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The measured (central) values of the Higgs and top quark masses indicate that the standard model (SM)
effective potential develops an instability at high field values. The scale of this instability, determined as the
Higgs field value at which the potential drops below the electroweak minimum, is about 1011 GeV.
However, such a scale is unphysical as it is not gauge invariant and suffers from a gauge-fixing uncertainty
of up to 2 orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding
higher order operators to the potential, letting the vacuum decay through critical bubbles, heating up
the system to very high temperature, and inflating it) and asking in each case physical questions, we
are able to provide several gauge-invariant scales related with the Higgs potential instability.
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I. INTRODUCTION

After the LHC runs made so far, with the discovery of a
light Higgs boson [1] and no signal of additional new
physics, we face the possibility that the standard model
(SM) might describe physics up to very high energy scales,
possibly up to the Planck scale. The value of the Higgs
mass, measured with great precision by the LHC, which
gives the combined value Mh ¼ 125.09� 0.21ðstatÞ �
0.11ðsystÞ GeV [2], turns out to be of particular interest
in this context. Large radiative corrections from the heavy
top quark destabilize the Higgs potential at large field
values making the electroweak (EW) vacuum metastable.
For the current value (from the LHC + Tevatron combi-
nation) Mt ¼ 173.34� 0.27ðstatÞ � 0.71ðsystÞ GeV [3]
we most likely live in such an unstable vacuum [4].
Intriguingly, we seem to be rather close to the boundary
of stability [4–9] and this translates into a very long lifetime
(many orders of magnitude larger than the age of the
Universe) against decay by quantum tunneling. One con-
cludes that this metastability does not represent an incon-
sistency of the SM and cannot be used to argue in favor of
new physics. The potential instability has also very inter-
esting cosmological implications [10–13] and might have a
deeper significance (for some attempts in that direction
see [5,14,15]).

The instability scale defined as the field value at which
the Higgs potential gets lower than the EW vacuum is quite
large, of order 1011 GeV for the central experimental values
ofMh andMt quoted above. However, this instability scale
turns out to be a gauge-dependent quantity [the previous
numerical value corresponds to the potential evaluated, at
next-to-next-to-leading order, in Landau gauge [4,5]]. Such
gauge dependence issues [16] have been well known since
the early days of the effective potential [17] but the problem
has attracted some attention recently [18–20] in the wake
of the Higgs discovery and the realization that we might
be living in a metastable vacuum. The uncertainty in the
instability scale due to this gauge dependence was esti-
mated in [18] to be potentially sizeable, of up to 2 orders of
magnitude.
The goal of this paper is to address this issue by deriving

physical gauge-independent scales associated to the insta-
bility scale (with varying degrees of how direct the
connection is). Following previous discussions and to ease
the comparison with earlier literature we use Fermi (or
Lorentz) gauge, using the gauge-fixing parameter ξ to track
the gauge dependence of our results. The gauge depend-
ence of the effective potential (or more fundamentally of
the effective action) is described by the so-called Nielsen
identity, which we review in Sec. II. After showing
explicitly the gauge dependence of the instability scale
in Fermi gauge in Sec. III we then discuss several ways
of extracting physical scales associated with the potential
instability. This instability can be cured by heavy physics
that affects the potential through nonrenormalizable oper-
ators, say λ6jHj6=Λ2, where Λ is the mass scale character-
izing the heavy physics. Even though the potential is a
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gauge-dependent object, the mass scale Λ required to
stabilize the potential turns out to be gauge independent.
We discuss this particular proposal (exploring also non-
renormalizable operators of higher orders) in Sec. IV. We
show how in this way the instability scale can be deter-
mined unambiguously and lies within 1 order of magnitude
of the naive instability scale calculated in Landau gauge.
A different scale related to the instability can be obtained

from the radius Rc of the critical bubble for vacuum decay.
We discuss this in Sec. V, giving a gauge-independent
definition of this radius, including also gravity effects. The
energy scale associated to this critical radius is the scale at
which new physics can have a direct impact on the vacuum
lifetime. In the case of the SM it is much heavier that the
instability scale itself, being rather close to the Planck scale.
In Sec. VI we also study the behavior of the unstable

potential at very high temperatures and obtain a critical
temperature at which there is a degeneracy between the EW
minimum and the one at very high field values. This
temperature, which can be proven to be gauge invariant,
turns out to be too loosely related to the instability scale in
the SM and not too illuminating.
Finally, in Sec. VII we discuss how to probe the

instability scale via inflation, which causes fluctuations
in the Higgs field proportional to the Hubble rate HI and
makes it probe the unstable region if HI is large (compa-
rable to the instability scale). We prove that the probability
of finding the Higgs in a certain field range, after a given
number of e-folds of inflation, is a gauge-invariant quantity.
Then we discuss how to extract a value for the Hubble rate
that reflects closely the scale of the potential instability with
the advantage of being a gauge-invariant quantity.
After drawing some conclusions, we collect some

technical details and results in several appendixes. In
Appendix A we calculate the renormalization group
(RG) equations for the Wilson coefficients of higher order
operators added to the effective potential. In Appendix B
we derive the ξ-dependence of the different functions that
appear in the effective action (and the energy-momentum
tensor derived from it) when using a derivative expansion,
up to Oð∂4Þ. In Appendix C we discuss the validity of the
Nielsen identity at finite temperature, deriving explicit
results for the SM at one loop.

II. THE NIELSEN IDENTITIES

The dependence of the Higgs effective potential on
the gauge-fixing parameters ξ derives from the gauge
dependence of the effective action S itself. Nevertheless,
the potential and the effective action are very useful and it is
possible to extract from them physical quantities that are
gauge independent.
The Nielsen identity [21–23] describes the ξ-dependence

of the effective action and plays a central role in discussing
how to obtain gauge-independent quantities. For cases with
a Higgs background only, the identity reads

ξ
∂
∂ξ S½hðxÞ; ξ� ¼ −

Z
d4yK½hðyÞ� δS

δhðyÞ ; ð1Þ

where K½hðyÞ� is a known functional of h, given in [21].
According to this identity, the effective action evaluated
on a solution of the equation of motion (EoM) for h
(that is, δS=δh ¼ 0) is ξ independent. A particular
instance of this general result is the ξ-independence
of the values of the effective potential at its extrema,
a well-known result.
If one writes the effective action in a derivative

expansion

S½h� ¼
Z

d4x

�
−VðhÞ þ 1

2
ZðhÞð∂μhÞ2 þOð∂4Þ

�
; ð2Þ

a series of Nielsen identities for the coefficient functions in
this expansion can be derived from the identity in Eq. (1).
We show this explicitly, up to fourth order in the expansion,
in Appendix B. At the lowest order in this derivative
expansion, i.e., for constant field configurations, one finds
a Nielsen identity for the effective potential,

ξ
∂V
∂ξ þ CðhÞV 0 ¼ 0; ð3Þ

where CðhÞ is the value of K½h� for constant h. As
anticipated above, this identity implies the ξ-independence
of the values of the potential at the extremal points. The
identity (3) can be rewritten as

ξ
dV
dξ

¼ ξ
∂V
∂ξ þ ∂V

∂h ξ
∂h
∂ξ ¼ 0; ð4Þ

showing that the explicit ξ-dependence of the effective
potential can be compensated by an implicit ξ-dependence
of the field as

ξ
dh
dξ

¼ CðhÞ: ð5Þ

A change in ξ is therefore equivalent to the field redefi-
nition (5). This way of looking at the effect of a change in ξ
makes it obvious that the values of the potential at the
extremal points are gauge independent.
Next, we derive Nielsen identities for the equation of

motion and for the energy-momentum tensor Tμν that
allow us to understand the ξ-dependence of the solutions
of the EoM and prove the ξ-independence of Tμν, both of
which are needed for later discussions. We begin with the
Nielsen identity for the effective action given in Eq. (1).
To derive a Nielsen identity for the equation of motion,
we take a functional derivative with respect to hðxÞ,
getting
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ξ
∂
∂ξ

δS
δhðxÞ

þ
Z

d4y

�
δ2S

δhðyÞδhðxÞK½hðyÞ� þ δS
δhðyÞ

δK½hðyÞ�
δhðxÞ

�
¼ 0:

ð6Þ
Evaluating the effective action for a field h̄ðx; ξÞ that
solves the EoM, δS=δh ¼ 0, the last term in the equation
above drops, while the first two terms can be combined
into a total derivative,

ξ
d
dξ

δS½h̄; ξ�
δhðxÞ ¼ 0; ð7Þ

provided h̄ fulfils

ξ
d
dξ

h̄ðx; ξÞ ¼ K½h̄ðxÞ�: ð8Þ

As the total derivative (7) is 0, this in fact shows that the
solution of the EoM for ξþ dξ is h̄þ K½h̄�d log ξ. In other
words, the solution h̄ðx; ξÞ of (8) describes how a solution
of the EoM changes when varying the gauge parameter ξ.1

Let us next discuss the ξ-independence of the energy-
momentum tensor, which is defined through the variation
of the action under changes of the metric tensor, as

TμνðxÞ ¼ −
2ffiffiffiffiffiffi−gp δS

δgμνðxÞ
; ð9Þ

where g is the determinant of the metric. We are ultimately
interested in a flat background, but keep the metric explicit
in order to derive the energy-momentum tensor. In order to
derive a Nielsen identity for the energy-momentum tensor2

we take a derivative of (1) with respect to gμνðxÞ,

ξ
∂
∂ξT

μνðxÞ − 2ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp Z

d4y

�
δS

δhðyÞδgμνðxÞ
K½hðyÞ�

þ δS
δhðyÞ

δK½hðyÞ�
δgμνðxÞ

�
¼ 0: ð10Þ

When evaluated for h̄ðx; ξÞ, a solution of the EoM, the first
two terms can again be combined into a total derivative,
while the last term vanishes, and we get

ξ
d
dξ

TμνðxÞjh¼h̄ðx;ξÞ ¼ 0: ð11Þ

This means that the explicit gauge parameter dependence
is precisely compensated by the change of the field value
when varying ξ. Therefore, the total ξ-dependence van-
ishes, such that on shell the energy-momentum tensor is
gauge-fixing independent.
For the particular case in which we are interested, the SM

in Fermi gauge, we have in fact two ξ parameters appearing
in the EW gauge-fixing Lagrangian,

Lgf ¼ −
1

2ξB
ð∂μBμÞ2 −

1

2ξW
ð∂μWa

μÞ2; ð12Þ

and the effective potential depends on both of them. We
have a Nielsen identity for each, with

ξi
∂V
∂ξi þ CiðhÞV 0 ¼ 0; ð13Þ

for ξi ¼ ξB, ξW , with the CiðhÞ functions given by

CBðhÞ ¼
ig0

2

Z
d4yhcðxÞχ0ðxÞc̄ðyÞ∂μBμðyÞi; ð14Þ

CWðhÞ ¼
ig
2

Z
d4yhcaðxÞχaðxÞc̄bðyÞ∂μW

μ
bðyÞi; ð15Þ

where c, c̄ (ca, c̄a) are the Uð1ÞY [SUð2ÞL] ghost fields
and χa the Goldstone boson fields while Bμ andWa

μ are the
Uð1ÞY and SUð2ÞL gauge bosons, respectively, and h is a
constant background.
Let us write the tree-level potential as

V0ðhÞ ¼ −
1

2
m2h2 þ 1

4
λh4: ð16Þ

The renormalized one-loop potential (in MS scheme) is
obtained as [24]

V1ðϕÞ ¼
X
α

NαJ0αðM2
αÞ ¼

κ

4

X
α

NαM4
α

�
log

M2
α

μ2
− Cα

�
;

ð17Þ

where κ ¼ 1=ð16π2Þ, μ is the renormalization scale
and the index α runs over different particle species, with
Nα degrees of freedom (taken as negative for fermions).
The squared massesM2

α are the corresponding masses in an
h background. The main contributions to the potential
come from

1It is worth noting that the value of the action for any field
configuration, even off shell, is invariant under the combined ξ
and field change implied by (8), as is evident from Eq. (1).

2This requires that the Nielsen identity not only holds in flat
Minkowski space but for an arbitrary backgroundmetric (at least in
the neighborhood of flat space). Such generalized Nielsen identity
can be obtained by writing all terms in a general coordinate
invariant form. Gauge fixing of gravity is not required for a
nondynamical background metric, which is all we need here to
define the energy-momentum tensor. The usual proof of theNielsen
identity is then directly carried over to the nonflat case. To calculate
explicitly K½h; g� is nevertheless much more cumbersome.
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top quarks : Nt ¼ −12; M2
t ¼ 1

2
y2t h2;

W�bosons∶ NW ¼ 6; M2
W ¼ 1

4
g2h2;

Z0bosons∶ NZ ¼ 3; M2
Z ¼ 1

4
ðg2 þ g02Þh2;

Higgs bosons∶ Nh ¼ 1; M2
h ¼ −m2 þ 3λh2;

neutral Goldstone bosons∶ NB� ¼ 1; M2
B� ¼ 1

2
½M2

G �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

G − 4ðξWM2
W þ ξBM2

BÞM2
G

p
�;

charged Goldstone bosons∶ NA� ¼ 2; M2
A� ¼ 1

2
ðM2

G �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

G − 4ξWM2
GM

2
W

p
Þ;

ð18Þ

where we use the auxiliary squared masses

M2
B ≡ 1

4
g02h2; M2

G ≡ 1

h
∂V0

∂h ¼ −m2 þ λh2: ð19Þ

Finally, the Cαs are constants: Cα ¼ 3=2 for scalars and
fermions and Cα ¼ 5=6 for gauge bosons.
Fermi gauge is afflicted by infrared divergences beyond

those generic in all gauges (with massless Goldstone
bosons) that remain even after the resummation cure that
fixes the latter [25,26]. For a discussion of this issue (more
precisely an IR divergence in the first derivative of the
effective potential) and its solution(s), see [27]. In order to
avoid this complication we use a Fukuda-Kugo IR regulator
μIR as described in Sec. IVB of [27]. In this case one
needs to add to the potential also ghost contributions
with NcZ ¼−2, NcW ¼−4, M2

cZ ¼ μIRMZ, M2
cW ¼ μIRMW ,

Cci ¼ 3=2. We checked that none of our results depends on
the choice of μIR.
The functions CB;WðhÞ that enter in the Nielsen identity

in Eq. (3), calculated at one loop, are

Cð1Þ
B ðhÞ ¼ ξB

8
g02h

�
I0Bþ − I0B−

M2
Bþ −M2

B−

�
; ð20Þ

Cð1Þ
W ðhÞ ¼ ξW

8
g2h

�
I0Bþ − I0B−

M2
Bþ −M2

B−

þ 2
I0Aþ − I0A−

M2
Aþ −M2

A−

�
; ð21Þ

with

I0αðM2
αÞ≡ 2

∂
∂M2

α
J0αðM2

αÞ ¼ κM2
α

�
log

M2
α

μ2
− Cα þ

1

2

�
:

ð22Þ
With the previous expressions it is straightforward to check
that the one-loop Nielsen identities

ξi
∂V1ðhÞ
∂ξi þ Cð1Þ

i
∂V0ðhÞ
∂h ¼ 0 ð23Þ

are indeed fulfilled. For the numerical analyses in the
following sections we set ξB ¼ ξW ¼ ξ at the EW scale
(more precisely at μ ¼ Mt) as was done in [18], and discuss
the dependence of different quantities with ξ.

III. GAUGE DEPENDENCE OF THE
INSTABILITY SCALE

As discussed in the introduction, for the measured values
of the Higgs and top quark masses, the standard model
develops an instability at high field values. One can take as
the scale of the instability the field value hI at which the
effective potential drops below the value of the electroweak
minimum. Given the order of magnitude of the scales
involved this corresponds in practice to VðhIÞ ¼ 0, with
hI ≃ 1011 GeV for the central values of Mh and Mt. It is
well known that hI is not a gauge-independent quantity and
it was calculated recently, using Fermi and Rξ gauges [18],
that the gauge dependence leads to an uncertainty of up to
2 orders of magnitude in hI (if one takes extreme values
ξ ∼ 300, at the limit of validity of the perturbative regime).
For illustration, the gauge dependence of hI in Fermi gauge
is shown in Fig. 1. The black solid line corresponds to the
result extracted from the one-loop RG improved effective

0 50 100 150 200 250

0

2

4

6

8

10

X
X

0

Vmax
1 4 IR resummed

Vmax
1 4

hI

hI 0

FIG. 1. Gauge dependence of several quantities normalized to
their value for ξ ¼ 0. Black lines give the scale hIðξÞ at which the
effective potential drops below the value of the electroweak
minimum taking into account the running of the gauge-fixing
parameters (solid) or keeping them fixed (dashed). For compari-
son, we also show the value of the effective potential at the
maximum, V1=4

max, with or without resummation of IR divergences,
as indicated.

ESPINOSA, GARNY, KONSTANDIN, and RIOTTO PHYSICAL REVIEW D 95, 056004 (2017)

056004-4



potential, taking into account also the running of the
gauge-fixing parameters. It turns out that even when fixing
ξB ¼ ξW ¼ ξ to large values at the EW scale, the running
significantly reduces their value in the UV [18] reducing
the impact of gauge dependence. This is illustrated by the
black dashed line, for which the running of the gauge-
fixing parameters has been neglected. These two lines
reproduce the results of [18].
One might ask whether the gauge dependence, especially

for very large values of ξ, signals a poor perturbative
description rather than the expected gauge dependence of
hI . To address this question we also show the value of the
potential evaluated at the maximum in Fig. 1, which is a
gauge-independent quantity. Its residual gauge dependence
due to the perturbative computation of the potential is
indeed small (blue dotted line). This dependence is further
reduced to the few % level for the effective potential with
IR resummed Goldstone mass parameter [25,26] (orange
dot-dashed line) in agreement with expectations [27]. In
addition, we checked that the gauge dependence of hI
agrees, at the same level of accuracy, with the one expected
from the Nielsen identity, obtained by solving the differ-
ential equation Eq. (8). Note that the gauge dependence of
hI in Rξ gauges is of similar magnitude, but goes in the
opposite direction [18], such that the value of hI varies over
a large range.
One pragmatic attitude concerning the gauge depend-

ence of hI is simply to ignore the problem altogether:
an order of magnitude estimate of the instability scale,
especially when it is so high, might be good enough and
the Landau gauge calculation should give a quite reason-
able estimate of that scale (why would one take such
large values of the gauge-fixing parameter as ξ ∼ 300?).
Moreover, the same problem affects the vacuum expect-
ation value of the Higgs boson in the electroweak vacuum.
That is, the usual vEW ¼ 246 GeV is also a gauge-
dependent quantity. However, as long as one calculates
physical quantities the gauge dependence should drop out.
Residual gauge dependence might still be left over from
truncating perturbative expansions, in which case taking
large values of the gauge-fixing parameters would be
ill advised. Nevertheless, as a point of principle, it is
interesting to think of what physical scales are there that
can be associated to the presence of the instability of the
potential. We discuss several possibilities in the following
sections.

IV. STABILIZATION BY IRRELEVANT
OPERATORS

In this section we explore one physical scale, indepen-
dent of the gauge-fixing parameter, that reflects in a very
clean way the underlying instability scale in the SM
effective potential. The basic idea is to probe the behavior
of the theory at high field values by adding a fictitious
higher-dimensional operator to the Higgs potential,

characterized by a suppression scale Λ.3 At tree level the
potential is

V0ðhÞ ¼ −
1

2
m2h2 þ λ

4
h4 þ cn

hn

2n=2Λn−4 ; ð24Þ

and we consider only even powers of n, with n ≥ 6, as the
nonrenormalizable operator should arise from powers
of ðH†HÞ.
After including radiative corrections the SM part of the

potential develops the instability at some scale [at leading
order this is captured by λðhÞ turning negative] but, for
positive cn, the new term stabilizes the effective potential at
even larger field values. By varying Λ (keeping cn fixed) it
is possible to find a critical value of Λc for which the high-
scale minimum at hc [V 0ðhc; ξ;ΛcÞ ¼ 0] and the EW
minimum at vEW are degenerate,

Vðhc; ξ;ΛcÞ ¼ VðvEW; ξ;ΛcÞ ≈ 0: ð25Þ

Since the shape of the effective potential depends on the
particular value of the gauge-fixing parameter ξ (as
indicated) one might expect that the critical value Λc
required to fulfil the conditions above would also be ξ
dependent. Interestingly this is not the case and Λc is a
gauge-independent scale. This follows from the fact that the
value of the potential at an extremal point is independent of
ξ. The argument is illustrated by Fig. 2: a change in ξ affects
the unstable potential Vðh; ξÞ shown in the upper left panel
as a field redefinition and Vðh; ξþ ΔξÞ is shown in green in
the upper right corner. The lower left panel shows instead
the effect of adding to the original potential a nonrenor-
malizable term adjusted to the critical value Vðh; ξ;ΛcÞ,
such that the potential has two degenerate minima. It is then
obvious that the ξ transformation of this potential,
Vðh; ξþ Δξ;ΛcÞ, still has two degenerate minima and
therefore Λc is also the critical scale for the potential
Vðh; ξþ ΔξÞ and one concludes that Λc is ξ independent.
On the other hand, the field value hc at which the high-scale
minima appear does depend on the gauge fixing. This
suggests the use of Λc instead of hI as a physical measure
of the instability scale.
We describe below how to implement this idea in

practice. The effect of the higher-dimensional operator in
the one-loop effective potential is straightforward to take
into account, simply using the modified Higgs and
Goldstone field-dependent squared masses

3Generically, if there is really new physics at the scale Λ the
use of an effective theory to study the impact of the heavy physics
on the instability scale (as in [28]) can be problematic and
requires a wide separation between the two scales; see [29] for a
discussion of this point. See also [30] for a recent analysis (based
on functional RG methods) of the potential instability in the
presence of higher-dimensional operators.
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M2
HðhÞ ¼ V 00

0ðhÞ ¼ −m2 þ 3λh2 þ nðn − 1Þcnhn−2
2n=2Λn−4 ;

M2
GðhÞ ¼

1

h
V 0
0ðhÞ ¼ −m2 þ λh2 þ ncnhn−2

2n=2Λn−4 ; ð26Þ

where primes denote h-derivatives. In addition, we take
into account IR resummation of the Goldstone mass, as
discussed in [27], to minimize residual gauge dependences.
At the order we work, this amounts to adding to M2

G the
one-loop Goldstone self-energy Πg given by

1

κ
Πg ¼

dM2
H

dh2
M2

HðLH − 1Þ − 6y2t M2
t ðLt − 1Þ

þ 3

2
g2M2

W

�
LW −

1

3

�
þ 3

4
ðg2 þ g02ÞM2

Z

�
LZ −

1

3

�
;

ð27Þ
where LX ¼ logðM2

X=μ
2Þ.

The RG improved effective potential resums large
logarithms between the electroweak and high-scale minima
in the usual way (see e.g. [4]). For our purpose it is enough
to use the one-loop potential (with IR resummed Goldstone

mass) with SM parameters running at two loops (the
renormalization group equations in Fermi gauge can be
found in [18]) while we treat the effect of the nonrenor-
malizable operator at leading order, with cn running at one
loop. The one-loop beta function for cn, βcn ≡ dcn=d log μ,
neglecting corrections of order m2=Λ2 ≪ 1, is given by
(see Appendix A)

βcn ¼ 3κ

�
nλþ y2t −

g02

4
−
3g2

4

�
ncn

þ κ

8

Xn−2
m¼6

mpðn;mÞ½mpðn;mÞ þ n�cmcpðn;mÞ; ð28Þ

where pðn;mÞ≡ nþ 4 −m. Once we introduce the higher
order operator in the SM potential the theory is not
renormalizable and further operators of even higher order
are generated radiatively. This is reflected in the RG
equation above, through the cmcpðn;mÞ terms. We impose
the boundary condition cnðΛÞ ¼ 1, cm≠nðΛÞ ¼ 0. Close to
the scale Λ the operator hn dominates and we can safely
neglect the rest for our analysis.

h

V
(h

)

h

V
(h

)

c c

h

V
(h

)

h
V

(h
)

FIG. 2. Illustration of the ξ-independence of the scaleΛc defined in the text. Upper left panel: Vðh; ξÞ. Upper right panel: Vðh; ξþ ΔξÞ
in green, shows the rescaling effect of changing ξ → ξþ Δξ. Lower left panel: Vðh; ξ;ΛcÞ shows the effect of the nonrenormalizable
term suppressed by Λc that gives two degenerate minima. Lower right panel: shows in green the effect of ξ change on previous potential.
The degenerate minima stay degenerate.
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The nonrenormalizable couplings are completely irrel-
evant at the electroweak scale. For the renormalizable
couplings we impose boundary conditions at the electro-
weak scale, more precisely at μ0≡Mt¼173.34GeV,
using the best-fit values given in [5]. We first consider
the lowest choice n ¼ 6, and then discuss what happens
for higher n.
A closeup of the instability region of the RG improved

effective potential for n ¼ 6 is shown in Fig. 3. The
upper left plot corresponds to the standard model (without
higher-dimensional operators, i.e., Λ → ∞) for several
values of ξ from 0 to 256. We see that the scale hI [at
which VðhIÞ ¼ 0] is indeed ξ dependent. In the other plots
we added to the potential the c6h6=ð8Λ2Þ operator, with
c6ðΛÞ ¼ 1. For Λ ¼ 5 × 1012 GeV (upper right plot), the
value of the potential at the high-scale minimum is
negative, i.e. deeper than the electroweak minimum. For
Λ ¼ 1012 GeV the potential is positive at the high-scale
minimum, such that the electroweak vacuum becomes the
absolute minimum. For Λ ¼ Λc ¼ 2.4 × 1012 GeV both
minima are exactly degenerate (lower left plot). It is
apparent that this degeneracy occurs for all values of ξ

at the same value of Λc, as discussed above.4 On the other
hand, the field value hc at which the minimum occurs does
depend on ξ, as expected.
In Fig. 4 we compare the critical scale Λc obtained for

n ¼ 6 with the instability scale hI at which V ¼ 0,
comparing directly with the results in [18], reproduced
by the black lines. Even when varying the gauge-fixing
parameter over a large range, ξ ¼ ð0; 250Þ, we find that the
Λc scale determined from the RG improved one-loop
potential is stable at the level of 6%, with the residual
gauge dependence due to the perturbative truncation of the
potential. This is to be contrasted with the gauge depend-
ence of the instability scale defined via the field value,
which varies by half an order of magnitude over the same
range of ξ. Let us also mention that we checked that (i) the
effect of the running of the cm>6 higher-dimensional
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FIG. 3. Renormalization group improved (and IR resummed) effective potential Vðh; ξÞ normalized to h4 for the SM in Fermi gauge.
The different curves in each panel show the dependence on the gauge-fixing parameter ξ ¼ 0; 2; 4; 8;…; 256. The four panels
correspond to different choices of the scale Λ of the dimension-six operator ∝ h6=Λ2, as indicated.

4The value of the potential at the minimum is gauge invariant
for any value of Λ. The apparent gauge dependence in the upper
and lower right plots is due to the fact that the minimum of the
ratio V=h4 shown in the plots is offset from the true minimum of
V for V ≠ 0.
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operators generated by the running even when only c6 is
present at the scale Λ, is minor, affecting Λc by less than
2%. (ii) The value of Λc is also stable at the percent level
when varying (by a factor 2 up or down) the renormaliza-
tion scale used to resum large logarithms.
There is freedom to choose the dimension n of the

nonrenormalizable operator we use to extract the scale Λc.
In Fig. 5 we show the critical value Λc obtained for various
choices of n ¼ 6; 8;…. For large n the critical value

asymptotes to ΛI ≃ 1011 GeV. The reason is that in this
limit the effect of the higher-dimensional operator can be
considered almost as a step function. Therefore, one may
identify the asymptotic large-n value that we call ΛI as the
physical scale beyond which the electroweak vacuum
becomes unstable. Irrespective of the precise physical
interpretation of this scale, it is important that it can be
determined in an unambiguous way, independent of the
gauge fixing. It is interesting to note that ΛI is actually
rather close to the naive instability scale hI obtained in
Landau gauge by demanding VðhIÞ ¼ 0. As we show
below this is not a coincidence but depends on some of
the assumptions we have made, in particular for the scaling
of cn with n.
Let us approximate the potential in the instability

region as

Vðh;ΛÞ≃ 1

4
λðhÞh4 þ cn

hn

2n=2Λn−4 ; ð29Þ

where the bulk of the radiative corrections to the potential is
captured in the running quartic λðhÞ (that includes also
finite one-loop contributions), evaluated at the renormal-
ization scale μ ¼ h. This approximation is sufficient to
determine the leading scaling of Λc and its limiting value
ΛI with different parameters. In particular this approxima-
tion ignores the ξ-dependence of the radiatively corrected
potential, but this is not an issue once we have a general
argument for the ξ-independence of Λc. From the con-
ditions Vðhc;ΛcÞ ¼ 0 and V 0ðhc;ΛcÞ ¼ 0 we get

λðhcÞ≃ βλðhcÞ
n − 4

; Λc ≃ hc

�
−4ncn

2n=2βλðhcÞ
�
1=ðn−4Þ

: ð30Þ

Taking the large-n limit we see that λðhcÞ → 0, so that
hc → hI , the point at which the quartic coupling crosses 0:
λðhIÞ ¼ 0. To take the large-n limit of Λc, which deter-
mines ΛI , we need to specify how cn scales with n. The
generic expectation, based on simple ℏ power counting, is
that at tree level cn ∼ gn−2 where g represents a generic
coupling between the Higgs field and the physics at the
scale Λ. With this n dependence included we get the limit

ΛI ≃ gffiffiffi
2

p hI: ð31Þ

In the numerical analysis of Fig. 5 we simply took g ¼ 1
but in general one does expect some dependence on the
coupling strength g. After all, in order for the new physics
represented by the nonrenormalizable operator to stabilize
the potential, the coupling strength of that new physics to
the Higgs field should matter.5 Up to that unavoidable
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FIG. 4. Gauge (in)dependence of the instability scale of the
standard model, as a function of the gauge-fixing parameter ξ.
The black lines reproduce the results from [18], and correspond to
the field value hI for which VðhIÞ ¼ 0 (the dashed line is
obtained if the running of ξ is neglected). The red line shows
the critical value Λc of a dimension-six operator that stabilizes the
SM potential giving a large scale minimum degenerate with
the EW one. The residual ξ-dependence of Λc is ∼6% within the
range shown.
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FIG. 5. Critical scale Λc of a hn=Λn−4 operator that stabilizes
the SM potential giving a large scale minimum degenerate with
the EW one, for various values of n. The residual ξ-dependence
for ξ ∈ ð0; 250Þ is below the 10% level for all n. For large n the
critical scale approaches ΛI ≃ 1011 GeV.

5In fact, how the scale of new physics (able to stabilize the
potential) could vary, depending on the coupling strength, has
been analyzed before, using particular models; see [31].
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model dependence we are nevertheless able to extract a
gauge-independent scale to be very closely associated with
the scale of instability of the SM potential.
In this context, it is interesting to known what is the

highest scale where some (perturbative) new physics has to
appear if one demands absolute vacuum stability. The
highest scale is obtained for the lowest order n ¼ 6, and
we take c6 ∼ g4 in accordance with the expected scaling
with the coupling strength to the new physics [the validity
of the effective description requires g≳Oð1Þ, so as to keep
sufficiently separate Λ and the potential minimum]. For the
central value of the SM parameters one obtains (see Fig. 3)
Λc ≲ 2.4 × 1012 GeV × g2 ≲ 3.8 × 1014 GeV, where we
assumed g < 4π to get this rough estimate of the largest
possible scale where new physics has to appear to ensure
absolute vacuum stability.6

V. GAUGE INVARIANCE AND THE
TUNNELING CRITICAL BUBBLE

In quantum field theory, false vacuum decay proceeds by
the nucleation of bubbles that probe the lower-energy
phase, are large enough to grow (with the bulk energy
gain overcoming the surface tension), and eventually engulf
the whole of space [33]. The tunneling probability density
(which determines the false vacuum lifetime) actually
measures how likely it is to nucleate such bubbles per
unit time and unit volume.
This decay rate Γ is calculated by first finding the

so-called bounce solution hb to the Euclidean EoM [34].
This solution is Oð4Þ spherically symmetric, hbðρÞ, with
ρ2 ¼ t2E þ r2, where tE is Euclidean time and r2 ¼ ~x2. It
has boundary conditions hb ¼ vf at tE → �∞ (where vf is
the expectation value of the field in the false vacuum) and a
turning point (assigned without loss of generality to tE ¼ 0)
with ∂hb=∂tE ¼ 0 for all ~x. The decay rate scales as
Γ ∼ e−S4 , where S4 is the Euclidean action for this bounce
solution, S4 ¼ SE½hb� (see e.g. [35] for a nice introduction).
The gauge independence of S4 and Γ has been discussed in
the literature before [36–38] and follows the usual pattern:
the explicit ξ-dependence that appears in the effective
action, described by the Nielsen identity (now for the
Euclidean action),

ξ
∂SE
∂ξ þ

Z
d4xKE½hðxÞ�

δSE
δh

¼ 0; ð32Þ

is compensated by an implicit dependence on ξ of the
solutions of the EoM/bounce equation, given by

ξ
dhb
dξ

¼ KE½hb�; ð33Þ

and leading to

dS4
dξ

¼ 0: ð34Þ

Here, rather than on S4, we are interested in the radius of the
critical bubble, which provides another physical scale
associated to the potential instability. The critical bubble,
the most likely bubble profile for vacuum decay, corre-
sponds to the bounce solution evaluated at tE ¼ 0,
hBðrÞ≡ hbð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 þ r2

p
Þ. It is anOð3Þ spherically symmetric

bubble configuration with zero total energy (as the tunnel-
ing process must conserve energy). In fact, the analytic
continuation of the Euclidean bounce to Minkowski space-
time (with ρ2 ¼ t2E þ r2 → −t2 þ r2, where r2 ¼ ~x2 is the
square of the distance to the bubble center) gives the real
time evolution of the nucleated bubble (see [39] for details).
The field profile, hBðrÞ, could be used to define the
radius Rc of the critical bubble, e.g. as the radius at which
the field is halfway between the false vacuum value at
infinity and its value at the center of the bubble,
hBðRcÞ ¼ ½hBð0Þ − vf�=2. However, it is clear that such
a definition leads to a ξ-dependent Rc as the bounce
solution depends on ξ in a nontrivial way, according
to Eq. (33).7

A ξ-independent critical radius can be defined if, instead
of using the field bubble profile, one uses the energy
density profile. Let us show how this works using a
derivative expansion approximation for the effective action,
although it is clear that the general derivation does not rely
on such expansion.
Let us assume then that the derivative expansion of

the effective action converges and gives a sufficiently
good approximation at second order in derivatives. The
Euclidean effective action for the Oð4Þ symmetric bounce
hbðρÞ reads

SE¼ 2π2
Z

∞

0

dρρ3
�
1

2
ZðhbÞð∂ρhbÞ2þVðhbÞ−Vf

�
; ð35Þ

where Vf ¼ VðvfÞ is the potential value in the false
vacuum. The bounce solution hbðρÞ satisfies the Euclidean
EoM

ZðhbÞ□Ehb þ
1

2
Z0ðhbÞð∂ρhbÞ2 ¼ V 0ðhbÞ; ð36Þ

6The presence of the dimension-5 (Weinberg) operator with a
similar suppression scale would not spoil this upper bound. As is
well known [32], heavy Majorana neutrinos tend to make the
potential more unstable and therefore call for even lower values
of Λc.

7In practice, the ξ-dependence of the critical radius defined in
this way might be small in the SM case, given that CðhÞ ∝ h up to
small logarithmic effects [see Eqs. (20) and (21)]. However,
we give a definition of the critical radius that is ξ independent
from first principles.
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with □Ehb ≡ ∂ρðρ3∂ρhbÞ=ρ3 and depends on ξ because
both Z and V are gauge-dependent objects. Their gauge
dependence is described by the corresponding Nielsen
identities that are obtained by expanding the functional
KE½hðxÞ� of Eq. (32) in gradients8

KE½hðxÞ�¼CðhÞþDðhÞð∂μh∂μhÞþ ~DðhÞð∂μ∂μhÞþOð∂4Þ;
ð37Þ

with spacetime indices contracted using the Euclidean
metric. As the Nielsen identity of Eq. (32) holds for generic
fields hðxÞ, one can extract the ξ-dependence of V and Z by
canceling the terms of order ∂0, ð∂hÞ2 and ð∂2hÞ separately.
One gets the usual relation for the effective potential

ξ
∂V
∂ξ þ Cðh; ξÞV0 ¼ 0; ð38Þ

where primes denote field derivatives, while for Z one gets

ξ
∂Z
∂ξ ¼ −CZ0 − 2ZC0 − 2DV 0 þ 2ð ~DV 0Þ0: ð39Þ

That the functions C, D and ~D indeed fulfil these relations
as a consequence of the Nielsen identity can be checked on
a case by case basis (see e.g. [36,40] and Appendix C of
[27] where this is shown explicitly at one loop for the
Abelian Higgs model in Fermi gauge). In addition, the
bounce solution depends on ξ according to Eq. (33), which
in this spherically symmetric case takes the form

ξ
dhbðρÞ
dξ

¼ CðhbÞþDðhbÞð∂ρhbÞ2þ ~DðhbÞ□Ehb þOð∂4Þ:

ð40Þ

Making use of the relations above it is then straightforward
to show that

ξ
d
dξ

SE½hb� ¼ 0; ð41Þ

to orderOð∂4Þ, as expected. The proof is extended to fourth
order in the derivative expansion in Appendix B and of
course holds in full generality even when the derivative
expansion is not applicable.
As explained above, the critical bubble is given by

hBðrÞ ¼ hbðtE ¼ 0; rÞ, where r is the distance in three-
dimensional space to the center of the bubble. The real
time evolution of the bubble, after nucleation, is given
by the analytic continuation of the tE ¼ 0 bounce,
hBðt; rÞ ¼ hbð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−t2 þ r2

p
Þ, which automatically satisfies

the Minkowski EoM

−ZðhBÞ□hB −
1

2
Z0ðhBÞ½ð∂thBÞ2 − ð∂rhBÞ2� ¼ V 0ðhBÞ;

ð42Þ

with □hB ¼ ∂2
t hB − ∂rðr2∂rhBÞ=r2. At t ¼ 0, ∂thB ¼ 0

but ∂2
t hB ¼ −∂rhB=r so that Eq. (42) does agree with the

bounce equation (36). Notice also that the ξ-dependence of
hBðrÞ follows directly from (40) and is given by

ξ
dhBðrÞ
dξ

¼ CðhBÞþDðhBÞð∂rhBÞ2 − ~DðhBÞ□hB þOð∂4Þ:

ð43Þ

The energy density for the critical bubble is

EBðrÞ ¼
1

2
ZðhBÞð∂rhBÞ2 þ VðhBÞ − Vf: ð44Þ

Using Eqs. (38), (39) and (43) we get

ξ
d
dξ

EBðrÞ ¼ ð ~DV 0Þ0ð∂rhBÞ2 − ~DV 0□hB ¼ Oð∂4Þ; ð45Þ

where, for the last step, we use the EoM for hB, Eq. (42),
and its r-derivative to show that V 0 and V 00 are quantities of
order Oð∂2Þ. This completes the check that the energy
density profile is ξ independent to the order we work. The
previous discussion, based on the derivative expansion at
second order in derivatives, can be extended to higher
orders as shown in Appendix B.
Even when the derivative expansion is not convergent,

the energy density profile must be ξ independent in any
self-consistent calculation: as shown in Sec. II, the energy-
momentum tensor is ξ independent, and therefore, the
energy density of the critical bubble must be ξ independent
too. As the total energy density of the critical bubble
integrates to 0,9

EB;tot ¼ 4π2
Z

∞

0

r2EBðrÞdr ¼ 0; ð46Þ

with EBðrÞ starting negative at r ¼ 0, turning positive at
some r and going to 0 at r → ∞, there must exist a distance
r ¼ Rc at which EBðrÞ reaches a maximum. That is,

dEBðrÞ
dr

����
Rc

¼ 0;
d2EBðrÞ
dr2

����
Rc

< 0: ð47Þ

This value Rc is our definition of radius of the critical
bubble and is ξ independent by construction. More

8To avoid confusion, note that our definition ofDðhÞ and ~DðhÞ
is different form that used in [40].

9To prove this explicitly, integrate by parts to showR
∞
0 r2ðV½hB� − VfÞdr ¼ −

R
∞
0 r3V 0∂rhBdr=3 and use the EoM

to substitute V 0 and obtain in this way a relation between potential
and surface energies.
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explicitly, if we use the energy density expression in
Eq. (44), taking its r-derivative and simplifying it using
the field equation of motion, we arrive at the simple
(implicit) result for the critical radius

Rc ¼
3Z∂rhB
2V 0

����
Rc

: ð48Þ

It can be checked, using the ξ-dependence of Z, V and hB
that indeed one has dRc=dξ ¼ 0, to Oð∂2Þ. After nucle-
ation at t ¼ 0, the bubble radius can still be defined
via the maximum of the energy density, which at t > 0
includes also a nonzero contribution from the kinetic term
ZðhBÞð∂thBÞ2=2, and is ξ invariant at all times. Although
this definition is frame dependent, for macroscopic values t,
r ≫ Rc, it can be shown that RðtÞ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
c þ t2

p ≃ t
[in agreement with the fact that hBðr; tÞ is a function of
r2 − t2 [39]].

A. The thin-wall critical bubble

We discuss now the case of a thin-wall critical bubble
which, as usual, allows a good analytic understanding of
the parametric dependence of several quantities of interest.
The critical bubble wall is thin when the energy difference
between false and true vacua is small compared to the
potential barrier that separates them. In this case the field
profile of the bubble interpolates between the two vacua
(true vacuum inside the bubble, false outside) with a very
rapid transition, such that the wall thickness is much
smaller than the bubble size.
Without making assumptions about the derivative expan-

sion we write the general expression for the Euclidean
action for the bounce solution hbðρÞ as

SE ¼ 2π2
Z

∞

0

dρ ρ3½LKðhbÞ þ VðhbÞ − Vf�; ð49Þ

where LK contains all the derivative terms beyond the
simple ZðhÞð∂hÞ2=2. We have to assume that the action SE
is to a certain extent local. For example the two-point
function δ2SE=δh2 falls off exponentially on a length scale
of the order of the inverse Higgs mass. This does not imply
that the derivative expansion converges since the bubble
thickness is typically of the same scale.
In the thin-wall case it is easy to see heuristically that the

critical radius should be ξ independent: the effective action
for the inner and outer parts of the bubble depends only on
the constant pieces of the bounce profile. The ξ-dependence
of these parts is given by the function C as in Eq. (40)
evaluated for a constant field value, with negligible con-
tributions from the derivative terms (important only in the
bubble wall). Since ξ-changes map the inner and outer parts
of the critical bubble onto themselves, the bubble size is

then ξ independent up to the negligible bubble wall
thickness.
This is of course consistent with the analytic estimate of

the critical radius in the thin-wall case. The total Euclidean
action receives a contribution from the inside region of the
bubble which is approximately given by

SE;in ≃ 2π2
Z

Rc

0

dρρ3½VðhbÞ − Vf�≃ −
1

2
π2R4

cϵV; ð50Þ

where ϵV ≡ Vf − Vt, is the potential difference between the
true and false minima. On the other hand, the wall contrib-
utes an amount proportional to the surface of the critical
bubble. We can write it in terms of the wall tension as

SE;wall ¼ 2π2
Z

RcþΔ

Rc−Δ
dρρ3½LKðhbÞ þ VðhbÞ − Vf�

≡ 2π2R3
cσ; ð51Þ

which can be considered as the definition of σ, and gives the
right scaling with Rc. All the (possibly complicated)
dependence of LKðhbÞ on field gradients is modeled by
thewall tension. Finally, the exterior of the bubble, forwhich
VðhbÞ − Vf ≃ 0, gives a 0 contribution to the total
action, SE;out ≃ 0.
Extremizing the Euclidean action S4 ¼ SE;in þ SE;wall þ

SE;out with respect to the size of the critical bubble then
yields the standard results

Rc ¼
3σ

ϵV
; S4 ¼

27π2σ4

2ϵ3V
: ð52Þ

Obviously ϵV is gauge independent, as the values of the
potential at its minima are ξ independent. Since the action
S4 is also ξ independent, this is then also true for the wall
tension σ and the size of the critical bubble Rc. The same
result for Rc can be obtained by examining the total energy
of the critical bubble

EB;tot ¼ 4π

Z
∞

0

r2EBðrÞdr≃ 4π

�
σR2

c −
1

3
ϵVR3

c

�
¼ 0;

ð53Þ

which can be solved for Rc with the same result as in (52).
This critical radius coincides with the location of the
maximum in the energy density profile (that we used to
define Rc in the general case) as

EBðrÞ≃
8<
:

−ϵV ðr < RcÞ;
σδðr − RcÞ ðr ¼ RcÞ;

0 ðr > RcÞ;
ð54Þ

peaks at r ¼ Rc.
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B. The SM case

The energy scale μd ∼ 1=Rc associated to vacuum decay
and determined by the critical bubble radius is of relevance
for discussing the impact of heavy physics beyond the SM
on the lifetime of the EW vacuum. In particular, if new
physics starts to be relevant at such a scale, then it can
impact the lifetime of the false vacuum even if μd were
much higher than the instability scale ΛI . In fact this is
precisely what happens in the SM.
As we have seen, at field values much higher than the

EW scale the SM effective potential can be well approxi-
mated as

VðhÞ≃ 1

4
λeffh4; ð55Þ

with λeff < 0. As is well known [41], the bounce solution
for such a potential can be calculated analytically (assum-
ing a constant λeff ) and is

hbðρÞ ¼
2

ffiffiffi
2

p

R
ffiffiffiffiffiffiffiffiffiffi
−λeff

p
�

1

1þ ρ2=R2

�
; ð56Þ

where R, which determines the critical bubble size, is
arbitrary. For any value of R one gets the same Euclidean
action for the bounces, with SE½hb� ¼ 8π2=ð−3λeffÞ. The
energy profile for the critical bubble is

EBðrÞ ¼
16ðr2=R2 − 1Þ

ð−λeffÞR4ð1þ r2=R2Þ4 ; ð57Þ

and has a maximum at r ¼ ffiffiffiffiffiffiffiffi
5=3

p
R≃ 1.3R so that R

basically coincides with the critical radius defined through
the maximum of EBðrÞ.
As appreciated long ago [42], the scale invariance of

the bounce solution is broken by radiative effects: λeff is
not really constant but receives potentially large radiative
corrections enhanced by powers of large logarithms
∝ logðh=μÞ, where μ is the renormalization scale. In order
to resum such logarithms one chooses μ≃ h, in practice
evaluating a running λeffðμÞ at μ ¼ h. The Euclidean action
that suppresses the EW vacuum decay is minimal at the
field value (or renormalization scale) at which λeff reaches
its most negative value, that is, dλeff=d log μ≡ βλeff ¼ 0,
with λeff < 0. The scale at which that happens singles out
one special size for the critical bubble, with 1=Rc ∼ μd
and βλeff ðμdÞ ¼ 0.
For the measured Mh and Mt (at the central values of

their experimental intervals) one gets [4] μd ≃ 1017 GeV,
to be compared with the instability scale ΛI ≃ 1011 GeV.
Figure 6 shows the energy density profile of the critical
bubble, for two values of ξ illustrating also the
ξ-independence of the profile. The critical radius derived
from it is therefore also ξ independent, as show in Fig. 7, as
a function of ξ. For comparison, notice that the value of the

field at the center of the bubble is ξ dependent, as expected.
The hierarchical separation between μd and ΛI is a
consequence of the near scale independence of the effective
potential and the Euclidean action for the bounce (see
[43,44] for some recent discussions on this). From this fact
it follows that beyond the standard model (BSM) physics
modifying the effective potential at the scale μBSM with
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FIG. 6. Spatial profile of the energy density (44) for the critical
bubble for two different values ξ ¼ 0, 200 in Fermi gauge. These
results are obtained solving the bounce equation (42) numerically
(using the RG improved and IR resummed one-loop effective
potential and the corresponding correction to the kinetic term)
and choosing the field value in the bubble center hBðr ¼ 0Þ such
that the bounce action is minimized.
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FIG. 7. Dependence of the inverse critical radius 1=Rc and the
field value at the center of the critical bubble hBðr ¼ 0Þ on the
gauge-fixing parameter. The bubble radius varies at the 10% level
for ξ ¼ 0, 200, consistent with the expected gauge independence
and residual perturbative uncertainties. The value hBðr ¼ 0Þ,
on the other hand, is gauge dependent. For comparison we also
show the radius 1=R1=2 at which the field value has dropped to
hBðr ¼ 0Þ=2, which in this particular case is nearly ξ independent
also; see footnote 7.
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μBSM ≤ μd can have a large impact on the EW vacuum
lifetime even if μBSM ≫ ΛI .
The simplest (and best motivated) example of such a

scenario has been discussed long ago: a seesaw scenario
with heavy right-handed neutrinos of mass MνR [32]. This
model requires large neutrino Yukawa couplings (to fit light
neutrino masses mν) that cause the running λeff to become
even more negative above the MνR threshold, further
destabilizing the EW vacuum. In fact, the prediction of a
too-short-lived EW vacuum can be used [7] to rule out
MνR ≥ 1013–14 GeV for mν ≃ 0.1–1 eV.
In principle, even new physics at μBSM > μd could

impact the EW vacuum lifetime, as recently emphasized
in [45,46]. All that is required is that the BSM physics
makes the Higgs effective potential even more unstable at
h > μd (and this implies already Planckian physics) so that
bounces with even smaller Euclidean action are possible.
However, it is difficult to find plausible reasons why
physics at the Planck scale (presumably more fundamental)
should worsen the potential instability (unlike what hap-
pened in the well-motivated seesaw scenario where one
understands the origin of the instability as due to new
Yukawa couplings). In connection to this, it has also been
noticed [44] that, while BSM physics with μBSM ≫ ΛI can
easily make the EW vacuum more unstable, it is much
harder to make the potential more stable. The reason is that
increasing the Euclidean action at high scales suppresses
bounces that cause tunneling to such large scales but does
not modify the bounce at the scale μd, which still dominates
vacuum decay and therefore leads to the standard EW
vacuum lifetime.

C. Including gravity

We now extend our considerations by including gravity
[39,47]. This is particularly relevant since in the SM the
tunneling bubbles do not experience a flat geometry,
but an anti–de Sitter one. For discussions on the effect
of gravitational corrections on the EW vacuum decay see
[15,48–52]. We start by writing the most general rotation-
ally invariant Euclidean metric

ds2 ¼ dζ2 þ ρ2ðζÞdΩ2
3; ð58Þ

where ζ is a radial coordinate measuring distances along
radial curves normal to three-spheres; dΩ2

3 is the line
element angular distance on a unit three-sphere and ρ is
the radius of curvature of each three-sphere. Of this metric
we need the corresponding Ricci scalar

R ¼ 6

ρ2
ð−ρρ00 − ρ02 þ 1Þ; ð59Þ

where primes stand for differentiation with respect to ζ. The
EoM/bounce equation for h is ξ independent also in curved
spacetime. The reason is that the background metric is

obtained through Einstein’s equations and is sourced by the
energy-momentum tensor. Being that the latter is ξ inde-
pendent, so is the metric. This implies that the EoM in
curved spacetime differs from the flat spacetime one only
by an object, the metric, that is invariant under ξ changes.
Vacuum decay is controlled by the difference

SE½hb� − SE;f between two Euclidean actions, the one for
the bounce and the background one in the false vacuum.
The bounce action can be written as

SE½hb� ¼ 2π2
Z

dζρ3
�
LK þ V −

1

2
m2

PR

�
; ð60Þ

wherem2
P ¼ 1=ð8πGÞ is the reduced Planck mass (squared)

and G is Newton’s constant. LK and V are the Lagrangian
containing the derivative terms and the effective potential
term, respectively. Although our results below hold
beyond the derivative expansion, for simplicity we take
LK ¼ ZðhÞh02=2, with h0 ≡ dh=dζ, and give below many
expressions simplified to this order of the expansion.
The background action is SE;f ¼ −24π2m4

P=Vf for a
de Sitter (dS) false vacuum (Vf > 0, where Vf is the false
vacuum potential) as in the SM case and SE;f ¼ 0 for a
Minkowski one.
By inserting Eq. (59) into Eq. (60), we obtain

SE½hb� ¼ 2π2
Z

dζ½ρ3ðLK þ VÞ þ 3m2
Pðρ2ρ00 þ ρρ02 − ρÞ�

¼ 2π2
Z

dζ½ρ3ðLK þ VÞ − 3m2
Pρð1þ ρ02Þ�; ð61Þ

where in the last step we have simplified the curvature term
by integrating by parts.10 From this action one gets the
Euclidean EoM for the field, which gives the bounce
equation

Zh00 þ 3
ρ0

ρ
Zh0 þ 1

2
Z0h02 ¼ V 0; ð62Þ

where, with an abuse of notation we use Z0 ≡ ∂Z=∂h and
V 0 ≡ ∂V=∂h, while ρ0 ≡ dρ=dζ and h0 ≡ dh=dζ.
The next step is to employ the ζζ-component of the

Euclidean Einstein equations

Gζζ ¼
3

ρ2
ð1 − ρ02Þ ¼ −

1

m2
P
Tζζ; ð63Þ

whereGζζ is the ζζ-component of Einstein’s tensor and Tζζ

is the ζζ-component of the energy-momentum tensor, with
Tζζ ¼ Zh02=2 − V. Using now Eq. (63) in Eq. (60), we can
further simplify the action as

10Possible boundary terms play no role in this calculation and
we simply ignore them throughout.
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SE½hb� ¼ 2π2
Z

dζ½ρ3ðLK þ V − TζζÞ − 6ρm2
P�

¼ 4π2
Z

dζðρ3V − 3ρm2
PÞ: ð64Þ

The important remark at this point is that, since the
energy-momentum tensor is ξ independent, so must be
Einstein’s equations and the various components of the
metric. Having previously shown that the effective action
calculated on the bounce is ξ independent provided that it is
evaluated on configurations such that ξdhb=dξ ¼ K½hb�,
by reasoning as in the flat case, we conclude that
the action is ξ independent. The background action,
SE;f ¼ −24π2m4

P=Vf, is trivially ξ independent as the
potential value in the false vacuum, Vf, is ξ independent.
Concerning the ξ-independence of the critical bubble

radius in the presence of gravity, one can still use a bubble
profile that is ξ independent if, instead of using the field
itself, one resorts to the profile of Tζζ. Although defining
a local energy density is in general not possible in the
presence of gravity, spherical symmetry allows one to give
a well-behaved definition [53]. The total energy/mass of the
critical bubble is given by the integral (see e.g. [48] for a
recent discussion)

E ¼ 4π

Z
∞

0

dρρ2Tζζ ¼ 4π

Z
∞

0

dρρ2
�
1

2
Zh02 þ V − Vf

�
;

ð65Þ

where Tζζ is now the Minkowski one. Although Tζζ comes
from matter alone, E includes gravitational self-interaction
contributions (a similar formula is used in defining the total
mass of a spherically symmetric star). In this respect, it is
instructive to apply (65) to the thin-wall case taking the
radius R of the bubble as arbitrary (and setting Z ¼ 1 and
Vf ¼ 0 here for simplicity). Defining the wall tension as

σ ≡
Z

∞

0

dξ

�
1

2
h02 þ V

�
; ð66Þ

we can use h02=2þ V ¼ σδðξ − ξ̄Þ, where ξ̄ corresponds to
the position of the bubble wall, R ¼ ρðξ̄Þ. The total mass/
energy of such a bubble is then

EðRÞ ¼ 4π

Z
R

0

dρρ2ð−ϵVÞ þ 4π

Z
ξ̄þδ

ξ̄−δ
dξρ2ρ0σδðξ − ξ̄Þ

¼ −
4π

3
ϵVR3 þ 4πσR2

1

2
ðρ0þ þ ρ0−Þ; ð67Þ

where −ϵV is the value of the potential inside the bubble,
and, in evaluating the second (wall) integral we have taken
care of the fact that ρ0, given by Eq. (63), jumps at the
wall with

ρ0− ≡ ρ0ðξ̄ − δÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πGϵVR2=3

q
;

ρ0þ ≡ ρ0ðξ̄þ δÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GEðRÞ=R

p
; ð68Þ

with ρ0þ corresponding to the Schwarzschild solution with
total mass EðRÞ. Solving for EðRÞ one gets

EðRÞ¼−
4π

3
ϵVR3þ4πσR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8πGϵVR2=3

q
−8π2Gσ2R3

ð69Þ

which shows explicitly the gravitational contributions to
the total energy of the bubble (and reproduces the result
given in [54]).
The critical radius in this thin-wall case can then be

obtained by solving EðRcÞ ¼ 0, with the result

Rc ¼
Rc;0

1 − 2πGϵVR2
c;0=3

; ð70Þ

where Rc;0 ¼ 3σ=ϵV is the critical bubble radius without
gravitational effects, as in Eq. (52). This Rc agrees with the
original result of Coleman-De Luccia [39] and shows how
gravitational effects force Rc > Rc;0. This result highlights
one important difference with respect to the flat case:
gravity contributes a negative energy density inside the
bubble, where the geometry of space is distorted and for
large bubble radius the enclosed volume grows only like R2

rather than R3. While energy conservation requires critical
bubbles to always have zero energy, it is not guaranteed that
a critical bubble exists (just making its radius large enough)
so that it becomes possible that the gravitational contribu-
tion prevents the tunneling from happening through critical
bubbles [39].
It is straightforward to show that the total energy of the

critical bubble [48] in the general case, without the thin-
wall assumption, as given in Eq. (65), is 0. Simply integrate
by parts as explained in footnote 9, paying attention now to
the ζ-dependence of ρ and use the bounce equation (62)
to arrive at a relation between the kinetic and potential
contributions that ensures E ¼ 0. The radius defined as
the maximum of Tζζ, ∂ρTζζ ¼ ð1=ρ0Þ∂ξTζζ ¼ 0 is then
obtained, after using the bounce equation (62), as

Rc ¼ ρ0
3Zh0B
2V 0

����
Rc

; ð71Þ

which generalizes the result of Eq. (48) including gravity
effects. Here

ρ0jRc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πG

3
R2
c

�
1

2
Zh0B

2 − V

�����
Rc

s
: ð72Þ

We see once again that Rc thus defined is indeed ξ
independent, as can be explicitly checked using the

ESPINOSA, GARNY, KONSTANDIN, and RIOTTO PHYSICAL REVIEW D 95, 056004 (2017)

056004-14



ξ-derivatives of Z, V and hB extracted from the Nielsen
identity.11

Concerning the impact of gravity on Rc it would be
wrong to identify the ρ0 factor as the only effect, as the
value of the ratio 3Zh0B=ð2V 0Þ has to be evaluated at Rc,
not Rc;0, and also because gravity affects the bounce
equation (62), thus modifying 3Zh0B=ð2V 0Þ as a function
of radial distance.
Finally, when gravitational effects make a false dS

vacuum stable and there is no possibility of vacuum decay
via nucleation of bubbles of the true phase there is still the
possibility of decay via Hawking-Moss instantons [55]. In
that case the vacuum decay is controlled by the value of the
potential at the maximum separating the two vacua, and this
being a ξ-independent quantity so is the Hawking-Moss
decay rate. There is no radius associated to this type of
instanton, or more precisely, the transition occurs in a
whole Hubble patch, of size determined by the false
vacuum value, Vf > 0, again a ξ-independent quantity.

VI. STABILIZATION BY THERMAL EFFECTS

As is well known, thermal corrections tend to restore
broken gauge symmetries [56,57]. It is therefore natural to
ask at what temperature the deep minimum of the potential
at high field values would be made degenerate with the low-
scale minimum (that at such high T would already be at
the origin h ¼ 0 in field space) by thermal corrections.12

That critical temperature Tc provides yet another physical
scale associated with the potential instability.
The proof that Tc is ξ independent requires the gener-

alization of the Nielsen identity for the thermally corrected
effective potential. The fact that Nielsen identities also hold
at finite temperature (suitably modified to take thermal
effects into account) ultimately follows from the fact that
the partition function respects the BRST [58] symmetry so
that Ward identities still hold at finite T. The same applies
to the Nielsen identity that can be regarded as a Ward
identity for the effective potential. It is in fact straightfor-
ward to generalize the Nielsen identity (3) to include
thermal corrections (see e.g. [40,59]). One has

ξ
∂VT

∂ξ þ CTðh; T; ξÞV 0
T ¼ 0; ð73Þ

where VT ¼ Vðh; T; ξÞ is the thermally corrected potential
and CTðh; T; ξÞ generalizes to finite temperature the func-
tion Cðh; ξÞ of Eq. (3). Appendix C gives explicit details
about the calculation of VT and CT in the SM.
Armed with the Nielsen identity, we can again interpret it

as telling how the explicit ξ-dependence of the potential VT
is compensated by an implicit ξ-dependence of the field
given by

ξ
dh
dξ

¼ CTðh; T; ξÞ; ð74Þ

so that changing ξ is equivalent to a field redefinition that
does not change the physics. It is then clear that the value of
the critical temperature, determined by the degeneracy of
the potential at its two minima, is ξ independent: a change
of ξmodifies the location of the minima but not the value of
the potential there.
In the case of the critical T for the SM instability, its

numerical value turns out to be many orders of magnitude
larger than the instability scale for the central value of Mh
and Mt, that we take to be a typical case. We find
Tc ≃ 1029 GeV, which is even higher than the Planck
scale and therefore of little interest: at mP one certainly
expects gravitational physics to change the potential in any
case. The fact that Tc is so large is related to the fact that
we are probing the potential at the scale associated to the
nonstandard minimum, and this scale is much larger than
the instability scale (in fact the scale of the minimum is of
order 1030 GeV (at T ¼ Tc).
Of course, for values of Mh and Mt that bring the SM

potential closer to being stable (although such values are
experimentally disfavored) the critical Tc could be much
smaller. In principle it is even possible to make Tc lower
that the instability scale ΛI if the nonstandard minimum at
high field values is sufficiently shallow. (In fact, when the
value of the potential at the non-EW minimum goes to 0,
also Tc → 0).
An alternative possibility for using a thermal probe of the

potential instability arises from the realization that thermal
fluctuations in the early Universe can also trigger the decay
of the EW vacuum [10,49,60,61]. This process is the
thermal analogue of the vacuum decay by quantum
fluctuations and also proceeds via nucleation of a critical
bubble with the decay rate Γ controlled by an Oð3Þ
symmetric bounce solution of energy E3ðTÞ, with
Γ ∼ e−E3ðTÞ=T . With the use of the Nielsen identity at finite
T one can then prove that E3ðTÞ is ξ invariant in a way that
parallels the proof for the T ¼ 0 decay. One can then ask
what the maximal temperature is that our EW vacuum can
survive without decaying (and this can be used to set an
upper bound to the reheating temperature; see [10]).

11In the derivation above we have implicitly assumed that
ρ0 ≠ 0 , which is correct when the false vacuum is Minkowski. In
the case of a dS false vacuum (like the SM EW vacuum) one can
have ρ0 ¼ 0 at some ζ with important implications for the bounce
properties and the vacuum decay rate. For a thorough discussion
of this point see [15,48].

12Usually the thermal change of the potential, e.g. across a
phase transition, is pictured keeping the origin fixed while the
broken minimum is raised as T increases. A more correct
depiction should keep the potential at h ≫ T fixed (as thermal
corrections in that field range are Boltzmann suppressed) while
the symmetric minimum gets deeper as T increases. Of course
both pictures are directly related by a field-independent term in
the potential, but that term is T dependent and physical.
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However, for the central values of Mh and Mt thermal
effects stabilize the potential without destabilizing the
EW vacuum and no such limit can be set [7,61].

VII. PROBING THE INSTABILITY
SCALE WITH INFLATION

Another way to characterize the instability scale of the
SM Higgs potential in a ξ-independent way is to consider
the SM in a de Sitter background with a constant Hubble
rate HI . This de Sitter stage can be the one taking place at
primordial epochs, namely during the inflationary stage
(believed to solve the main problems of standard cosmol-
ogy), or it can be regarded as a purely fictitious one with the
goal of defining a ξ-independent instability scale.
We assume that the Higgs field is minimally coupled to

gravity and hence is effectively massless during inflation.
(In a realistic inflationary stage, we assume no direct
coupling of the Higgs field to the inflaton field). Under
these circumstances, the Higgs field develops fluctuations
with amplitude proportional to HI [10–12]. Large ampli-
tude fluctuations of the Higgs field during the de Sitter
phase are dangerous as the SM Higgs field can fluctuate
beyond the instability region of the effective potential. The
higher the Hubble rate is, the larger the probability is for
this phenomenon to happen, thus allowing us to define a
value of the Hubble rate as a ξ-independent measure of the
SM instability scale.
The fluctuations of the Higgs field are governed by a

Langevin-like equation obtained by the following pro-
cedure. One takes the equation of motion (in an inflationary
background) for the Higgs field and splits the latter in short
and long wavelengths, where the separation length scale is
roughly the Hubble radius. Integrating out the short modes,
one obtains a Langevin equation [62,63] for the long mode
field (that we keep calling h) in which the effect of the short
modes is to generate a white noise η sourcing the long mode
fluctuations. More precisely, the time derivative of the
original field is split into dh=dt − η. Since one is interested
in wavelengths larger than the Hubble radius, one can
neglect the gradients of the long modes (and therefore
truncate the starting equation at the lowest order in
derivatives) obtaining the Langevin equation,

Langevin½h�≡ ffiffiffiffi
Z

p �
dh
dt

− η

�
þ 1

3HI

ffiffiffiffi
Z

p V 0 ¼ 0; ð75Þ

where Z ¼ ZðhÞ is the function that multiplies the kinetic
term of h in the effective action expanded in derivatives,
as in Eq. (2). To arrive at Eq. (75), terms which are
second order in derivatives, like ðdh=dtÞ2 or d2h=dt2,
are neglected. The two-point correlation function for the
noise term satisfies

hηðtÞηðt0Þi ¼ H3
I

4π2Z
δðt − t0Þ: ð76Þ

Since we previously showed that the equation of motion
for the Higgs field is ξ independent and the Langevin
equation stems from the equation of motion by a simple
splitting of modes, the Langevin equation turns out to be ξ
independent,

ξ
d
dξ

Langevin½h� ¼ 0: ð77Þ

This can be checked explicitly using the derivative expan-
sion of the Nielsen identity (see Appendix B), paying
attention to the fact that we also have to split in long and
short modes the equation, ξdh=dξ ¼ CðhÞ, that controls
the implicit ξ-dependence of the solutions of the equations
of motion. This splitting leads to13

ξ
dhL
dξ

¼ CðhLÞ; ξ
dη
dξ

¼ C0ðhLÞη: ð78Þ

In addition, the ξ-derivative of the Langevin equation leads
to terms (proportional to the D and ~D functions of the
derivative expansion in Appendix B) that contain two
powers of potential field derivatives. Such terms are of
order higher than the linear order kept for the Langevin
equation, and can be neglected.
The first equation in (78) implies [13] that, if we have a

solution hLðξÞ of the Langevin equation for a given value of
ξ, we automatically obtain a solution for ξþ dξ by the shift
hLðξÞ þ C½hLðξÞ�dξ=ξ. This is true also because the other
parameter entering the Langevin equation, namely the
Hubble rate HI, is ξ independent. Indeed, HI is determined
by Einstein’s equations and the 00-component of the energy-
momentum tensor, both of which are ξ-independent objects.
Alternatively, instead of using many times the stochastic

Langevin equation to sample the behavior of the Higgs field,
one can define a probability density function Pðh; tÞ, so that
the probability of finding at a given time t the Higgs field in
the interval ðh; hþ dhÞ isPðh; tÞdh. The function Pðh; tÞ is
obtained as a solution to the Fokker-Planck equation

FOKKERPLANCK½Pðh; tÞ�

≡ 1ffiffiffiffi
Z

p ∂
∂h

�
1ffiffiffiffi
Z

p
� ∂
∂h

�
H3

I

8π2
Pffiffiffiffi
Z

p
�
þ 1

3HI

PV 0ffiffiffiffi
Z

p
�	

−
1ffiffiffiffi
Z

p ∂P
∂t ¼ 0; ð79Þ

which follows directly14 from the Langevin equation (75).
As this equation describes the same physics as the Langevin
equation, it is also ξ invariant,

13Note also that the result for ξdη=dξ in (78) is consistent with
the correlator in (76) and the ξ-dependence of Z to the same order
of approximation (see Appendix B).

14To obtain (79) from (75), one must use Stratonovich’s
prescription rather than Itô’s; see [64] for details.
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∂
∂ξFOKKERPLANCK½Pðh; tÞ� ¼ 0; ð80Þ

where we use only a partial derivative because in the Fokker-
Planck equation h is a dummy variable, without any implicit
dependence on ξ. To show this ξ-independence explicitly
(the previous remarks for the Langevin equation also apply
here) one needs to know how Pðh; tÞ changes when
ξ → ξþ dξ. This can be calculated as follows: for an
arbitrary function FðhÞ we can define its average as

hFðhÞi ¼
Z

Fðh0ÞPðh0; t; ξÞdh0: ð81Þ

To find how this average depends on ξ remember that the
Langevin solutions change as hL → hL þ CðhLÞd log ξ and
therefore, for ξþ dξ the equation above reads

hFðhÞi þ hF0ðhÞCðhÞid log ξ

¼
Z

Fðh0Þ
�
Pðh0; t; ξÞ þ ξ

∂Pðh0; t; ξÞ
∂ξ d log ξ

�
dh0;

ð82Þ

from which, after integration by parts in the lhs integral
we get15

ξ
∂P
∂ξ ¼ −

∂
∂h ½PC�: ð83Þ

We see that, contrary to what happens with the effective
potential, P is not ξ independent. However, the integrated
probability, defined as

Pðh; tÞ ¼
Z

h

−∞
Pðh0; tÞdh0; ð84Þ

is ξ independent, provided the field interval of integration is
changed according to the usual rule ξdh=dξ ¼ CðhÞ.
This implies, in particular, that the probability of finding
the Higgs field after a given time within the interval
ð−hmax; hmaxÞ, where hmax is the field value corresponding
to the potential maximum of the barrier separating the EW
vacuum from the instability region, is ξ independent [13],
even though the value of hmax itself depends on ξ. Figure 8
shows the Higgs potential (solid lines) for two values of
ξ ¼ 0, 200 and the Higgs probability distribution (dashed
lines), after N ¼ 60 e-folds with HI ¼ 5 × 1010 GeV
with the Higgs field starting at the origin. Both the potential
and the Higgs probability distribution change with ξ
but we have checked that the integrated probability in
ð−hmax; hmaxÞ is ξ independent with ∼9% precision.

Figure 9 illustrates this ξ-independence of the integrated
probability.
This result allows us to define a ξ-independent measure

of the instability scale based on the Hubble rate of inflation,
HI . One can, for instance, determine the value of HI for
which the integrated probability between two Higgs values
is larger (or smaller) than some critical number within a
given amount of time. One can choose for instance the
critical probability to be larger than e−3N (N being the
number of e-folds), so that it is likely to find the Higgs field
outside the safe interval ð−hmax; hmaxÞ in any of the ∼e3N
causally independent regions that are formed during the de
Sitter stage. One gets [13] that, for N ¼ 60 and hmax ≃
5 × 1010 GeV (the value calculated in Landau gauge for the
central values of Mh and Mt), this happens if
HI ≥ 0.2 × 1010 GeV, a scale that is quite close to the
naive instability scale calculated in Landau gauge.16

We close this section with a final remark on the use of the
Fokker-Planck equation in this context. In order to use this
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0
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HI 5 1010 GeV

N 60

FIG. 8. Illustration of the ξ-dependence of the fluctuating
Higgs field during an inflationary period with N ¼ 60 e-folds
and HI ¼ 5 × 1010 GeV and ξ ¼ 0 and 200. The histograms
correspond to 104 runs of the Langevin equation and the
probability distribution function shown (dashed lines) is a
Gaussian approximation of width

ffiffiffiffi
N

p
HI=ð2π

ffiffiffiffi
Z

p Þ, which
describes well the numerical result of the Langevin runs. For
comparison, the corresponding Higgs potentials are shown by the
solid lines. The integrated probability between the potential
maxima, ∼0.6 in this example, is ξ independent.

15The same result can be obtained noting that the probability
Pðh; ξÞdh must equal the probability Pðhþ CðhÞd log ξ;
ξþ dξÞdðhþ CðhÞd log ξÞ.

16Note that the bound is quite insensitive to the choice e−3N of
the critical probability. If one uses instead an Oð1Þ number the
bound changes by a factor ∼

ffiffiffiffiffiffiffi
3N

p
∼Oð10Þ to HI ≥ 2×1010 GeV.

Using e−3N corresponds to the most conservative bound, and
Oð1Þ to the less conservative one. A more precise evaluation
would require a detailed knowledge about the spatial distribution
of the Higgs fluctuations with jhj > hmax at the end of
inflation. We stress that this uncertainty is unrelated to the gauge
dependence. The bound is gauge-fixing independent for any
choice of the critical probability.
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equation to describe the fluctuations of the Higgs field
during inflation in the SM unstable potential, it is necessary
to use suitable boundary conditions to describe the prob-
ability leakage towards the instability region. In practice
this is done by identifying the point h� beyond which the
fluctuating field rolls down to the instability and never
moves back towards the stable region and settingPðh�Þ ¼ 0
there. The original discussion of this problem [10] used
the barrier maximum, h� ¼ hmax, for this purpose while a
more correct analysis [12] identified h� with the field value
beyond hmax at which quantum fluctuations uphill [con-
trolled by the term ∝ H3

I in (79)] can no longer beat the
classical rolling downhill [controlled by the term ∝ V 0 in
(79)]. This analysis was further validated by using the
Langevin approach in [13]. The field value h� corresponds
to the point at which the two terms in the Fokker-Planck
equation compensate each other giving ∂P=∂t ¼ 0 and can
be roughly estimated as the value for which the quantum
jumps ðΔhÞq ∼HI=ð2π

ffiffiffiffi
Z

p Þ in a time interval Δt ∼ 1=HI

equal to the classical displacement ðΔhÞcl ∼ V 0=ð3H2
I ZÞ,

leading to the condition

V 0

Z
≃ 3H3

I

2π
; ð85Þ

to determine h�. As one would expect, h� is a gauge-
dependent quantity but it can be shown, using the leading
ξ-dependence of V and Z that the condition (85) is ξ
independent if h� is transformed in the usual way, with
ξdh�=dξ ¼ Cðh�Þ. Formally one can also check that the
Fokker-Planck equation at h�, using further thatPðh�Þ ¼ 0,
and ∂P=∂t ¼ 0, leads to the condition

H3
I

8π2

�
P00 −

3Z0P0

2Z

�
¼ −

V 0P0

3HI
; ð86Þ

which can also be shown to be ξ invariant, if one further
uses the ξ-dependence of P obtained in (83).

VIII. CONCLUSIONS

It has been known for a long time that the SM might
develop an instability at large values of the Higgs field,
possibly signaling the appearance of new physics in that
range of energies, if the Higgs mass turned out to be low
enough. With the discovery of the Higgs boson at the LHC,
and the theoretical refinements needed for the stability
bound calculations, this possibility turned out to be
realized, with the Higgs mass very close (but below) the
value needed for stability.
The naive definition of the instability scale as the value

of the Higgs field at which the Higgs effective potential
drops below the value of the electroweak minimum
(∼1010 GeV in Landau gauge) is not physical as it depends
on the choice of the gauge fixing and results in an
uncertainty of 2 orders of magnitude. While such gauge
dependence has also been known for a long time, it has now
become more relevant and has attracted some attention in
recent literature.
Current direct and indirect experimental probes do not

show any evidence of new physics beyond the SM and it is
becoming more and more likely that the latter might be
valid up to energy scales much higher than the TeV, maybe
up to the Planck scale. It is therefore timely to provide
gauge-invariant and physical descriptions of the scales
associated to the SM vacuum instability.
In this paper we have proposed several ways to char-

acterize in a physical way such scales. In particular, we
have shown that the mass scale Λ required to stabilize the
effective potential through nonrenormalizable operators is a
gauge-independent quantity. We have shown that for non-
renormalizable operators of high order, the scale Λ is close
to the naive instability scale calculated in Landau gauge.
We have also demonstrated the gauge invariance of three
other scales: the inverse of the critical radius of the critical
bubbles that mediate vacuum decay, the critical temperature
at which our electroweak minimum and the one at very
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FIG. 9. Integrated probability for the Higgs field to remain within the potential maxima,
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large Higgs field values become degenerate and finally the
scale associated to the Higgs instability during inflation.
Being that all these scales are gauge invariant, they allow us
to draw physical conclusions on the associated physics, for
instance on how new physics influences the EW vacuum
lifetime.
Although we have focused on the SM potential insta-

bility, which offers the main motivation for this work, our
results are of wider relevance and can be applied to other
models (with gauge degrees of freedom) that feature similar
instabilities and/or several potential vacua.
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APPENDIX A: RGES FOR
HIGHER-DIMENSIONAL OPERATORS

Consider a tree-level Higgs potential of the form

V0ðhÞ ¼ −
1

2
m2h2 þ λ

4
h4 þ

X
n

cnhn

2n=2Λn−4 ; ðA1Þ

where summation runs over n ¼ 6; 8;…. The radiatively
corrected potential is independent of the renormalization
scale, as described by the Callan-Symanzik equation

dV
dμ

¼
�
μ
∂
∂μþ

X
i

βλi
∂
∂λi þ γh

∂
∂h

�
V ¼ 0; ðA2Þ

where the λi’s represent all couplings and mass parameters
entering the potential (including the gauge-fixing ξ
parameters) and γ is the Higgs anomalous dimension
(γ ≡ d log h=d logμ). The one-loop RG equation for cn
can be obtained from this equation via the explicit

μ-dependence of the one-loop effective potential and knowl-
edge of the anomalous dimension γ, which at one loop is not
affected by the irrelevant operators. In Fermi gauge we
obtain

X
n

∂V0

∂cn βcn ¼
κ

2
½M4

HðhÞ þ 3M4
GðhÞ� þ γrhV 0

0ðhÞ; ðA3Þ

where the field-dependent Higgs and Goldstone masses are
given in Eq. (26) and γr ≡ γ − κðξBg02 þ 3ξWg2Þ=4 in the
standard model. Using the one-loop anomalous dimension in
Fermi gauge [18] one finds for the standard model

γr ¼ κ

�
3y2t −

3

4
g02 −

9

4
g2
�
: ðA4Þ

Note that the ξ-dependence cancels in γr, such that the beta
functions are gauge independent, as expected. Inserting (A4)
and the potential V0ðhÞ in Eq. (A3) and Taylor expanding in
h, one gets the one-loop beta function given in (28) by
matching the same powers of h in both sides of the equation
(and taking the limit m2 → 0).

APPENDIX B: GAUGE DEPENDENCE
AND DERIVATIVE EXPANSION

In this appendix we assume that a derivative expansion
of the action is applicable and discuss how the gauge
parameter (generically denoted as ξ) enters the action, the
equation of motion, and the energy-momentum tensor up to
higher order corrections in the expansion. We give explicit
results up to fourth order in derivatives for the case of a
single scalar field ϕ, therefore extending previous work
done to Oð∂2Þ [36,40].
We start from the expanded effective action

S ¼
Z

d4x

�
1

2
ZðhÞð∂ϕÞ2 − VðϕÞ

þ 1

4
Z2ðϕÞð∂ϕÞ4 þ 1

2
Z3ðϕÞð∂ϕÞ2ð∂2ϕÞ

þ 1

2
Z4ðϕÞð∂2ϕÞ2 þOð∂6Þ

�
: ðB1Þ

There are only three ZiðϕÞ functions at fourth order in
derivatives as other possible terms can be eliminated
integrating by parts. The ξ-dependence of this action is
dictated by the Nielsen identity that we write as

ξ
∂S
∂ξ þ

Z
d4xK½ϕðxÞ� δS

δϕ
¼ 0: ðB2Þ

The functional K½ϕðxÞ� can also be expanded as

K½ϕ� ¼ CðϕÞ −DðϕÞð∂ϕÞ2 − ~DðϕÞð∂2ϕÞ þOð∂4Þ;
ðB3Þ
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and, for our purposes below, it is enough to keep up to
second order in derivatives only. The explicit form of the
equation of motion for ϕ is

δS
δϕ

≡ EoM½ϕ� ¼ 0;

with

EoM½ϕ� ¼ −V 0 þ 1

2
Z0ð∂ϕÞ2 − ∂μ½Z∂μϕ� þ 1

4
Z0
2ð∂ϕÞ4

− ∂μ½Z2∂μϕð∂ϕÞ2� þ 1

2
Z0
3ð∂2ϕÞð∂ϕÞ2

− ∂μ½Z3∂μϕð∂2ϕÞ� þ 1

2
∂2½Z3ð∂ϕÞ2�

þ 1

2
Z0
4ð∂2ϕÞ2 þ ∂2½Z4ð∂2ϕÞ� þOð∂6Þ; ðB4Þ

where primes denote field derivatives, V 0 ¼ ∂V=∂ϕ, etc.
This shows explicitly that, evaluated on solutions of the
EoM, V0 counts as being Oð∂2Þ.
Plugging all the previous expansions in the Nielsen

identity, which is satisfied for generic ϕðxÞ, one can derive
the following ξ-dependence of the functions appearing in
the action (B1),

ξ
∂V
∂ξ ¼ −CV 0;

ξ
∂Z
∂ξ ¼ −CZ0 − 2C0Z − 2DV 0 þ 2ð ~DV 0Þ0;

ξ
∂Z2

∂ξ ¼ −CZ0
2 − 4C0Z2 − 2C00Z3 − 2DZ0 þ � � � ;

ξ
∂Z3

∂ξ ¼ −CZ0
3 − 3C0Z3 − 2C00Z4 − 2DZ0 − ~DZ0 þ � � � ;

ξ
∂Z4

∂ξ ¼ −CZ0
4 − 2C0Z4 − 2 ~DZ0 þ � � � : ðB5Þ

The terms neglected in the last three equations involve V 0
and fourth-derivative terms in the expansion (B3) of K½ϕ�:
they contribute only at Oð∂6Þ in our discussions below.
Under a change ξ → ξþ dξ, all the functions in the

action change according to the equations (B5) and therefore
the EoM in (B4) is also modified. If ϕ̄ðξÞ is a solution of the
original EoM, then a solution of the EoM for ξ → ξþ dξ
is ϕ̄ðξþ dξÞ ¼ ϕ̄ðξÞ þ dϕ̄ with

ξ
dϕ̄
dξ

¼ K½ϕ̄ðxÞ�: ðB6Þ

This fact is obvious from the invariance of the action itself,
as the dependence above gives ξdS=dξ ¼ 0, and is one
clear example of the power of using an action to discuss the
symmetries in a physical problem. The explicit check using
the EoM expanded to fourth order in the derivative
expansion, as given in Eq. (B4), is more involved, but

straightforward using (B5) and (B6). In performing this
check, one needs to evaluate the ξ-dependence of field
derivatives of the functions V, Z and Zi. This can be done
simply by taking field derivatives of Eqs. (B5), which are
identities that hold for generic ϕðxÞ. For instance, one gets

ξ
∂V 0

∂ξ ¼ −C0V 0 − CV 00; ðB7Þ

and so on. In this way one is able to eliminate all
ξ-derivatives. In order to complete the check one must
also get rid of field derivatives of the potential. The first
derivative, V 0, is eliminated by using the EoM (B4). Higher
order derivatives like V 00 and V 000 can then be eliminated by
taking spacetime derivatives of the EoM (which holds at
every spacetime point). In this way one can get rid of the
combinations ∂μV 0¼V 00∂μϕ̄ and ∂2V 0¼V 00∂2ϕ̄þV 000ð∂ϕ̄Þ2,
etc. After carrying through this program one gets

d
dξ

EoM½ϕ̄� ¼ 0; ðB8Þ

to order Oð∂6Þ. This completes the proof presented in [13]
to Oð∂4Þ with one important improvement: we have shown
now that no assumption about the subleading role of the
functionsDðϕÞ and ~DðϕÞ is needed. Note also that, to order
Oð∂4Þ, it is enough to use ξdϕ̄=dξ ¼ Cðϕ̄Þ.
One can also check explicitly, in the derivative expansion

approximation, that the energy-momentum tensor for
solutions of the EoM is ξ independent. Consider an action
of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðϕ; gμν∂μϕ∂νϕ;□ϕÞ; ðB9Þ

where

□ϕ ¼ DμDμϕ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μϕÞ

¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ðB10Þ

is the covariant d’Alembert operator applied to a scalar
field. We are ultimately interested in a flat background, but
keep the metric in order to derive the energy-momentum
tensor. The equation of motion is only needed on a
Minkowski background, where it reads

L1 − ∂μð2L2∂μϕÞ þ□L3 ¼ 0; ðB11Þ
where we used the shorthand notation Li ¼∂LðX1; X2; X3Þ=∂Xi. To derive the energy-momentum
tensor we use the standard relations

∂
∂gρσðyÞ g

μνðxÞ ¼ −
1

2
ðgμρgνσ þ gμσgνρÞδðx − yÞ; ðB12Þ
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∂
∂gρσðyÞ ð

ffiffiffiffiffiffi
−g

p Þn ¼ n
2
ð ffiffiffiffiffiffi

−g
p Þngρσδðx − yÞ: ðB13Þ

This gives, on a Minkowski background,

∂
∂gρσðyÞ□ϕðxÞ ¼ −2δðx − yÞ∂ρ∂σϕ − ∂ρδðx − yÞ∂σϕ

− ∂σδðx − yÞ∂ρϕþ gρσ∂ηδðx − yÞ∂ηϕ:

ðB14Þ

Using these relations one obtains

Tμν½ϕ� ¼ −
2ffiffiffiffiffiffi−gp δS

δgμν
¼ 2∂μϕ∂νϕL2 − ∂μL3∂νϕ

− ∂νL3∂μϕ − gμν½L − ∂ηðL3∂ηϕÞ�: ðB15Þ

Using the equation of motion one can check that
∂μTμν ¼ 0. For the action (B1), one gets

Tμν ¼ gμν
�
V −

Z
2
ð∂ϕÞ2 − Z2

4
ð∂ϕÞ4 þ Z3∂ρϕ∂σϕ∂ρσφþ Z4∂ρϕ∂ρ∂2ϕþ Z0

4ð∂2ϕÞð∂ϕÞ2þZ4

2
ð∂2ϕÞ2 þ Z0

3

2
ð∂ϕÞ4

�
− Z3ð∂μϕ∂νρϕþ ∂νϕ∂μρϕÞ∂ρϕ − Z4ð∂μϕ∂ν þ ∂νϕ∂μÞ∂2ϕ − Z4ð∂μϕ∂ν þ ∂νϕ∂μÞ∂2ϕ

þ ∂μϕ∂νϕ½Z þ ðZ2 − Z0
3Þð∂ϕÞ2 þ ðZ3 − 2Z0

4Þð∂2ϕÞ� þOð∂6Þ: ðB16Þ

Using the same relations discussed above regarding the
EoM, and in particular, the ξ-dependence of the solutions
of the EoM given by (B6), one is able to prove that

d
dξ

Tμν½ϕ̄� ¼ 0; ðB17Þ

to orderOð∂6Þ, so that the energy and momentum densities
are ξ-independent quantities.
The discussion above has been performed for the

Minkowski action and EoM but, for applications to
tunneling rates and bounce solutions one uses instead
the Euclidean action and EoM. However, the good ξ-
independence properties carry over to the Euclidean case.
To see this explicitly, note first that in the Minkowskian
proofs of ξ-independence presented above we never
had to deal with the exact form of the metric. However,
the Euclidean action is obtained by the replacement
t → −itE, under which ð∂ϕÞ2→−ð∂EϕÞ2, ð∂2ϕÞ→−∂2

Eϕ.
These sign flips could be assigned to a parity trans-
formation under which

Z→−Z; Zi→Zi; V→V; C→C; D→−D; ~D→− ~D;

ðB18Þ

with i ¼ 2, 3, 4. It is immediate to see that Eqs. (B5), (B8)
and (B17) are invariant under this parity transformation so
that the ξ-invariance they express also holds in the
Euclidean case.

APPENDIX C: NIELSEN IDENTITY
AT FINITE TEMPERATURE

The Nielsen identity describing the gauge dependence of
the effective potential extended to finite temperature takes
the form given in Eq. (73). Here we show the explicit forms

of the effective potential VT and the CT function at finite T
for the SM in Fermi gauge.
The calculation of VT is by now standard. At one-loop

order one gets

VTðhÞ ¼ V0ðhÞ þ V1ðh; TÞ: ðC1Þ
Here V0ðhÞ is the tree-level potential of Eq. (16). The one-
loop term V1ðh; TÞ includes both the T ¼ 0 radiative
corrections, as explicitly given in Eq. (17), and the free-
gas approximation for the thermal effects and depends only
on the h-dependent particle massesMα and their number of
degrees of freedom Nα (taken negative for fermions), with
α labeling different particle species; see (18).
Both T ¼ 0 and finite-T contributions to the one-loop

potential V1ðh; TÞ ¼ V1ðh; 0Þ þ ΔTV1ðh; TÞ arise in a
compact way in the imaginary-time formalism expression

V1ðh; TÞ ¼
X
α

NαJαðM2
α; TÞ; ðC2Þ

where the functions Jα, defined as

JαðM2
α; TÞ≡ 1

2

XZ
K

logðK2 þM2
αÞ ðC3Þ

are the finite-T generalization of the J0αðM2
αÞ functions

introduced in Eq. (17). Inside the logarithm K2 stands for
the Euclidean momentum, after k0 → ik0, while the integral
sum stands for

XZ
K

≡ T
X
n

Z
d3−2ϵk
ð2πÞ3−2ϵ ; ðC4Þ

with ϵ used for dimensional regularization. For nonzero T,
k0 takes discrete values, k0 ¼ 2πnT for bosons and
k0 ¼ ð2nþ 1ÞπT for fermions, so that the k0 integral is
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replaced by a sum with n running over all integers. Note
that for T → 0 we have T

P
n →

R
dk0=ð2πÞ and one

recovers the T ¼ 0 result (after Wick rotation), so that in
fact the function (C3) contains the finite temperature piece
on top of the T ¼ 0 one in a single formula. The thermal
correction is

ΔTV1ðh; TÞ ¼
X
α

NαT
Z

d3k
ð2πÞ3 log ½1þ sαe−

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

α

p
=T �;

ðC5Þ
with sα ¼ − (þ) for bosons (fermions). When T ≫ Mα,
a high-T expansion for the potential gives

V1ðh; TÞ ¼
X
αðBÞ

Nα

�
−
π2T4

90
þ 1

24
M2

αT2 −
1

12π
M3

αT

þ M4
α

64π2
log

cBT2

μ2
þO

�
M6

α

T2

��

þ
X
αðFÞ

Nα

�
7π2T4

720
−

1

48
M2

αT2 þ M4
α

64π2
log

cFT2

μ2

þO
�
M6

α

T2

��
; ðC6Þ

where bosonic and fermionic contributions are indicated
separately by (B) and (F) respectively and cB ¼ 3=2þ
2 logð4πÞ − 2γE, cF ¼ 3=2þ2 logπ−2γE with γE ≃ 0.577
being the Euler-Mascheroni constant. In many cases of
interest (like in the study of the electroweak phase
transition) a resummation of finite-T IR divergent terms
(from n ¼ 0 bosonic modes) is necessary. The main effect,
after resumming the so-called ring diagrams is to replace
the mass in the cubic term of the bosonic expansion
above by a thermally screened one, M2

α → M2
α þOðT2Þ;

see e.g. [65] for details.
The expressions for CT in the SM (for Fermi gauge)

generalize the T ¼ 0 ones given in Eqs. (14) and (15).
Going to momentum space and using the imaginary-time
formalism as before we arrive at the thermally corrected
expressions (at one loop),

Cð1Þ
B;TðhÞ ¼ −

g0

2

XZ
K

Z
Pcð−KÞPχ0;μðKÞKμ

¼ −
ξB
8
g02h

XZ
K

Z
1

ðK2 þM2
BþÞðK2 þM2

B−
Þ ;

Cð1Þ
W;TðhÞ ¼ −

g
2

XZ
K

Z
Pcað−KÞPχa;μðKÞKμ

¼ −
ξW
8
g2h

XZ
K

�
1

ðK2 þM2
BþÞðK2 þM2

B−
Þ

þ 2

ðK2 þM2
AþÞðK2 þM2

A−
Þ
�
; ðC7Þ

where the intermediate expressions are written in terms of
the ghost propagators and the Goldstone-gauge mixed ones
and M2

A� , M
2
B� are given in Eq. (18).

It is convenient to rewrite the previous expressions in
terms of the functions IαðM2

α; TÞ defined by

IαðM2
α; TÞ≡ 2

∂
∂M2

α
JαðM2

α; TÞ ¼
XZ
K

1

K2 þM2
α
: ðC8Þ

Then we get

Cð1Þ
B;TðhÞ ¼

1

8
ξBg02h

�
IBþ − IB−

M2
Bþ −M2

B−

�
;

Cð1Þ
W;TðhÞ ¼

1

8
ξWg2h

�
IBþ − IB−

M2
Bþ −M2

B−

þ 2
IAþ − IA−

M2
Aþ −M2

A−

�
; ðC9Þ

a straightforward generalization of the T ¼ 0 results of
Eqs. (20) and (21). The high-T expansions of these
expressions are

Cð1Þ
B;T¼−

κ

8
ξBg02h

�
log

μ2

cBT2
þ3

2
þ 4πT
MBþþMB−

þO
�
M2

B�

T2

��
;

Cð1Þ
W;T¼−

κ

8
ξWg2h

�
2log

μ2

cBT2
þ 3 þ 4πT

MBþþMB−

þ 8πT
MAþþMA−

þ O
�
M2

B�

T2
;
M2

A�

T2

��
; ðC10Þ

which agree with the leading term result presented in [40]
(translated to Fermi gauge).
Finally, noting that

ξB
∂V1ðh; TÞ

∂ξB ¼ ∂JBþ

∂M2
Bþ

ξB
∂M2

Bþ

∂ξB þ ðBþ → B−Þ;

ξW
∂V1ðh; TÞ

∂ξW ¼ ∂JBþ

∂M2
Bþ

ξW
∂M2

Bþ

∂ξW þ 2
∂JAþ

∂M2
Aþ

ξW
∂M2

Aþ

∂ξW
þ ðBþ → B−; Aþ → A−Þ;

and using the expressions for M2
B� and M2

A� given in (18)
plus the relation (C8) and ∂V0=∂h ¼ M2

Gh, it is straight-
forward to check the one-loop Nielsen identities

ξB
∂V1ðh; TÞ

∂ξB þ Cð1Þ
B;T

∂V0ðhÞ
∂h ¼ 0; ðC11Þ

ξW
∂V1ðh; TÞ

∂ξW þ Cð1Þ
W;T

∂V0ðhÞ
∂h ¼ 0: ðC12Þ
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