumes a form fn ¼ f0n þ δfn, where the local
equilibrium distribution function is given by f0n ¼
½expðpn · u − μnÞ=T � 1�−1, the plus and minus signs
correspond to nucleons and pions, respectively, and δfn
is the deviation function. T, uμ, and μn denote the local
temperature, fluid velocity, and chemical potentials, respec-
tively. Assuming all except the nth particle to be in
equilibrium, the collision integral simplifies to [45]

C½fn�≃ −
ðfn − f0nÞ

τn
¼ −

δfn
τn

; ð30Þ

where τn is the relaxation time which characterizes the rate
of change of the distribution function due to the interaction
with the species in the medium. For binary elastic collisions
pn þ pl → p0

n þ p0
l, it is [16]

½τnðpnÞ�−1 ¼
X
l¼π;N

½τnlðpnÞ�−1 ð31Þ

with

½τnlðpnÞ�−1 ¼
gl

1þ δnl

cshðϵn=2Þ
En

Z
dωldω0

ndω0
lWnl; ð32Þ

where dωk¼d3pk=ð2πÞ3Ek½2cshðϵk=2Þ�, ϵk¼ðEk−μkÞ=T,
and the function cshðxkÞ ¼ coshðxkÞðsinhðxkÞÞ if k repre-
sents a fermion (boson). The dynamical input which
goes into the determination of the distribution function
appears in the interaction rate Wnl ¼ s

2
dσnl
dΩ ð2πÞ6δ4ðpn þ

pl − p0
n − p0

lÞ.
To extract the shear viscosity, we turn to the energy-

momentum tensor. For small gradients of the local fluid
velocity, the shear dissipative part is well known to be [45]

Tij
shear ¼ − η

�∂ui
∂xj þ

∂uj
∂xi −

2

3
~∇ · ~uδij

�
: ð33Þ

Now, in terms of the distribution function, the correction to
the ij component of the stress-energy tensor is given by
[18]

Tij
diss ¼

X
n¼π;N

gn

Z
d3pn

ð2πÞ3En
pi
np

j
nδfn: ð34Þ

From (29) and (30), we get to lowest order

δfn ¼−τn
�∂f0n
∂t þ ~vn · ~∇f0n

�

¼ τnf0n
2TEn

ð1�f0nÞpi
np

j
n

�∂ui
∂xjþ

∂uj
∂xi −

2

3
~∇ · ~uδij

�
; ð35Þ

where in the last line we retained only the (traceless) part
appropriate for shear viscosity. Putting this in (34) and
equating with (33), we obtain the shear viscosity of the
pion-nucleon mixture:

η ¼ 1

15T

X
n¼π;N

Z
d3pn

ð2πÞ3
τnðpnÞ
E2
n

j ~pnj4f0nð1� f0nÞ: ð36Þ

The shear viscosity is thus made up of contributions from
the pion and nucleon components which are coupled
through the momentum-dependent relaxation times τN ¼
½τ−1Nπ þ τ−1NN �−1 and τπ ¼ ½τ−1πN þ τ−1ππ �−1. The relative impor-
tance at a given value of T and μN is a consequence of the
interplay between the phase space factors as well as
scattering cross sections. In order to focus on the effect
of the in-medium πN cross section, we take the ππ and NN
cross sections in the vacuum.
The mean relaxation time of the species i is defined in

terms of the thermal average of the momentum-dependent
inverse relaxation time ωiðkÞ ¼ 1=τiðkÞ. With

ω̄iðT; μÞ ¼
Z

d3kωiðkÞf0i ðkÞ=
Z

d3kf0i ðkÞ; ð37Þ

the mean relaxation time is given by τ̄iðT; μÞ ¼ 1=ω̄iðT; μÞ.
We plot in Fig. 9(a) the mean relaxation time of nucleons as
a function of T for two values of μN with and without
medium effects. The features of the numerical results can
be understood by realizing that the relaxation time for a
binary collision approximately goes as ∼1=nσ so that
τN ∼ ½1 − ðσNN=σNπÞðnN=nπÞ�=σNπnπ . Thus, the increase
of density of the species, in this case pions, with T plays the
dominant role and accounts for the decreasing nature of
the curves. It also follows that the relative increase of the
nucleon density for larger μN results in a relative decrease
of the relaxation time. Again, since the pion density is
considerably more than the nucleon density and σπN is also
much larger than σNN , the nucleon relaxation time is
expected to be dominated by the pion component. Since
σNπ is smaller in the medium compared to the vacuum, as
seen in Fig. 8, the relaxation time is larger in the medium.
Similar arguments hold also for the pion relaxation time. Its
magnitude is decided by the (vacuum) ππ cross section,
which being much larger overshadows the medium depend-
ence of the πN cross section. We thus do not show it
separately. These features as well as the results with the
vacuum cross section are quite in agreement with Ref. [16].
In Fig. 9(b), the shear viscosity is plotted as a function

of T. As discussed above, the behavior of the pion and
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nucleon components and their relative magnitude decides
that of the mixture. For lower nucleon densities, the pion
component dominates the viscosity of the mixture. As the
nucleon density increases, there is a substantial increase in
the nucleon component and a decrease in the pion compo-
nent, the sum being more for μN ¼ 500 MeV compared to
200 MeV. This feature is irrespective of the cross section
(vacuum or medium) and is due to the interplay between the
relative abundance of the species and the magnitude of their
interaction cross section. The fact that the shear viscosity in
the medium is more than that in the vacuum can be
understood in terms of the relaxation times which are
larger basically due to the lower πN cross section in the
medium. The increase in magnitude of the medium effect
with temperature and nucleon density can be attributed to
the phase space factors.

V. SUMMARY AND OUTLOOK

In this work, we have studied the spectral modification of
the Δ baryon in the medium. The Δ self-energy was
evaluated from one-loop graphs comprising of π, ρ, N,
and Δ using the real-time formulation of thermal field
theory. In addition to the contributions from decay proc-
esses occurring above thresholds which arise due to the
usual thermally weighted unitary cut in the complex q0
plane, there are significant contributions coming from the
Landau-type discontinuities in the low q0 region stemming
from scattering processes leading to the absorption of Δ in
the medium. The πN cross section is then evaluated with
the effective propagator of the Δ leading to a suppression at
a finite temperature and density with no significant shift of
the peak position. This is expected to have nontrivial
consequences on the mean free path and should conse-
quently affect the thermalization rate of pions [22] and
nucleons produced in heavy ion collisions. We finally make
an estimate of the shear viscosity of a gas of pions and
nucleons using the kinetic theory approach and observe an
enhancement corresponding to the in-medium πN cross
section which increases with the temperature and nucleon

density. When used as an input in the hydrodynamic
equations, this is expected to have an observable conse-
quence of the space-time evolution of the latter stages of
heavy ion collisions.
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APPENDIX A: DIAGONALIZING THE
FERMION PROPAGATOR

The procedure of diagonalization of the thermal matrices
appearing in the real-time formulation of thermal field
theory concerns only the bosonic or fermionic nature of
the field [35]. The spin sum which appears in the numerator
of the propagator can thus be factored out. The free thermal
fermion propagator matrix is written as SðpÞ ¼
ðpþmÞEðpÞ, where the matrix E has components

E11 ¼ −E�
22 ¼ Δðp;mÞ − 2πi ~N2

1δðp2 −m2Þ;
E12 ¼ −2πieβμ=2 ~N1

~N2δðp2 −m2Þ;
E21 ¼ 2πie−βμ=2 ~N1

~N2δðp2 −m2Þ: ðA1Þ
The terms ~N1 and ~N2 containing thermal factors are given,
respectively, by

~N1ðp0Þ ¼ θðp0Þ
ffiffiffiffiffiffi
~npþ

q
þ θð−p0Þ

ffiffiffiffiffiffi
~np−

p
;

~N2ðp0Þ ¼ θðp0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~npþ

q
− θð−p0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~np−

p
; ðA2Þ

where

~np� ¼ 1

eβðωp∓μpÞ þ 1
; ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

q
:

The matrix E can be diagonalized as

E ¼ V

�Δ 0

0 −Δ�

�
V; ðA3Þ

where
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V ¼
�

~N2 − ~N1eβμ=2

~N1e−βμ=2 ~N2

�
: ðA4Þ

It can be shown [35] that the complete thermal propa-
gator matrix S0 is also diagonalized by V. From the Dyson
equation (6), it then follows that the self-energy matrixΠ is
diagonalized by V−1 resulting in Eq. (7). The diagonal
element Π̄ is given by any one of the four components ofΠ
as given in Eq. (8).

APPENDIX B: THE Δ SELF-ENERGY IN
VACUUM: LAGRANGIAN AND PARAMETERS

The Δ self-energy in the vacuum for the one-loop
diagrams shown in Fig. 1 are given by

Πμν
πN ¼ i

f2πNΔ
m2

π

Z
d4k
ð2πÞ4 F

2ðp; kÞOνβkβS0ðpÞOαμkαD0ðkÞ;

ðB1Þ

Πμν
ρN ¼ i

f2ρNΔ

m2
ρ

Z
d4k
ð2πÞ4 F

2ðp; kÞOνηγ5γϕðgβϕkη − gβηkϕÞ

× S0ðpÞγ5γλðgαλkσ − gασkλÞOμσDαβ
0 ðkÞ; ðB2Þ

Πμν
πΔ ¼ i

f2πΔΔ
m2

π

Z
d4k
ð2πÞ4 F

2ðp; kÞOνχγ5γβkβOψσgχψ

× S0λσðpÞOληγ5γαkαOϕμgηϕD0ðkÞ; ðB3Þ

Πμν
ρΔ ¼ if2ρΔΔ

Z
d4k
ð2πÞ4 F

2ðp; kÞOνχ

�
γβ þ i

κΔΔρ
2mΔ

σβϵkϵ

�

×OψσgχψS0λσðpÞOλη

�
γα − i

κΔΔρ
2mΔ

σαδkδ

�

×OϕμgηϕD0
αβðkÞ; ðB4Þ

where D0ðkÞ ¼ Δðk;mπÞ and D0
μνðkÞ ¼ AμνðkÞΔðk;mρÞ

are the scalar and vector propagators, respectively, in
the vacuum. The ones for the spin-1=2 and 3=2
fermions are given by S0ðpÞ¼ðpþmÞΔðp;mNÞ and

S0μνðpÞ ¼ ΣμνðpÞΔðp;mΔÞ, respectively. The vertex factors
come from the well-known interactions [46]

LπNΔ ¼ fπNΔ

mπ
Δ̄αOαμ ~T†∂μ~πψ þ H:c:; ðB5Þ

LρNΔ ¼ −i
fρNΔ

mρ
Δ̄αOαμγ5γν ~T†~ρμνψ þ H:c:; ðB6Þ

LπΔΔ ¼ fπΔΔ
mπ

Δ̄αOαμγ
5γν ~TΔμ∂ν~π; ðB7Þ

LρΔΔ ¼ −fρΔΔΔ̄βOαβ

�
γμ −

κρΔΔ
2mΔ

σμν∂ν

�
~ρμ ~TΔα; ðB8Þ

where [28,46] fπNΔ ¼ 2.8, fρNΔ ¼ 16.03, fπΔΔ ¼ 1.78,
fρΔΔ ¼ 7.67, and κρΔΔ ¼ 6.1. In the above, Oαβ ¼ gαβ−
aγαγβ, where the second term contributes only when the
spin-3=2 field is off the mass shell. Thus, the value of the
coupling constants remains unchanged. At each vertex, we
consider the form factor [7]

Fðp; kÞ ¼ Λ2

Λ2 þ ðp·kmp
Þ2 − k2

; ðB9Þ

in which p and k denote the momenta of the fermion and
boson, respectively. This form is denoted by form factor I
in Fig. 6(b). We determine the values of the parameters a
and Λ by fitting the phase shift and vacuum cross section.
The height of the peak of the πN cross section is more
sensitive to the value of a, and changes in Λ affect the tail
at higher energies. The numerical results in this work
have been generated with the values a ¼ 0.002 and
Λ ¼ 600 MeV. A reasonable fit is also obtained for
Λ ¼ 700 MeV. For comparison, we also consider an
exponential form factor [28] which we call form factor
II, given by

FðpÞ ¼ exp½−ðp2 − ðmN þmπÞ2Þ=Λ2�; ðB10Þ
where p is the momentum of the Δ. In this case, we obtain
Λ ¼ 1.25 GeV for the same value of a.
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