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Light-by-light scattering sum rules based on general field theory principles relate cross sections with
different helicities. In this paper the simplest sum rule is tested for the I ¼ 0 and 2 channels for “real”
photon-photon collisions. Important contributions come from the long-lived pseudoscalar mesons and from
dimeson intermediate states. The latest amplitude analysis of γγ → ππ; K̄K allows this contribution to
be evaluated. However, we find that other multimeson contributions up to 2.5 GeV are required to satisfy
the sum rules. While data on three- and four-pion cross sections exist, there is no information about their
isospin and helicity decomposition. Nevertheless, we show the measured cross sections are sufficiently
large to ensure the sum rules for the helicity differences are likely fulfilled.
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I. INTRODUCTION

There is keen interest in improving our understanding
of light-by-light scattering as an essential ingredient of
calculations of hadronic contributions to the anomalous
magnetic moment of the muon in preparation for planned
experiments at Fermilab [1] and J-PARC [2]. An essential
component of this are tests of the theoretical framework
by the scattering of essentially real photons, as an anchor
for modeling scattering with photons of virtuality up to
2 GeV2 that control the multiloop structure of hadronic
light-by-light scattering. Models of γ�γ� scattering in
different polarization states are expected to be constrained
by sum rules deduced by Pascalutsa and Vanderhaeghen
(PV) [3] from general field theoretic considerations. The
γ�γ sum rules have been tested with new Belle data [4] and
recently used to calculate the hadronic contribution to
muon’s anomalous magnetic moment [5].
Here we discuss what we currently know from the

detailed analysis of all available data on two real photon
interactions about the simplest of these sum rules. For
physical photons, the PV sum rules relate integrals of the
total polarized and unpolarized cross sections to the low-
energy structure of light-by-light scattering. The simplest
states that the helicity-two and helicity-zero cross sections
contribute equally [3] so that the weighted integral from
threshold sth:

Z
∞

sth

ds
σ2 − σ0

s
¼ 0; ð1Þ

where the subscripts label the total helicity (λ) of the
colliding photons. Subsequently, we denote the difference
½σ2ðsÞ − σ0ðsÞ� by ΔσðsÞ. This sum rule should be true for
the sum of all hadronic intermediate states of definite
isospin, i.e. I ¼ 0, 1, and 2. Thus, the first contributions to
include in Eq. (1) are from single particle intermediate
states that appear in γγ → γγ scattering, namely the π0 in
the I ¼ 1 channel and η; η0 in I ¼ 0. Their contribution to
the helicity-zero cross section is well known and included
in Table I, with uncertainties given by the decay rates from
the PDG Review of Particle Properties [6].
All the remaining contributions come from intermediate

states that are multihadron channels, e.g. ππ, 3π, 4π and so
on, with kaons and protons replacing pions as the energy
increases. Some of these cross sections have significant
resonant contributions, for instance the neutral tensormesons
with the f2ð1270Þ dominating the ππ channel, the a2ð1320Þ
in 3π and the f02ð1525Þ in the K̄K channel. Their contribu-
tions have been estimated in Ref. [7], in the approximation
that these resonances are narrow and only couple to photons
with helicity two.While thesemay seemplausible “guesses,”
it turns out in fact that they provide a rather poor description
of the contribution of these spin-two intermediate states.
This fact highlights why, using published data on two or

more particle production, it is not possible directly to
evaluate the sum rule of Eq. (1).
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(i) First the observed cross sections cover only part of
the angular range of the final state particles. When
these are just two particles, this is typically limited to
j cos θ�j ≤ 0.6 for charged particles and ≤ 0.8 for
neutral, while the sum rule requires cross sections
integrated over the full angular range (θ� is the
scattering angle in the γγ center-of-mass frame).

(ii) Second, measurements of all possible charged states
are required to separate out the isospin components,
even when there are just two final state particles.

(iii) Third, in untagged electron-positron collisions there
is no polarization information about the colliding
photons, which would automatically separate the
helicity components in the sum rule of Eq. (1).

Consequently, one needs to combine data with other
information. The amplitude analyses performed in
Refs. [8–10] address these issues by making use of the
underlying S-matrix principles of analyticity, crossing and
unitarity, combined with the QED low-energy theorem on
Compton scattering.Without this technology, a partial wave
separation would not be possible. Even then this is limited
to the c.m. energy region below 1.44 GeV, beyond which
multipion channels become crucially important: channels
for which we have even more limited information from
experiment, as we discuss in more detail below. We give the
single and two particle contributions to the PV sum rule,
Eq. (1), that can be accurately computed in Sec. II. Then
in Sec. III we estimate the contribution of multiparticle
channels and in Sec. IV give our conclusions.

II. CONTRIBUTIONS TO THE SUM RULES:
SINGLE PARTICLE AND ππ, K̄K

We begin by considering the contributions to the PV
sum rule, first from single particles in the process
γγ → γγ. By the optical theorem, the cross section is
related to the imaginary part of the relevant forward
helicity amplitudes. Thus the PV sum rule involves the
forward fð−ÞðsÞ amplitude, defined in [3], to be propor-
tional to the difference of the Mþþþþ −Mþ−þ− ampli-
tudes. Then the contribution of a near stable single

particle of mass M and γγ width ΓðλÞ
γγ in the helicity λ

channel is given by

σλðγγ → γγ; sÞ ¼ 16π2ð2J þ 1ÞΓ
ðλÞ
γγ

M
δðs −M2Þ: ð2Þ

The contribution to the PV sum rule for the π0; η; η0
are readily deduced using this equation with the
information from the PDG tables [6]. These are listed
in Table I.
When the intermediate state is a resonance, its contri-

bution is included in the sum of multiparticle modes to
which it decays. For instance, the tensor meson, the
f2ð1270Þ contributes through its ππ, K̄K and 4π channels.
In the same narrow resonance approximation, a resonance
of mass MR contributes to an integral of the γγ → ππ cross
section with helicity λ as

TABLE I. PV sum rule contributions for intermediate states η, η0, ππ and K̄K in nanobarns. The upper numbers are
for the integral up to 2 GeV2, while the lower set includes the estimate of the contribution above 2 GeV2.

Contribution to ΔIð4m2
π; 2 GeV2; Z ¼ 1Þ I ¼ 0 I ¼ 1 I ¼ 2

γγ → π0 [6] (nb) � � � −190.9� 4.0 � � �
γγ → η; η0 [6] (nb) −497.7� 19.3 � � � � � �
γγ → a2ð1320Þ [6] (nb) � � � 135.0� 12� 25a � � �
γγ → ππ (nb) 231.3� 31.2 � � � −82.9� 12.2

γγ → K̄K (nb) 6.2� 2.0 0.9� 0.2 � � �
SUM (nb) −260.2� 36.7 −55.0� 28.0 −82.9� 12.2

Evaluation of ΔIð4m2
π;∞; Z ¼ 1Þ I ¼ 0 I ¼ 1 I ¼ 2

γγ → π0 [6] (nb) � � � −190.9� 4.0 � � �
γγ → η; η0 [6] (nb) −497.7� 19.3 � � � � � �
γγ → a2ð1320Þ [6] (nb) � � � 135.0� 12� 25a � � �
γγ → ππ (nb) 308.0� 41.5 � � � −44.2� 6.1

γγ → K̄K (nb) 23.7� 7.5 18.1� 4.9 � � �
SUM (nb) −166.0� 46.4 −37.8� 28.4 −44.2� 6.1

aFor the I ¼ 1 channel we have included the contribution of the a2ð1230Þ in italics. Unlike the states coupling to
ππ, this is not the result of an amplitude analysis but is estimated in the pure helicity-two Breit-Wigner
approximation. The first error quoted for a2 is that from γγ coupling quoted in [6]; the second error is our estimate
[from the determination of the “correct” f2ð1270Þ contribution] of the uncertainty from the approximations made.
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σλðγγ → ππ; sÞ ¼ 8π2ð2J þ 1ÞΓ
ðλÞ
γγ

MR
BRR→ππδðs −M2Þ;

ð3Þ

where BR is the branching ratio of the resonance decay,
here to ππ. The difference of a factor of 2 between Eqs. (2)
and (3) comes about because of differences in the relation
of the unpolarized cross section to its helicity components.
Thus γγ → γγ cross section [3] σ ¼ ðσ0 þ σ2Þ=2 is nor-
malized as in Eq. (2), while the unpolarized γγ → ππ cross
section [10] for each isospin I is1 σI ¼ ðσI0 þ σI2Þ as
normalized in Eq. (3). Since the partial cross sections
for ππ and K̄K in our amplitude analysis have been
normalized according to Eq. (3), we scale these results
by a factor 2 to match the γγ cross section in each helicity.
Of course, the f2ð1270Þ, like the f0ð500Þ and f0ð980Þ, is
not well described by a narrow resonance approximation,
so the contributions from our analysis of experimental data
will not coincide with the pure helicity-two approximation
in [3,7]. Nevertheless, for the want of anything more
definite, in the I ¼ 1 3π channel, where we have no
amplitude analysis, we have estimated the contribution
of the a2ð1230Þ in the helicity-two Breit-Wigner approxi-
mation and included this in Table I, with a suitably
expanded error.
At very low ππ masses the magnitude of the cross

sections (I ¼ 0, 2, λ ¼ 0, 2) is known to be close (within
30%) to a one pion exchange Born model. Indeed in this
Born approximation the sum rule can be integrated to
infinite energy, and helicity-zero and -two components do
indeed contribute equally, as one can readily check
analytically—see the Appendix.
Of course, the Born amplitude contains no strong

interaction dynamics that dominates the contribution from
hadronic intermediate states. To do better, one has to use
the results of a partial wave separation of γγ scattering. This
is the context for a recent coupled channel amplitude
analysis [10] of the high statistics results from Belle on
γγ to two mesons ππ [11,12] and KK̄ [13] (and eventually
π0η [14]). Only where we have a partial wave separation
can we know the result for the whole angular range, and
even then the upper energy is far below infinity required
to evaluate Eq. (1). Because of the energy range of the
amplitude analysis, we can only integrate from ππ, or K̄K
threshold to 2 GeV2, a value we call Scut.
While our amplitude analysis has determined the I ¼ 0,

2 ππ, and the I ¼ 0, 1 K̄K S andDλwaves up to s≃ 2 GeV2,

all the higher waves are approximated by their one pion (or
kaon) exchange amplitude, BJ≥4. Thus the amplitudes for
each isospin (we suppress the label here) are

Mλðs; θ;ϕÞ ¼ S0ðsÞY00ðθ;ϕÞδ0λ þDλðsÞY2λðθ;ϕÞ
þ BJ≥4;λðs; θ;ϕÞ ð4Þ

for
ffiffiffi
s

p
≤ 1.44 GeV. From these amplitudes we can deduce

the helicity cross-section difference ΔσðsÞ ¼ σ2ðsÞ − σ0ðsÞ
that appears in Eq. (1). In Fig. 1we show the integrands of the
I ¼ 0, 2 PV sum rules for each of these up to s ¼ 2 GeV2.
The resulting contributions for ππ and K̄K intermediate

states are shown in the top half of Table I. That for the K̄K
channel is generally much smaller than that for ππ. While
the amplitude analysis determines the f2ð1270Þ is indeed
dominated by its helicity-two component, it does have a
helicity-zero component of ð8.6� 1.7Þ% and a substantial
S-wave cross section in the same mass region.
While the spin-zero and -two waves are distinctly

different from the Born approximation, reflecting important
direct channel dynamics, we know that an infinity of higher
waves must be very close to the Born amplitude for ππ
production reflecting the closeness of the t- and u-channel
pion poles to the physical region. Thus for instance atffiffiffi
s

p ¼ 2 GeV, the pion poles are at cos θ ¼ �1.01, only
just outside the physical region. The amplitudes M reflect
this, Eq. (4). In contrast for K̄K production, the kaon poles
are much further away, being at cos θ ¼ �1.15, again atffiffiffi
s

p ¼ 2 GeV. Thus the Born approximation is there poorer.
Nevertheless, these considerations provide the motiva-

tion for our estimate of the higher energy contribution to the
PV sum rule. These can be calculated by using the Born
amplitude as a reasonable approximation for s > 2 GeV2.
For the ππ channels, studies with different high-energy
behavior suggest that this is accurate to about 10%, while
for K̄K to 25%. However, the total contribution to the PV
sum rule from the kaon channel is much smaller than that of
ππ, and so its larger uncertainty matters less. In adding the
high-energy contribution, we can profit from the fact that
the PV sum rule is exactly satisfied by the Born amplitude.
Consequently

Z
Scut

sth

ds
ΔσBornðsÞ

s
¼ −

Z
∞

Scut

ds
ΔσBornðsÞ

s
: ð5Þ

Thus the total integrand for the PV sum rule can be
expressed wholly as an integral from s ¼ sth to Scut ¼
2 GeV2 of just the S and Dλ partial waves with

Δ̄σIðsÞ ¼ σID2ðsÞ − σISðsÞ − σID0ðsÞ
− ½σID2ðsÞ − σISðsÞ − σID0ðsÞ�Born: ð6Þ

The components of this integrand are also shown in Fig. 1
as the solid lines. The result of this integral is also given in
Table I. Our recalculation of I ¼ 0 γγ → η, η0, ππ, and KK̄

1The physical cross sections for πþπ− and π−π0 are related to
integrals of the sums of the modulus squared of the helicity
amplitudes of definite isospin and so involve interferences of
isospin amplitudes. Only the sum of the πþπ− and π0π0 cross
sections (where the interference cancels) is simply related toP

I;λ¼0;2σ
I
λ.
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is thus ð−166� 46Þ nb, with the systematic error of 28%,
and ð−44� 6Þ nb with a 14% systematic uncertainty for
I ¼ 2. Clearly these are not zero. Consequently, there must
be additional intermediate states that can make a substantial
contribution in the few GeV region.
Before considering such contributions, it is helpful for

this discussion to define the contributions of two particle
intermediate states to γγ → γγ in terms of differential cross
sections, where z ¼ cos θ�, with θ� the c.m. scattering
angle. Then for each isospin I, we have

ΣIðs1; s2; ZÞ ¼
Z

s2

s1

ds
s

Z
Z

−Z
dz

�
d
dz

σI2 þ
d
dz

σI0

�
: ð7Þ

This is a quantity that can be deduced from measurements
with unpolarized photons. Closer to the PV sum rule is the
difference Δ, rather than this sum Σ. This we define by

ΔIðs1; s2; ZÞ ¼
Z

s2

s1

ds
s

Z
Z

−Z
dz

�
d
dz

σI2 −
d
dz

σI0

�
: ð8Þ

The multiparticle contributions to these can only be
deduced after an amplitude analysis. The sum rule of
Eq. (1), of course, requires s1 ¼ 4m2

π , s2 ¼ ∞, Z ¼ 1. We
usefully define the ratio R,

Rðs1; s2; channelÞ ¼
Δðs1; s2; Z ¼ 1Þ
Σðs1; s2; ZexpÞ

: ð9Þ

This provides a scaling factor with which to multiply the
experimental cross sections, to estimate their contribution
to the PV sum rule.

III. CONTRIBUTIONS TO
THE SUM RULES: 4π, ETC.

Published data [15] allow the contributions to the
integral, Σ, of the sum of cross sections, Eq. (7), for

γγ → multimeson processes [16–23], 4π, ππKK̄, … to be
computed. These are listed in Table II. That these are large
means such intermediate states will contribute significantly
to light-by-light scattering and probably to the PV sum
rules too. The ratio R of Eq. (9) provides a scaling factor,
with which to multiply the experimental cross sections, to
estimate their contribution to the PV sum rule. We estimate
this scaling factor in two ways.

(i) Fromour amplitude analysis we know the ratioRAMP
in each charged channel, and also separated by
isospin, but only for s from ππ threshold to 2 GeV2.

(ii) From the ππ Born amplitude integrated over the
defined range of energies s1 ≤ s ≤ s2. An example
of the calculation involved is set out in the
Appendix.

Assessment (i) typically gives R≃ 0.65 from s ¼ 1 to
2 GeV2. However, this is in the region where the helicity-
zero component is largest. From 2 to 4 GeV2, which we
need to assess the contribution of the multipion data, this
ratio goes above one, as we now discuss. Assessment
(ii) uses the Born approximation. Then the sum and
difference of the differential helicity cross sections inte-
grated up to cos θ ¼ Z and from threshold sth to energy
squared S with X2 ¼ 1 − sth=S are, respectively,

ΣBornðsth; S; ZÞ

¼ e4

2sth

�
1

12Z6
½5 − 12Z2 þ 9Z4

− ð3X2 − X6ÞZ6� ln
�
1þ XZ
1 − XZ

�

þ X
6Z5

½−9Z4 þ 12Z2 − 5�

þ X3

18Z3
½6Z4 þ 12Z2 − 5� − X5

6Z

�
; ð10Þ

TABLE II. Integral of channels specified to Eq. (7) from s1 ¼ E2
1 to s2 ¼ E2

2 as listed. Note these cross sections are
not separated for either isospin or helicity. They are the sum of all contributions, except for the 3π denoted by
“nonres.” from which the experimental analysis has removed the a2ð1320Þ contribution. The factorR defined from
Eqs. (9)–(11) is an “estimate” of the scale, by which the listed cross sections Σ need to be multiplied to give the
contribution of each channel and energy region to the PV sum rule—see text for the discussion.

Channel Publication E1 (GeV) E2 (GeV) Σ (nb) RðBornÞ
πþπ− (Z ¼ 0.6) [16] 2.4 4.1 0.44� 0.01 1.61

KþK− (Z ¼ 0.6) [16] 2.4 4.1 0.39� 0.01 1.29

π0π0 (Z ¼ 0.8) [17] 1.44 3.3 8.8� 0.2 1.18

π0π0π0 [18] 1.525 2.425 5.8� 0.8 1.55

πþπ−π0 (nonres.) [19] 0.8 2.1 23.0� 1.3 1.39

KsK�π∓ [20] 1.4 4.2 9.7� 1.6

πþπ−πþπ− [21] 1.1 2.5 215� 11� 21 1.49

πþπ−πþπ− [22] 1.0 3.2 153� 5� 39 1.48

πþπ−π0π0 [23] 0.8 3.4 103� 4� 14 1.42
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ΔBornðsth; S; ZÞ

¼ e4

2sth

�
1

4Z4
½1 − X2Z2�½2Z2 − 1 − X2Z2� ln

�
1þ XZ
1 − XZ

�

−
X
2Z3

ð2Z2 − 1Þ þ X3

6Z
ð2Z2 þ 1Þ

�
: ð11Þ

From Eqs. (10) and (11) we can then deduce the ratio R
defined in Eq. (9) from the Born amplitude listed in
Table II. We see that this enhances the expected contribu-
tion to the PV sum rule. This may appear strange given that
the difference of the helicity-two and helicity-zero cross
sections of Eq. (8) is surely less than the sum of these cross
sections. The reason this is not the case is because as the
energy increases the sum rule for Δ is dominated by the
helicity-two contribution and this has the biggest difference
between Z ∼ 0.6 and Z ¼ 1; cf. Eq. (9). Helicity zero
contributes most to the S wave and this is only large at low

energies [remember the integral in Eq. (1) has a factor 1=s
in the measure in addition to the natural decrease in the
cross section at higher energies]. This is seen in the
negative contributions in Fig. 1. While both the integrals
defined for the cross-section sum and difference by
Eqs. (7), (8), as with the PV sum rule, Eq. (1), are
dominated by contributions from low energies, their con-
vergence is not so very fast. Using the Born amplitude as
a guide, Eq. (10), Σð4m2

π; S; Z ¼ 1Þ reaches 90% of its
asymptotic value already by

ffiffiffi
S

p
of 1.25 GeV and achieves

96% by 2 GeV but 98% by 3 GeV. The difference, Eq. (8),
or rather the normalized ratioR is 10% at 1.25 GeV, falling
to 4% at 2 GeVand below 2% at 3 GeV, on its way to zero
asymptotically. To repeat, this is critically dependent on
covering the whole angular range to Z ¼ 1.
The region of 2–3 GeV, above the range of our amplitude

analysis, being so important makes the large multimeson
cross sections seen in Table II matter for the PV sum rule,
with its required delicate cancellation. The contribution to

FIG. 1. The contribution of isospin 0 and 2 cross sections to the integrands for the PV sum rule, Eq. (1), for the difference of helicity-
two and -zero cross sections,Δσ. Note the different ordinate scales for these plots.

R
dsðσ2 − σ0Þ=sds of Eq. (1) is, of course, the same asR

dE2ðσ2 − σ0Þ=E, with E the energy in the center-of-mass frame. The dashed lines are for Δσ, the solid for Δσ of Eq. (6), i.e. with the
Born cross-section difference subtracted. In this latter case the PV sum rule essentially requires no contribution at higher energies from
these channels.

PASCALUTSA-VANDERHAEGHEN LIGHT-BY-LIGHT SUM … PHYSICAL REVIEW D 95, 056007 (2017)

056007-5



the sum rule from these multipion channels can be crudely
estimated by taking the measured cross sections, Σ,
multiplying them by the ratio R that we have listed in
Table II, and scaling by normalization factors and guesses
of the isospin decomposition, i.e. multiplying by a crude
factor of ∼1 for I ¼ 0 and ∼0.5 for I ¼ 2. This would
suggest that these would readily contribute the 150–200 nb
in the I ¼ 0 channel and 50 nb in the I ¼ 2 mode. When
added to our results in Table I, these would make the
integral in Eq. (1) consistent with zero, as expected.
Of course, the Born estimates know nothing of the direct

channel dynamics that control γγ → ρρ;ωπ;ωρ;ωω;….
As remarked earlier the Born approximation gives the right
order of magnitude for the γγ → πþπ− cross section in the
low-energy region, even though what is observed exper-
imentally is modified by substantial corrections from final
state interactions, particularly in the I ¼ 0 channel. This
rough agreement is because the pion poles at t ¼ u ¼ m2

π

are very close to the s-channel physical region even at low
energies. In contrast the kaon poles at t ¼ u ¼ m2

K are
far from the physical region for 4m2

K < s < 2 GeV2.
Consequently, other t- and u-channel exchanges, like the
K�ð890Þ and the κ=K�

0ð650Þ, are just as important. This
situation is even more so for the ρþρ− production, where
estimates from the one pion exchange Born cross section
are more than an order of magnitude below the observed
cross sections, since at threshold when s ¼ 4m2

ρ and t ¼
u ¼ −m2

ρ is very far from t ¼ u ¼ m2
π . Indeed, long ago

Achasov et al. [24] proposed that the large ρρ cross section
was dominated by the production of several wide tetraquark
resonances. While this cannot be checked without a partial
wave analysis, the proposal indicates the key role of direct
channel dynamics in this crucial mass region for the data to
satisfy the PV sum rule.

IV. CONCLUSION

In this paper we set out the contributions to the PV sum
rule for light-by-light scattering. Single, near stable, pseu-
doscalar mesons plus ππ; KK̄ intermediate states up to
1.44 GeV in γγ c.m. energy contribute ð−166� 46Þ nb,
with a systematic error of 28%, in the isoscalar channel
and ð−44� 6Þ nb, with a systematic error of 14%, in the
isotensor mode. These calculations are made possible by
the recent amplitude analysis [10] in this energy region of
the high statistics πþπ−; π0π0; K0

SK
0
S data from Belle. We

show that narrow resonance estimates from the tensor
mesons are not a good approximation. Though the accu-
rately determined contributions do not saturate the
Pascalutsa-Vanderhaeghen sum rule for isospin zero or
two, we find that it is most likely the four pion intermediate
state that provides sufficient contribution below 2.5 GeV to
give the expected zero result.
While there are data on the cross sections for πþπ−πþπ−

and πþπ−π0π0 production in the required energy region,

there is insufficient information to do more than “guesti-
mate” the isospin and helicity decomposition of these
integrated data. All other contributions are small, at the
few nanobarn level. Only four pion production delivers the
missing 150–200 nb in the I ¼ 0 channel and 50 nb with
I ¼ 2. Speculations of wide tetraquark states would render
this quite natural [24].
Since these sum rules play a key role in constraining the

contribution of light-by-light scattering to (g − 2) of the
muon, we urge experiments at eþe− colliders, such as
BESIII@BEPC II and Belle@KEKB, to consider investing
in detailed studies of 4π production from untagged two-
photon data. Differential cross sections for ρþρ− and ρ0ρ0

production from threshold to 2.5 GeV, even without helicity
separation, would be a most useful guide in checking the
expectations in this paper and so testing the validity and
utility of the simplest Pascalutsa-Vanderhaeghen sum rule.
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APPENDIX: BORN CROSS-SECTION INTEGRALS

From the one pseudoscalar meson exchange Born ampli-
tude, we can estimate from the known cross section for the
sum of helicities integrated over a limited angular range,
Σðs1; s2; ZÞ, Eq. (7), what the helicity difference integrated
over the full angular range that enters the Pascalutsa-
Vanderhaeghen sum rule (1) is. Here we set out part of
the calculation. First recall that the helicity amplitudesMλ1λ2

with λ1λ2 ¼ þþ or þ− for γγ → ππ in the center-of-mass
frame are related to the differential cross sections by

dσλ1λ2
d cos θ�

¼ β

128π2s

Z
2π

0

dϕjMλ1λ2ðs; cos θ�;ϕÞj2; ðA1Þ

where for a meson of mass m, β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ¼ 4m2=s

p
. Note that

in Eqs. (3) and (4) the total helicity λ ¼ λ1 − λ2. In the Born
approximation, these helicity amplitudes are given by
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Mþ−ðs; θ�;ϕÞ ¼ e2
ffiffiffiffiffiffiffiffi
16π

p β2sin2θ�

1 − β2cos2θ�
exp 2iϕ;

Mþþðs; θ�;ϕÞ ¼ e2
ffiffiffiffiffiffiffiffi
16π

p 1 − β2

1 − β2cos2θ�
; ðA2Þ

with e the charge of the pion in units in which ℏ ¼ c ¼ 1.
Then on integrating the square of their moduli over ϕ, we

have writing z ¼ cos θ�

d
dz

σþ− −
d
dz

σþþ ¼ e4
β

4s

�
1 −

2ð1 − β2Þ
1 − β2z2

�
: ðA3Þ

Integrating over z up to value Z gives

σþ−ðs;ZÞ−σþþðs;ZÞ¼
e4

4

β

s

�
Z−

ð1−β2Þ
β

ln
�
1þβZ
1−βZ

��
:

ðA4Þ

Changing integration variable from s to x≡ β, and noting
ds ¼ xdxs2=ð2m2Þ, we have on integrating from x ¼ 0

to x ¼ X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=S

p

ΔBornðsth; S; ZÞ ¼
Z

S

4m2

ds
s
½σþ−ðsÞ − σþþðsÞ� ðA5Þ

¼ e4

8m2

�½1 − X2Z2�
4Z4

½2Z2 − 1 − X2Z2� ln
�
1þ XZ
1 − XZ

�
−

X
2Z3

ð2Z2 − 1Þ þ X3

6Z
ð2Z2 þ 1Þ

�
: ðA6Þ

Similar integration gives the equation for ΣBornðsth; S; ZÞ shown in Eq. (10). These are used in establishing the estimates for
the ratio R, Eq. (9), in the final column of Table II.
Note that when Z ¼ 1, Eq. (A6) becomes

ΔBornðsth; S; Z ¼ 1Þ ¼ e4

32m2
ð1 − X2Þ

�
ð1 − X2Þ log

�
1þ X
1 − X

�
− 2X

�
: ðA7Þ

Of course, when S → ∞ (i.e. X → 1), ΔBorn → 0, but only if integrating over the full angular range.
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